JP2004293405A - Variable valve system of internal combustion engine - Google Patents

Variable valve system of internal combustion engine Download PDF

Info

Publication number
JP2004293405A
JP2004293405A JP2003086733A JP2003086733A JP2004293405A JP 2004293405 A JP2004293405 A JP 2004293405A JP 2003086733 A JP2003086733 A JP 2003086733A JP 2003086733 A JP2003086733 A JP 2003086733A JP 2004293405 A JP2004293405 A JP 2004293405A
Authority
JP
Japan
Prior art keywords
variable valve
exhaust
oil
hydraulic
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003086733A
Other languages
Japanese (ja)
Other versions
JP4206793B2 (en
Inventor
Maki Chokai
真樹 鳥海
Shigeteru Shindo
茂輝 新藤
Yusuke Takagi
裕介 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003086733A priority Critical patent/JP4206793B2/en
Priority to CNA2004100066471A priority patent/CN1534171A/en
Publication of JP2004293405A publication Critical patent/JP2004293405A/en
Application granted granted Critical
Publication of JP4206793B2 publication Critical patent/JP4206793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a system and to reduce its cost and friction by miniaturizing/reducing the capacity of an oil pump without causing degradation of actuation responsiveness. <P>SOLUTION: An inlet valve side and an exhaust valve side are respectively provided with a valve timing change mechanism (VTC) actuated by oil pressure from the oil pump for changing a valve lift characteristic. When an oil temperature Ot detected by an oil temperature sensor becomes higher than a predetermined second oil temperature threshold Ot2 (S15a), actuation of the exhaust VTC is prohibited (S16a). When the oil temperature Ot exceeds a first oil temperature threshold Ot1 which is higher than the Ot2, actuation of the inlet VTC is prohibited. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸気側及び排気側の双方に、油圧により作動する可変動弁機構を設けた内燃機関の可変動弁装置に関する。
【0002】
【従来の技術】
内燃機関の出力や燃費の性能向上を図るために、従来より、吸・排気弁のバルブリフト特性を変更可能な様々な可変動弁機構が提案されている。例えば、特許文献1には、油圧式アクチュエータと電気式アクチュエータとを併用する可変動弁機構が開示されている。
【0003】
【特許文献1】
特開2002−161721号公報
【0004】
【発明が解決しようとする課題】
吸気側と排気側の双方に、オイルポンプ等の油圧源からの油圧により作動してバルブリフト特性を変更する可変動弁機構をそれぞれ設けた場合、以下のような課題がある。油圧が低い(油温が高い)状況では、双方の可変動弁機構の作動応答性を確保するためには、オイルポンプの大容量化・大型化を招き、コストの増加や装置の大型化を招いてしまう。あるいは、少なくとも一方の可変動弁機構を電動式とすると、やはりコストの増加を招くとともに、電力消費量が増大し、可変動弁機構による本来の目的である燃費の向上効果を十分に得ることができない。
【0005】
本発明は、このような課題に鑑みてなされたものであり、吸気側と排気側のそれぞれに、油圧により作動してバルブリフト特性を変更する可変動弁機構を適用した内燃機関の可変動弁装置において、油圧の低下・油温の上昇等により可変動弁機構の作動応答性が確保できなくなることを回避しつつ、オイルポンプ等の油圧源の小型化・小容量化により低コスト化・燃費向上等を図ることができる新規な内燃機関の可変動弁装置を提供することを主たる目的としている。
【0006】
【課題を解決するための手段】
吸気弁側と排気弁側のそれぞれに、油圧源からの油圧により作動してバルブリフト特性を変更する可変動弁機構を設ける。油圧に関連する油圧パラメータを検出し、この油圧パラメータに基づいて、吸気側可変動弁機構と排気側可変動弁機構の少なくとも一方の作動を禁止する。
【0007】
【発明の効果】
本発明によれば、油圧パラメータに基づいて少なくとも一方の可変動弁機構の作動を禁止しているため、オイルポンプ等の油圧源を大型化・大容量化することなく、可変動弁機構の作動応答性が不用意に低下することを回避できる。従って、フェールセーフ性の低下を招くことなく、油圧源を小型化・小容量化し、低コスト化・燃費向上等を図ることができる。
【0008】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面に基づいて詳細に説明する。図1を参照して、吸気側可変動弁機構としての吸気側可変バルブタイミング機構(以下、吸気VTCと呼ぶ)13は、吸気弁のバルブタイミングを連続的に変更可能であり、排気側可変動弁機構としての排気側可変バルブタイミング機構(以下、排気VTCと呼ぶ)15は、排気弁のバルブタイミングを連続的に変更可能である。これらのVTC(バルブ・タイミング・コントロール)自体は上述した特開2002−161721号公報にも開示されているように公知であり、ここでは簡単な説明にとどめる。
【0009】
各VTCは、クランクシャフトに連動して回転するカムスプロケット47に固定されたハウジング43と、このハウジング43内に収容され、かつ、吸気カムシャフト14又は排気カムシャフト16に固定されたベーン44と、を有している。ベーン44とハウジング43との間には、2本のVTC給油路34又は35(吸気側では34a,34b;排気側では35a,35b)にそれぞれ接続する2系統の油圧室45,46が液密に画成されている。これらの油圧室45,46に供給される油圧に応じて、ベーン44がハウジング43に対して回転し、クランクシャフトの位相に対するカムシャフト14,16の位相が変化し、吸・排気弁の作動角の位相が進角側・遅角側に変化する。
【0010】
エンジンコントロールユニット1は、CPU,ROM,RAM及び入出力インターフェースを備えた周知のデジタルコンピュータであり、後述するような各種制御処理を記憶及び実行する。すなわち、エンジンコントロールユニット1は、水温信号2、吸入空気量信号3、スロットルセンサ信号4,酸素センサ信号5、エンジン回転信号6、吸気カム角センサ信号19、及び排気カム角センサ信号20等の車両運転状態を表す様々な検出信号に基づいて、各種アクチュエータへ制御信号を出力し、特に、吸気側油圧制御弁としての吸気VTCソレノイド11および排気側油圧制御弁としての排気VTCソレノイド12へ、それぞれ指令値(通電量)としての吸気VTC制御信号9と排気VTC制御信号10とを出力する。VTCソレノイド11,12は、指令値に応じてVTC給油路34,35の接続状況及び開度を制御して、油圧室45,46への供給油圧を制御する。
【0011】
図2,6はVTC13,15の油圧回路を簡略的に示している。シリンダブロック41には油圧源としてのオイルポンプ31が設けられている。オイルポンプ31により加圧された作動油(潤滑油・エンジンオイル)は、ブロックメインギャラリ32,VTCソレノイド給油路33,上述したVTCソレノイド11,12及びVTC給油路34,35を経由して、シリンダヘッド42に設けられたVTC13,15へ供給される。
【0012】
後述する第1,2,5実施例では、図2に示すように、オイルポンプ31からVTCソレノイド11,12への油圧供給経路の途中、例えばブロックメインギャラリ32に、油圧に関連する油圧パラメータとしての作動油の温度すなわち油温を検出する油温センサ(油圧パラメータ検出手段)24が設けられている。後述する第3,4,6実施例では、図6に示すように、オイルポンプ31からVTCソレノイド11,12への油圧供給経路の途中、例えばVTCソレノイド給油路33に、作動油の圧力すなわち油圧を検出する油圧センサ(油圧パラメータ検出手段)22が設けられている。
【0013】
図3〜5,7,8,10,11は、エンジンコントロールユニット1により記憶・実行される制御処理を示すフローチャートである。図3を参照して、S(ステップ)1では、吸気VTC切換許可フラグVi及び排気VTC切換許可フラグVeを0に初期化する。S2では、主に機関回転数及び機関負荷に基づいて、吸気VTC13の油圧室45,46の少なくとも一方に油圧を供給して吸気VTC13を作動する作動領域(ON領域)であるかを判定する。吸気VTC13の作動領域であると判定された場合には、S3へ進み、吸気VTC切換許可フラグViを1とする。吸気VTC13の作動領域でないと判定された場合、S3がバイパスされ、Viは0のままとなる。同様に、S4では、主に機関回転数及び機関負荷に基づいて、排気VTC15の油圧室45,46の少なくとも一方に油圧を供給して排気VTC15を作動する作動領域(ON領域)であるかを判定する。排気VTC13の作動領域であると判定された場合には、S5へ進み、排気VTC切換許可フラグVeを1とする。排気VTC15の作動領域でないと判定された場合、S5がバイパスされ、Veは0のままとなる。
【0014】
この図3のS2及びS4では、主に機関回転数及び機関負荷に基づく要求によりVTCへ油圧を供給してVTCを作動する領域であるかを判定しており、後述する実施例での油温の上昇や油圧の低下の影響は考慮されていない。
【0015】
図4は、本発明の第1実施例に係る制御の流れを示すフローチャートである。S11では、図3のルーチンにより設定された吸気VTC切換許可フラグVi及び排気VTC切換許可フラグVeの値を読み込む。S12では、吸気VTC切換許可フラグViが1であるかを判定する。S13では、排気VTC切換許可フラグVeが1であるかを判定する。Vi及びVeの双方が1と判定された場合、すなわち、吸気VTC13の作動領域であり、かつ、排気VTC15の作動領域である場合に限り、S14以降の処理を行い、それ以外の場合、本ルーチンを終了する。
【0016】
S14では、図2に示す油温センサ24の出力値Ot(図1の油温センサ信号23)を読み込む。S15では、出力値(油温)Otが、所定の第1油温閾値Ot1(例えば120〜130℃)を越える第1高油温状態であるかを判定する。第1高油温状態と判定された場合、S16へ進み、吸気VTC切換許可フラグViの値を0とするとともに、排気VTC切換許可フラグVeの値を0とする。つまり、吸気VTC13の作動を禁止するとともに、排気VTC15の作動を禁止する。
【0017】
この第1実施例によれば、油温が高く、作動油の粘度が低下して油圧が低くなる第1高油温状態では、吸気VTC13及び排気VTC15の双方の作動、すなわち油圧の供給を禁止している。従って、VTCの作動応答性を保証するために、オイルポンプ31の容量を過度に大きく確保することなく、VTCの作動応答性が不用意に低下することを回避でき、かつ、オイルポンプ31の小型化・小容量化により、コストの低下・装置の小型化及びフリクションの低減化等を図ることができる。
【0018】
図5は、本発明の第2実施例に係る制御の流れを示すフローチャートである。S11〜S14の処理は図4の第1実施例と同様である。S15aでは、油温センサ24の出力値(油温)Otが、所定の第2油温閾値Ot2を越える第2高油温状態であるかを判定する。第2高油温状態と判定された場合、S16aへ進み、排気VTC切換許可フラグVeの値を0とする。つまり、吸気VTC13の作動を禁止することなく、排気VTC15の作動のみを禁止する。
【0019】
この第2実施例に係る作用・効果について図9を参照して説明する。
【0020】
▲1▼例えばパーシャル域では、吸気VTC13により吸気弁開時期IVOを進角させて、IVOから排気弁開時期EVOまでのオーバーラップを増大することにより、内部EGR量を増大させて燃費の向上を図る。
【0021】
▲2▼低速域等では、吸気弁閉時期IVCを進角させて、このIVCを下死点に近づけることにより、実圧縮比を高くして、トルクの向上を図る。
【0022】
▲3▼排気通路(排気管)内の排気脈動によって、排圧が低いときに排気を排出する方が排気が排出され易いので、全開域等では、EVCを遅角して排気の排出を促進し、出力向上を図る。
【0023】
従って、この第2実施例のように、第2高油温状態(フェール時)では、排気VTC15のみの作動を禁止することにより、吸気VTC13の作動による上記▲1▼,▲2▼の効果を確保しつつ、第1実施例と同様、オイルポンプ31の小型化・小容量化によりコストの低減化・フリクションの低減化等を図ることができる。
【0024】
高油温時に排気VTC15の作動を禁止するため、上記▲3▼の出力向上効果は得られない。しかしながら、このような高油温時には、出力向上を図る必要性が低く、実用上問題ない。
【0025】
図9を参照して、(イ)吸気VTC13を進角してバルブオーバーラップを設けている場合と、(ロ)排気VTC15を遅角してバルブオーバーラップを設けている場合と、を比較すると、(イ)では、主として上死点前にEGRが得られるため、ピストン上昇に伴いEGRを排出させ易く、(ロ)では、主として上死点後にEGRが得られるため、ピストン下降に伴いEGRを筒内に引き込み易い。
【0026】
油圧により作動するVTCでは、信号入力から実作動がなされるまでにある程度の応答遅れを伴う。このため、例えば(イ)又は(ロ)の運転領域から急ブレーキを踏んでアイドル領域等の状態(ハ)へ移行する過渡期に、仮に(ロ)の状態が維持されると筒内にEGRを引き込み易いため、燃焼が不安定となり易い。これに対し、(イ)の状態では燃焼が比較的安定する。従って、この第2実施例のように、高油温時には排気VTCのみの作動を禁止することにより、(ロ)のようなバルブオーバーラップとなることを抑制・回避して、燃焼安定性を向上することができる。
【0027】
更に、上記の第2油温閾値Ot2を第1実施例の第1油温閾値Ot1よりも低く設定することにより、VTCの作動領域を拡大し、運転性の向上を図ることができる。
【0028】
図7は本発明の第3実施例に係る制御の流れを示すフローチャートである。S11〜S14までの処理は上述した図4の第1実施例と同様である。S15bでは、図6に示す油圧センサ22の出力(図1の油圧センサ信号21)、すなわち油圧Opが、所定の第1油圧閾値(例えば100〜150Pa)Op1よりも低い第1低油圧状態であるかを判定する。第1低油圧状態であると判定された場合、S16bへ進み、吸気VTC切換許可フラグViの値および排気VTC切換許可フラグVeの値を0とする。これにより、吸気VTC13の作動が禁止されるとともに、排気VTC15の作動が禁止される。
【0029】
吸気VTCおよび排気VTCは油圧により作動させており、油圧が低い場合に、その作動特性が悪化(応答性が遅くなる等)する。油温が高くなれば粘度の低下に伴い油圧が低下する特性を有しているため、前述した第1,第2実施例では油圧の代用特性として従来のエンジンにおいても一般的に用いられている油温センサの油温を油圧に関連するパラメータとして利用し、部品点数の低減化・低コスト化等を図っている。それに対して、この第3実施例では代用特性である油温に代えて油圧を直接的に検知しているため、吸気VTCおよび排気VTCの制御精度に優れている。
【0030】
図8は、本発明の第4実施例に係る制御の流れを示すフローチャートである。S11〜S14までの処理は上記図4の第1実施例と同様である。S15cでは、油圧センサ22の出力(油圧)Opが、所定の第2油圧閾値Op2よりも低い第2低油圧状態であるかを判定する。第2低油圧状態であると判定された場合、S16cへ進み、吸気VTC切換許可フラグViを変更することなく、排気VTC切換許可フラグVeの値のみを0とする。これにより、吸気VTC13の作動が禁止されることなく、排気VTC15の作動のみが禁止される。
【0031】
このような第4実施例によれば、上述した第2実施例と第3実施例の主要な作用効果を併せて得ることができる。つまり、排気VTCのみの作動を禁止することにより、油圧に関する吸気VTCの作動領域を限界まで拡大でき、運転性が向上し、かつ、吸気VTCのみの作動を禁止する場合に比して、燃焼安定性が向上する。また、油圧を直接的に検知できるため、第3実施例と同様、制御精度を向上できる。更に、第2油圧閾値Opを第3実施例の第1油圧閾値Op1よりも高く設定することにより、VTCの作動領域を拡大し、運転性の向上を図ることができる。
【0032】
図10は、本発明の第5実施例に係る制御の流れを示すフローチャートである。S11〜S16aまでの処理は図5の第2実施例と同様である。すなわち、油温センサ24により検出される油温Otが第2油温閾値Ot2より高い第2高油温状態では、S15aからS16aへ進み、排気VTC切換許可フラグVeを0として、排気VTC15の作動を禁止する。続くS17では、油温Otが、上記の第2油温閾値Ot2よりも高い値である第1油温閾値Ot1(Ot1>Ot2)を越える第1高油温状態であるかを判定する。第1高油温状態と判定されると、S18へ進み、吸気VTC切換許可フラグViを0として、吸気VTC13の作動を禁止する。
【0033】
この第5実施例によれば、第2実施例とほぼ同様の効果が得られることに加え、油温の上昇に応じて排気VTC15の作動禁止と吸気VTC13の作動禁止とがこの順に適切に行われるため、VTCの作動応答性の不用意な低下等のフェール状態を確実に回避しつつ、VTCの作動領域を十分に確保し、機関運転性の向上を図ることができる。
【0034】
図11は本発明の第6実施例に係る制御の流れを示すフローチャートである。S11〜S16cまでの処理は図8の第4実施例と同様である。すなわち、油圧センサ22により検出される油圧Opが第2油圧閾値Op2より低い第2低油圧状態では、S15cからS16cへ進み、排気VTC切換許可フラグVeを0として、排気VTC15の作動を禁止する。続くS17aでは、油圧Opが、上記の第2油圧閾値Op2よりも更に低い値である第1油圧閾値Op1(Op1<Op2)よりも低い第1低油圧状態であるかを判定する。第1低油圧状態と判定されると、S18へ進み、吸気VTC切換許可フラグViを0として、吸気VTC13の作動を禁止する。
【0035】
この第6実施例によれば、第4実施例とほぼ同様の効果が得られることに加え、油圧の低下に応じて排気VTC15の作動禁止と吸気VTC13の作動禁止とがこの順に段階的に行われるため、VTCのフェール(作動応答性の低下)を確実に回避しつつ、VTCの作動領域を拡大し、機関運転性を向上することができる。
【0036】
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明はこれらの実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、上記実施例ではバルブリフト特性を連続的に変更可能な可変動弁機構が用いられているが、これに限らず、油圧の供給・停止に応じてバルブリフト特性を2段階に切り換える2位置切換型の可変動弁機構であっても良い。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の可変動弁装置を示す概略構成図。
【図2】油圧回路に油温センサを設けた例を示す油圧回路図。
【図3】切換許可フラグの設定処理の流れを示すフローチャート。
【図4】本発明の第1実施例に係る制御の流れを示すフローチャート。
【図5】本発明の第2実施例に係る制御の流れを示すフローチャート。
【図6】油圧回路に油圧センサを設けた例を示す油圧回路図。
【図7】本発明の第3実施例に係る制御の流れを示すフローチャート。
【図8】本発明の第4実施例に係る制御の流れを示すフローチャート。
【図9】排気VTCの作動のみを禁止する場合の作用効果を説明するための説明図。
【図10】本発明の第5実施例に係る制御の流れを示すフローチャート。
【図11】本発明の第6実施例に係る制御の流れを示すフローチャート。
【符号の説明】
1…エンジンコントロールユニット(作動禁止手段)
11…吸気VTCソレノイド(吸気側油圧制御弁・作動禁止手段)
13…吸気VTC(吸気側可変動弁機構)
12…排気VTCソレノイド(排気側油圧制御弁・作動禁止手段)
15…排気VTC(排気側可変動弁機構)
22…油圧センサ(油圧パラメータ検出手段)
24…油温センサ(油圧パラメータ検出手段)
31…オイルポンプ(油圧源)
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a variable valve operating device for an internal combustion engine provided with a variable valve operating on both the intake side and the exhaust side by hydraulic pressure.
[0002]
[Prior art]
2. Description of the Related Art Various variable valve mechanisms capable of changing valve lift characteristics of intake and exhaust valves have been conventionally proposed in order to improve the output and fuel efficiency of an internal combustion engine. For example, Patent Document 1 discloses a variable valve mechanism using both a hydraulic actuator and an electric actuator.
[0003]
[Patent Document 1]
JP-A-2002-161721
[Problems to be solved by the invention]
When variable valve mechanisms that change valve lift characteristics by operating with hydraulic pressure from a hydraulic source such as an oil pump are provided on both the intake side and the exhaust side, there are the following problems. In situations where the oil pressure is low (oil temperature is high), in order to ensure the responsiveness of operation of both variable valve mechanisms, the capacity and size of the oil pump must be increased, resulting in increased costs and larger equipment. I will invite you. Alternatively, when at least one of the variable valve mechanisms is electrically operated, the cost is increased, the power consumption is increased, and the variable fuel valve mechanism can sufficiently obtain the original effect of improving fuel efficiency. Can not.
[0005]
The present invention has been made in view of such a problem, and a variable valve of an internal combustion engine in which a variable valve mechanism that operates by hydraulic pressure to change a valve lift characteristic is applied to each of an intake side and an exhaust side. In equipment, it is possible to reduce the cost and fuel consumption by reducing the size and capacity of hydraulic sources such as oil pumps, while avoiding the inability to ensure the operational responsiveness of the variable valve mechanism due to a decrease in oil pressure, an increase in oil temperature, etc. It is a main object of the present invention to provide a novel variable valve operating device for an internal combustion engine that can be improved.
[0006]
[Means for Solving the Problems]
On each of the intake valve side and the exhaust valve side, there is provided a variable valve mechanism that operates by hydraulic pressure from a hydraulic pressure source and changes valve lift characteristics. A hydraulic parameter related to the hydraulic pressure is detected, and based on the hydraulic parameter, the operation of at least one of the intake-side variable valve mechanism and the exhaust-side variable valve mechanism is prohibited.
[0007]
【The invention's effect】
According to the present invention, since the operation of at least one of the variable valve mechanisms is prohibited based on the hydraulic parameters, the operation of the variable valve mechanisms can be performed without increasing the size and capacity of a hydraulic source such as an oil pump. The responsiveness can be prevented from being carelessly reduced. Therefore, it is possible to reduce the size and capacity of the hydraulic power source, reduce costs, improve fuel efficiency, and the like, without lowering the fail-safe performance.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, an intake-side variable valve timing mechanism (hereinafter referred to as intake VTC) 13 as an intake-side variable valve mechanism is capable of continuously changing the valve timing of an intake valve, and has an exhaust-side variable valve mechanism. An exhaust-side variable valve timing mechanism (hereinafter, referred to as an exhaust VTC) 15 as a valve mechanism can continuously change the valve timing of the exhaust valve. These VTCs (Valve Timing Controls) themselves are known as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2002-161721, and will be described only briefly here.
[0009]
Each VTC includes a housing 43 fixed to a cam sprocket 47 that rotates in conjunction with a crankshaft, a vane 44 housed in the housing 43 and fixed to the intake camshaft 14 or the exhaust camshaft 16. have. Between the vane 44 and the housing 43, two systems of hydraulic chambers 45, 46 connected to two VTC oil supply passages 34 or 35 (34a, 34b on the intake side; 35a, 35b on the exhaust side) are liquid-tight. Is defined. In accordance with the hydraulic pressure supplied to the hydraulic chambers 45, 46, the vane 44 rotates with respect to the housing 43, the phase of the camshafts 14, 16 with respect to the phase of the crankshaft changes, and the operating angles of the intake and exhaust valves Changes to the advance side and the retard side.
[0010]
The engine control unit 1 is a known digital computer having a CPU, a ROM, a RAM, and an input / output interface, and stores and executes various control processes described later. That is, the engine control unit 1 controls the vehicle temperature signal 2, the intake air amount signal 3, the throttle sensor signal 4, the oxygen sensor signal 5, the engine rotation signal 6, the intake cam angle sensor signal 19, the exhaust cam angle sensor signal 20, and the like. Control signals are output to various actuators based on various detection signals representing the operating state, and in particular, commands are sent to an intake VTC solenoid 11 as an intake hydraulic control valve and an exhaust VTC solenoid 12 as an exhaust hydraulic control valve, respectively. An intake VTC control signal 9 and an exhaust VTC control signal 10 are output as values (amount of power). The VTC solenoids 11 and 12 control the connection state and the degree of opening of the VTC oil supply passages 34 and 35 according to the command value, and control the oil pressure supplied to the hydraulic chambers 45 and 46.
[0011]
2 and 6 schematically show hydraulic circuits of the VTCs 13 and 15. The cylinder block 41 is provided with an oil pump 31 as a hydraulic pressure source. Hydraulic oil (lubricating oil / engine oil) pressurized by the oil pump 31 passes through the block main gallery 32, the VTC solenoid oil supply passage 33, the above-described VTC solenoids 11, 12 and the VTC oil supply passages 34, 35, and then the cylinder oil. The power is supplied to the VTCs 13 and 15 provided in the head 42.
[0012]
In the first, second, and fifth embodiments to be described later, as shown in FIG. 2, the hydraulic parameters related to the hydraulic pressure are set in the middle of the hydraulic pressure supply path from the oil pump 31 to the VTC solenoids 11 and 12, for example, in the block main gallery 32. An oil temperature sensor (hydraulic parameter detection means) 24 for detecting the temperature of the hydraulic oil, that is, the oil temperature, is provided. In the third, fourth, and sixth embodiments to be described later, as shown in FIG. 6, the pressure of the hydraulic oil, that is, the hydraulic pressure is supplied to the middle of the hydraulic pressure supply path from the oil pump 31 to the VTC solenoids 11, 12, for example, to the VTC solenoid oil supply path 33. Is provided with a hydraulic pressure sensor (hydraulic parameter detecting means) 22 for detecting the pressure.
[0013]
3 to 5, 7, 8, 10, and 11 are flowcharts showing the control processing stored and executed by the engine control unit 1. Referring to FIG. 3, in S (step) 1, intake VTC switching permission flag Vi and exhaust VTC switching permission flag Ve are initialized to zero. In S2, it is determined based on mainly the engine speed and the engine load whether or not the operating region (ON region) in which the hydraulic pressure is supplied to at least one of the hydraulic chambers 45 and 46 of the intake VTC 13 to operate the intake VTC 13. If it is determined that it is in the operation region of the intake VTC 13, the process proceeds to S3, and the intake VTC switching permission flag Vi is set to 1. If it is determined that it is not in the operation range of the intake VTC 13, S3 is bypassed and Vi remains at 0. Similarly, in S4, it is determined whether or not the operating area (ON area) in which the oil pressure is supplied to at least one of the hydraulic chambers 45 and 46 of the exhaust VTC 15 to operate the exhaust VTC 15 based mainly on the engine speed and the engine load. judge. If it is determined that it is within the operation range of the exhaust VTC 13, the process proceeds to S5, and the exhaust VTC switching permission flag Ve is set to 1. If it is determined that it is not in the operation range of the exhaust VTC 15, S5 is bypassed, and Ve remains at 0.
[0014]
In S2 and S4 of FIG. 3, it is determined whether or not it is a region in which the hydraulic pressure is supplied to the VTC and the VTC is operated mainly based on a request based on the engine speed and the engine load. The effect of rising oil pressure and decreasing oil pressure is not taken into account.
[0015]
FIG. 4 is a flowchart showing the flow of control according to the first embodiment of the present invention. In S11, the values of the intake VTC switching permission flag Vi and the exhaust VTC switching permission flag Ve set by the routine of FIG. 3 are read. In S12, it is determined whether the intake VTC switching permission flag Vi is 1 or not. In S13, it is determined whether the exhaust VTC switching permission flag Ve is 1. Only when it is determined that both Vi and Ve are 1, that is, when it is in the operation region of the intake VTC 13 and in the operation region of the exhaust VTC 15, the processing after S14 is performed. To end.
[0016]
In S14, the output value Ot (the oil temperature sensor signal 23 in FIG. 1) of the oil temperature sensor 24 shown in FIG. 2 is read. In S15, it is determined whether the output value (oil temperature) Ot is in a first high oil temperature state exceeding a predetermined first oil temperature threshold Ot1 (for example, 120 to 130 ° C.). If it is determined that the state is the first high oil temperature state, the process proceeds to S16, where the value of the intake VTC switching permission flag Vi is set to 0 and the value of the exhaust VTC switching permission flag Ve is set to 0. That is, the operation of the intake VTC 13 is prohibited, and the operation of the exhaust VTC 15 is prohibited.
[0017]
According to the first embodiment, in the first high oil temperature state in which the oil temperature is high, the viscosity of the hydraulic oil decreases, and the oil pressure decreases, the operation of both the intake VTC 13 and the exhaust VTC 15, that is, the supply of the oil pressure is prohibited. are doing. Therefore, in order to guarantee the operation responsiveness of the VTC, it is possible to prevent the operation responsiveness of the VTC from being inadvertently reduced without securing an excessively large capacity of the oil pump 31, and to reduce the size of the oil pump 31. By reducing the size and the capacity, the cost can be reduced, the size of the device can be reduced, and the friction can be reduced.
[0018]
FIG. 5 is a flowchart showing a control flow according to the second embodiment of the present invention. The processes in S11 to S14 are the same as those in the first embodiment in FIG. In S15a, it is determined whether the output value (oil temperature) Ot of the oil temperature sensor 24 is in a second high oil temperature state exceeding a predetermined second oil temperature threshold Ot2. When it is determined that the state is the second high oil temperature state, the process proceeds to S16a, and the value of the exhaust VTC switching permission flag Ve is set to 0. That is, only the operation of the exhaust VTC 15 is prohibited without prohibiting the operation of the intake VTC 13.
[0019]
The operation and effect according to the second embodiment will be described with reference to FIG.
[0020]
{Circle around (1)} For example, in the partial range, the intake VTC 13 advances the intake valve opening timing IVO to increase the overlap from IVO to the exhaust valve opening timing EVO, thereby increasing the internal EGR amount and improving fuel efficiency. Aim.
[0021]
{Circle around (2)} In a low-speed range, the intake valve closing timing IVC is advanced to bring this IVC closer to the bottom dead center, thereby increasing the actual compression ratio and improving the torque.
[0022]
(3) Due to exhaust pulsation in the exhaust passage (exhaust pipe), exhaust is easier to be exhausted when exhaust pressure is low, so in a fully open area, etc., EVC is retarded to accelerate exhaust exhaust And improve the output.
[0023]
Therefore, as in the second embodiment, in the second high oil temperature state (at the time of a failure), the operation of only the exhaust VTC 15 is prohibited, so that the effects (1) and (2) by the operation of the intake VTC 13 are achieved. As in the first embodiment, the size and capacity of the oil pump 31 can be reduced while reducing costs and reducing friction.
[0024]
Since the operation of the exhaust VTC 15 is prohibited when the oil temperature is high, the output improvement effect of (3) cannot be obtained. However, at such a high oil temperature, there is little need to improve the output, and there is no practical problem.
[0025]
Referring to FIG. 9, a comparison is made between (a) a case in which valve overlap is provided by advancing intake VTC 13 and (b) a case in which valve overlap is provided by retarding exhaust VTC 15. In (a), since EGR is obtained mainly before the top dead center, it is easy to discharge EGR with the rise of the piston. Easy to pull into the cylinder.
[0026]
In a VTC operated by hydraulic pressure, there is a certain delay in response from the input of a signal to the actual operation. For this reason, for example, if the state (b) is maintained during the transition period in which a sudden brake is applied from the operation area (a) or (b) to a state (c) such as an idling area by suddenly depressing the brake, the EGR is stored in the cylinder. , The combustion tends to be unstable. On the other hand, in the state (a), combustion is relatively stable. Therefore, as in the second embodiment, the operation of only the exhaust VTC is prohibited at the time of high oil temperature, thereby suppressing and avoiding the valve overlap as shown in (b) and improving the combustion stability. can do.
[0027]
Further, by setting the second oil temperature threshold Ot2 to be lower than the first oil temperature threshold Ot1 of the first embodiment, the operating range of the VTC can be expanded, and the drivability can be improved.
[0028]
FIG. 7 is a flowchart showing a flow of control according to the third embodiment of the present invention. The processing from S11 to S14 is the same as in the first embodiment of FIG. 4 described above. In S15b, the output of the hydraulic pressure sensor 22 shown in FIG. 6 (the hydraulic pressure sensor signal 21 in FIG. 1), that is, the hydraulic pressure Op is a first low hydraulic pressure state lower than a predetermined first hydraulic pressure threshold value (for example, 100 to 150 Pa) Op1. Is determined. When it is determined that the state is the first low oil pressure state, the process proceeds to S16b, and the value of the intake VTC switching permission flag Vi and the value of the exhaust VTC switching permission flag Ve are set to 0. As a result, the operation of the intake VTC 13 is prohibited, and the operation of the exhaust VTC 15 is prohibited.
[0029]
The intake VTC and the exhaust VTC are operated by hydraulic pressure, and when the hydraulic pressure is low, the operation characteristics are deteriorated (responsiveness is slowed). As the oil temperature increases, the oil pressure decreases as the viscosity decreases. Therefore, in the above-described first and second embodiments, the oil pressure substitute characteristic is generally used in a conventional engine. The oil temperature of the oil temperature sensor is used as a parameter related to the oil pressure to reduce the number of parts and cost. On the other hand, in the third embodiment, since the oil pressure is directly detected instead of the oil temperature, which is a substitute characteristic, the control accuracy of the intake VTC and the exhaust VTC is excellent.
[0030]
FIG. 8 is a flowchart showing a control flow according to the fourth embodiment of the present invention. The processes in S11 to S14 are the same as those in the first embodiment of FIG. In S15c, it is determined whether or not the output (oil pressure) Op of the oil pressure sensor 22 is in a second low oil pressure state lower than a predetermined second oil pressure threshold value Op2. If it is determined that the state is the second low oil pressure state, the process proceeds to S16c, and only the value of the exhaust VTC switching permission flag Ve is set to 0 without changing the intake VTC switching permission flag Vi. As a result, only the operation of the exhaust VTC 15 is prohibited without prohibiting the operation of the intake VTC 13.
[0031]
According to such a fourth embodiment, the main functions and effects of the second embodiment and the third embodiment described above can be obtained together. In other words, by prohibiting the operation of only the exhaust VTC, the operation range of the intake VTC relating to the hydraulic pressure can be expanded to the limit, the operability is improved, and the combustion stability is improved as compared to the case where the operation of only the intake VTC is prohibited. The performance is improved. Further, since the hydraulic pressure can be directly detected, the control accuracy can be improved as in the third embodiment. Further, by setting the second oil pressure threshold value Op to be higher than the first oil pressure threshold value Op1 of the third embodiment, the operation range of the VTC can be expanded, and the drivability can be improved.
[0032]
FIG. 10 is a flowchart showing a control flow according to the fifth embodiment of the present invention. The processing from S11 to S16a is the same as in the second embodiment in FIG. That is, in the second high oil temperature state where the oil temperature Ot detected by the oil temperature sensor 24 is higher than the second oil temperature threshold Ot2, the process proceeds from S15a to S16a, the exhaust VTC switching permission flag Ve is set to 0, and the operation of the exhaust VTC 15 is performed. Ban. In S17, it is determined whether the oil temperature Ot is in a first high oil temperature state that exceeds a first oil temperature threshold Ot1 (Ot1> Ot2) that is higher than the second oil temperature threshold Ot2. If it is determined that the state is the first high oil temperature state, the process proceeds to S18, where the intake VTC switching permission flag Vi is set to 0, and the operation of the intake VTC 13 is prohibited.
[0033]
According to the fifth embodiment, in addition to obtaining substantially the same effects as the second embodiment, the prohibition of the operation of the exhaust VTC 15 and the prohibition of the operation of the intake VTC 13 are appropriately performed in this order in accordance with the rise in the oil temperature. Therefore, a failure state such as an inadvertent decrease in VTC operation responsiveness can be reliably avoided, a sufficient VTC operation region can be ensured, and engine operability can be improved.
[0034]
FIG. 11 is a flowchart showing a control flow according to the sixth embodiment of the present invention. The processing from S11 to S16c is the same as in the fourth embodiment in FIG. That is, in the second low oil pressure state where the oil pressure Op detected by the oil pressure sensor 22 is lower than the second oil pressure threshold value Op2, the process proceeds from S15c to S16c, the exhaust VTC switching permission flag Ve is set to 0, and the operation of the exhaust VTC 15 is prohibited. In S17a, it is determined whether the oil pressure Op is in a first low oil pressure state lower than the first oil pressure threshold value Op1 (Op1 <Op2), which is a value lower than the second oil pressure threshold value Op2. If it is determined that the state is the first low oil pressure state, the process proceeds to S18, where the intake VTC switching permission flag Vi is set to 0, and the operation of the intake VTC 13 is prohibited.
[0035]
According to the sixth embodiment, in addition to obtaining substantially the same effects as the fourth embodiment, the prohibition of the operation of the exhaust VTC 15 and the prohibition of the operation of the intake VTC 13 are performed stepwise in this order in accordance with the decrease in the oil pressure. Therefore, the operation range of the VTC can be expanded and the engine operability can be improved while reliably avoiding the failure of the VTC (reduction in operation responsiveness).
[0036]
Although the present invention has been described based on the specific embodiments as described above, the present invention is not limited to these embodiments and includes various modifications and changes without departing from the gist of the present invention. It is a thing. For example, in the above-described embodiment, a variable valve mechanism capable of continuously changing the valve lift characteristic is used. However, the present invention is not limited to this. A switching type variable valve mechanism may be used.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a variable valve operating device for an internal combustion engine according to the present invention.
FIG. 2 is a hydraulic circuit diagram showing an example in which an oil temperature sensor is provided in a hydraulic circuit.
FIG. 3 is a flowchart illustrating a flow of a setting process of a switching permission flag.
FIG. 4 is a flowchart showing a control flow according to the first embodiment of the present invention.
FIG. 5 is a flowchart showing a control flow according to a second embodiment of the present invention.
FIG. 6 is a hydraulic circuit diagram showing an example in which a hydraulic sensor is provided in the hydraulic circuit.
FIG. 7 is a flowchart showing a control flow according to a third embodiment of the present invention.
FIG. 8 is a flowchart showing a control flow according to a fourth embodiment of the present invention.
FIG. 9 is an explanatory diagram for explaining the operation and effect when only the operation of the exhaust VTC is prohibited.
FIG. 10 is a flowchart showing a control flow according to a fifth embodiment of the present invention.
FIG. 11 is a flowchart showing a control flow according to a sixth embodiment of the present invention.
[Explanation of symbols]
1: Engine control unit (operation inhibition means)
11 ... intake VTC solenoid (intake side hydraulic control valve / operation inhibiting means)
13. Intake VTC (intake side variable valve mechanism)
12. Exhaust VTC solenoid (exhaust side hydraulic control valve / operation inhibiting means)
15 Exhaust VTC (exhaust side variable valve mechanism)
22 ... Hydraulic sensor (hydraulic parameter detecting means)
24 ... oil temperature sensor (hydraulic parameter detection means)
31 ... oil pump (hydraulic power source)

Claims (8)

作動油を加圧する油圧源と、
油圧により作動して吸気弁のバルブリフト特性を変更する吸気側可変動弁機構と、
油圧により作動して排気弁のバルブリフト特性を変更する排気側可変動弁機構と、
油圧に関連する油圧パラメータを検出する油圧パラメータ検出手段と、
上記油圧パラメータに基づいて、吸気側可変動弁機構と排気側可変動弁機構の少なくとも一方の作動を禁止する作動禁止手段と、
を有する内燃機関の可変動弁装置。
A hydraulic pressure source for pressurizing hydraulic oil,
An intake-side variable valve mechanism that operates by hydraulic pressure to change the valve lift characteristics of the intake valve;
An exhaust-side variable valve mechanism that operates by hydraulic pressure to change the valve lift characteristics of the exhaust valve;
Hydraulic pressure parameter detecting means for detecting a hydraulic parameter related to the hydraulic pressure,
Operation inhibiting means for inhibiting at least one of the intake-side variable valve mechanism and the exhaust-side variable valve mechanism based on the hydraulic parameter;
A variable valve device for an internal combustion engine having the same.
上記油圧パラメータ検出手段が油温を検出する油温センサであり、
上記作動禁止手段は、油温センサにより検出される油温が第1油温閾値を越える場合に、吸気側可変動弁機構と排気側可変動弁機構の少なくとも一方の作動を禁止する請求項1に記載の内燃機関の可変動弁装置。
The oil pressure parameter detecting means is an oil temperature sensor for detecting an oil temperature,
The operation prohibiting means prohibits the operation of at least one of the intake-side variable valve mechanism and the exhaust-side variable valve mechanism when the oil temperature detected by the oil temperature sensor exceeds a first oil temperature threshold. 3. The variable valve device for an internal combustion engine according to claim 1.
上記作動禁止手段は、油温センサにより検出される油温が第1油温閾値を越える場合に、吸気側可変動弁機構及び排気側可変動弁機構の双方の作動を禁止する請求項2に記載の内燃機関の可変動弁装置。The method according to claim 2, wherein the operation prohibiting means prohibits the operation of both the intake-side variable valve mechanism and the exhaust-side variable valve mechanism when the oil temperature detected by the oil temperature sensor exceeds the first oil temperature threshold. A variable valve train for an internal combustion engine according to claim 1. 上記作動禁止手段は、油温センサにより検出される油温が第1油閾値よりも低い値である第2油温閾値を越える場合に、排気側可変動弁機構のみの作動を禁止する請求項2又は3に記載の内燃機関の可変動弁装置。The operation prohibiting means prohibits the operation of only the exhaust-side variable valve mechanism when the oil temperature detected by the oil temperature sensor exceeds a second oil temperature threshold which is a value lower than the first oil threshold. 4. The variable valve operating device for an internal combustion engine according to 2 or 3. 上記油圧パラメータ検出手段が油圧を検出する油圧センサであり、
上記作動禁止手段は、油圧センサにより検出される油圧が第1油圧閾値よりも低い場合に、吸気側可変動弁機構と排気側可変動弁機構の少なくとも一方の作動を禁止する請求項1に記載の内燃機関の可変動弁装置。
The hydraulic pressure parameter detecting means is a hydraulic pressure sensor that detects a hydraulic pressure,
The said operation prohibition means prohibits operation | movement of at least one of an intake side variable valve mechanism and an exhaust side variable valve mechanism when the hydraulic pressure detected by a hydraulic pressure sensor is lower than a 1st hydraulic pressure threshold value. Variable valve train for internal combustion engines.
上記作動禁止手段は、油圧センサにより検出される油圧が第1油圧閾値よりも低い場合に、吸気側可変動弁機構及び排気側可変動弁機構の双方の作動を禁止する請求項5に記載の内燃機関の可変動弁装置。6. The device according to claim 5, wherein the operation prohibiting unit prohibits the operation of both the intake-side variable valve mechanism and the exhaust-side variable valve mechanism when the oil pressure detected by the oil pressure sensor is lower than the first oil pressure threshold value. Variable valve gear for internal combustion engines. 上記作動禁止手段は、油圧センサにより検出される油圧が第1油圧閾値よりも高い値である第2油圧閾値よりも低い場合に、排気側可変動弁機構のみの作動を禁止する請求項5又は6に記載の内燃機関の可変動弁装置。The operation prohibiting means prohibits the operation of only the exhaust-side variable valve mechanism when the oil pressure detected by the oil pressure sensor is lower than a second oil pressure threshold which is higher than the first oil pressure threshold. 7. The variable valve train for an internal combustion engine according to 6. 上記油圧源から吸気側可変動弁機構への供給油圧を切換・制御する吸気側油圧制御弁と、上記油圧源から排気側可変動弁機構への供給油圧を切換・制御する排気側油圧制御弁と、を有し、
上記作動禁止手段は、油圧制御弁による油圧の供給を禁止することにより、可変動弁機構の作動を禁止する請求項1〜7のいずれかに記載の内燃機関の可変動弁装置。
An intake hydraulic control valve for switching and controlling the hydraulic pressure supplied from the hydraulic source to the intake variable valve mechanism, and an exhaust hydraulic control valve for switching and controlling the hydraulic pressure supplied from the hydraulic source to the exhaust variable valve mechanism. And
8. The variable valve operating device for an internal combustion engine according to claim 1, wherein the operation prohibiting unit prohibits the operation of the variable valve mechanism by prohibiting the supply of the hydraulic pressure by the hydraulic control valve.
JP2003086733A 2003-03-27 2003-03-27 Variable valve operating device for internal combustion engine Expired - Fee Related JP4206793B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003086733A JP4206793B2 (en) 2003-03-27 2003-03-27 Variable valve operating device for internal combustion engine
CNA2004100066471A CN1534171A (en) 2003-03-27 2004-02-25 Variator air valve device for IC engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086733A JP4206793B2 (en) 2003-03-27 2003-03-27 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004293405A true JP2004293405A (en) 2004-10-21
JP4206793B2 JP4206793B2 (en) 2009-01-14

Family

ID=33401281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086733A Expired - Fee Related JP4206793B2 (en) 2003-03-27 2003-03-27 Variable valve operating device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4206793B2 (en)
CN (1) CN1534171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159730A (en) * 2009-01-09 2010-07-22 Honda Motor Co Ltd Control device of internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495718B (en) * 2007-09-04 2011-12-21 曼柴油机和涡轮公司,德国曼柴油机和涡轮欧洲股份公司的联营公司 Large-sized two-stroke diesel engine with outward mobile exhaust valve
KR101807008B1 (en) * 2012-07-20 2017-12-08 현대자동차 주식회사 Control method for cvvl engine
KR101886503B1 (en) * 2016-08-18 2018-08-07 현대자동차주식회사 Method for diagonosing variable valve timing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159730A (en) * 2009-01-09 2010-07-22 Honda Motor Co Ltd Control device of internal combustion engine
US8275539B2 (en) 2009-01-09 2012-09-25 Honda Motor Co., Ltd. Control system and method for internal combustion engine

Also Published As

Publication number Publication date
CN1534171A (en) 2004-10-06
JP4206793B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
KR100924666B1 (en) Control method and control apparatus for internal combustion engine
JP4804384B2 (en) Variable valve operating device and control device for internal combustion engine
JP4244979B2 (en) Supercharging pressure control device for internal combustion engine
US7152578B2 (en) Valve characteristic controlling apparatus and method for internal combustion engine
US20050051122A1 (en) Apparatus and method for controlling internal combustion engine
JP4058909B2 (en) Hydraulic control device for internal combustion engine
JP2005232992A (en) Idle speed control device
JP4206793B2 (en) Variable valve operating device for internal combustion engine
JP5720503B2 (en) Variable valve gear
JP2009293567A (en) Valve control device for internal combustion engine
JP5985286B2 (en) Variable valve operating device for internal combustion engine
JP2010077813A (en) Control device for internal combustion engine
JP4325514B2 (en) Valve timing control device for internal combustion engine
JP2009079517A (en) Control device for internal combustion engine
JP4267303B2 (en) Control device for internal combustion engine
JP6021509B2 (en) Control device for internal combustion engine
JP4807155B2 (en) Variable valve gear
JP5041167B2 (en) Engine control device
JP3395350B2 (en) Valve timing control device for DOHC engine
JP2004245192A (en) Control device for variable valve timing mechanism
JP4021384B2 (en) Control method for internal combustion engine
JP5067205B2 (en) Control device for internal combustion engine
JP3711566B2 (en) Engine valve timing control device
JP2008157201A (en) Variable valve gear for engine
JP2008095632A (en) Variable valve control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees