JP4099093B2 - Nitride semiconductor growth method - Google Patents

Nitride semiconductor growth method Download PDF

Info

Publication number
JP4099093B2
JP4099093B2 JP2003085942A JP2003085942A JP4099093B2 JP 4099093 B2 JP4099093 B2 JP 4099093B2 JP 2003085942 A JP2003085942 A JP 2003085942A JP 2003085942 A JP2003085942 A JP 2003085942A JP 4099093 B2 JP4099093 B2 JP 4099093B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
single crystal
substrate
crystal substrate
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003085942A
Other languages
Japanese (ja)
Other versions
JP2004296700A (en
Inventor
勇 赤崎
浩 天野
智 上山
敏哉 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003085942A priority Critical patent/JP4099093B2/en
Priority to US10/810,309 priority patent/US20050006635A1/en
Priority to DE102004014940A priority patent/DE102004014940A1/en
Priority to FR0403121A priority patent/FR2853141A1/en
Publication of JP2004296700A publication Critical patent/JP2004296700A/en
Priority to US11/365,459 priority patent/US7183578B2/en
Application granted granted Critical
Publication of JP4099093B2 publication Critical patent/JP4099093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、B、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体の成長方法に関し、特に発光ダイオード(LED)、レーザーダイオード(LD)、太陽電池、光センサーなどの発光デバイス、受光デバイスあるいはトランジスタ、パワーデバイス等の電子デバイス等に好適な窒化物半導体の成長方法に関するものである。
【0002】
【従来の技術】
近年、B、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体の研究開発が活発化し、応用技術が飛躍的に発展した。そして、現在、窒化物半導体を利用して緑、青、紫外の発光ダイオードや青、紫のレーザーダイオード等が実用化されている。
【0003】
特に、バンドギャップが赤から紫までをカバーする(InN)(GaN)1−xによれば、それまで実現されていなかった青緑、青、紫などを発光するデバイスが実現できるという点で、また、紫から紫外をカバーする(AlN)(GaN)1−xNについては、計測、殺菌、励起用の光源としての応用が期待できるという点で、III族窒化物半導体の中でも中心的な材料と位置づけられている。
【0004】
このようなIII族窒化物半導体はMOVPE法という方法により、サファイア、SiC、GaAs、Si等の単結晶基板の上に気相成長される。
【0005】
このIII族窒化物半導体は六方晶であり、InN,GaN,AlNについては、それぞれのa軸格子定数が0.311nm、0.319nm、0.354nmである。また、(InN)(GaN)1−xや(AlN)(GaN)1−xの格子定数については、xに応じた上記格子定数の間の値である。
【0006】
しかしながら、サファイア、SiC、GaAs、SiがIII族窒化物半導体と格子整合すべき原子間の間隔は、それぞれ0.275nm,0.308nm,0.400nm,0.384nmであり、完全に格子整合する基板ではなかった。
【0007】
これに対し、低温バッファ層の技術が提案されている(たとえば、特許文献1および特許文献2参照)。
【0008】
この技術を用いることで、これらの格子不整合基板に良質な結晶を成長することができたが、それでもまだ、10〜1011cm−2程度の貫通転位が存在していた。また、これらの単結晶基板は窒化物半導体との熱膨張係数差が大きく、1000℃程度の高温で結晶成長した後の収縮量の違いに起因して、クラックを発生させていた。
【0009】
参考までに、上記材料の格子定数または格子整合する原子間隔と熱膨張係数を表1に示す。
【0010】
【表1】

Figure 0004099093
【0011】
これらの問題点を解決する方法として、ZrB単結晶基板の(0001)面に窒化物半導体を成長する技術が提案されている(特許文献3参照)。
【0012】
ZrB単結晶基板は六方晶であり、a軸の格子定数は0.317nmであって、(AlN)(GaN)1−xのx=0.26と完全に格子整合する。また、熱膨張係数は5.9×10−6−1であり、GaNの5.6×10−6−1と近い値である。
【0013】
また、ZrB単結晶基板は抵抗率が4.6μΩcmと小さく、導電性である。一方、従来、基板として一般的に使用されているサファイア基板は絶縁性であり、そのために図2に示すごとく、サファイア基板の上に形成された発光ダイオードが2つの電極を同一平面側に設ける構造である。
【0014】
同図に示す構造によれば、サファイア基板10の上に低温バッファ層7、n型コンタクト層6、n型クラッド層5、発光層4、p型クラッド層3、p型コンタクト層2とを順次積層した構造であり、その上にさらにp電極1を形成する。また、n型コンタクト層6の露出面にn電極9を形成している。
【0015】
これに対し、図1に示すごとく、ZrB単結晶基板8を用いた場合には、一方の電極を基板の裏面に設ける構造にできるので、デバイス面積を小さくできる利点がある。なお、図2に示す部材と同一部材には同一符号を付す。
【0016】
以上の通り、ここ1〜2年、ZrB単結晶基板への窒化物半導体成長技術の研究開発が進められている。
【0017】
非特許文献1によれば、MBE法によりZrB単結晶基板(0001)面上にGaNが成長できる技術が提案されている。
【0018】
しかしながら、この技術によれば、MBE法であることで、量産性に劣るという問題点がある。
【0019】
また、MOVPE法によりZrB単結晶基板(0001)面上にAlNバッファ層を用いることによりGaNを成長する技術も提案されている(非特許文献2参照)。
【0020】
しかしながら、そのMOVPE法によりZrB単結晶基板(0001)面に成長したGaN膜は表面形態が図4に示すような凹凸が出来やすいという問題があった。
【0021】
〔特許文献1〕
特公平4−15200号
〔特許文献2〕
特許第3026087号
〔特許文献3〕
特開2002−43223号
〔非特許文献1〕
Abstr.13th Int.Conf.Crystal Growth,Aug.2001,02a−SB2−20
〔非特許文献2〕
Ext.Abstr.(62nd Autumn Meet.2001);Japan Society of Applied Physics,12p−R−14
【0022】
【発明が解決しようとする課題】
上述したごとく、ZrB単結晶基板(0001)面にAlNバッファ層を用いて窒化物半導体を成長させた場合、その表面形態に現れる凹凸を小さくさせることが望まれている。
【0023】
【課題を解決するための手段】
本発明の窒化物半導体の成長方法は、化学式XB(但し、XはTi、Zr、Nb、Hfの少なくとも1種を含む)にて表される二硼化物単結晶基板の[0001]面上に、前記二硼化物単結晶基板表面の法線の[0001]結晶軸からのずれ角を有して窒化物半導体層を気相成長させる窒化物半導体の成長方法であって、[10−10]方向へのずれ角と[11−20]方向へのずれ角との二乗和が0.35度以下になるようにAlN層を気相成長させ、次いでB、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体層を気相成長させることを特徴とする。
【0024】
本発明の他の窒化物半導体の成長方法は、前記AlN層の厚みが10〜100nmの範囲内であることを特徴とする。
【0025】
【発明の実施の形態】
以下、本発明の工程を順次述べる。
【0026】
本発明によれば、化学式XB(但し、XはTi、Zr、Nb、Hfの少なくとも1種を含む)にて表される二硼化物単結晶基板を用いる。
【0027】
この基板はZrB基板もしくはTiB基板またはZrTi1−x基板に相当するが、本例においては、ZrB基板にてMOVPE法により気相成長させる方法を説明する。
【0028】
工程1:ZrB基板はアルカリ溶剤で表面を洗浄する。
【0029】
工程2:窒化物半導体を成長する前に、そのZrB基板を水素(H)雰囲気(1気圧)中にて、3分間で昇温し、1150℃の温度にて1分間アニールする。
【0030】
工程3:その後、5分間程度にて降温し、AlN層を堆積する。
【0031】
このとき成長温度Tは800℃以下の温度範囲に設定し、そして、AlN層を気相成長させるとよい。なお、本実施例においては、600℃に設定した。
【0032】
また、AlN層の厚みについては、10〜100nmの範囲内にするとよい。なお、本実施例においては、20nmに設定した。
【0033】
このような気相成長によれば、使用した原料ガスはアンモニア(NH)とトリメチルアルミニウム(TMA)とトリメチルガリウム(TMG)であり、たとえば、供給量はNHを0.07mol/min、TMAを3.5μmol/minとし、キャリアガスとしてHを4slm流した。NHはTMAを供給する1分前から供給した。
【0034】
工程4:次に、たとえば1150℃にまで昇温し、MOVPE法によりGaN層を約3μm成長した。使用した原料ガスはNHとTMGであり、たとえばTMGを44μmol/min、NHを0.07mol/min供給した。キャリアガスとしてHを3slm流した。
【0035】
成長後のGaN膜表面を観察すると図4のような表面に凹凸があるもの(表面状態B)と、図5に示すような、なめらかな状態(表面状態A)のものが観察された。
【0036】
そこで、ZrB2単結晶基板のオフ角と成長した膜の表面状態の関係を図に示す。ここでは基板表面の法線が[0001]結晶軸から[10−10]方向へのずれ角と[11−20]方向へのずれ角とその二乗和をそれぞれ表記している。オフ角の二乗和が0.35度以下では全て表面状態はAであった。オフ角が0.35から0.55度の間では、Aの表面状態とBの表面状態の両方が観察された。これは成長実験での操作や装置状態のばらつきに起因すると考えられ、ばらつきを小さくするとAの表面状態が再現できると考えられる。オフ角の二乗和が0.55度以上では、全て表面状態Bとなった。
【0037】
なお、本発明は上記実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更や改良等はなんら差し支えない。例えば、二硼化物単結晶基板として、ZrB 基板を用いたが、これに代えて化学式XBであって、そして、XがTi、Nb、Hfが単独にてもしくは組み合わせてなる基板であっても、本発明の作用効果を奏することを実験により確認した。
【0038】
【発明の効果】
以上の通り、本発明によれば、MOVPE法によりB、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体層を化学式XB(但し、XはTi、Zr、Nb、Hfの少なくとも1種を含む)で表される二硼化物単結晶基板の(0001)面上に、二硼化物単結晶基板表面の法線の[0001]結晶軸からのずれ角を有して窒化物半導体層を気相成長させる方法として、その二硼化物単結晶基板の(0001)面上に10nmから100nmのAlN層を800℃以下で成長し後にB、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体層を成長させる方法において、二硼化物単結晶基板表面の法線と二硼化物結晶の[0001]方向からのずれ角が、二硼化物単結晶基板表面の法線の[0001]結晶軸から[10−10]方向へのずれ角と[11−20]方向へのずれ角との二乗和が0.35度以下である基板を用いることにより、なめらかな表面の窒化物半導体を成長することができた。したがって本発明を用いれば、ZrB単結晶基板上に作製する発光ダイオード等のデバイスをなめらかな面の上に作製でき、特性や歩留りが向上した。
【図面の簡単な説明】
【図1】ZrB単結晶基板上に窒化物半導体層した構成の断面概略図である。
【図2】サファイア基板上に窒化物半導体層した構成の断面概略図である。
【図3】基板表面のオフ角と表面状態の関係を示す線図である。
【図4】GaN膜の表面状態(表面状態B)を示す図である。
【図5】本発明に係るGaN膜の表面状態(表面状態A)を示す図である。
【符号の説明】
1 p電極
2 p型コンタクト層
3 p型クラッド層
4 発光層
5 n型クラッド層
6 p型コンタクト層
7 低温バッファ層
8 導電性基板
9 n電極
10 基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for growing a nitride semiconductor containing at least one of B, Al, Ga, In, and Tl, and in particular, a light emitting device such as a light emitting diode (LED), a laser diode (LD), a solar cell, and a photosensor, The present invention relates to a method for growing a nitride semiconductor suitable for a light receiving device or an electronic device such as a transistor or a power device.
[0002]
[Prior art]
In recent years, research and development of nitride semiconductors containing at least one of B, Al, Ga, In, and Tl has become active, and applied technology has dramatically advanced. Currently, green, blue, and ultraviolet light emitting diodes, blue and purple laser diodes, and the like have been put into practical use using nitride semiconductors.
[0003]
In particular, according to (InN) x (GaN) 1-x , which covers the band gap from red to purple, it is possible to realize a device that emits blue green, blue, purple, etc., which has not been realized so far. In addition, (AlN) x (GaN) 1-x N covering purple to ultraviolet is central among group III nitride semiconductors in that it can be expected to be used as a light source for measurement, sterilization, and excitation. It is positioned as a material.
[0004]
Such a group III nitride semiconductor is vapor-phase grown on a single crystal substrate of sapphire, SiC, GaAs, Si or the like by a method called MOVPE.
[0005]
This group III nitride semiconductor is hexagonal, and for InN, GaN, and AlN, the a-axis lattice constants are 0.311 nm, 0.319 nm, and 0.354 nm, respectively. The lattice constants of (InN) x (GaN) 1-x and (AlN) x (GaN) 1-x are values between the lattice constants according to x.
[0006]
However, the spacing between the atoms in which sapphire, SiC, GaAs, and Si should be lattice-matched with the group III nitride semiconductor is 0.275 nm, 0.308 nm, 0.400 nm, and 0.384 nm, respectively, and is completely lattice-matched. It was not a substrate.
[0007]
On the other hand, a technique of a low-temperature buffer layer has been proposed (see, for example, Patent Document 1 and Patent Document 2).
[0008]
By using this technique, it was possible to grow good quality crystals on these lattice mismatched substrates, but there were still threading dislocations of about 10 8 to 10 11 cm −2 . Further, these single crystal substrates have a large difference in thermal expansion coefficient from that of nitride semiconductors, and cracks are generated due to the difference in shrinkage after crystal growth at a high temperature of about 1000 ° C.
[0009]
For reference, Table 1 shows the lattice constant or the lattice spacing and the thermal expansion coefficient of the above materials.
[0010]
[Table 1]
Figure 0004099093
[0011]
As a method for solving these problems, a technique for growing a nitride semiconductor on the (0001) plane of a ZrB 2 single crystal substrate has been proposed (see Patent Document 3).
[0012]
The ZrB 2 single crystal substrate is a hexagonal crystal, the lattice constant of the a axis is 0.317 nm, and is completely lattice matched with x = 0.26 of (AlN) x (GaN) 1-x . The thermal expansion coefficient is 5.9 × 10 −6 K −1, which is close to 5.6 × 10 −6 K −1 of GaN.
[0013]
The ZrB 2 single crystal substrate has a resistivity as small as 4.6 μΩcm and is conductive. On the other hand, a sapphire substrate generally used as a substrate is insulative, and therefore, as shown in FIG. 2, a light emitting diode formed on a sapphire substrate has two electrodes on the same plane side. It is.
[0014]
According to the structure shown in the figure, the low-temperature buffer layer 7, the n-type contact layer 6, the n-type cladding layer 5, the light emitting layer 4, the p-type cladding layer 3, and the p-type contact layer 2 are sequentially formed on the sapphire substrate 10. A p-electrode 1 is further formed on the stacked structure. An n electrode 9 is formed on the exposed surface of the n-type contact layer 6.
[0015]
On the other hand, as shown in FIG. 1, when the ZrB 2 single crystal substrate 8 is used, since one electrode can be provided on the back surface of the substrate, there is an advantage that the device area can be reduced. In addition, the same code | symbol is attached | subjected to the same member as the member shown in FIG.
[0016]
As described above, research and development of a nitride semiconductor growth technique on a ZrB 2 single crystal substrate has been advanced over the past one to two years.
[0017]
According to Non-Patent Document 1, a technique is proposed in which GaN can be grown on the ZrB 2 single crystal substrate (0001) surface by MBE.
[0018]
However, according to this technique, there is a problem that it is inferior in mass productivity because of the MBE method.
[0019]
In addition, a technique for growing GaN by using an AlN buffer layer on the ZrB 2 single crystal substrate (0001) surface by the MOVPE method has been proposed (see Non-Patent Document 2).
[0020]
However, the GaN film grown on the ZrB 2 single crystal substrate (0001) surface by the MOVPE method has a problem in that the surface morphology is likely to be uneven as shown in FIG.
[0021]
[Patent Document 1]
Japanese Patent Publication No. 4-15200 [Patent Document 2]
Patent No. 3026087 [Patent Document 3]
JP 2002-43223 [Non-Patent Document 1]
Abstr. 13th Int. Conf. Crystal Growth, Aug. 200102a-SB2-20
[Non-Patent Document 2]
Ext. Abstr. (62nd Autumn Meet. 2001); Japan Society of Applied Physics, 12p-R-14.
[0022]
[Problems to be solved by the invention]
As described above, when a nitride semiconductor is grown using an AlN buffer layer on the ZrB 2 single crystal substrate (0001) surface, it is desired to reduce the unevenness appearing on the surface form.
[0023]
[Means for Solving the Problems]
The nitride semiconductor growth method of the present invention is performed on the [0001] plane of a diboride single crystal substrate represented by the chemical formula XB 2 (where X includes at least one of Ti, Zr, Nb, and Hf). And a method of growing a nitride semiconductor having a deviation angle from a [0001] crystal axis of a normal line of the diboride single crystal substrate surface and vapor-phase-growing a nitride semiconductor layer, [10-10] The AlN layer is vapor-phase grown so that the sum of squares of the shift angle to the [11-20] direction and the shift angle to the [11-20] direction is 0.35 degrees or less, and then B, Al, Ga, In, and Tl. A nitride semiconductor layer containing at least one kind is vapor-phase grown.
[0024]
Another nitride semiconductor growth method of the present invention is characterized in that the thickness of the AlN layer is in the range of 10 to 100 nm.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereafter, the process of this invention is described sequentially.
[0026]
According to the present invention, a diboride single crystal substrate represented by the chemical formula XB 2 (where X includes at least one of Ti, Zr, Nb, and Hf) is used.
[0027]
This substrate corresponds to a ZrB 2 substrate, a TiB 2 substrate, or a Zr x Ti 1-x B 2 substrate. In this example, a method of vapor phase growth using a MOVPE method on a ZrB 2 substrate will be described.
[0028]
Step 1: The surface of the ZrB 2 substrate is washed with an alkaline solvent.
[0029]
Step 2: Before growing the nitride semiconductor, the ZrB 2 substrate is heated in a hydrogen (H 2 ) atmosphere (1 atm) for 3 minutes and annealed at a temperature of 1150 ° C. for 1 minute.
[0030]
Step 3: Thereafter, the temperature is lowered in about 5 minutes to deposit an AlN layer.
[0031]
At this time, the growth temperature T is preferably set to a temperature range of 800 ° C. or lower, and the AlN layer is preferably vapor-phase grown. In this example, the temperature was set to 600 ° C.
[0032]
The thickness of the AlN layer is preferably in the range of 10 to 100 nm. In this example, the thickness was set to 20 nm.
[0033]
According to such vapor phase growth, the used raw material gases are ammonia (NH 3 ), trimethylaluminum (TMA), and trimethylgallium (TMG). For example, the supply amount is 0.07 mol / min for NH 3 , TMA. Was 3.5 μmol / min, and H 2 was flowed as a carrier gas at 4 slm. NH 3 was supplied 1 minute before supplying TMA.
[0034]
Step 4: Next, the temperature was raised to 1150 ° C., for example, and a GaN layer was grown to about 3 μm by the MOVPE method. The raw material gases used were NH 3 and TMG. For example, 44 μmol / min of TMG and 0.07 mol / min of NH 3 were supplied. As a carrier gas, 3 slm of H 2 was flowed.
[0035]
When the surface of the grown GaN film was observed, a surface having irregularities (surface state B) as shown in FIG. 4 and a smooth state (surface state A) as shown in FIG. 5 were observed.
[0036]
FIG. 3 shows the relationship between the off-angle of the ZrB2 single crystal substrate and the surface state of the grown film. Here, the normal of the substrate surface indicates the deviation angle from the [0001] crystal axis in the [10-10] direction, the deviation angle in the [11-20] direction, and the sum of squares thereof. When the off-angle square sum was 0.35 degrees or less, the surface state was A. When the off angle was between 0.35 and 0.55 degrees, both the surface state of A and the surface state of B were observed. This is considered to be caused by variations in operation and apparatus state in the growth experiment, and it is considered that the surface state of A can be reproduced if the variation is reduced. When the square sum of the off angles was 0.55 degrees or more, all surface states B were obtained.
[0037]
It should be noted that the present invention is not limited to the above embodiment, and various modifications and improvements can be made without departing from the scope of the present invention. For example, a ZrB 2 substrate was used as the diboride single crystal substrate, but instead of this, the chemical formula is XB 2 and X is a substrate formed by Ti, Nb, and Hf alone or in combination. In addition, it was confirmed by experiments that the effects of the present invention were achieved.
[0038]
【The invention's effect】
As described above, according to the present invention, a nitride semiconductor layer containing at least one of B, Al, Ga, In, and Tl is expressed by chemical formula XB 2 (where X is at least one of Ti, Zr, Nb, and Hf) by the MOVPE method. A nitride semiconductor having a deviation angle from the [0001] crystal axis of the normal line of the diboride single crystal substrate surface on the (0001) plane of the diboride single crystal substrate represented by As a method of vapor-depositing a layer, an AlN layer of 10 nm to 100 nm is grown on a (0001) plane of the diboride single crystal substrate at 800 ° C. or lower, and then at least one of B, Al, Ga, In, and Tl. In the method for growing a nitride semiconductor layer containing seeds, a deviation angle between the normal of the diboride single crystal substrate surface and the [0001] direction of the diboride crystal is the difference between the normal of the diboride single crystal substrate surface [0001] From the crystal axis [10 A smooth surface nitride semiconductor could be grown by using a substrate in which the square sum of the deviation angle in the [10] direction and the deviation angle in the [11-20] direction was 0.35 degrees or less. . Therefore, by using the present invention, a device such as a light emitting diode manufactured on a ZrB 2 single crystal substrate can be manufactured on a smooth surface, and characteristics and yield are improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a configuration in which a nitride semiconductor layer is formed on a ZrB 2 single crystal substrate.
FIG. 2 is a schematic cross-sectional view of a configuration in which a nitride semiconductor layer is formed on a sapphire substrate.
FIG. 3 is a diagram showing the relationship between the off-angle of the substrate surface and the surface state.
FIG. 4 is a diagram showing a surface state (surface state B) of a GaN film.
FIG. 5 is a diagram showing a surface state (surface state A) of a GaN film according to the present invention.
[Explanation of symbols]
1 p-electrode 2 p-type contact layer 3 p-type cladding layer 4 light-emitting layer 5 n-type cladding layer 6 p-type contact layer 7 low-temperature buffer layer 8 conductive substrate 9 n-electrode 10 substrate

Claims (2)

化学式XB(但し、XはTi、Zr、Nb、Hfの少なくとも1種を含む)にて表される二硼化物単結晶基板の[0001]面上に、前記二硼化物単結晶基板表面の法線の[0001]結晶軸からのずれ角を有して窒化物半導体層を気相成長させる窒化物半導体の成長方法であって、[10−10]方向へのずれ角と[11−20]方向へのずれ角との二乗和が0.35度以下になるようにAlN層を気相成長させ、次いでB、Al、Ga、In、Tlの少なくとも1種を含む窒化物半導体層を気相成長させる窒化物半導体の成長方法。On the [0001] plane of the diboride single crystal substrate represented by the chemical formula XB 2 (wherein X includes at least one of Ti, Zr, Nb, and Hf), the surface of the diboride single crystal substrate surface A method for growing a nitride semiconductor by vapor-phase-growing a nitride semiconductor layer with an angle of deviation from the [0001] crystal axis of the normal line, the angle of deviation in the [10-10] direction and [11-20] ] The vapor phase growth of the AlN layer is performed so that the sum of squares with the deviation angle in the direction becomes 0.35 degrees or less, and then the nitride semiconductor layer containing at least one of B, Al, Ga, In, and Tl is removed. A method for growing a nitride semiconductor by phase growth. 前記AlN層の厚みが10〜100nmの範囲内であることを特徴とする請求項1に記載の窒化物半導体の成長方法。  The method for growing a nitride semiconductor according to claim 1, wherein the thickness of the AlN layer is in a range of 10 to 100 nm.
JP2003085942A 2003-03-26 2003-03-26 Nitride semiconductor growth method Expired - Fee Related JP4099093B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003085942A JP4099093B2 (en) 2003-03-26 2003-03-26 Nitride semiconductor growth method
US10/810,309 US20050006635A1 (en) 2003-03-26 2004-03-26 Semiconductor apparatus, method for growing nitride semiconductor and method for producing semiconductor apparatus
DE102004014940A DE102004014940A1 (en) 2003-03-26 2004-03-26 Semiconductor device, method of growing a nitride semiconductor and method of manufacturing a semiconductor device
FR0403121A FR2853141A1 (en) 2003-03-26 2004-03-26 Semiconductor device comprises monocrystalline diboride substrate, semiconductor stopper layer and nitride semiconductor layer, for light emitting and receiving and other electronic devices
US11/365,459 US7183578B2 (en) 2003-03-26 2006-02-28 Semiconductor apparatus, method for growing nitride semiconductor and method for producing semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085942A JP4099093B2 (en) 2003-03-26 2003-03-26 Nitride semiconductor growth method

Publications (2)

Publication Number Publication Date
JP2004296700A JP2004296700A (en) 2004-10-21
JP4099093B2 true JP4099093B2 (en) 2008-06-11

Family

ID=33400725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085942A Expired - Fee Related JP4099093B2 (en) 2003-03-26 2003-03-26 Nitride semiconductor growth method

Country Status (1)

Country Link
JP (1) JP4099093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864766B2 (en) * 2006-03-31 2012-02-01 富士フイルム株式会社 Method for forming semiconductor layer

Also Published As

Publication number Publication date
JP2004296700A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US8679955B2 (en) Method for forming epitaxial wafer and method for fabricating semiconductor device
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
US7183578B2 (en) Semiconductor apparatus, method for growing nitride semiconductor and method for producing semiconductor apparatus
JP5641506B2 (en) Nitride semiconductor crystal growth method and semiconductor device manufacturing method
US11049994B2 (en) Light emitting diodes with n-polarity and associated methods of manufacturing
US20060175681A1 (en) Method to grow III-nitride materials using no buffer layer
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
JP4734786B2 (en) Gallium nitride compound semiconductor substrate and manufacturing method thereof
JP5073624B2 (en) Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device
JP4647723B2 (en) Nitride semiconductor crystal growth method and semiconductor device manufacturing method
CN102839417A (en) Method for growing self-stripping GaN thin film on sapphire substrate
KR100583163B1 (en) Nitride semiconductor and fabrication method for thereof
US8236103B2 (en) Group III nitride semiconductor crystal, production method thereof and group III nitride semiconductor epitaxial wafer
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH10290051A (en) Semiconductor device and manufacture thereof
JP4099093B2 (en) Nitride semiconductor growth method
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP2999435B2 (en) Semiconductor manufacturing method and semiconductor light emitting device
JP2007227803A (en) Gas phase growth method of nitride group semiconductor, nitride group semiconductor expitaxial substrate using the same, self-standing substrate, and semiconductor device
WO2011070760A1 (en) Method for producing semiconductor element
JP4099107B2 (en) Semiconductor device
KR100765386B1 (en) Gallium nitride-based compound semiconductor and method of manufacturing the same
JP2677221B2 (en) Method for growing nitride-based III-V compound semiconductor crystal
JPH10229218A (en) Manufacture of nitride semiconductor substrate and nitride semiconductor substrate
JPH09148626A (en) Manufacture of iii-v group compound semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees