JP4267303B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4267303B2
JP4267303B2 JP2002341077A JP2002341077A JP4267303B2 JP 4267303 B2 JP4267303 B2 JP 4267303B2 JP 2002341077 A JP2002341077 A JP 2002341077A JP 2002341077 A JP2002341077 A JP 2002341077A JP 4267303 B2 JP4267303 B2 JP 4267303B2
Authority
JP
Japan
Prior art keywords
exhaust
overlap amount
flow rate
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002341077A
Other languages
Japanese (ja)
Other versions
JP2004176568A (en
Inventor
文昭 平石
保樹 田村
公二郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002341077A priority Critical patent/JP4267303B2/en
Publication of JP2004176568A publication Critical patent/JP2004176568A/en
Application granted granted Critical
Publication of JP4267303B2 publication Critical patent/JP4267303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関(以下、エンジンという)の制御装置に係り、詳しくは吸排気弁のオーバラップ量を変更可能な可変動弁機構を備えるとともに、排気流量を制限する排気流量調整機構を備えた内燃機関の制御装置に関するものである。
【0002】
【関連する背景技術】
近年、エンジンのエミッション低減や燃費節減のために種々のアプローチがなされており、例えばエンジンの動弁機構に関しては、排気弁の閉弁タイミングや吸気弁の開弁タイミングを変更することで運転状態に応じた適切な吸排気弁のオーバラップ量を実現する可変動弁機構が実用化されており、或いはエンジンの排気系に関しては、排気流量を制限することで触媒を迅速に昇温させる排気流量調整機構が実用化されている。
【0003】
排気流量調整機構による排気流量の制限は冷態始動時等に実施されるが、排気流量を制限するとエンジンの内部EGRが増加して燃焼が不安定になるため、そのための対策として上記可変動弁機構が利用されることもある(例えば、特許文献1参照)。当該特許文献1に記載された技術は、排気流量調整機構により排気流量を制限したときに、同時に可変動弁機構により吸排気弁のオーバラップ量を縮小して燃焼の安定化を図っている。
【0004】
【特許文献1】
特開平3−271515号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載された技術では、可変動弁機構による制御で所期のオーバラップ量が達成されることを前提とするものであり、例えばオーバラップ量が大の状態で、排気流量調整機構によって排気流量を制限する場合、内部EGRを抑制すべく可変動弁機構を調整してオーバラップ量を減少させようとしても可変動弁機構の作動応答遅れ、即ち、例えば縮小方向に変化する目標オーバラップ量に対する実オーバラップ量の一時的な追従遅れ等に起因して、目標オーバラップ量に対する過剰なオーバラップ量により内部EGRが増加して該内部EGRを適切に制御することができずに、排気流量調整機構による排気流量の制限と相俟ってエンジンの燃焼状態を却って悪化させてしまう虞があった。この問題は、オーバラップ量が大きいほど顕著である。
【0006】
又、例えば、オーバラップ量が大の状態で可変動弁機構が固着したり、油圧不足で作動不能となったりした場合にも、オーバラップ量を適切に減少することができずに、同様に内部EGRの増加に伴いエンジンの燃焼状態を却って悪化させてしまう虞があった。
本発明の目的は、可変動弁機構と排気流量調整機構とを的確に協調制御し、もって、可変動弁機構の固着や追従遅れに起因する内部EGRの増加を未然に回避して、良好な燃焼状態を実現することができる内燃機関の制御装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、内燃機関の吸気弁の開弁タイミングと排気弁の弁タイミングとの少なくとも一方を変更して吸排気弁のオーバラップ量を変更可能に構成され、内燃機関の運転領域から求めた目標オーバラップ量に追従するようにオーバラップ量を調整する可変動弁機構と、内燃機関の排気通路に設けられ、閉側への開度調整により排気流量を制限して排圧を上昇させる排気流量調整機構とを備えた内燃機関の制御装置において、吸排気弁のオーバラップ量を検出するオーバラップ量検出手段と、オーバラップ量検出手段によって検出されるオーバラップ量が第1の設定値以上のときに、排気流量調整機構を開側に制御する排気制限抑制手段とを備えたものである。
【0008】
従って、内燃機関の運転領域から求めた目標オーバラップ量に追従するように可変動弁機構により吸排気弁のオーバラップ量が変更される一方、所定の開始条件が成立したとき、例えば機関の冷態始動時のように迅速な触媒昇温が要求される場合、或いはリーン運転時や車両減速時のように機関の発熱量の減少に伴って触媒温度が低下する場合等には、排気流量調整機構の閉側への開度調整により内燃機関の排気流量が制限されて排圧が上昇し、触媒の昇温や保温が図られる。
【0009】
そして、オーバラップ量検出手段に検出されたオーバラップ量が第1の設定値以上であり、可変動弁機構の作動応答遅れが発生するような場合には、排気流量調整機構が開側に制御される。よって、可変動弁機構によるオーバラップ量に応じて、排気流量調整機構による排気流量の制限が行われて、この作動応答遅れに起因して内燃機関の内部EGRが更に増加する事態が未然に回避される。
【0013】
請求項の発明は、請求項1において、オーバラップ量と目標オーバラップ量との差が第2の設定値以上のときに、排気制限抑制手段が排気流量調整機構を開側に制御するものである。
例えば、可変動弁機構の応答性に起因して、縮小方向に変化する目標オーバラップ量に対してオーバラップ量に追従遅れが生じると、オーバラップ量と目標オーバラップ量との差が過渡的に第2の設定値以上となるが、このときには排気流量調整機構が開側に制御されるため、この追従遅れに起因する内部EGRの増加を回避可能となる。
【0014】
【発明の実施の形態】
以下、本発明を具体化したエンジンの制御装置の一実施形態を説明する。
図1は本実施形態のエンジンの制御装置を示す全体構成図である。エンジン1は筒内に燃料を噴射する筒内噴射型エンジンとして構成され、その動弁機構としてはDOHC4弁式が採用されている。シリンダヘッド2上の吸気カム軸3a及び排気カム軸3bの前端にはそれぞれタイミングプーリ5a,5bが接続されている。各タイミングプーリ5a,5bはタイミングベルト6を介してクランク軸7に連結され、クランク軸7の回転に伴ってタイミングプーリ5a,5bが回転駆動されると、カム軸3a,3bが回転して吸気弁8a及び排気弁8bを開閉駆動する。
【0015】
排気カム軸3bとタイミングプーリ5bとの間には、可変動弁アクチュエータ4が設けられている。可変動弁アクチュエータ4の構成は、例えば特開2000−27609号公報等で公知のため詳細は説明しないが、タイミングプーリ5bに設けたハウジング内にベーンロータを回動可能に設け、そのベーンロータに排気カム軸3bを連結して構成されている。可変動弁アクチュエータ4にはオイルコントロールバルブ(以下、OCVという)4aを介してエンジン1の潤滑用オイルが作動油として供給され、OCV4aの切換に応じてベーンロータに油圧を作用させて、タイミングプーリ5bに対する排気カム軸3bの位相、即ち、排気弁8bの開弁タイミング及び閉弁タイミングを調整する。本実施形態では、これらの可変動弁アクチュエータ4、OCV4aにより可変動弁機構が構成されている。
【0016】
シリンダヘッド2には、各気筒毎に点火プラグ9と共に燃料噴射弁10が取り付けられており、図示しない燃料ポンプから供給された高圧燃料が燃料噴射弁10から燃焼室11内に直接噴射される。各気筒の燃焼室11は吸気ポート12を介して共通の吸気通路13に接続され、エアクリーナ14を介して吸気通路13内に導入された吸入空気は、スロットル弁15により流量調整された後、吸気ポート12から各気筒の燃焼室11内に導入される。又、各気筒の燃焼室11は排気ポート16を介して共通の排気通路17に接続され、燃焼室11内で燃焼後の排ガスは排気ポート16から排気通路17に排出されて、触媒18及び消音器19を経て外部に排出される。
【0017】
排気通路17に介装された触媒18と消音器19との間にはバタフライ式の排気絞り弁20が設けられ、排気絞り弁20は排気絞りアクチュエータ21により全閉位置と全開位置との2位置間で開閉駆動される。排気通路17には排気絞り弁20を迂回するようにバイパス通路22が接続され、バイパス通路22には圧力調整弁23が設けられている。圧力調整弁23は通常閉弁されており、排気絞り弁20の全閉等に伴って排気通路17の上流側の排圧が上昇したときに開弁して排ガスを流通させ、これにより排気通路17内の排圧を自己の設定圧に保持する。本実施形態では、これらの排気絞り弁20、排気絞りアクチュエータ21、バイパス通路22、圧力調整弁23により排気流量調整機構が構成されている。
【0018】
車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM,BURAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(エンジン制御ユニット)31が設置されており、エンジン1の総合的な制御を行う。ECU31の入力側には、エンジン回転速度Neを検出する回転速度センサ32、スロットル弁14の開度θthを検出するスロットルセンサ33、排気カム軸3bの位相を検出するカム角センサ34(オーバラップ量検出手段)等の各種センサが接続されている。又、ECU31の出力側には、上記OCV4a、点火プラグ9、燃料噴射弁10、排気絞りアクチュエータ21等が接続されている。
【0019】
ECU31は各センサからの検出情報に基づき、燃料噴射制御や点火時期制御等の各種制御を実行する。又、ECU31は、エンジン1の冷態始動時のように触媒18の迅速な昇温が要求される運転状態、或いはリーン運転時や車両減速時等のようにエンジン発熱量の減少に伴って触媒温度が低下する運転状態では、排気絞りアクチュエータ21により排気絞り弁20を全閉位置に切換えて排圧を上昇させる排気絞り制御を実行し、これにより排気流量を制限して触媒18の昇温や保温を図る。
【0020】
更に、ECU31は各センサからの検出情報に基づき、OCV4aを駆動して排気カム軸3bの位相を制御するとともに、このときの排気カム軸3bの位相がエンジン1の燃焼を不安定にする所定の状態にあるときには、上記排気絞り制御を禁止している。
そこで、当該排気絞り制御の禁止判定について説明するが、これに先立って排気カム軸3bの位相制御について述べる。ECU31は図2に示すカム位相制御ルーチンを所定の制御インターバルで実行し、まず、ステップS2で排気絞り制御の開始条件が成立したか否かを判定する。排気絞り制御の開始条件としては、上記したエンジン1の冷態始動、リーン運転、車両減速等が設定されており、何れかの条件が満たされたときに排気絞り制御の開始条件が成立したと見なされる。
【0021】
ステップS2の判定がNO(否定)のときにはステップS4に移行し、排気カム軸3bの位相、即ち、排気弁8bの開弁タイミング及び閉弁タイミングの目標値を算出する。例えば位相の目標値は、排気カム軸3bの最遅角位置からの目標進角量tgtθとして表され、エンジン1の目標平均有効圧Peや体積効率Ev(機関負荷と相関する)とエンジン回転速度Neとに基づき図示しないマップから算出される。ECU31は続くステップS6でカム角センサ34からの検出情報に基づいて排気カム軸3bの実進角量θを求め、実進角量θが目標進角量tgtθとなるようにOCV4aを駆動制御した後、ルーチンを終了する。
【0022】
又、排気絞り制御の開始条件が成立したとして上記ステップS2でYES(肯定)の判定を下したときには、ステップS8に移行する。ステップS8の処理内容は上記ステップS4と同様であるが、適用するマップ特性が異なり、同一運転領域においてステップS4の目標進角量tgtθに比較してより大きな目標進角量tgtθeが算出され、その目標進角量tgtθeに基づいて続くステップS6でOCV4aを駆動制御した後、ルーチンを終了する。
【0023】
以上の排気カム軸3bの位相制御により、排気弁8bの開弁タイミングがエンジン1の運転領域に応じて適切に制御されるとともに、排気流量の制限によりエンジン1の内部EGRが増加する排気絞り制御中には、より大きな目標進角量tgtθeに基づいて排気カム軸3bが進角側に制御され、吸排気弁8a,8bのオーバラップ量OLが縮小されて燃焼の安定化が図られる(オーバラップ量縮小制御手段)。
【0024】
特に、このように排気側を位相制御した場合には、排気カム軸3bの進角に伴って燃焼室11への排ガスの戻り量が減少して直接的な内部EGRの抑制作用を奏するため、吸気側を遅角させて同一オーバラップ量OLに制御した場合に比較して、燃焼の安定化はより確実なものとなる。
また、図2のステップS4,8で併記しているように、排気カム軸3bの目標進角量tgtθと同じく、燃料噴射制御で適用される空燃比A/Fや燃料噴射時期IT、点火時期制御で適用される点火時期SAの目標値も、排気絞り制御の開始条件に応じて切換えられる(運転制御パラメータ切換手段)。
【0025】
一方、上記排気絞り制御の禁止判定は、図3に示す排気絞り禁止判定ルーチンに基づいて行われる。ECU31は当該ルーチンを所定の制御インターバルで実行し、まず、ステップS12で上記ステップS2と同様に排気絞り制御の開始条件が成立したか否かを判定し、判定がNOのときにはそのままルーチンを終了する。
【0026】
一方、ステップS12の判定がYESのときにはステップS14に移行して、吸排気弁8a,8bの実オーバラップ量OLが第1の設定値OL0未満(OL<OL0)か否かを判定する。なお、吸気カム軸3aの位相は固定のため、カム角センサ34により検出された排気カム軸3bの位相に基づいて、実オーバラップ量OLは一義的に導き出される。
【0027】
第1の設定値OL0は、正常な排気カム軸3bの位相制御範囲において、オーバラップ量を減少すべく排気カム軸3bの位相を例えば最進角位置へ制御する際に、可変動弁機構の作動応答遅れが生じて目標オーバラップ量に対する過剰なオーバラップ量が発生するような排気カム軸3bの位相位置に対応して設定されている。そして、排気カム軸3bの位相が正常な制御範囲にあって、実オーバラップ量OLが第1の設定値OL0よりも小さい場合には、排気絞りに伴いオーバラップ量を減少するように可変動弁機構を調整しても、作動応答遅れが少なく過剰なオーバラップ量は発生しないと推測でき、ECU31はステップS14でYESの判定を下してステップS16に移行する。
【0028】
ステップS16では実オーバラップ量OLから目標オーバラップ量tgtOLを減算した差ΔOLが第2の設定値ΔOL0未満(OL−tgtOL=ΔOL<ΔOL0)か否かを判定する。なお、上記実オーバラップ量OLと同様に、目標オーバラップ量tgtOLは目標進角量tgtθから一義的に導き出される。
上記した排気カム軸3bの位相制御の結果、エンジン1の運転領域の変化や図2のステップS4,8間の切換に応じて目標オーバラップ量tgtOLは変化し、その目標オーバラップ量tgtOLに追従して実オーバラップ量OLが制御される。そして、目標オーバラップ量tgtOLが拡大方向に変化したときには、目標オーバラップ量tgtOLに比較して追従する実オーバラップ量OLの方が小さいため差ΔOLは負となり、一方、目標オーバラップ量tgtOLが縮小方向に変化したときでも、可変動弁アクチュエータ4による位相制御に大きな追従遅れがなければ、差ΔOLは正となるものの第2の設定値ΔOL0未満となる。つまり、これらの場合には位相制御が過渡的な意味で正常に行われていると推測でき、ECU31はステップS16にYESの判定を下してステップS18に移行する。
【0029】
ステップS18では、上記ステップS12での排気絞り制御の開始条件成立を受けて、排気絞り制御の実行を許可した後にルーチンを終了する。この許可指令に基づき、排気絞り制御では排気絞りアクチュエータ21により排気絞り弁20が全閉位置に切換えられ、これによる排圧上昇で排気流量が制限され、触媒18の昇温や保温が行われる。
【0030】
一方、上記ステップS14の判定がNOのとき(OL≧OL0)には、可変動弁機構の作動応答遅れによって過剰なオーバラップ量が生じて内部EGRを適正に抑制することができない場合や、OCV4aや可変動弁アクチュエータ4のベーンロータの固着、或いは油圧不足等により、実オーバラップ量OLが大の状態で可変動弁アクチュエータ4が作動不能になっていることが推測できる。この場合のECU31はステップS20に移行して、排気絞り制御の実行を禁止した後にルーチンを終了する。
【0031】
また、上記ステップS16の判定がNOのとき(ΔOL≧ΔOL0)には、実オーバラップ量OLが第1の設定値OL0より小さい状態であるが、目標オーバラップ量tgtOLが縮小側に変化しているときに、可変動弁アクチュエータ4の応答性に起因して実オーバラップ量OLが一時的に追従遅れを生じているため、内部EGRを適正に抑制できない虞があると推測できる。この場合にもECU31はステップS20に移行して、排気絞り制御の実行を禁止した後にルーチンを終了する。
【0032】
上記ステップS14が過剰なオーバラップ量の発生を推測しているのに対し、ステップS16は過剰なオーバラップ量の発生を実際に検出している点で異なるが、エンジン1の内部EGRが増加する点は共通する。この状態で排気絞り制御が開始されると、排気流量の制限により内部EGRが更に増加するが、上記ステップS20での禁止指令を受けて排気絞り制御側で排気絞り弁20が全開保持されることから、この内部EGRの増加が未然に回避される。
【0033】
よって、本実施形態のエンジン1の制御装置によれば、可変動弁アクチュエータ4による位相制御と排気絞り弁20による排気絞り制御とを的確に協調させて、位相制御側に作動応答遅れやトラブルが生じた場合であっても内部EGRの増加を回避し、良好なエンジン1の燃焼状態を実現することができる。
なお、ステップS14の判断がNOの場合には、排気絞り制御が禁止され続けるが、ステップS16の判断がNOの場合には、一時的なオーバラップ量OLの過剰が解消された時点(追従遅れが解消された時点)で排気絞り制御が許可されるため、その後は触媒18の昇温や保温等の排気絞り制御による利点が得られる。
【0034】
一方、排気絞り制御の開始条件が成立したときには、位相制御側のステップS8で事前に吸排気弁8a,8bのオーバラップ量OLを縮小して燃焼の安定化を図るばかりでなく、燃料噴射制御で適用される空燃比A/Fや燃料噴射時期IT、点火時期制御で適用される点火時期SAの目標値も同時に切換えている。よって、縮小後のオーバラップ量OLに対して最適な燃料噴射制御や点火時期制御を実現でき、オーバラップ縮小によるエンジン1の運転への悪影響を抑制できるという利点もある。
【0035】
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では筒内噴射型エンジン1の制御装置に具体化したが、吸排気弁8a,8bのオーバラップ量OLを変更する可変動弁機構及び排気流量を制限する排気流量調整機構を備えたエンジンであれば、その種別はこれに限ることはなく、例えば吸気管噴射型エンジンに適用したり、ディーゼルエンジンに適用したりしてもよい。
【0036】
また、上記実施形態では、可変動弁アクチュエータ4により排気カム軸3bの位相(排気弁8bの閉弁タイミング)を制御したが、これに代えて吸気カム軸3aの位相(吸気弁8aの開弁タイミング)を制御したり、吸排気のカム軸3a,3bの位相を共に制御したりしてもよい。
更に、上記実施形態では、排気絞り弁20を全閉してバイパス通路22に設けた圧力調整弁23により所定排圧に保ったが、バイパス通路22及び圧力調整弁23を設けることなく、排気絞り弁20を全閉付近の微小開度に制御することで、所定排圧を実現するようにしてもよい。
【0037】
一方、上記実施形態では、ステップS20の禁止処理により排気絞り弁20を全開保持したが、オーバラップ量OLがそれほど過剰でない場合には排気絞り制御を完全に禁止しなくてもよい。例えば上記のように圧力調整弁23を用いない場合には、排気絞り弁20の開度に応じて排圧を任意に調整可能なため、ステップS20の処理として、オーバラップ量OLが過剰なほど排気絞り弁20の開度を開側に調整して排気流量の制限を抑制するようにしてもよい。このように構成すれば、位相制御側のトラブルによりオーバラップ量OLが過剰になった場合でも、排気絞り制御による触媒18の昇温や保温作用を可能な限り得ることができる。
【0038】
【発明の効果】
以上説明したように請求項1の発明の内燃機関の制御装置によれば、可変動弁機構による吸排気弁のオーバラップ量が第1の設定値以上のときに排気流量調整機構を開側に制御するため、可変動弁機構と排気流量調整機構とを的確に協調制御し、もって、可変動弁機構の作動応答遅れに起因する内燃機関の内部EGRの増加を未然に回避して、良好な燃焼状態を実現することができる。
【0040】
求項の発明の内燃機関の制御装置によれば、請求項1に加えて、実オーバラップ量と目標オーバラップ量との差が第2の設定値以上のときに排気流量調整機構を開側に制御するため、可変動弁機構の作動応答遅れに起因する内部EGRの増加を確実に回避して、良好な燃焼状態を実現することができる。
【図面の簡単な説明】
【図1】実施形態のエンジンの制御装置を示す全体構成図である。
【図2】ECUが実行するカム位相制御ルーチンを示すフローチャートである。
【図3】ECUが実行する排気絞り禁止判定ルーチンを示すフローチャートである。
【符号の説明】
1 エンジン(内燃機関)
4 可変動弁アクチュエータ(可変動弁機構)
4a OCV(可変動弁機構)
8a 吸気弁
8b 排気弁
20 排気絞り弁(排気流量調整機構)
21 排気絞りアクチュエータ(排気流量調整機構)
22 バイパス通路(排気流量調整機構)
23 圧力調整弁(排気流量調整機構)
31 ECU(排気制限抑制手段、オーバラップ縮小制御手段、運転制御パラメータ切換手段)
34 カム角センサ(オーバラップ量検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for an internal combustion engine (hereinafter referred to as an engine), and more specifically, includes a variable valve mechanism that can change the overlap amount of intake and exhaust valves, and an exhaust flow rate adjustment mechanism that limits the exhaust flow rate. The present invention relates to a control device for an internal combustion engine.
[0002]
[Related background]
In recent years, various approaches have been taken to reduce engine emissions and reduce fuel consumption.For example, with regard to the valve mechanism of an engine, the exhaust valve closing timing and intake valve opening timing can be changed to change to the operating state. A variable valve mechanism that realizes an appropriate amount of overlap of the intake and exhaust valves according to the requirements has been put into practical use, or, regarding the exhaust system of the engine, exhaust flow rate adjustment that quickly raises the catalyst temperature by limiting the exhaust flow rate The mechanism has been put into practical use.
[0003]
Although the exhaust flow rate restriction by the exhaust flow rate adjustment mechanism is performed at the time of cold start or the like, if the exhaust flow rate is restricted, the internal EGR of the engine increases and the combustion becomes unstable. A mechanism may be used (see, for example, Patent Document 1). In the technique described in Patent Document 1, when the exhaust flow rate is limited by the exhaust flow rate adjustment mechanism, the overlap amount of the intake and exhaust valves is simultaneously reduced by the variable valve mechanism to stabilize the combustion.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-271515
[Problems to be solved by the invention]
However, the technique described in Patent Document 1 is based on the premise that the desired overlap amount is achieved by the control by the variable valve mechanism. For example, when the overlap amount is large, the exhaust gas is exhausted. When the exhaust flow rate is limited by the flow rate adjustment mechanism, even if the variable valve mechanism is adjusted to suppress the internal EGR and the overlap amount is reduced, the response of the variable valve mechanism is delayed. Due to a temporary follow-up delay of the actual overlap amount with respect to the target overlap amount, the internal EGR increases due to an excessive overlap amount with respect to the target overlap amount, and the internal EGR can be controlled appropriately. In addition, there is a risk that the combustion state of the engine may be worsened in combination with the restriction of the exhaust flow rate by the exhaust flow rate adjusting mechanism. This problem becomes more prominent as the overlap amount is larger.
[0006]
In addition, for example, when the variable valve mechanism is stuck with a large overlap amount or becomes inoperable due to insufficient hydraulic pressure, the overlap amount cannot be reduced appropriately. As the internal EGR increases, the combustion state of the engine may be worsened.
It is an object of the present invention to accurately control a variable valve mechanism and an exhaust flow rate adjustment mechanism, thereby avoiding an increase in internal EGR due to sticking of the variable valve mechanism and a follow-up delay. An object of the present invention is to provide a control device for an internal combustion engine capable of realizing a combustion state.
[0007]
[Means for Solving the Problems]
To achieve the above object, a first aspect of the invention, capable of changing the overlap amount of the intake and exhaust valves by changing at least one of the closing valve timing of the exhaust valve and the opening timing of the intake valve of an internal combustion engine A variable valve mechanism that adjusts the overlap amount so as to follow the target overlap amount obtained from the operating region of the internal combustion engine, and an exhaust flow rate that is provided in the exhaust passage of the internal combustion engine and adjusts the opening to the closed side In an internal combustion engine control device having an exhaust flow rate adjustment mechanism that limits exhaust gas and raises exhaust pressure, an overlap amount detection means that detects an actual overlap amount of the intake and exhaust valves, and an overlap amount detection means And an exhaust restriction suppressing means for controlling the exhaust flow rate adjusting mechanism to open when the actual overlap amount is greater than or equal to the first set value .
[0008]
Therefore, while the overlap amount of the intake and exhaust valves is changed by the variable valve mechanism so as to follow the target overlap amount obtained from the operating region of the internal combustion engine, when a predetermined start condition is satisfied, for example, Adjust exhaust flow rate when rapid catalyst temperature rise is required, such as during start-up, or when the catalyst temperature decreases as the engine heat generation decreases, such as during lean operation or vehicle deceleration By adjusting the opening of the mechanism to the closed side, the exhaust flow rate of the internal combustion engine is limited, the exhaust pressure rises , and the temperature of the catalyst is increased and the temperature is maintained.
[0009]
If the actual overlap amount detected by the overlap amount detection means is greater than or equal to the first set value and a delay in the response of the variable valve mechanism occurs, the exhaust flow rate adjustment mechanism is opened. Be controlled . Therefore, the exhaust flow rate is limited by the exhaust flow rate adjusting mechanism according to the overlap amount by the variable valve mechanism, and the situation in which the internal EGR of the internal combustion engine further increases due to the delay in the operation response is avoided in advance. Is done.
[0013]
The invention of claim 2, Oite to claim 1, when the difference between the actual overlap amount and the target overlap amount is equal to or greater than the second set value, the exhaust restriction suppressing means exhaust flow rate adjusting mechanism to the open side It is something to control .
For example, due to the responsiveness of the variable valve mechanism, when the actual overlap amount in the follow-up delay with respect to the target overlap amount changes reduction direction occurs, the difference between the actual overlap amount and the target overlap amount is Although transiently exceeding the second set value, at this time, the exhaust flow rate adjusting mechanism is controlled to open, so that an increase in internal EGR due to this follow-up delay can be avoided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an engine control apparatus embodying the present invention will be described.
FIG. 1 is an overall configuration diagram showing an engine control apparatus according to the present embodiment. The engine 1 is configured as an in-cylinder injection type engine that injects fuel into a cylinder, and a DOHC 4-valve type is adopted as the valve operating mechanism. Timing pulleys 5a and 5b are connected to the front ends of the intake cam shaft 3a and the exhaust cam shaft 3b on the cylinder head 2, respectively. The timing pulleys 5a and 5b are connected to the crankshaft 7 via the timing belt 6. When the timing pulleys 5a and 5b are driven to rotate as the crankshaft 7 rotates, the camshafts 3a and 3b rotate to intake air. The valve 8a and the exhaust valve 8b are driven to open and close.
[0015]
A variable valve actuator 4 is provided between the exhaust camshaft 3b and the timing pulley 5b. The configuration of the variable valve actuator 4 is well known in, for example, Japanese Patent Laid-Open No. 2000-27609, and will not be described in detail. However, a vane rotor is rotatably provided in a housing provided in the timing pulley 5b, and an exhaust cam is provided on the vane rotor The shaft 3b is connected. Lubricating oil for the engine 1 is supplied to the variable valve actuator 4 as an operating oil via an oil control valve (hereinafter referred to as OCV) 4a, and hydraulic pressure is applied to the vane rotor in accordance with the switching of the OCV 4a, and the timing pulley 5b. The phase of the exhaust camshaft 3b with respect to the valve, that is, the opening timing and closing timing of the exhaust valve 8b are adjusted. In the present embodiment, a variable valve mechanism is constituted by the variable valve actuator 4 and OCV 4a.
[0016]
The cylinder head 2 is provided with a fuel injection valve 10 together with an ignition plug 9 for each cylinder, and high-pressure fuel supplied from a fuel pump (not shown) is directly injected into the combustion chamber 11 from the fuel injection valve 10. The combustion chamber 11 of each cylinder is connected to a common intake passage 13 via an intake port 12. The intake air introduced into the intake passage 13 via an air cleaner 14 is adjusted in flow rate by a throttle valve 15 and then is taken into the intake air. It is introduced from the port 12 into the combustion chamber 11 of each cylinder. The combustion chamber 11 of each cylinder is connected to a common exhaust passage 17 via an exhaust port 16, and exhaust gas after combustion in the combustion chamber 11 is discharged from the exhaust port 16 to the exhaust passage 17, and the catalyst 18 and the muffler are silenced. It is discharged outside through the container 19.
[0017]
A butterfly exhaust throttle valve 20 is provided between the catalyst 18 interposed in the exhaust passage 17 and the silencer 19, and the exhaust throttle valve 20 is positioned at two positions, a fully closed position and a fully open position, by an exhaust throttle actuator 21. It is driven to open and close. A bypass passage 22 is connected to the exhaust passage 17 so as to bypass the exhaust throttle valve 20, and a pressure adjusting valve 23 is provided in the bypass passage 22. The pressure regulating valve 23 is normally closed, and opens when the exhaust pressure on the upstream side of the exhaust passage 17 rises due to the exhaust throttle valve 20 being fully closed or the like, thereby allowing the exhaust gas to flow therethrough. The exhaust pressure in 17 is maintained at its own set pressure. In the present embodiment, the exhaust throttle valve 20, the exhaust throttle actuator 21, the bypass passage 22, and the pressure adjustment valve 23 constitute an exhaust flow rate adjustment mechanism.
[0018]
In the vehicle compartment, an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.) used for storing control programs and control maps, an ECU (engine) equipped with a central processing unit (CPU), a timer counter, etc. A control unit 31 is installed and performs overall control of the engine 1. On the input side of the ECU 31, there are a rotation speed sensor 32 for detecting the engine rotation speed Ne, a throttle sensor 33 for detecting the opening degree θth of the throttle valve 14, and a cam angle sensor 34 for detecting the phase of the exhaust camshaft 3b (overlap amount). Various sensors such as detection means) are connected. Further, the OCV 4a, the spark plug 9, the fuel injection valve 10, the exhaust throttle actuator 21 and the like are connected to the output side of the ECU 31.
[0019]
The ECU 31 executes various controls such as fuel injection control and ignition timing control based on detection information from each sensor. In addition, the ECU 31 operates in accordance with a decrease in the amount of heat generated by the engine, such as when the engine 1 is required to be quickly heated, such as when the engine 1 is cold-started, or when the engine heat generation is reduced, such as during lean operation or vehicle deceleration. In an operating state in which the temperature decreases, exhaust throttle control is performed by switching the exhaust throttle valve 20 to the fully closed position by the exhaust throttle actuator 21 to increase the exhaust pressure, thereby limiting the exhaust flow rate and increasing the temperature of the catalyst 18. Keep warm.
[0020]
Further, the ECU 31 controls the phase of the exhaust camshaft 3b by driving the OCV 4a based on the detection information from each sensor, and the phase of the exhaust camshaft 3b at this time makes the combustion of the engine 1 unstable. When in the state, the exhaust throttle control is prohibited.
Therefore, the prohibition determination of the exhaust throttle control will be described. Prior to this, phase control of the exhaust camshaft 3b will be described. The ECU 31 executes the cam phase control routine shown in FIG. 2 at a predetermined control interval, and first determines whether or not the exhaust throttle control start condition is satisfied in step S2. As the exhaust throttle control start condition, the cold start of the engine 1, the lean operation, the vehicle deceleration, etc. are set, and the exhaust throttle control start condition is satisfied when any of the conditions is satisfied. Considered.
[0021]
When the determination in step S2 is NO (No), the process proceeds to step S4, and the phase of the exhaust camshaft 3b, that is, the target values of the valve opening timing and valve closing timing of the exhaust valve 8b are calculated. For example, the target value of the phase is expressed as a target advance amount tgtθ from the most retarded position of the exhaust camshaft 3b, and the target average effective pressure Pe and volumetric efficiency Ev (correlated with the engine load) of the engine 1 and the engine speed. It is calculated from a map (not shown) based on Ne. In step S6, the ECU 31 obtains the actual advance angle amount θ of the exhaust camshaft 3b based on the detection information from the cam angle sensor 34, and drives and controls the OCV 4a so that the actual advance angle amount θ becomes the target advance angle amount tgtθ. Then, the routine ends.
[0022]
On the other hand, if YES is determined in step S2 because the exhaust throttle control start condition is satisfied, the process proceeds to step S8. The processing content of step S8 is the same as that of step S4, but the map characteristics to be applied are different, and a larger target advance amount tgtθe is calculated compared to the target advance amount tgtθ of step S4 in the same operation region. After the OCV 4a is driven and controlled in the subsequent step S6 based on the target advance amount tgtθe, the routine is terminated.
[0023]
By the phase control of the exhaust camshaft 3b described above, the exhaust throttle control in which the valve opening timing of the exhaust valve 8b is appropriately controlled according to the operation region of the engine 1 and the internal EGR of the engine 1 is increased by limiting the exhaust flow rate. In some cases, the exhaust camshaft 3b is controlled to the advance side based on the larger target advance amount tgtθe, and the overlap amount OL of the intake and exhaust valves 8a, 8b is reduced to stabilize the combustion (overload). Wrap amount reduction control means).
[0024]
In particular, when phase control is performed on the exhaust side in this way, the return amount of exhaust gas to the combustion chamber 11 decreases with the advance angle of the exhaust camshaft 3b, and a direct internal EGR suppression effect is achieved. As compared with the case where the intake side is retarded and controlled to the same overlap amount OL, the stabilization of combustion becomes more reliable.
Further, as described in steps S4 and S8 in FIG. 2, the air-fuel ratio A / F, the fuel injection timing IT, the ignition timing applied in the fuel injection control are the same as the target advance amount tgtθ of the exhaust camshaft 3b. The target value of the ignition timing SA applied in the control is also switched according to the exhaust throttle control start condition (operation control parameter switching means).
[0025]
On the other hand, the prohibition determination of the exhaust throttle control is performed based on an exhaust throttle prohibition determination routine shown in FIG. The ECU 31 executes the routine at a predetermined control interval. First, in step S12, it is determined whether or not the exhaust throttle control start condition is satisfied as in step S2. When the determination is NO, the routine is terminated. .
[0026]
On the other hand, when the determination in step S12 is YES, the process proceeds to step S14 to determine whether or not the actual overlap amount OL of the intake and exhaust valves 8a and 8b is less than the first set value OL0 (OL <OL0). Since the phase of the intake camshaft 3a is fixed, the actual overlap amount OL is uniquely derived based on the phase of the exhaust camshaft 3b detected by the cam angle sensor 34.
[0027]
When the phase of the exhaust camshaft 3b is controlled to, for example, the most advanced position in order to reduce the overlap amount in the normal phase control range of the exhaust camshaft 3b, the first set value OL0 is It is set corresponding to the phase position of the exhaust camshaft 3b that causes an operation response delay and generates an excessive overlap amount with respect to the target overlap amount. When the phase of the exhaust camshaft 3b is in the normal control range and the actual overlap amount OL is smaller than the first set value OL0, the variable movement is performed so as to decrease the overlap amount with the exhaust throttle. Even if the valve mechanism is adjusted, it can be estimated that there is little delay in actuation response and an excessive amount of overlap does not occur, and the ECU 31 makes a YES determination in step S14 and proceeds to step S16.
[0028]
In step S16, it is determined whether or not the difference ΔOL obtained by subtracting the target overlap amount tgtOL from the actual overlap amount OL is less than the second set value ΔOL0 (OL−tgtOL = ΔOL <ΔOL0). Similar to the actual overlap amount OL, the target overlap amount tgtOL is uniquely derived from the target advance amount tgtθ.
As a result of the phase control of the exhaust camshaft 3b described above, the target overlap amount tgtOL changes in accordance with a change in the operating region of the engine 1 or switching between steps S4 and S8 in FIG. 2, and follows the target overlap amount tgtOL. Thus, the actual overlap amount OL is controlled. When the target overlap amount tgtOL changes in the expansion direction, the difference ΔOL is negative because the actual overlap amount OL that follows is smaller than the target overlap amount tgtOL, and the target overlap amount tgtOL is If there is no large follow-up delay in the phase control by the variable valve actuator 4 even when changing in the reduction direction, the difference ΔOL is positive, but less than the second set value ΔOL0. That is, in these cases, it can be estimated that the phase control is normally performed in a transitional sense, and the ECU 31 makes a determination of YES in step S16 and proceeds to step S18.
[0029]
In step S18, in response to the establishment of the exhaust throttle control start condition in step S12, the routine is terminated after the execution of the exhaust throttle control is permitted. Based on this permission command, in the exhaust throttle control, the exhaust throttle valve 20 is switched to the fully closed position by the exhaust throttle actuator 21, and the exhaust flow rate is limited by the exhaust pressure increase thereby, and the catalyst 18 is heated and kept warm.
[0030]
On the other hand, when the determination in step S14 is NO (OL ≧ OL0), an excessive overlap amount is generated due to the delay in the response of the variable valve mechanism, and the internal EGR cannot be properly suppressed, or the OCV 4a It can be inferred that the variable valve actuator 4 is inoperable when the actual overlap amount OL is large due to the vane rotor sticking to the variable valve actuator 4 or due to insufficient hydraulic pressure. In this case, the ECU 31 proceeds to step S20 and terminates the routine after prohibiting execution of the exhaust throttle control.
[0031]
When the determination in step S16 is NO (ΔOL ≧ ΔOL0), the actual overlap amount OL is smaller than the first set value OL0, but the target overlap amount tgtOL changes to the reduction side. It can be inferred that there is a possibility that the internal EGR cannot be properly suppressed because the actual overlap amount OL temporarily causes a follow-up delay due to the responsiveness of the variable valve actuator 4. Also in this case, the ECU 31 proceeds to step S20 and terminates the routine after prohibiting the execution of the exhaust throttle control.
[0032]
While step S14 estimates the occurrence of an excessive overlap amount, step S16 differs in that the occurrence of an excessive overlap amount is actually detected, but the internal EGR of the engine 1 increases. The point is common. When the exhaust throttle control is started in this state, the internal EGR further increases due to the restriction of the exhaust flow rate, but the exhaust throttle valve 20 is held fully open on the exhaust throttle control side in response to the prohibition command in step S20. Therefore, this increase in internal EGR is avoided in advance.
[0033]
Therefore, according to the control device for the engine 1 of the present embodiment, the phase control by the variable valve actuator 4 and the exhaust throttle control by the exhaust throttle valve 20 are accurately coordinated, and there is an operation response delay or trouble on the phase control side. Even if it occurs, an increase in internal EGR can be avoided and a good combustion state of the engine 1 can be realized.
Note that if the determination in step S14 is NO, the exhaust throttle control continues to be prohibited. However, if the determination in step S16 is NO, the point in time when the temporary overlap OL is eliminated (follow-up delay). Since the exhaust throttling control is permitted at the time when is eliminated, thereafter, the advantage of the exhaust throttling control such as the temperature rise and the heat retention of the catalyst 18 can be obtained.
[0034]
On the other hand, when the exhaust throttle control start condition is satisfied, not only the overlap amount OL of the intake / exhaust valves 8a and 8b is reduced in advance in step S8 on the phase control side to stabilize combustion but also fuel injection control. The target values of the air-fuel ratio A / F, the fuel injection timing IT, and the ignition timing SA applied in the ignition timing control are simultaneously switched. Therefore, optimal fuel injection control and ignition timing control can be realized with respect to the overlap amount OL after reduction, and there is also an advantage that adverse effects on the operation of the engine 1 due to the overlap reduction can be suppressed.
[0035]
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the control device for the direct injection engine 1 is embodied. However, a variable valve mechanism for changing the overlap amount OL of the intake / exhaust valves 8a and 8b and an exhaust flow rate adjusting mechanism for limiting the exhaust flow rate are provided. As long as the engine is equipped, the type of the engine is not limited to this. For example, the engine may be applied to an intake pipe injection type engine or a diesel engine.
[0036]
In the above embodiment, the variable valve actuator 4 controls the phase of the exhaust camshaft 3b (the valve closing timing of the exhaust valve 8b). Instead, the phase of the intake camshaft 3a (the valve opening of the intake valve 8a). Timing) or the phases of the intake and exhaust camshafts 3a and 3b may be controlled together.
Further, in the above embodiment, the exhaust throttle valve 20 is fully closed and kept at a predetermined exhaust pressure by the pressure adjustment valve 23 provided in the bypass passage 22. However, the exhaust throttle is not provided without providing the bypass passage 22 and the pressure adjustment valve 23. A predetermined exhaust pressure may be realized by controlling the valve 20 to a minute opening near the fully closed position.
[0037]
On the other hand, in the above-described embodiment, the exhaust throttle valve 20 is held fully open by the prohibition process in step S20. However, if the overlap amount OL is not so excessive, the exhaust throttle control may not be completely prohibited. For example, when the pressure adjusting valve 23 is not used as described above, the exhaust pressure can be arbitrarily adjusted according to the opening of the exhaust throttle valve 20, so that as the overlap amount OL increases as the processing of step S20, The opening degree of the exhaust throttle valve 20 may be adjusted to the open side so as to suppress the restriction of the exhaust flow rate. With this configuration, even when the overlap amount OL becomes excessive due to a trouble on the phase control side, it is possible to obtain as much as possible a temperature increase and a heat retaining action of the catalyst 18 by the exhaust throttle control.
[0038]
【The invention's effect】
As described above, according to the control apparatus for an internal combustion engine of the first aspect of the present invention, when the actual overlap amount of the intake and exhaust valves by the variable valve mechanism is greater than or equal to the first set value, the exhaust flow rate adjustment mechanism is opened. to control the, avoiding to precisely coordinated control of the variable valve mechanism and the exhaust flow rate adjusting mechanism, has been an increase in the internal EGR of the engine due to the operation response delay of the variable valve mechanism in advance, good A good combustion state can be realized.
[0040]
According to the control apparatus for an internal combustion engine of the invention Motomeko 2, in addition to claim 1, the difference between the actual overlap amount and the target overlap amount is an exhaust flow rate adjusting mechanism when the more than the second set value Since the control is performed on the open side, it is possible to reliably avoid an increase in internal EGR due to a delay in the response of the variable valve mechanism and realize a good combustion state.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram illustrating an engine control apparatus according to an embodiment.
FIG. 2 is a flowchart showing a cam phase control routine executed by the ECU.
FIG. 3 is a flowchart showing an exhaust throttling prohibition determination routine executed by an ECU.
[Explanation of symbols]
1 engine (internal combustion engine)
4 Variable valve actuator (Variable valve mechanism)
4a OCV (Variable valve mechanism)
8a Intake valve 8b Exhaust valve 20 Exhaust throttle valve (Exhaust flow rate adjusting mechanism)
21 Exhaust throttle actuator (exhaust flow rate adjustment mechanism)
22 Bypass passage (exhaust flow rate adjustment mechanism)
23 Pressure adjustment valve (exhaust flow rate adjustment mechanism)
31 ECU (exhaust restriction suppression means, overlap reduction control means, operation control parameter switching means)
34 Cam angle sensor (overlap amount detection means)

Claims (2)

内燃機関の吸気弁の開弁タイミングと排気弁の弁タイミングとの少なくとも一方を変更して吸排気弁のオーバラップ量を変更可能に構成され、上記内燃機関の運転領域から求めた目標オーバラップ量に追従するように上記オーバラップ量を調整する可変動弁機構と、
上記内燃機関の排気通路に設けられ、閉側への開度調整により排気流量を制限して排圧を上昇させる排気流量調整機構と、
上記吸排気弁のオーバラップ量を検出するオーバラップ量検出手段と、
上記オーバラップ量検出手段によって検出されるオーバラップ量が第1の設定値以上のときに、上記排気流量調整機構を開側に制御する排気制限抑制手段と
を備えたことを特徴とする内燃機関の制御装置。
Is capable of changing the overlap amount of the intake and exhaust valves by changing at least one of the closing valve timing of the exhaust valve and the opening timing of the intake valve of an internal combustion engine, the target overlap obtained from the operation region of the internal combustion engine A variable valve mechanism for adjusting the overlap amount so as to follow the amount ;
An exhaust flow rate adjustment mechanism that is provided in the exhaust passage of the internal combustion engine and that increases exhaust pressure by limiting the exhaust flow rate by adjusting the opening to the closed side ;
An overlap amount detecting means for detecting an actual overlap amount of the intake and exhaust valves;
And an exhaust restriction suppressing means for controlling the exhaust flow rate adjusting mechanism to open when the actual overlap amount detected by the overlap amount detecting means is equal to or greater than a first set value. Engine control device.
上記排気制限抑制手段は、上記オーバラップ量と上記目標オーバラップ量との差が第2の設定値以上のときに、上記排気流量調整機構を開側に制御することを特徴とする請求項1記載の内燃機関の制御装置。The exhaust restriction suppressing means controls the exhaust flow rate adjusting mechanism to an open side when a difference between the actual overlap amount and the target overlap amount is a second set value or more. control device 1 Symbol placement of an internal combustion engine.
JP2002341077A 2002-11-25 2002-11-25 Control device for internal combustion engine Expired - Fee Related JP4267303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341077A JP4267303B2 (en) 2002-11-25 2002-11-25 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341077A JP4267303B2 (en) 2002-11-25 2002-11-25 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004176568A JP2004176568A (en) 2004-06-24
JP4267303B2 true JP4267303B2 (en) 2009-05-27

Family

ID=32703547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341077A Expired - Fee Related JP4267303B2 (en) 2002-11-25 2002-11-25 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4267303B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145789B2 (en) * 2007-06-22 2013-02-20 スズキ株式会社 Variable valve timing control device for internal combustion engine
EP2495418B1 (en) * 2009-10-27 2018-08-15 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine having valve stopping mechanism
WO2012001888A1 (en) * 2010-06-30 2012-01-05 Mazda Motor Corporation Engine control device and control method
DE102018217117A1 (en) * 2018-10-08 2020-04-09 Volkswagen Aktiengesellschaft Method for regulating the boost pressure of an internal combustion engine

Also Published As

Publication number Publication date
JP2004176568A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4701871B2 (en) Engine control device
US8033098B2 (en) Control apparatus and control method for internal combustion engine
JP4858729B2 (en) Variable valve gear
JP2010116819A (en) Variable valve gear for internal combustion engine
JP2006046293A (en) Intake air control device for internal combustion engine
JP3972720B2 (en) Valve characteristic control device for internal combustion engine
JP4677844B2 (en) Engine valve timing control device
JP4267303B2 (en) Control device for internal combustion engine
JP3635911B2 (en) Catalyst temperature controller
JP4591645B2 (en) Variable valve timing device
JP4849475B2 (en) Ignition timing control device for spark ignition internal combustion engine
JP4577469B2 (en) Variable valve timing device
JP4254130B2 (en) Variable valve operating device for internal combustion engine
JP3997384B2 (en) Variable valve timing device
JP4325514B2 (en) Valve timing control device for internal combustion engine
JP4222072B2 (en) Engine control device
JP5041167B2 (en) Engine control device
JP3981799B2 (en) Variable valve timing control device
JP4386199B2 (en) Variable valve timing device
JP3873809B2 (en) Variable valve timing control device for internal combustion engine
JP3711566B2 (en) Engine valve timing control device
JP4217005B2 (en) Control device for internal combustion engine
JP2010084730A (en) Control device for internal combustion engine
JP3772949B2 (en) Internal combustion engine with cam phase variable mechanism
JP4069349B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees