JP4206793B2 - Variable valve operating device for internal combustion engine - Google Patents

Variable valve operating device for internal combustion engine Download PDF

Info

Publication number
JP4206793B2
JP4206793B2 JP2003086733A JP2003086733A JP4206793B2 JP 4206793 B2 JP4206793 B2 JP 4206793B2 JP 2003086733 A JP2003086733 A JP 2003086733A JP 2003086733 A JP2003086733 A JP 2003086733A JP 4206793 B2 JP4206793 B2 JP 4206793B2
Authority
JP
Japan
Prior art keywords
variable valve
hydraulic
oil
vtc
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003086733A
Other languages
Japanese (ja)
Other versions
JP2004293405A (en
Inventor
真樹 鳥海
茂輝 新藤
裕介 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003086733A priority Critical patent/JP4206793B2/en
Priority to CNA2004100066471A priority patent/CN1534171A/en
Publication of JP2004293405A publication Critical patent/JP2004293405A/en
Application granted granted Critical
Publication of JP4206793B2 publication Critical patent/JP4206793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸気側及び排気側の双方に、油圧により作動する可変動弁機構を設けた内燃機関の可変動弁装置に関する。
【0002】
【従来の技術】
内燃機関の出力や燃費の性能向上を図るために、従来より、吸・排気弁のバルブリフト特性を変更可能な様々な可変動弁機構が提案されている。例えば、特許文献1には、油圧式アクチュエータと電気式アクチュエータとを併用する可変動弁機構が開示されている。
【0003】
【特許文献1】
特開2002−161721号公報
【0004】
【発明が解決しようとする課題】
吸気側と排気側の双方に、オイルポンプ等の油圧源からの油圧により作動してバルブリフト特性を変更する可変動弁機構をそれぞれ設けた場合、以下のような課題がある。油圧が低い(油温が高い)状況では、双方の可変動弁機構の作動応答性を確保するためには、オイルポンプの大容量化・大型化を招き、コストの増加や装置の大型化を招いてしまう。あるいは、少なくとも一方の可変動弁機構を電動式とすると、やはりコストの増加を招くとともに、電力消費量が増大し、可変動弁機構による本来の目的である燃費の向上効果を十分に得ることができない。
【0005】
本発明は、このような課題に鑑みてなされたものであり、吸気側と排気側のそれぞれに、油圧により作動してバルブリフト特性を変更する可変動弁機構を適用した内燃機関の可変動弁装置において、油圧の低下・油温の上昇等により可変動弁機構の作動応答性が確保できなくなることを回避しつつ、オイルポンプ等の油圧源の小型化・小容量化により低コスト化・燃費向上等を図ることができる新規な内燃機関の可変動弁装置を提供することを主たる目的としている。
【0006】
【課題を解決するための手段】
吸気弁側と排気弁側のそれぞれに、油圧源からの油圧により作動してバルブリフト特性を変更する可変動弁機構を設ける。油圧に関連する油圧パラメータを検出し、この油圧パラメータに基づいて、吸気側可変動弁機構と排気側可変動弁機構のいずれか一方の可変動弁機構のみの作動を禁止し、残る他方の可変動弁機構だけを作動させる
【0007】
【発明の効果】
本発明によれば、油圧パラメータに基づいていずれか一方の可変動弁機構のみの作動を禁止しているため、オイルポンプ等の油圧源を大型化・大容量化することなく、可変動弁機構の作動応答性が不用意に低下することを回避できる。従って、フェールセーフ性の低下を招くことなく、油圧源を小型化・小容量化し、低コスト化・燃費向上等を図ることができる。
【0008】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面に基づいて詳細に説明する。図1を参照して、吸気側可変動弁機構としての吸気側可変バルブタイミング機構(以下、吸気VTCと呼ぶ)13は、吸気弁のバルブタイミングを連続的に変更可能であり、排気側可変動弁機構としての排気側可変バルブタイミング機構(以下、排気VTCと呼ぶ)15は、排気弁のバルブタイミングを連続的に変更可能である。これらのVTC(バルブ・タイミング・コントロール)自体は上述した特開2002−161721号公報にも開示されているように公知であり、ここでは簡単な説明にとどめる。
【0009】
各VTCは、クランクシャフトに連動して回転するカムスプロケット47に固定されたハウジング43と、このハウジング43内に収容され、かつ、吸気カムシャフト14又は排気カムシャフト16に固定されたベーン44と、を有している。ベーン44とハウジング43との間には、2本のVTC給油路34又は35(吸気側では34a,34b;排気側では35a,35b)にそれぞれ接続する2系統の油圧室45,46が液密に画成されている。これらの油圧室45,46に供給される油圧に応じて、ベーン44がハウジング43に対して回転し、クランクシャフトの位相に対するカムシャフト14,16の位相が変化し、吸・排気弁の作動角の位相が進角側・遅角側に変化する。
【0010】
エンジンコントロールユニット1は、CPU,ROM,RAM及び入出力インターフェースを備えた周知のデジタルコンピュータであり、後述するような各種制御処理を記憶及び実行する。すなわち、エンジンコントロールユニット1は、水温信号2、吸入空気量信号3、スロットルセンサ信号4,酸素センサ信号5、エンジン回転信号6、吸気カム角センサ信号19、及び排気カム角センサ信号20等の車両運転状態を表す様々な検出信号に基づいて、各種アクチュエータへ制御信号を出力し、特に、吸気側油圧制御弁としての吸気VTCソレノイド11および排気側油圧制御弁としての排気VTCソレノイド12へ、それぞれ指令値(通電量)としての吸気VTC制御信号9と排気VTC制御信号10とを出力する。VTCソレノイド11,12は、指令値に応じてVTC給油路34,35の接続状況及び開度を制御して、油圧室45,46への供給油圧を制御する。
【0011】
図2,6はVTC13,15の油圧回路を簡略的に示している。シリンダブロック41には油圧源としてのオイルポンプ31が設けられている。オイルポンプ31により加圧された作動油(潤滑油・エンジンオイル)は、ブロックメインギャラリ32,VTCソレノイド給油路33,上述したVTCソレノイド11,12及びVTC給油路34,35を経由して、シリンダヘッド42に設けられたVTC13,15へ供給される。
【0012】
後述する第1,2,5実施例では、図2に示すように、オイルポンプ31からVTCソレノイド11,12への油圧供給経路の途中、例えばブロックメインギャラリ32に、油圧に関連する油圧パラメータとしての作動油の温度すなわち油温を検出する油温センサ(油圧パラメータ検出手段)24が設けられている。後述する第3,4,6実施例では、図6に示すように、オイルポンプ31からVTCソレノイド11,12への油圧供給経路の途中、例えばVTCソレノイド給油路33に、作動油の圧力すなわち油圧を検出する油圧センサ(油圧パラメータ検出手段)22が設けられている。
【0013】
図3〜5,7,8,10,11は、エンジンコントロールユニット1により記憶・実行される制御処理を示すフローチャートである。図3を参照して、S(ステップ)1では、吸気VTC切換許可フラグVi及び排気VTC切換許可フラグVeを0に初期化する。S2では、主に機関回転数及び機関負荷に基づいて、吸気VTC13の油圧室45,46の少なくとも一方に油圧を供給して吸気VTC13を作動する作動領域(ON領域)であるかを判定する。吸気VTC13の作動領域であると判定された場合には、S3へ進み、吸気VTC切換許可フラグViを1とする。吸気VTC13の作動領域でないと判定された場合、S3がバイパスされ、Viは0のままとなる。同様に、S4では、主に機関回転数及び機関負荷に基づいて、排気VTC15の油圧室45,46の少なくとも一方に油圧を供給して排気VTC15を作動する作動領域(ON領域)であるかを判定する。排気VTC13の作動領域であると判定された場合には、S5へ進み、排気VTC切換許可フラグVeを1とする。排気VTC15の作動領域でないと判定された場合、S5がバイパスされ、Veは0のままとなる。
【0014】
この図3のS2及びS4では、主に機関回転数及び機関負荷に基づく要求によりVTCへ油圧を供給してVTCを作動する領域であるかを判定しており、後述する実施例での油温の上昇や油圧の低下の影響は考慮されていない。
【0015】
図4は、参考例としての第1実施例に係る制御の流れを示すフローチャートである。S11では、図3のルーチンにより設定された吸気VTC切換許可フラグVi及び排気VTC切換許可フラグVeの値を読み込む。S12では、吸気VTC切換許可フラグViが1であるかを判定する。S13では、排気VTC切換許可フラグVeが1であるかを判定する。Vi及びVeの双方が1と判定された場合、すなわち、吸気VTC13の作動領域であり、かつ、排気VTC15の作動領域である場合に限り、S14以降の処理を行い、それ以外の場合、本ルーチンを終了する。
【0016】
S14では、図2に示す油温センサ24の出力値Ot(図1の油温センサ信号23)を読み込む。S15では、出力値(油温)Otが、所定の第1油温閾値Ot1(例えば120〜130℃)を越える第1高油温状態であるかを判定する。第1高油温状態と判定された場合、S16へ進み、吸気VTC切換許可フラグViの値を0とするとともに、排気VTC切換許可フラグVeの値を0とする。つまり、吸気VTC13の作動を禁止するとともに、排気VTC15の作動を禁止する。
【0017】
この第1実施例によれば、油温が高く、作動油の粘度が低下して油圧が低くなる第1高油温状態では、吸気VTC13及び排気VTC15の双方の作動、すなわち油圧の供給を禁止している。従って、VTCの作動応答性を保証するために、オイルポンプ31の容量を過度に大きく確保することなく、VTCの作動応答性が不用意に低下することを回避でき、かつ、オイルポンプ31の小型化・小容量化により、コストの低下・装置の小型化及びフリクションの低減化等を図ることができる。
【0018】
図5は、本発明の第2実施例に係る制御の流れを示すフローチャートである。S11〜S14の処理は図4の第1実施例と同様である。S15aでは、油温センサ24の出力値(油温)Otが、所定の第2油温閾値Ot2を越える第2高油温状態であるかを判定する。第2高油温状態と判定された場合、S16aへ進み、排気VTC切換許可フラグVeの値を0とする。つまり、吸気VTC13の作動を禁止することなく、排気VTC15の作動のみを禁止する。
【0019】
この第2実施例に係る作用・効果について図9を参照して説明する。
【0020】
▲1▼例えばパーシャル域では、吸気VTC13により吸気弁開時期IVOを進角させて、IVOから排気弁開時期EVOまでのオーバーラップを増大することにより、内部EGR量を増大させて燃費の向上を図る。
【0021】
▲2▼低速域等では、吸気弁閉時期IVCを進角させて、このIVCを下死点に近づけることにより、実圧縮比を高くして、トルクの向上を図る。
【0022】
▲3▼排気通路(排気管)内の排気脈動によって、排圧が低いときに排気を排出する方が排気が排出され易いので、全開域等では、EVCを遅角して排気の排出を促進し、出力向上を図る。
【0023】
従って、この第2実施例のように、第2高油温状態(フェール時)では、排気VTC15のみの作動を禁止することにより、吸気VTC13の作動による上記▲1▼,▲2▼の効果を確保しつつ、第1実施例と同様、オイルポンプ31の小型化・小容量化によりコストの低減化・フリクションの低減化等を図ることができる。
【0024】
高油温時に排気VTC15の作動を禁止するため、上記▲3▼の出力向上効果は得られない。しかしながら、このような高油温時には、出力向上を図る必要性が低く、実用上問題ない。
【0025】
図9を参照して、(イ)吸気VTC13を進角してバルブオーバーラップを設けている場合と、(ロ)排気VTC15を遅角してバルブオーバーラップを設けている場合と、を比較すると、(イ)では、主として上死点前にEGRが得られるため、ピストン上昇に伴いEGRを排出させ易く、(ロ)では、主として上死点後にEGRが得られるため、ピストン下降に伴いEGRを筒内に引き込み易い。
【0026】
油圧により作動するVTCでは、信号入力から実作動がなされるまでにある程度の応答遅れを伴う。このため、例えば(イ)又は(ロ)の運転領域から急ブレーキを踏んでアイドル領域等の状態(ハ)へ移行する過渡期に、仮に(ロ)の状態が維持されると筒内にEGRを引き込み易いため、燃焼が不安定となり易い。これに対し、(イ)の状態では燃焼が比較的安定する。従って、この第2実施例のように、高油温時には排気VTCのみの作動を禁止することにより、(ロ)のようなバルブオーバーラップとなることを抑制・回避して、燃焼安定性を向上することができる。
【0027】
更に、上記の第2油温閾値Ot2を第1実施例の第1油温閾値Ot1よりも低く設定することにより、VTCの作動領域を拡大し、運転性の向上を図ることができる。
【0028】
図7は参考例としての第3実施例に係る制御の流れを示すフローチャートである。S11〜S14までの処理は上述した図4の第1実施例と同様である。S15bでは、図6に示す油圧センサ22の出力(図1の油圧センサ信号21)、すなわち油圧Opが、所定の第1油圧閾値(例えば100〜150Pa)Op1よりも低い第1低油圧状態であるかを判定する。第1低油圧状態であると判定された場合、S16bへ進み、吸気VTC切換許可フラグViの値および排気VTC切換許可フラグVeの値を0とする。これにより、吸気VTC13の作動が禁止されるとともに、排気VTC15の作動が禁止される。
【0029】
吸気VTCおよび排気VTCは油圧により作動させており、油圧が低い場合に、その作動特性が悪化(応答性が遅くなる等)する。油温が高くなれば粘度の低下に伴い油圧が低下する特性を有しているため、前述した第1,第2実施例では油圧の代用特性として従来のエンジンにおいても一般的に用いられている油温センサの油温を油圧に関連するパラメータとして利用し、部品点数の低減化・低コスト化等を図っている。それに対して、この第3実施例では代用特性である油温に代えて油圧を直接的に検知しているため、吸気VTCおよび排気VTCの制御精度に優れている。
【0030】
図8は、本発明の第4実施例に係る制御の流れを示すフローチャートである。S11〜S14までの処理は上記図4の第1実施例と同様である。S15cでは、油圧センサ22の出力(油圧)Opが、所定の第2油圧閾値Op2よりも低い第2低油圧状態であるかを判定する。第2低油圧状態であると判定された場合、S16cへ進み、吸気VTC切換許可フラグViを変更することなく、排気VTC切換許可フラグVeの値のみを0とする。これにより、吸気VTC13の作動が禁止されることなく、排気VTC15の作動のみが禁止される。
【0031】
このような第4実施例によれば、上述した第2実施例と第3実施例の主要な作用効果を併せて得ることができる。つまり、排気VTCのみの作動を禁止することにより、油圧に関する吸気VTCの作動領域を限界まで拡大でき、運転性が向上し、かつ、吸気VTCのみの作動を禁止する場合に比して、燃焼安定性が向上する。また、油圧を直接的に検知できるため、第3実施例と同様、制御精度を向上できる。更に、第2油圧閾値Opを第3実施例の第1油圧閾値Op1よりも高く設定することにより、VTCの作動領域を拡大し、運転性の向上を図ることができる。
【0032】
図10は、本発明の第5実施例に係る制御の流れを示すフローチャートである。S11〜S16aまでの処理は図5の第2実施例と同様である。すなわち、油温センサ24により検出される油温Otが第2油温閾値Ot2より高い第2高油温状態では、S15aからS16aへ進み、排気VTC切換許可フラグVeを0として、排気VTC15の作動を禁止する。続くS17では、油温Otが、上記の第2油温閾値Ot2よりも高い値である第1油温閾値Ot1(Ot1>Ot2)を越える第1高油温状態であるかを判定する。第1高油温状態と判定されると、S18へ進み、吸気VTC切換許可フラグViを0として、吸気VTC13の作動を禁止する。
【0033】
この第5実施例によれば、第2実施例とほぼ同様の効果が得られることに加え、油温の上昇に応じて排気VTC15の作動禁止と吸気VTC13の作動禁止とがこの順に適切に行われるため、VTCの作動応答性の不用意な低下等のフェール状態を確実に回避しつつ、VTCの作動領域を十分に確保し、機関運転性の向上を図ることができる。
【0034】
図11は本発明の第6実施例に係る制御の流れを示すフローチャートである。S11〜S16cまでの処理は図8の第4実施例と同様である。すなわち、油圧センサ22により検出される油圧Opが第2油圧閾値Op2より低い第2低油圧状態では、S15cからS16cへ進み、排気VTC切換許可フラグVeを0として、排気VTC15の作動を禁止する。続くS17aでは、油圧Opが、上記の第2油圧閾値Op2よりも更に低い値である第1油圧閾値Op1(Op1<Op2)よりも低い第1低油圧状態であるかを判定する。第1低油圧状態と判定されると、S18へ進み、吸気VTC切換許可フラグViを0として、吸気VTC13の作動を禁止する。
【0035】
この第6実施例によれば、第4実施例とほぼ同様の効果が得られることに加え、油圧の低下に応じて排気VTC15の作動禁止と吸気VTC13の作動禁止とがこの順に段階的に行われるため、VTCのフェール(作動応答性の低下)を確実に回避しつつ、VTCの作動領域を拡大し、機関運転性を向上することができる。
【0036】
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明はこれらの実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、上記実施例ではバルブリフト特性を連続的に変更可能な可変動弁機構が用いられているが、これに限らず、油圧の供給・停止に応じてバルブリフト特性を2段階に切り換える2位置切換型の可変動弁機構であっても良い。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の可変動弁装置を示す概略構成図。
【図2】油圧回路に油温センサを設けた例を示す油圧回路図。
【図3】切換許可フラグの設定処理の流れを示すフローチャート。
【図4】本発明の第1実施例に係る制御の流れを示すフローチャート。
【図5】本発明の第2実施例に係る制御の流れを示すフローチャート。
【図6】油圧回路に油圧センサを設けた例を示す油圧回路図。
【図7】本発明の第3実施例に係る制御の流れを示すフローチャート。
【図8】本発明の第4実施例に係る制御の流れを示すフローチャート。
【図9】排気VTCの作動のみを禁止する場合の作用効果を説明するための説明図。
【図10】本発明の第5実施例に係る制御の流れを示すフローチャート。
【図11】本発明の第6実施例に係る制御の流れを示すフローチャート。
【符号の説明】
1…エンジンコントロールユニット(作動禁止手段)
11…吸気VTCソレノイド(吸気側油圧制御弁・作動禁止手段)
13…吸気VTC(吸気側可変動弁機構)
12…排気VTCソレノイド(排気側油圧制御弁・作動禁止手段)
15…排気VTC(排気側可変動弁機構)
22…油圧センサ(油圧パラメータ検出手段)
24…油温センサ(油圧パラメータ検出手段)
31…オイルポンプ(油圧源)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable valve operating apparatus for an internal combustion engine in which variable valve mechanisms that are operated by hydraulic pressure are provided on both an intake side and an exhaust side.
[0002]
[Prior art]
In order to improve the output and fuel efficiency of an internal combustion engine, various variable valve mechanisms that can change the valve lift characteristics of intake and exhaust valves have been proposed. For example, Patent Document 1 discloses a variable valve mechanism that uses both a hydraulic actuator and an electric actuator.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-161721
[Problems to be solved by the invention]
When variable valve mechanisms that change the valve lift characteristics by operating hydraulic pressure from a hydraulic pressure source such as an oil pump are provided on both the intake side and the exhaust side, there are the following problems. In a situation where the hydraulic pressure is low (the oil temperature is high), in order to ensure the operational responsiveness of both variable valve mechanisms, the oil pump has a large capacity and large size, which increases costs and equipment. I will invite you. Alternatively, if at least one of the variable valve mechanisms is electrically operated, the cost is also increased, and the power consumption is increased, so that the variable valve mechanism can sufficiently obtain the fuel consumption improvement effect that is the original purpose. Can not.
[0005]
The present invention has been made in view of such a problem, and a variable valve for an internal combustion engine in which a variable valve mechanism that operates by hydraulic pressure to change valve lift characteristics is applied to each of an intake side and an exhaust side. Reduces cost and fuel consumption by reducing the size and capacity of hydraulic sources such as oil pumps while avoiding the fact that the operating responsiveness of the variable valve mechanism cannot be ensured due to a decrease in hydraulic pressure or an increase in oil temperature. The main object of the present invention is to provide a novel variable valve operating apparatus for an internal combustion engine that can be improved.
[0006]
[Means for Solving the Problems]
A variable valve mechanism is provided on each of the intake valve side and the exhaust valve side, which is actuated by hydraulic pressure from a hydraulic pressure source to change the valve lift characteristics. A hydraulic parameter related to the hydraulic pressure is detected, and based on this hydraulic parameter, the operation of only one of the intake side variable valve mechanism and the exhaust side variable valve mechanism is prohibited, and the remaining other Operates only the variable valve mechanism .
[0007]
【The invention's effect】
According to the present invention, since the operation of only one of the variable valve mechanisms is prohibited based on the hydraulic parameter, the variable valve mechanism can be achieved without increasing the size and capacity of a hydraulic source such as an oil pump. It can be avoided that the operation responsiveness of the is inadvertently lowered. Therefore, it is possible to reduce the size and capacity of the hydraulic power source without reducing the fail-safe property, thereby reducing the cost and improving the fuel consumption.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, an intake side variable valve timing mechanism (hereinafter referred to as intake VTC) 13 as an intake side variable valve mechanism can continuously change the valve timing of the intake valve. An exhaust side variable valve timing mechanism (hereinafter referred to as an exhaust VTC) 15 as a valve mechanism can continuously change the valve timing of the exhaust valve. These VTCs (valve timing controls) themselves are known as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2002-161721, and only a brief description will be given here.
[0009]
Each VTC includes a housing 43 fixed to a cam sprocket 47 that rotates in conjunction with a crankshaft, and a vane 44 that is housed in the housing 43 and fixed to the intake camshaft 14 or the exhaust camshaft 16. have. Between the vane 44 and the housing 43, two hydraulic chambers 45 and 46 connected to the two VTC oil supply passages 34 or 35 (34a and 34b on the intake side; 35a and 35b on the exhaust side) are liquid-tight. Is defined. In accordance with the hydraulic pressure supplied to these hydraulic chambers 45, 46, the vane 44 rotates relative to the housing 43, the phase of the camshafts 14, 16 with respect to the phase of the crankshaft changes, and the operating angle of the intake / exhaust valves Changes to the advance side or the retard side.
[0010]
The engine control unit 1 is a well-known digital computer having a CPU, ROM, RAM, and an input / output interface, and stores and executes various control processes as described later. That is, the engine control unit 1 is a vehicle that uses a water temperature signal 2, an intake air amount signal 3, a throttle sensor signal 4, an oxygen sensor signal 5, an engine rotation signal 6, an intake cam angle sensor signal 19, an exhaust cam angle sensor signal 20, and the like. Control signals are output to various actuators based on various detection signals representing the operating state, and in particular, commands are respectively given to the intake VTC solenoid 11 as the intake side hydraulic control valve and the exhaust VTC solenoid 12 as the exhaust side hydraulic control valve. An intake VTC control signal 9 and an exhaust VTC control signal 10 are output as values (energization amount). The VTC solenoids 11 and 12 control the supply hydraulic pressure to the hydraulic chambers 45 and 46 by controlling the connection status and opening degree of the VTC oil supply passages 34 and 35 according to the command value.
[0011]
2 and 6 schematically show the hydraulic circuits of the VTCs 13 and 15. The cylinder block 41 is provided with an oil pump 31 as a hydraulic pressure source. The hydraulic oil (lubricant / engine oil) pressurized by the oil pump 31 passes through the block main gallery 32, the VTC solenoid oil supply passage 33, the VTC solenoids 11 and 12 and the VTC oil supply passages 34 and 35 described above, and the cylinder. It is supplied to VTCs 13 and 15 provided in the head 42.
[0012]
In the first, second, and fifth embodiments to be described later, as shown in FIG. 2, as a hydraulic parameter related to the hydraulic pressure, in the middle of the hydraulic pressure supply path from the oil pump 31 to the VTC solenoids 11 and 12, for example, in the block main gallery 32. An oil temperature sensor (hydraulic parameter detecting means) 24 for detecting the temperature of the hydraulic oil, that is, the oil temperature is provided. In the third, fourth, and sixth embodiments to be described later, as shown in FIG. 6, the hydraulic oil pressure, that is, the hydraulic pressure, is supplied to the VTC solenoid oil supply passage 33 in the middle of the hydraulic pressure supply route from the oil pump 31 to the VTC solenoids 11 and 12. A hydraulic sensor (hydraulic parameter detecting means) 22 for detecting the above is provided.
[0013]
3 to 5, 7, 7, 8, 10, and 11 are flowcharts showing the control process stored and executed by the engine control unit 1. Referring to FIG. 3, in S (step) 1, an intake VTC switching permission flag Vi and an exhaust VTC switching permission flag Ve are initialized to zero. In S2, based on the engine speed and the engine load, it is determined whether or not it is an operating region (ON region) in which the hydraulic pressure is supplied to at least one of the hydraulic chambers 45 and 46 of the intake VTC 13 to operate the intake VTC 13. If it is determined that the operation region is the intake VTC 13, the process proceeds to S <b> 3 and the intake VTC switching permission flag Vi is set to 1. If it is determined that it is not in the operating range of the intake VTC 13, S3 is bypassed and Vi remains at 0. Similarly, in S4, it is determined whether the operation region (ON region) in which the exhaust VTC 15 is operated by supplying hydraulic pressure to at least one of the hydraulic chambers 45, 46 of the exhaust VTC 15 mainly based on the engine speed and the engine load. judge. If it is determined that the exhaust VTC 13 is in the operating region, the process proceeds to S5, and the exhaust VTC switching permission flag Ve is set to 1. If it is determined that it is not in the operating range of the exhaust VTC 15, S5 is bypassed and Ve remains at 0.
[0014]
In S2 and S4 in FIG. 3, it is determined whether or not it is a region in which the hydraulic pressure is supplied to the VTC and the VTC is operated mainly by a request based on the engine speed and the engine load. The effect of the increase in pressure and the decrease in hydraulic pressure is not taken into consideration.
[0015]
FIG. 4 is a flowchart showing a flow of control according to the first embodiment as a reference example . In S11, the values of the intake VTC switching permission flag Vi and the exhaust VTC switching permission flag Ve set by the routine of FIG. 3 are read. In S12, it is determined whether or not the intake VTC switching permission flag Vi is 1. In S13, it is determined whether the exhaust VTC switching permission flag Ve is 1. If both Vi and Ve are determined to be 1, that is, the operation region of the intake VTC 13 and the operation region of the exhaust VTC 15, the processing after S 14 is performed. Exit.
[0016]
In S14, the output value Ot (oil temperature sensor signal 23 in FIG. 1) of the oil temperature sensor 24 shown in FIG. 2 is read. In S15, it is determined whether or not the output value (oil temperature) Ot is in a first high oil temperature state exceeding a predetermined first oil temperature threshold value Ot1 (for example, 120 to 130 ° C.). When it is determined that the first high oil temperature state is reached, the process proceeds to S16, where the value of the intake VTC switching permission flag Vi is set to 0 and the value of the exhaust VTC switching permission flag Ve is set to 0. That is, the operation of the intake VTC 13 is prohibited and the operation of the exhaust VTC 15 is prohibited.
[0017]
According to the first embodiment, in the first high oil temperature state in which the oil temperature is high and the hydraulic oil viscosity is lowered to lower the oil pressure, the operation of both the intake VTC 13 and the exhaust VTC 15, that is, the supply of the oil pressure is prohibited. is doing. Accordingly, in order to guarantee the operation responsiveness of the VTC, it is possible to avoid the VTC operation responsiveness from being inadvertently reduced without securing an excessively large capacity of the oil pump 31, and to reduce the size of the oil pump 31. By reducing the size and capacity, it is possible to reduce costs, reduce the size of the apparatus, reduce friction, and the like.
[0018]
FIG. 5 is a flowchart showing the flow of control according to the second embodiment of the present invention. The processing of S11 to S14 is the same as that of the first embodiment of FIG. In S15a, it is determined whether or not the output value (oil temperature) Ot of the oil temperature sensor 24 is in a second high oil temperature state that exceeds a predetermined second oil temperature threshold value Ot2. When it is determined that the second high oil temperature state is set, the process proceeds to S16a, and the value of the exhaust VTC switching permission flag Ve is set to zero. That is, only the operation of the exhaust VTC 15 is prohibited without prohibiting the operation of the intake VTC 13.
[0019]
The operation and effect according to the second embodiment will be described with reference to FIG.
[0020]
(1) For example, in the partial range, the intake valve opening timing IVO is advanced by the intake VTC 13 to increase the overlap from the IVO to the exhaust valve opening timing EVO, thereby increasing the internal EGR amount and improving fuel efficiency. Plan.
[0021]
{Circle around (2)} In a low speed region or the like, the intake valve closing timing IVC is advanced to bring the IVC closer to the bottom dead center, thereby increasing the actual compression ratio and improving the torque.
[0022]
(3) Because exhaust pulsation in the exhaust passage (exhaust pipe) causes exhaust to be exhausted more easily when exhaust pressure is low, in a fully open area, etc., retard the EVC to promote exhaust exhaust And improve output.
[0023]
Therefore, as in the second embodiment, in the second high oil temperature state (failure), the operation of only the exhaust VTC 15 is prohibited, so that the effects (1) and (2) due to the operation of the intake VTC 13 are achieved. As with the first embodiment, the oil pump 31 can be reduced in size and capacity while reducing costs and reducing friction.
[0024]
Since the operation of the exhaust VTC 15 is prohibited when the oil temperature is high, the output improvement effect (3) cannot be obtained. However, at such a high oil temperature, the necessity for improving the output is low and there is no practical problem.
[0025]
Referring to FIG. 9, (a) the case where the valve overlap is provided by advancing the intake VTC 13 and (b) the case where the valve overlap is provided by retarding the exhaust VTC 15 are compared. In (a), EGR is obtained mainly before top dead center, so it is easy to discharge EGR as the piston rises. In (b), EGR is obtained mainly after top dead center, so EGR is reduced as the piston descends. Easy to pull into the cylinder.
[0026]
In the VTC that operates by hydraulic pressure, there is a certain response delay from the signal input to the actual operation. For this reason, for example, if the state (b) is maintained during the transitional period when the sudden braking is performed from the operation region (b) or (b) to the state (c) such as the idle region, the EGR is placed in the cylinder. Since it is easy to draw in, combustion tends to become unstable. On the other hand, combustion is relatively stable in the state (a). Therefore, as in the second embodiment, by prohibiting the operation of only the exhaust VTC at high oil temperature, the valve overlap as in (b) is suppressed and avoided, and the combustion stability is improved. can do.
[0027]
Furthermore, by setting the second oil temperature threshold value Ot2 to be lower than the first oil temperature threshold value Ot1 of the first embodiment, the operating range of the VTC can be expanded and the drivability can be improved.
[0028]
FIG. 7 is a flowchart showing the flow of control according to the third embodiment as a reference example . The processes from S11 to S14 are the same as those in the first embodiment of FIG. In S15b, the output of the hydraulic sensor 22 shown in FIG. 6 (hydraulic sensor signal 21 in FIG. 1), that is, the hydraulic pressure Op is a first low hydraulic pressure state lower than a predetermined first hydraulic pressure threshold (for example, 100 to 150 Pa) Op1. Determine whether. When it is determined that the first low hydraulic pressure state is set, the process proceeds to S16b, and the value of the intake VTC switching permission flag Vi and the value of the exhaust VTC switching permission flag Ve are set to zero. As a result, the operation of intake VTC 13 is prohibited and the operation of exhaust VTC 15 is prohibited.
[0029]
The intake VTC and the exhaust VTC are operated by oil pressure, and when the oil pressure is low, the operation characteristics are deteriorated (responsiveness is delayed, etc.). Since the oil pressure decreases as the oil temperature increases, the oil pressure decreases as the viscosity decreases. Therefore, in the first and second embodiments described above, it is generally used in conventional engines as a substitute for oil pressure. The oil temperature of the oil temperature sensor is used as a parameter related to oil pressure to reduce the number of parts and cost. On the other hand, in the third embodiment, since the oil pressure is directly detected instead of the oil temperature which is a substitute characteristic, the control accuracy of the intake VTC and the exhaust VTC is excellent.
[0030]
FIG. 8 is a flowchart showing the flow of control according to the fourth embodiment of the present invention. The processing from S11 to S14 is the same as that of the first embodiment of FIG. In S15c, it is determined whether the output (hydraulic pressure) Op of the hydraulic pressure sensor 22 is in the second low hydraulic pressure state lower than the predetermined second hydraulic pressure threshold Op2. When it is determined that the second low hydraulic pressure state is set, the process proceeds to S16c, and only the value of the exhaust VTC switching permission flag Ve is set to 0 without changing the intake VTC switching permission flag Vi. Thereby, only the operation of the exhaust VTC 15 is prohibited without the operation of the intake VTC 13 being prohibited.
[0031]
According to such a 4th example, the main operation effects of the 2nd example and the 3rd example mentioned above can be obtained collectively. In other words, by prohibiting the operation of only the exhaust VTC, the operating range of the intake VTC related to the hydraulic pressure can be expanded to the limit, the operability is improved, and the combustion is stable compared to the case where the operation of only the intake VTC is prohibited. Improves. Further, since the hydraulic pressure can be detected directly, the control accuracy can be improved as in the third embodiment. Furthermore, by setting the second hydraulic pressure threshold value Op higher than the first hydraulic pressure threshold value Op1 of the third embodiment, the operating range of the VTC can be expanded and the drivability can be improved.
[0032]
FIG. 10 is a flowchart showing the flow of control according to the fifth embodiment of the present invention. The processing from S11 to S16a is the same as that of the second embodiment of FIG. That is, in the second high oil temperature state where the oil temperature Ot detected by the oil temperature sensor 24 is higher than the second oil temperature threshold value Ot2, the process proceeds from S15a to S16a, the exhaust VTC switching permission flag Ve is set to 0, and the operation of the exhaust VTC 15 is performed. Is prohibited. In subsequent S17, it is determined whether or not the oil temperature Ot is in a first high oil temperature state that exceeds a first oil temperature threshold value Ot1 (Ot1> Ot2) that is higher than the second oil temperature threshold value Ot2. If it is determined that the first high oil temperature state is reached, the process proceeds to S18, where the intake VTC switching permission flag Vi is set to 0, and the operation of the intake VTC 13 is prohibited.
[0033]
According to the fifth embodiment, in addition to substantially the same effect as the second embodiment, the operation prohibition of the exhaust VTC 15 and the operation prohibition of the intake VTC 13 are appropriately performed in this order as the oil temperature rises. Therefore, it is possible to ensure a sufficient VTC operating region and improve engine operability while reliably avoiding a failure state such as an inadvertent decrease in the operating response of the VTC.
[0034]
FIG. 11 is a flowchart showing the flow of control according to the sixth embodiment of the present invention. The processing from S11 to S16c is the same as that of the fourth embodiment of FIG. That is, in the second low hydraulic pressure state in which the hydraulic pressure Op detected by the hydraulic pressure sensor 22 is lower than the second hydraulic pressure threshold Op2, the process proceeds from S15c to S16c, and the exhaust VTC switching permission flag Ve is set to 0 to prohibit the operation of the exhaust VTC15. In subsequent S17a, it is determined whether or not the hydraulic pressure Op is in the first low hydraulic pressure state lower than the first hydraulic pressure threshold value Op1 (Op1 <Op2), which is a value lower than the second hydraulic pressure threshold value Op2. When it is determined that the first low hydraulic pressure state is set, the process proceeds to S18, where the intake VTC switching permission flag Vi is set to 0, and the operation of the intake VTC 13 is prohibited.
[0035]
According to the sixth embodiment, substantially the same effect as that of the fourth embodiment can be obtained, and the operation prohibition of the exhaust VTC 15 and the operation prohibition of the intake VTC 13 are performed step by step in this order as the hydraulic pressure decreases. Therefore, the VTC operating range can be expanded and the engine operability can be improved while reliably avoiding VTC failure (decrease in operating response).
[0036]
As described above, the present invention has been described based on specific embodiments, but the present invention is not limited to these embodiments, and includes various modifications and changes without departing from the spirit of the present invention. It is a waste. For example, in the above embodiment, a variable valve mechanism capable of continuously changing the valve lift characteristics is used. However, the present invention is not limited to this. Two positions for switching the valve lift characteristics in two stages according to the supply / stop of hydraulic pressure are used. A switching type variable valve mechanism may be used.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a variable valve operating apparatus for an internal combustion engine according to the present invention.
FIG. 2 is a hydraulic circuit diagram showing an example in which an oil temperature sensor is provided in the hydraulic circuit.
FIG. 3 is a flowchart showing a flow of a setting process for a switching permission flag.
FIG. 4 is a flowchart showing a control flow according to the first embodiment of the present invention.
FIG. 5 is a flowchart showing a control flow according to a second embodiment of the present invention.
FIG. 6 is a hydraulic circuit diagram showing an example in which a hydraulic sensor is provided in the hydraulic circuit.
FIG. 7 is a flowchart showing a control flow according to a third embodiment of the present invention.
FIG. 8 is a flowchart showing a control flow according to a fourth embodiment of the present invention.
FIG. 9 is an explanatory diagram for explaining the operation and effect when prohibiting only the operation of the exhaust VTC.
FIG. 10 is a flowchart showing a flow of control according to a fifth embodiment of the present invention.
FIG. 11 is a flowchart showing a control flow according to a sixth embodiment of the present invention.
[Explanation of symbols]
1 ... Engine control unit (operation prohibition means)
11. Intake VTC solenoid (intake side hydraulic control valve / operation prohibiting means)
13 ... Intake VTC (Intake side variable valve mechanism)
12. Exhaust VTC solenoid (exhaust side hydraulic control valve / operation prohibiting means)
15 ... Exhaust VTC (Exhaust side variable valve mechanism)
22 ... Hydraulic sensor (hydraulic parameter detecting means)
24. Oil temperature sensor (hydraulic parameter detecting means)
31 ... Oil pump (hydraulic power source)

Claims (9)

作動油を加圧する油圧源と、
油圧により作動して吸気弁のバルブリフト特性を変更する吸気側可変動弁機構と、
油圧により作動して排気弁のバルブリフト特性を変更する排気側可変動弁機構と、
油圧に関連する油圧パラメータを検出する油圧パラメータ検出手段と、
上記油圧パラメータ検出手段により検出された上記油圧パラメータに基づいて、吸気側可変動弁機構と排気側可変動弁機構のいずれか一方の可変動弁機構のみの作動を禁止し、残る他方の可変動弁機構だけを作動させる作動禁止手段と、
を有する内燃機関の可変動弁装置。
A hydraulic source for pressurizing the hydraulic oil;
An intake side variable valve mechanism that operates by hydraulic pressure to change the valve lift characteristics of the intake valve;
An exhaust side variable valve mechanism that operates by hydraulic pressure to change the valve lift characteristics of the exhaust valve;
Oil pressure parameter detecting means for detecting oil pressure parameters related to oil pressure;
Based on the oil pressure parameter detected by the oil pressure parameter detecting means, the operation of only one of the intake side variable valve mechanism and the exhaust side variable valve mechanism is prohibited, and the other variable action is left. An operation prohibiting means for operating only the valve mechanism;
A variable valve operating apparatus for an internal combustion engine.
上記油圧パラメータ検出手段が油温を検出する油温センサであ請求項1に記載の内燃機関の可変動弁装置。The hydraulic parameter detecting means variable valve device for an internal combustion engine according to claim 1 Ru oil temperature sensor der to detect the oil temperature. 上記作動禁止手段は、油温センサにより検出される油温が第1油温閾値を越える場合に、吸気側可変動弁機構及び排気側可変動弁機構の双方の作動を禁止する請求項2に記載の内燃機関の可変動弁装置。  The operation prohibiting means prohibits the operation of both the intake side variable valve mechanism and the exhaust side variable valve mechanism when the oil temperature detected by the oil temperature sensor exceeds a first oil temperature threshold. A variable valve operating apparatus for an internal combustion engine as described. 上記作動禁止手段は、油温センサにより検出される油温が第1油閾値よりも低い値である第2油温閾値を越える場合に、上記一方の可変動弁機構のみの作動を禁止する請求項に記載の内燃機関の可変動弁装置。The operation prohibiting means prohibits the operation of only one of the variable valve mechanisms when the oil temperature detected by the oil temperature sensor exceeds a second oil temperature threshold that is lower than the first oil temperature threshold. The variable valve operating apparatus for an internal combustion engine according to claim 3 . 上記油圧パラメータ検出手段が油圧を検出する油圧センサであ請求項1に記載の内燃機関の可変動弁装置。The hydraulic parameter detecting means variable valve device for an internal combustion engine according to claim 1 Ru der oil pressure sensor for detecting the oil pressure. 上記作動禁止手段は、油圧センサにより検出される油圧が第1油圧閾値よりも低い場合に、吸気側可変動弁機構及び排気側可変動弁機構の双方の作動を禁止する請求項5に記載の内燃機関の可変動弁装置。  6. The operation prohibiting means according to claim 5, wherein the operation of both the intake side variable valve mechanism and the exhaust side variable valve mechanism is prohibited when the oil pressure detected by the oil pressure sensor is lower than a first oil pressure threshold. A variable valve operating device for an internal combustion engine. 上記作動禁止手段は、油圧センサにより検出される油圧が第1油圧閾値よりも高い値である第2油圧閾値よりも低い場合に、上記一方の可変動弁機構のみの作動を禁止する請求項に記載の内燃機関の可変動弁装置。Said actuation inhibiting means, claim hydraulic pressure detected by the oil pressure sensor is lower than the second oil pressure threshold value is higher than the first oil pressure threshold value, it prohibits the operation of only one of the variable valve mechanism described above 6 A variable valve operating apparatus for an internal combustion engine according to claim 1. 上記油圧源から吸気側可変動弁機構への供給油圧を切換・制御する吸気側油圧制御弁と、上記油圧源から排気側可変動弁機構への供給油圧を切換・制御する排気側油圧制御弁と、を有し、
上記作動禁止手段は、油圧制御弁による油圧の供給を禁止することにより、可変動弁機構の作動を禁止する請求項1〜7のいずれかに記載の内燃機関の可変動弁装置。
An intake side hydraulic control valve that switches and controls the supply hydraulic pressure from the hydraulic source to the intake side variable valve mechanism, and an exhaust side hydraulic control valve that switches and controls the supply hydraulic pressure from the hydraulic source to the exhaust side variable valve mechanism And having
8. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the operation prohibiting unit prohibits the operation of the variable valve operating mechanism by prohibiting the supply of hydraulic pressure by the hydraulic control valve.
上記一方の可変動弁機構が、排気側可変動弁機構である請求項1〜8のいずれかに記載の内燃機関の可変動弁装置。9. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the one variable valve operating mechanism is an exhaust side variable valve operating mechanism.
JP2003086733A 2003-03-27 2003-03-27 Variable valve operating device for internal combustion engine Expired - Fee Related JP4206793B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003086733A JP4206793B2 (en) 2003-03-27 2003-03-27 Variable valve operating device for internal combustion engine
CNA2004100066471A CN1534171A (en) 2003-03-27 2004-02-25 Variator air valve device for IC engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086733A JP4206793B2 (en) 2003-03-27 2003-03-27 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004293405A JP2004293405A (en) 2004-10-21
JP4206793B2 true JP4206793B2 (en) 2009-01-14

Family

ID=33401281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086733A Expired - Fee Related JP4206793B2 (en) 2003-03-27 2003-03-27 Variable valve operating device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4206793B2 (en)
CN (1) CN1534171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020503A (en) * 2016-08-18 2018-02-28 현대자동차주식회사 Method for diagonosing variable valve timing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495718B (en) * 2007-09-04 2011-12-21 曼柴油机和涡轮公司,德国曼柴油机和涡轮欧洲股份公司的联营公司 Large-sized two-stroke diesel engine with outward mobile exhaust valve
JP4759622B2 (en) 2009-01-09 2011-08-31 本田技研工業株式会社 Control device for internal combustion engine
KR101807008B1 (en) * 2012-07-20 2017-12-08 현대자동차 주식회사 Control method for cvvl engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020503A (en) * 2016-08-18 2018-02-28 현대자동차주식회사 Method for diagonosing variable valve timing system
KR101886503B1 (en) * 2016-08-18 2018-08-07 현대자동차주식회사 Method for diagonosing variable valve timing system
US10626820B2 (en) 2016-08-18 2020-04-21 Hyundai Motor Company Method for diagnosing variable valve timing system

Also Published As

Publication number Publication date
CN1534171A (en) 2004-10-06
JP2004293405A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
KR100924666B1 (en) Control method and control apparatus for internal combustion engine
US8316831B2 (en) Control device for internal combustion engine and control method for internal combustion engine
US7152578B2 (en) Valve characteristic controlling apparatus and method for internal combustion engine
JP2008215327A (en) Variable valve gear and control device for internal combustion engine
JP2007085258A (en) Supercharging pressure control device for internal combustion engine
JP2004263580A (en) Variable valve system for internal combustion engine
JP2009203900A (en) Device for controlling internal combustion engine
JP4058909B2 (en) Hydraulic control device for internal combustion engine
US20180306132A1 (en) Control device for internal combustion engine
JP4206793B2 (en) Variable valve operating device for internal combustion engine
JP5720503B2 (en) Variable valve gear
JP4325514B2 (en) Valve timing control device for internal combustion engine
JP6021509B2 (en) Control device for internal combustion engine
JP4396507B2 (en) Valve characteristic control device for internal combustion engine
JP2007247434A (en) Control device and control method for internal combustion engine
JP2015078628A (en) Control device of internal combustion engine
JP4807155B2 (en) Variable valve gear
JP6192333B2 (en) Control device for internal combustion engine
JP5041167B2 (en) Engine control device
JP2010084730A (en) Control device for internal combustion engine
WO2020009006A1 (en) Variable valve system for internal combustion engine, and control device for variable valve system for internal combustion engine
JP4021384B2 (en) Control method for internal combustion engine
US20200088072A1 (en) Control system and control method for hydraulic variable valve
US20070113805A1 (en) Internal combustion engine comprising a variable valve lift system and a method for controlling valve lift shifting
JP6253335B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees