JP2004296363A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004296363A
JP2004296363A JP2003089850A JP2003089850A JP2004296363A JP 2004296363 A JP2004296363 A JP 2004296363A JP 2003089850 A JP2003089850 A JP 2003089850A JP 2003089850 A JP2003089850 A JP 2003089850A JP 2004296363 A JP2004296363 A JP 2004296363A
Authority
JP
Japan
Prior art keywords
negative electrode
plate
sealing body
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003089850A
Other languages
Japanese (ja)
Other versions
JP4204366B2 (en
Inventor
Naoya Nakanishi
直哉 中西
Koichi Sato
広一 佐藤
Atsuhiro Funabashi
淳浩 船橋
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003089850A priority Critical patent/JP4204366B2/en
Publication of JP2004296363A publication Critical patent/JP2004296363A/en
Application granted granted Critical
Publication of JP4204366B2 publication Critical patent/JP4204366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain high output characteristics by aiming at lowering of resistance of a sealing body of a nonaqueous electrolyte secondary battery with the sealing body fitted to an opening of a negative electrode can through an insulating member and with a rolled-up electrode body housed in the negative electrode can. <P>SOLUTION: The sealing body 2 of the nonaqueous electrolyte secondary battery is provided with a trilaminar structure of an aluminum-made inner plate 21 arranged faced inward in the negative electrode can, a nickel-made outer plate 22 arranged outward from the negative electrode can 1, and an intermediate plate 23 interposed between the inner plate 21 and the outer plate 22, of which the intermediate plate 23 is made of at least one kind of metal selected from Fe, Cu, Au, and Zn as a main component, the inner plate 21, the intermediate plate 23, and the outer plate 22 being laser welded to each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、封口体によって封口された負極缶の内部に発電要素なる電極体が収容されている非水電解質二次電池に関し、特に封口体の十分な低抵抗化を図ることによって高出力を得ることが出来る非水電解質二次電池に関するものである。
【0002】
【従来の技術】
従来の円筒型リチウムイオン二次電池は、例えば図5に示す如く、負極缶(10)の開口部に絶縁部材(30)を介して封口体(5)をかしめ固定して、密閉容器を形成し、該密閉容器内に巻き取り電極体(80)を収容して構成されている。尚、負極缶(10)は、負極電位で安定なニッケル、銅、ステンレス鋼などを用いて作製されている。
巻き取り電極体(80)の正極側の端部には集電板(70)が接合され、該集電板(70)に突設したリード片(73)の先端部が封口体(5)の裏面に溶接されている。又、巻き取り電極体(80)の負極側の端部にも同様に集電板(図示省略)が接合され、該集電板が負極缶(10)の底面に接合されている。
【0003】
封口体(5)は、負極缶(10)の内側から外側へ向かって、アルミニウム製の蓋体ケース(51)と、アルミニウム製の薄板からなる安全弁(52)と、鉄製の基体にニッケル鍍金を施してなる蓋キャップ(53)とを重ね合わせ、これらを互いにスポット溶接して一体化したものである(特許文献1参照)。
この様に、巻き取り電極体(80)の正極が接続されるべき封口体(5)の構造において、負極缶(10)の内側の層(蓋体ケース(51))をアルミニウム製とする一方、複数本の電池を直列接続したとき隣接電池の負極缶と接合されるべき外側の層(蓋キャップ(53)の表層部)をニッケル製とした積層構成によれば、直列接続された2本の電池の接合部にて負極缶(10)のニッケル面と封口体(5)のニッケル面とが接触することとなるので、異種金属どうしの接触に起因する電気腐食の問題が回避される。
【0004】
【特許文献1】
特開2000−90892号公報
【特許文献2】
特開2002−198100号公報
【0005】
【発明が解決しようとする課題】
しかしながら、図5に示す集電体(5)は、溶接性の悪いニッケルとアルミニウムの積層構造を有しているため、溶接不良によってニッケル層とアルミニウム層の接合界面で大きな電気抵抗が発生し、この結果、大きな電力損失が生じて、十分に高い出力特性を得ることが出来ない問題があった。
そこで本発明の目的は、封口体の低抵抗化を図ることによって高い出力特性を得ることが出来る非水電解質二次電池を提供することである。
【0006】
【課題を解決する為の手段】
本発明に係る非水電解質二次電池においては、有底筒状を呈する負極缶(1)の開口部に絶縁部材(3)を介して封口体(2)が取り付けられ、該負極缶(1)内に、正極(81)及び負極(82)を積層してなる電極体(8)が収容され、正極(81)は封口体(2)に接続されると共に、負極(82)は負極缶(1)に接続され、封口体(2)と負極缶(1)に設けた正極端子部及び負極端子部から電極体(4)の発生電力を取り出すことが出来る。
ここで、封口体(2)は、負極缶(1)の内側に向けて配置されたアルミニウム製若しくはアルミニウムを主体とする合金からなる内板(21)と、負極缶(1)の外側に向けて配置されると共に少なくとも負極缶(1)の内側と外側を向く両表層部がニッケル製若しくはニッケルを主体とする合金からなる外板(22)と、内板(21)と外板(22)の間に介在する中間板(23)の3層構造を有し、該中間板(23)は、内板(21)及び外板(22)との接合性がアルミニウム−ニッケル間の接合性よりも良好となる金属から形成されている。
具体的には、中間板(23)は、Fe、Cu、Au、Znから選ばれた少なくとも1つの金属を主体として作製され、内板(21)、中間板(23)及び外板(22)がレーザ溶接などによって互いに接合されている。
尚、「主体」とは、合金においてその元素が最も高い比率で含まれていることを意味する。
【0007】
上記本発明の非水電解質二次電池に採用されている封口体(2)においては、アルミニウム製の内板(21)とニッケル製の外板(22)の間に、Fe、Cu、Au或いはZnからなる中間板(23)が介在しているので、内板(21)と中間板(23)の接合界面においては、アルミニウムとFe、Cu、Au或いはZnとが接触し、中間板(23)と外板(22)の接合界面においては、Fe、Cu、Au或いはZnとニッケルとが接触することとなり、これらの互いに接触する金属どうしの溶接性は、従来の封口体におけるアルミニウムとニッケルとの溶接性よりも良好である。
従って、内板(21)と中間板(23)とは互いに良好に溶接されると共に、中間板(23)と外板(22)とは互いに良好に溶接されて、接合界面での電気抵抗が小さなものとなり、封口体(2)の低抵抗化が図られる。
【0008】
【発明の効果】
本発明に係る非水電解質二次電池によれば、封口体(2)の低抵抗化が図られて、封口体(2)では電力損失が殆ど発生しないため、高い出力特性を得ることが出来る。
【0009】
【発明の実施の形態】
以下、本発明を円筒型リチウムイオン二次電池に実施した形態につき、図面に沿って具体的に説明する。
図1に示す如く、本発明に係る円筒型リチウムイオン二次電池は、厚さ0.5mmの鉄製の有底筒体にニッケル鍍金を施してなる負極缶(1)を具え、該負極缶(1)の開口部には、絶縁部材(3)を介して後述する封口体(2)がかしめ固定され、該負極缶(1)の内部に巻き取り電極体(8)が収容されている。
【0010】
巻き取り電極体(8)の正極側の端部には、集電板(7)が溶接によって接合され、該集電板(7)はリード片(72)を介して封口体(2)の裏面に接続されている。又、巻き取り電極体(8)の負極側の端部には、集電板(71)が溶接によって接合され、該集電板(71)の背面が負極缶(1)の底面に溶接されている。
又、封口体(2)の表面には、ガス排出孔(41)を有する正極端子(4)が取り付けられている。
【0011】
巻き取り電極体(8)は、図4に示す如く、それぞれ帯状の正極(81)と負極(82)の間に帯状のセパレータ(83)を介在させて、これらを渦巻き状に巻回して構成されている。
図2に示す如く、正極(81)は、アルミニウム箔からなる帯状芯体(84)の両面にリチウム複合酸化物(LiCoO)からなる正極活物質(85)を塗布して構成され、負極(82)は、銅箔からなる帯状芯体(86)の両面に天然黒鉛を含む負極活物質(87)を塗布して構成されている。セパレータ(83)には、非水電解液が含浸されている。
【0012】
図4に示す如く、正極(81)及び負極(82)はそれぞれセパレータ(83)上に幅方向へずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(8)の巻き軸方向の両端部の内、一方の端部では、セパレータ(83)の端縁よりも外方へ正極(81)の芯体端縁が突出すると共に、他方の端部では、セパレータ(83)の端縁よりも外方へ負極(82)の芯体端縁が突出している。
【0013】
負極側の集電板(7)は、厚さ1.0mmのニッケル板から形成される一方、正極側の集電板(71)は、厚さ1.0mmのアルミニウム板から形成され、これらの集電板(7)(71)はそれぞれ巻き取り電極体(8)の負極側の端縁と正極側の端縁に押し付けられ、レーザ溶接されている。
【0014】
封口体(2)は、図2に示す如く、負極缶(1)の内側から外側に向けて、直径34mm、厚さ0.3mmのアルミニウム製の内板(21)と、直径34mm、厚さ0.1mmのFe、Cu、Au或いはZn製の中間板(23)と、直径34mm、厚さ1.5mmのニッケル製の外板(22)とを重ね合わせ、これらの板(21)(23)(22)に内板(21)側から円周線に沿ってレーザ溶接を施し、一体化したものである。
尚、外板(22)は、全体がニッケル製のものに限らず、その表面側及び内面側の表層部がニッケル製のものを用いることも可能である。
図3に示す如く、封口体(2)を構成する内板(21)の中央部には、外径6mmの薄肉部(24)が形成されて、ガス排出弁を構成している。又、中間板(23)及び外板(22)にはそれぞれ、内径が8mmの貫通孔(23a)(22a)が開設されている。
正極端子(4)は、ニッケル板のプレス成型によってキャップ状に形成されている。
【0015】
尚、封口体(2)を構成するニッケル製の外板(22)の厚さは、電池内圧上昇時の変形防止や封口体の低抵抗化の観点から1.0〜2.0mmが好ましい。1.0mm以下の厚さでは内圧上昇時に変形が発生するため、かしめ固定部の気密性が低下する虞がある。又、2.0mm以上の厚さでは、封口体自身の抵抗が大きくなり、十分な出力特性を確保することが出来ない。
封口体(2)を構成するアルミニウム製の内板(21)の厚さは、溶接を内板(21)側から行なう関係上、溶接時の熱放散を抑えて溶接性を高く維持するために、0.5mm以下が好ましい。
又、封口体(2)を構成する中間板(23)の厚さは、電気抵抗の低減、溶接時の熱放散抑制の観点から、薄いことが好ましいが、0.05mm以下の厚さでは、内板(21)と中間板(23)の間の溶接性や、中間板(23)と外板(22)の間の溶接性に大きな改善が見られないため、0.075mm〜1.50mmの範囲が好ましい。
【0016】
次に、上記本発明のリチウムイオン二次電池の製造工程について説明する。
巻き取り電極体の作製
LiCoOからなる正極活物質と、炭素からなる導電助剤と、ポリフッ化ビニリデン(PVdF)からなるバインダーとを混合して、正極合剤を調製し、該正極合剤を、アルミニウム箔からなる帯状の正極芯体の両面に塗布して、正極(81)を作製する。尚、正極芯体の一方の端部には、正極活物質層の塗布されていない幅10mmの非塗工部を形成する。
【0017】
又、天然黒鉛からなる負極活物質と、ポリフッ化ビニリデン(PVdF)からなるバインダーとを混合して、負極合剤を調製し、該負極合剤を、銅箔からなる帯状の負極芯体の両面に塗布して、負極(82)を作製する。尚、負極芯体の一方の端部には、負極活物質の塗布されていない幅10mmの非塗工部を形成する。
又、多孔性を有するポリエチレン及びポリプロピレンからなる帯状のセパレータ(83)を、正極活物質塗工部及び負極活物質塗工部の幅より若干大きな幅に形成する。
【0018】
その後、正極、セパレータ及び負極を重ね合わせ、これらを渦巻き状に巻き取って、巻き取り電極体(8)を作製する。この際、正極の活物質非塗工部と負極の活物質非塗工部の端縁がセパレータの端縁から外側へ突出する様に重ね合わせる。
【0019】
正極集電板及び負極集電板の作製
厚さ1.0mmのニッケル板からなる負極集電板(7)と、厚さ1.0mmのアルミニウム板からなる正極集電板(71)を作製する。尚、正極集電板(71)の表面にはリード片(72)の基端部が連結されている。
【0020】
封口体の作製
直径34mm、厚さ1.5mmのニッケル板の中央部に直径8mmの貫通孔を開設した外板(22)と、直径34mm、厚さ0.1mmの銅板の中央部に直径8mmの貫通孔を開設した中間板(23)と、直径34mm、厚さ0.3mmのアルミニウム板の中央部に直径6mmの薄肉部からなるガス排出弁を形成した内板(21)とを作製し、これらの板(22)(23)(21)を内板(21)側から円周線に沿ってレーザ溶接し、一体化する。又、封口体(2)の表面にニッケル製の正極端子(4)をレーザ溶接する。
【0021】
電池の組立
巻き取り電極体(8)の負極側の端縁に負極集電板(7)を設置し、該集電板(7)表面へレーザビームを照射して、該端縁に負極集電板(7)を溶接する。又、巻き取り電極体(8)の正極側の端縁に正極集電板(71)を設置し、該集電板(71)の表面へレーザビームを照射して、該端縁に正極集電板(71)を溶接する。
その後、負極缶(1)の内部に巻き取り電極体(8)を収容し、負極集電板(71)を負極缶(1)の底面に抵抗溶接によって接合する。又、正極集電板(71)から伸びるリード片(72)の先端部を、封口体(2)の裏面にレーザー溶接により接合する。その後、負極缶(1)の内部に電解液を注入する。尚、電解液は、エチレンカーボネートとジエチルカーボネートを体積比1:1で混合し、この混合溶媒にLiPF6を1モル/リットルの割合で溶解させたものである。
最後に、負極缶(1)の開口部にポリプロピレン製の絶縁部材(3)を介して封口体(2)をかしめ固定する。これによって、図1に示す円筒型リチウムイオン二次電池が完成する。
【0022】
尚、正極活物質としては、上述のLiCoOに限定されるものではなく、LiNiO、LiMn等を採用することが出来、更に負極活物質としては、上述の天然黒鉛に限定されるものではなく、人造黒鉛、コークス等の他の炭素材料や、リチウムを吸蔵放出可能な種々の材料を採用することが出来る。又、電解液としては、上述のものに限定されるものではなく、ビニレンカーボネート、プロピレンカーボネートなどの有機溶媒や、これらとジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒にLiClO、LiCFSOなどの溶質を0.7〜1.5モル/リットルの割合で溶解させた溶液等を採用することが出来る。
封口体(2)の溶接には、レーザ溶接に限らず、抵抗溶接、超音波溶接等の溶接方法を採用することが出来る。
【0023】
実験
封口体(2)として、中間板(23)の材料がFe、Cu、Au、Znである4種類の封口体1〜4を作製した。又、比較例として、中間板(23)を具えない内板(21)及び外板(22)からなる封口体5を作製した。そして、これらの封口体を用いて円筒型リチウムイオン二次電池を組み立て、各電池の交流1kHzにおける電池抵抗値を測定した。その結果を下記表1に示す。
【0024】
【表1】

Figure 2004296363
【0025】
表1から明らかな様に、封口体1〜4においては、封口体5よりも低い電池内部抵抗を示している。これは、アルミニウム製の内板(21)とニッケル製の外板(22)との間にFe、Cu、Au、或いはZnからなる外板(22)を介在させることによって、内板(21)と中間板(23)の間に優れた溶接性が得られると共に、中間板(23)と外板(22)の間にも優れた溶接が得られ、この結果、封口体(2)の低抵抗化が図れたものである。
【図面の簡単な説明】
【図1】本発明に係る円筒型リチウムイオン二次電池の断面図である。
【図2】該円筒型リチウムイオン二次電池の要部を拡大して示す断面図である。
【図3】封口体の分解斜視図である。
【図4】巻き取り電極体の一部展開斜視図である。
【図5】従来の円筒型リチウムイオン二次電池の要部を拡大して示す断面図である。
【符号の説明】
(1) 負極缶
(2) 封口体
(21) 内板
(22) 外板
(23) 中間板
(24) 薄肉部
(3) 絶縁部材
(4) 正極端子
(8) 巻き取り電極体
(7) 集電板
(71) 集電板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery in which an electrode body serving as a power generation element is accommodated inside a negative electrode can sealed with a sealing body, and in particular, obtains high output by sufficiently reducing the resistance of the sealing body. And a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In a conventional cylindrical lithium ion secondary battery, for example, as shown in FIG. 5, a sealing body (5) is caulked and fixed to an opening of a negative electrode can (10) via an insulating member (30) to form a closed container. The wound electrode body (80) is housed in the closed container. The negative electrode can (10) is made of nickel, copper, stainless steel, or the like that is stable at the negative electrode potential.
A current collecting plate (70) is joined to an end of the winding electrode body (80) on the positive electrode side, and a tip end of a lead piece (73) protruding from the current collecting plate (70) is sealed with a sealing body (5). Welded on the back of Similarly, a current collector (not shown) is joined to the negative electrode side end of the wound electrode body (80), and the current collector is joined to the bottom surface of the negative electrode can (10).
[0003]
The sealing body (5) includes an aluminum lid case (51), a safety valve (52) made of an aluminum thin plate, and nickel plating on an iron base from the inside to the outside of the negative electrode can (10). The lid cap (53) thus formed is overlapped, and these are spot welded to each other to be integrated (see Patent Document 1).
As described above, in the structure of the sealing body (5) to which the positive electrode of the wound electrode body (80) is to be connected, the inner layer (the lid case (51)) of the negative electrode can (10) is made of aluminum. According to the laminated structure in which the outer layer (the surface layer portion of the lid cap (53)) to be joined to the negative electrode can of the adjacent battery when a plurality of batteries are connected in series is made of nickel, the two batteries connected in series Since the nickel surface of the negative electrode can (10) comes into contact with the nickel surface of the sealing body (5) at the junction of the battery, the problem of electric corrosion caused by the contact between different metals is avoided.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-90892 [Patent Document 2]
JP-A-2002-198100
[Problems to be solved by the invention]
However, since the current collector (5) shown in FIG. 5 has a laminated structure of nickel and aluminum having poor weldability, large electric resistance is generated at the joint interface between the nickel layer and the aluminum layer due to poor welding, As a result, there is a problem that a large power loss occurs and a sufficiently high output characteristic cannot be obtained.
Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of obtaining high output characteristics by reducing the resistance of a sealing body.
[0006]
[Means for solving the problem]
In the non-aqueous electrolyte secondary battery according to the present invention, a sealing body (2) is attached to the opening of the negative electrode can (1) having a bottomed cylindrical shape via an insulating member (3). ), An electrode body (8) formed by laminating a positive electrode (81) and a negative electrode (82) is accommodated, the positive electrode (81) is connected to the sealing body (2), and the negative electrode (82) is a negative electrode can. The power generated by the electrode body (4) can be extracted from the positive electrode terminal portion and the negative electrode terminal portion provided on the sealing body (2) and the negative electrode can (1) connected to (1).
Here, the sealing body (2) is provided with an inner plate (21) made of aluminum or an aluminum-based alloy disposed toward the inside of the negative electrode can (1) and an outer plate facing the outside of the negative electrode can (1). And an outer plate (22) made of nickel or an alloy mainly composed of nickel, and an inner plate (21) and an outer plate (22). It has a three-layer structure of an intermediate plate (23) interposed therebetween, and the intermediate plate (23) has a bondability with the inner plate (21) and the outer plate (22) which is lower than the bondability between aluminum and nickel. Is also formed from a good metal.
Specifically, the intermediate plate (23) is made mainly of at least one metal selected from Fe, Cu, Au, and Zn, and includes an inner plate (21), an intermediate plate (23), and an outer plate (22). Are joined to each other by laser welding or the like.
In addition, "mainly" means that the element is contained in the alloy in the highest ratio.
[0007]
In the sealing body (2) employed in the non-aqueous electrolyte secondary battery of the present invention, Fe, Cu, Au, or Au is provided between the inner plate (21) made of aluminum and the outer plate (22) made of nickel. Since the intermediate plate (23) made of Zn is interposed, at the joint interface between the inner plate (21) and the intermediate plate (23), aluminum and Fe, Cu, Au or Zn come into contact with each other, and the intermediate plate (23) ) And the outer plate (22) at the joint interface, Fe, Cu, Au or Zn and nickel come into contact with each other, and the weldability between these metals that come into contact with each other depends on the aluminum and nickel in the conventional sealing body. Better than the weldability of
Therefore, the inner plate (21) and the intermediate plate (23) are well welded to each other, and the intermediate plate (23) and the outer plate (22) are well welded to each other. It becomes small, and the resistance of the sealing body (2) is reduced.
[0008]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the nonaqueous electrolyte secondary battery which concerns on this invention, since the resistance of the sealing body (2) is reduced and a power loss hardly occurs in the sealing body (2), high output characteristics can be obtained. .
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a cylindrical lithium ion secondary battery will be specifically described with reference to the drawings.
As shown in FIG. 1, the cylindrical lithium ion secondary battery according to the present invention includes a negative electrode can (1) obtained by applying nickel plating to an iron bottomed cylinder having a thickness of 0.5 mm. A sealing body (2) to be described later is caulked and fixed to the opening of 1) via an insulating member (3), and a wound electrode body (8) is accommodated inside the negative electrode can (1).
[0010]
A current collector (7) is joined to the positive electrode side end of the wound electrode body (8) by welding, and the current collector (7) is connected to the sealing body (2) via a lead piece (72). It is connected to the back. A current collector (71) is joined to the negative electrode side end of the wound electrode body (8) by welding, and the back surface of the current collector (71) is welded to the bottom surface of the negative electrode can (1). ing.
A positive electrode terminal (4) having a gas discharge hole (41) is attached to the surface of the sealing body (2).
[0011]
As shown in FIG. 4, the winding electrode body (8) is configured such that a strip-shaped separator (83) is interposed between a strip-shaped positive electrode (81) and a strip-shaped negative electrode (82), and these are spirally wound. Have been.
As shown in FIG. 2, the positive electrode (81) is configured by applying a positive electrode active material (85) made of a lithium composite oxide (LiCoO 2 ) to both surfaces of a band-shaped core (84) made of an aluminum foil. 82) is configured by applying a negative electrode active material (87) containing natural graphite to both surfaces of a strip-shaped core (86) made of copper foil. The non-aqueous electrolyte is impregnated in the separator (83).
[0012]
As shown in FIG. 4, the positive electrode (81) and the negative electrode (82) are superposed on the separator (83) while being shifted in the width direction, and are wound in a spiral. Thereby, at one end of the two ends in the winding axis direction of the winding electrode body (8), the core body edge of the positive electrode (81) projects outward from the edge of the separator (83). At the same time, at the other end, the core edge of the negative electrode (82) protrudes outward from the edge of the separator (83).
[0013]
The current collector plate (7) on the negative electrode side is formed from a nickel plate having a thickness of 1.0 mm, while the current collector plate (71) on the positive electrode side is formed from an aluminum plate having a thickness of 1.0 mm. The current collectors (7) and (71) are pressed against the negative electrode side edge and the positive electrode side edge of the wound electrode body (8), respectively, and are laser-welded.
[0014]
As shown in FIG. 2, the sealing body (2) has an aluminum inner plate (21) having a diameter of 34 mm and a thickness of 0.3 mm and a diameter of 34 mm and a thickness of 0.3 mm from the inside to the outside of the negative electrode can (1). An intermediate plate (23) made of 0.1 mm of Fe, Cu, Au or Zn is superimposed on a nickel outer plate (22) having a diameter of 34 mm and a thickness of 1.5 mm, and these plates (21) (23) ) (22) is integrated by laser welding along the circumferential line from the inner plate (21) side.
The outer plate (22) is not limited to the one made entirely of nickel, and it is also possible to use the one whose surface layer portion on the surface side and the inner surface side is made of nickel.
As shown in FIG. 3, a thin portion (24) having an outer diameter of 6 mm is formed at the center of the inner plate (21) constituting the sealing body (2) to constitute a gas discharge valve. The intermediate plate (23) and the outer plate (22) are respectively provided with through holes (23a) (22a) having an inner diameter of 8 mm.
The positive electrode terminal (4) is formed in a cap shape by pressing a nickel plate.
[0015]
The thickness of the nickel outer plate (22) constituting the sealing body (2) is preferably 1.0 to 2.0 mm from the viewpoint of preventing deformation when the internal pressure of the battery rises and reducing the resistance of the sealing body. When the thickness is less than 1.0 mm, deformation occurs when the internal pressure rises, so that the airtightness of the caulking fixing portion may be reduced. On the other hand, if the thickness is 2.0 mm or more, the resistance of the sealing body itself increases, and sufficient output characteristics cannot be secured.
The thickness of the aluminum inner plate (21) constituting the sealing body (2) is set so that the welding is performed from the inner plate (21) side, so that heat dissipation during welding is suppressed to maintain high weldability. , 0.5 mm or less.
Further, the thickness of the intermediate plate (23) constituting the sealing body (2) is preferably thin from the viewpoint of reduction of electric resistance and suppression of heat dissipation during welding, but with a thickness of 0.05 mm or less, 0.075 mm to 1.50 mm because there is no significant improvement in weldability between the inner plate (21) and the intermediate plate (23) and between the intermediate plate (23) and the outer plate (22). Is preferable.
[0016]
Next, the manufacturing process of the lithium ion secondary battery of the present invention will be described.
Preparation of Winding Electrode Body A positive electrode mixture is prepared by mixing a positive electrode active material composed of LiCoO 2 , a conductive auxiliary composed of carbon, and a binder composed of polyvinylidene fluoride (PVdF). Then, a positive electrode (81) is produced by applying the composition to both sides of a strip-shaped positive electrode core made of aluminum foil. At one end of the positive electrode core, a non-coated portion having a width of 10 mm to which the positive electrode active material layer is not applied is formed.
[0017]
In addition, a negative electrode active material composed of natural graphite and a binder composed of polyvinylidene fluoride (PVdF) are mixed to prepare a negative electrode mixture, and the negative electrode mixture is coated on both sides of a strip-shaped negative electrode core made of copper foil. To produce a negative electrode (82). A non-coated portion having a width of 10 mm to which the negative electrode active material is not applied is formed at one end of the negative electrode core.
In addition, a strip-shaped separator (83) made of porous polyethylene and polypropylene is formed to have a width slightly larger than the width of the coated portion of the positive electrode active material and the coated portion of the negative electrode active material.
[0018]
Thereafter, the positive electrode, the separator, and the negative electrode are overlapped, and they are spirally wound to produce a wound electrode body (8). At this time, they are overlapped so that the edges of the active material non-coated portion of the positive electrode and the active material non-coated portion of the negative electrode project outward from the edge of the separator.
[0019]
Preparation of a positive electrode current collector and a negative electrode current collector A negative electrode current collector (7) made of a nickel plate having a thickness of 1.0 mm and a positive electrode current collector (71 made of an aluminum plate having a thickness of 1.0 mm) ) Is prepared. The base end of the lead piece (72) is connected to the surface of the positive electrode current collector (71).
[0020]
Production of sealing body An outer plate (22) having a through-hole of 8 mm in diameter at the center of a nickel plate having a diameter of 34 mm and a thickness of 1.5 mm, and a copper plate having a diameter of 34 mm and a thickness of 0.1 mm. Intermediate plate (23) having a through-hole with a diameter of 8 mm at the bottom, and an inner plate (21) having a gas discharge valve formed of a thin portion with a diameter of 6 mm at the center of an aluminum plate having a diameter of 34 mm and a thickness of 0.3 mm. These plates (22), (23), and (21) are laser-welded along the circumferential line from the inner plate (21) side to be integrated. A nickel positive electrode terminal (4) is laser-welded to the surface of the sealing body (2).
[0021]
Assembly of battery A negative electrode current collector (7) is set on the edge of the wound electrode body (8) on the negative electrode side, and a laser beam is radiated to the surface of the current collector (7). A negative electrode current collector (7) is welded to the edge. Further, a positive electrode current collector (71) is provided at an edge on the positive electrode side of the wound electrode body (8), and a laser beam is irradiated on the surface of the current collector (71), and the positive electrode current collector is applied to the edge. The electric plate (71) is welded.
Thereafter, the wound electrode body (8) is housed inside the negative electrode can (1), and the negative electrode current collector plate (71) is joined to the bottom surface of the negative electrode can (1) by resistance welding. Further, the tip of the lead piece (72) extending from the positive electrode current collector (71) is joined to the back surface of the sealing body (2) by laser welding. Thereafter, an electrolyte is injected into the negative electrode can (1). The electrolyte was prepared by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 and dissolving LiPF6 in the mixed solvent at a ratio of 1 mol / liter.
Finally, the sealing body (2) is caulked and fixed to the opening of the negative electrode can (1) via an insulating member (3) made of polypropylene. Thus, the cylindrical lithium ion secondary battery shown in FIG. 1 is completed.
[0022]
The positive electrode active material is not limited to the above-mentioned LiCoO 2 , but may be LiNiO 2 , LiMn 2 O 4 or the like, and the negative electrode active material is limited to the above-described natural graphite. Instead, other carbon materials such as artificial graphite and coke, and various materials capable of inserting and extracting lithium can be used. Further, the electrolytic solution is not limited to those described above, but may be an organic solvent such as vinylene carbonate or propylene carbonate, or a solvent such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, or ethoxymethoxyethane. A solution in which a solute such as LiClO 4 or LiCF 3 SO 4 is dissolved in a mixed solvent with a boiling point solvent at a ratio of 0.7 to 1.5 mol / liter, or the like can be used.
The welding of the sealing body (2) is not limited to laser welding, and welding methods such as resistance welding and ultrasonic welding can be adopted.
[0023]
Experiment Four types of sealing bodies 1 to 4 in which the material of the intermediate plate (23) was Fe, Cu, Au, and Zn were produced as the sealing bodies (2). Further, as a comparative example, a sealing body 5 including an inner plate (21) and an outer plate (22) without the intermediate plate (23) was produced. Then, a cylindrical lithium ion secondary battery was assembled using these sealing members, and the battery resistance value of each battery at an alternating current of 1 kHz was measured. The results are shown in Table 1 below.
[0024]
[Table 1]
Figure 2004296363
[0025]
As is clear from Table 1, the sealing bodies 1 to 4 show a lower battery internal resistance than the sealing body 5. This is achieved by interposing an outer plate (22) made of Fe, Cu, Au, or Zn between an inner plate (21) made of aluminum and an outer plate (22) made of nickel, thereby forming the inner plate (21). Excellent weldability is obtained between the intermediate plate (23) and the intermediate plate (23), and also excellent welds are obtained between the intermediate plate (23) and the outer plate (22). The resistance is improved.
[Brief description of the drawings]
FIG. 1 is a sectional view of a cylindrical lithium ion secondary battery according to the present invention.
FIG. 2 is an enlarged sectional view showing a main part of the cylindrical lithium ion secondary battery.
FIG. 3 is an exploded perspective view of the sealing body.
FIG. 4 is a partially developed perspective view of a wound electrode body.
FIG. 5 is an enlarged cross-sectional view showing a main part of a conventional cylindrical lithium ion secondary battery.
[Explanation of symbols]
(1) Negative electrode can (2) Sealing body (21) Inner plate (22) Outer plate (23) Intermediate plate (24) Thin part (3) Insulating member (4) Positive electrode terminal (8) Winding electrode body (7) Current collector (71) Current collector

Claims (4)

有底筒状を呈する負極缶(1)の開口部に絶縁部材(3)を介して封口体(2)が取り付けられ、該負極缶(1)内に、正極(81)及び負極(82)を積層してなる電極体(8)が収容され、正極(81)は封口体(2)に接続されると共に、負極(82)は負極缶(1)に接続され、封口体(2)と負極缶(1)に設けた正極端子部及び負極端子部から電極体(4)の発生電力を取り出すことが可能な非水電解質二次電池において、封口体(2)は、負極缶(1)の内側に向けて配置されたアルミニウム製若しくはアルミニウムを主体とする合金からなる内層と、負極缶(1)の外側に向けて配置されると共に少なくとも負極缶(1)の内側と外側を向く両表層部がニッケル製若しくはニッケルを主体とする合金からなる外層と、内層と外層の間に介在する中間層の3層構造を有し、該中間層は、外層及び内層との接合性がアルミニウム−ニッケル間の接合性よりも良好となる金属から形成されていることを特徴とする非水電解質二次電池。A sealing body (2) is attached to the opening of the negative electrode can (1) having a bottomed shape via an insulating member (3), and a positive electrode (81) and a negative electrode (82) are provided in the negative electrode can (1). And an electrode body (8) formed by laminating the electrodes is accommodated. The positive electrode (81) is connected to the sealing body (2), and the negative electrode (82) is connected to the negative electrode can (1). In a non-aqueous electrolyte secondary battery capable of extracting electric power generated by an electrode body (4) from a positive electrode terminal portion and a negative electrode terminal portion provided on a negative electrode can (1), a sealing body (2) is formed of a negative electrode can (1) An inner layer made of aluminum or an aluminum-based alloy disposed toward the inside of the anode can, and both surface layers disposed toward the outside of the anode can (1) and facing at least inside and outside of the anode can (1) The outer layer is made of nickel or a nickel-based alloy, and the inner layer It has a three-layer structure of an intermediate layer interposed between the layers, and the intermediate layer is formed of a metal having a better bondability with the outer layer and the inner layer than a bondability between aluminum and nickel. Non-aqueous electrolyte secondary battery. 中間層は、Fe、Cu、Au、Znから選ばれた少なくとも1つの金属、若しくは該金属を主体とする合金から形成されている請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the intermediate layer is formed of at least one metal selected from Fe, Cu, Au, and Zn, or an alloy mainly containing the metal. 封口体(2)は、内層となる内板(21)と、中間層となる中間板(23)と、外層となる外板(22)とを互いに溶接して作製されている請求項1又は請求項2に記載の非水電解質二次電池。The sealing body (2) is produced by welding an inner plate (21) serving as an inner layer, an intermediate plate (23) serving as an intermediate layer, and an outer plate (22) serving as an outer layer to each other. The non-aqueous electrolyte secondary battery according to claim 2. 内板(21)、中間板(23)及び外板(22)は互いにレーザ溶接されている請求項3に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 3, wherein the inner plate (21), the intermediate plate (23) and the outer plate (22) are laser-welded to each other.
JP2003089850A 2003-03-28 2003-03-28 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4204366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089850A JP4204366B2 (en) 2003-03-28 2003-03-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089850A JP4204366B2 (en) 2003-03-28 2003-03-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004296363A true JP2004296363A (en) 2004-10-21
JP4204366B2 JP4204366B2 (en) 2009-01-07

Family

ID=33403611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089850A Expired - Fee Related JP4204366B2 (en) 2003-03-28 2003-03-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4204366B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351512A (en) * 2005-05-16 2006-12-28 Matsushita Electric Ind Co Ltd Sealed secondary battery and its manufacturing method
US7618745B2 (en) 2006-01-23 2009-11-17 Sanyo Electric Co., Ltd. Sealed battery
JP2010135320A (en) * 2008-12-08 2010-06-17 Samsung Sdi Co Ltd Secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351512A (en) * 2005-05-16 2006-12-28 Matsushita Electric Ind Co Ltd Sealed secondary battery and its manufacturing method
US7618745B2 (en) 2006-01-23 2009-11-17 Sanyo Electric Co., Ltd. Sealed battery
JP2010135320A (en) * 2008-12-08 2010-06-17 Samsung Sdi Co Ltd Secondary battery
US8535828B2 (en) 2008-12-08 2013-09-17 Samsung Sdi Co., Ltd. Rechargeable battery

Also Published As

Publication number Publication date
JP4204366B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
CN107710459B (en) Battery and battery pack
KR100675700B1 (en) Non-water electrolyte secondary battery and manufacturing method thereof
EP3101723B1 (en) Secondary battery and secondary battery production method
JP5583421B2 (en) Square sealed secondary battery and method for manufacturing square sealed secondary battery
JP5840207B2 (en) Secondary battery
JP2009110751A (en) Secondary battery
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
KR20060097603A (en) Battery and method of manufacturing same
JP3877619B2 (en) Sealed battery
JPH11307076A (en) Secondary battery
US7153606B2 (en) Secondary battery
JP3831595B2 (en) Cylindrical secondary battery
JP5619033B2 (en) Sealed battery and manufacturing method thereof
JP3759577B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP4679046B2 (en) Battery and battery unit using the same
JP5651556B2 (en) Secondary battery
JP5248210B2 (en) Lithium ion secondary battery
JP4204366B2 (en) Nonaqueous electrolyte secondary battery
JP2002352789A (en) Secondary battery
JP2012185912A (en) Cylindrical secondary cell
JP2004273288A (en) Cylindrical secondary battery
JP2017134910A (en) Method of manufacturing secondary battery
JP2004296251A (en) Non-aqueous electrolyte secondary battery
JP2007035576A (en) Nonaqueous electrolyte secondary battery
JP4019700B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees