JP2004293035A - Joint structure of steel pipe - Google Patents

Joint structure of steel pipe Download PDF

Info

Publication number
JP2004293035A
JP2004293035A JP2003082666A JP2003082666A JP2004293035A JP 2004293035 A JP2004293035 A JP 2004293035A JP 2003082666 A JP2003082666 A JP 2003082666A JP 2003082666 A JP2003082666 A JP 2003082666A JP 2004293035 A JP2004293035 A JP 2004293035A
Authority
JP
Japan
Prior art keywords
pipe
joint pipe
steel pipe
joint
outer joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003082666A
Other languages
Japanese (ja)
Inventor
Shinji Horikawa
慎司 堀川
Gen Mori
玄 森
Kimihisa Takano
公寿 高野
Tomohiro Ueda
智宏 上田
Akitoshi Toyohara
陽登志 豊原
Yuuichi Tatsumi
夕一 辰見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003082666A priority Critical patent/JP2004293035A/en
Publication of JP2004293035A publication Critical patent/JP2004293035A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint structure of steel pipes capable of facilitating the construction with a simple structure at a low cost and having high reliability corresponding also to large tensile load. <P>SOLUTION: The joint structure of the steel pipes includes an outside joint pipe 1 having engaging sections 5a, 5b and 5c with a plurality of steps in the direction of the axis of the inner circumferential surface connected to one steel pipe 31 and an inside joint pipe 11 having engaged projection sections 16a, 16b and 16c with a plurality of steps having a diameter reducing function and engaged with the engaging sections 5a, 5b and 5c of the outside joint pipe 1 in the direction of the axis of the outer circumferential surface connected to the other pipe 32, and the inside joint pipe 11 is pressed inside of the outside joint pipe 11 to respectively engage the engaged projection sections 16a, 16b and 16c with the engaging sections 5a, 5b and 5c of the outside joint pipe 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管、例えば鋼管杭、既成コンクリート杭(PHC杭、PRC杭、SC杭)の管軸方向の継手構造及び鋼管の接合方法に関するものである。
【0002】
【従来の技術】
ソイルセメント合成鋼管杭などの鋼管杭は、施工現場において溶接接合して継杭して施工されるのが一般的である。
しかしながら、溶接による継杭では、(1)溶接部の品質が溶接工の技量に左右されること、(2)施工が天候に左右されることなどから、溶接に代わる継杭方法の開発が望まれていた。
【0003】
溶接によらない鋼管の接合構造の一例として、接続するそれぞれの鋼管の突き合わせ端縁部にこの鋼管の径より小さい外径の円筒状接続部を同軸上に接続、固定し、この円筒状接続部の側面上に多数のネジ孔を設け、各鋼管に接続、固定されたこれらの円筒状接続部を相互に突き合わせ、この突き合わせた二つの円筒状接続部の外周を、円弧状に適宜に分割され、各分割片に多数のボルト挿通孔を穿った分割円筒状継手で被い、この分割円筒状継手の各ボルト挿通孔と上記円筒状接続部の各ネジ孔を合わせ、これらのボルト挿通孔にボルトを通してボルト端をネジ孔に螺着して締め付けることによって上記鋼管同士を接続し、上記円筒状接続部に固定された各分割円筒状継手及び締め付けられた各ボルトの頭部は上記接続する鋼管の外径より突出しないようにしたものがある(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平11−81304号公報(第2〜第4頁、図1)
【0005】
【発明が解決しようとする課題】
特許文献1に記載された鋼管の接続構造は、鋼管杭とは別体の分割円筒状継手を用いており、一体化させるためには、上継ぎ手と下継ぎ手のかみ合わせばかりでなく、分割円筒状継手と上下継手のかみ合わせを配慮した精度の高い製作が要求され、製造がむずかしく製作コストも高い。また、分割円筒状継手を別途運搬し取り付ける作業が必要であり、施工性が悪い。
さらに、鋼管継手部を大径化・肉厚化した場合には、分割円筒状継手の重量が大きくなり、新たにクレーン等の運搬用重機を持ち込まなければならないなど運搬性、施工性がさらに悪くなるなど、種々問題がある。
【0006】
本発明は、上記の課題を解決するためになされたもので、構造が簡単で施工が容易であり、コストを低減できてその上大きな引張荷重に対しても十分対応できる信頼性の高い鋼管の継手構造及び鋼管の接合方法を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
(1)本発明に係る鋼管の継手構造は、内周面の軸方向に複数段の係止部を有し、一方の鋼管に接合された外側継手管と、縮径機能を有し、外周面の軸方向に前記外側継手管の係止部に係止する複数段の係合突部が設けられ、他方の鋼管に接合された内側継手管とを有し、前記外側継手管内に前記内側継手管を圧入してその係合突部を前記外側継手管の係止部にそれぞれ係止させるようにしたものである。
【0008】
(2)上記(1)の内側継手管の大径部と係合突部との間において、内周面又は外周面に凹溝を設けた。
(3)上記(1)又は(2)の内側継手管の下端部に、外側継手管に設けたボルトに嵌合する嵌合部を設けた。
【0009】
(4)上記(1)〜(3)のいずかの前記外側継手管と内側継手管との間に初期隙間を設けた。
(5)上記(1)〜(4)のいずれかの内側継手管に設けた複数段の係合突部のうち、2段目以上の係合突部の高さを1段目の係合突部の高さより低く形成した。
【0010】
(6)また、本発明に係る鋼管の継手構造は、拡径機能を有し、内周面の軸方向に複数段の係止部が設けられ、一方の鋼管に接続された外側継手鋼管と、外周面の軸方向に前記外側継手管の係止部に係止する複数段の係合突部が設けられ、他方の鋼管に接合された内側継手管とを有し、前記外側継手管内に前記内側継手管を圧入して前記内側継手管の係合突部を前記外側継手管の係止部にそれぞれ係止させるようにした。
【0011】
(7)上記(6)の外側継手管内に内側継手管を圧入したときに、該内側継手管の先端部が外側継手管の突出段部に当接し、該内側継手管の上部外周に設けた当接部と前記外側継手管の上端部との間に隙間が形成されるように構成した。
(8)上記(6)又は(7)の外側継手管に設けた複数の係止部のうち、上から2段目以下の係止部の先端部を最上段の係止部の先端部より外壁側に形成した。
(9)上記(1)〜(8)のいずかれの外側継手管と該外側継手管内に圧入された内側継手管とをボルトにより一体に固定した。
【0012】
(10)上記(1)〜(9)のいずれかの鋼管が鋼管杭であり、一方の鋼管杭に接合された外側継手管内に、他方の鋼管杭に接合された内側継手管をいずれか一方の鋼管杭の自重により圧入するようにした。
【0013】
【発明の実施の形態】
前述の特許文献1に記載された鋼管の接続構造のような問題点に鑑みて、本発明の発明者は、接合対象である2本の鋼管の一方の鋼管に外側継手管を接合し、他方の鋼管に内側継手管を接合して、外側継手管の内壁の周方向に係止部を、また、内側継手管の外壁にこの係止部に係止する係合突部を設けると共に、内側継手管に複数のスリットを設けて縮径機能を持たせ、内側継手管を外側継手管内に圧入(又は嵌入)してその係合突部を係止部に係止させ、2本の鋼管を接合するようにした継手構造を提案した。
このような鋼管の継手構造は、構造が簡単で製造及び施工が容易であり、コストが低減できるのできわめて有用である。
【0014】
ところで、このような鋼管の継手構造において、接合対象である鋼管が肉厚になると、引張荷重に対して抵抗する内側継手管の係合突部の高さを高くし、係止部との重なりを大きくする必要がある。しかし、係合突部の高さが高くなると、縮径機能を有する内側継手管を外側継手管内に圧入(又は嵌入)するときに、内側継手管の半径方向の撓み量(縮径量)が大きくなるため、圧入力が増大してしまうという問題がある。また、内側継手管の撓み量が大きくなると、根本部において塑性化してしまい、強度的に問題を生じるおそれがある。
【0015】
本発明は、上述のような鋼管の継手構造において、大きな引張荷重に対しても十分対応することができるように構成したもので、以下、実施の形態により詳細に説明する。
【0016】
[実施の形態1]
図1は本発明の実施の形態1に係る一部を断面で示した鋼管の継手構造の模式図である。
図において、Jは2本の鋼管31,32を接合するための継手部で、下端部が接合対象である一方の鋼管31に溶接接合された円筒状の外側継手管1と、上端部が他方の鋼管32に溶接接合された円筒状の内側継手管11とからなっている。
【0017】
外側継手管1は、その外径が鋼管31の外径とほぼ等しく形成され、上端部2の内周面は斜め上方に切除されて傾斜面3が設けられており、また、内周面の軸方向のほぼ中央部から下方には、所定の範囲で拡径された凹部4が形成されている。5a,5b,5cは凹部4の上縁部及びその上方の内周面に設けられた第1〜第3の係止部で、図には3段に設けた場合を示したがこれに限定するものではなく、2段以上の複数段であればよい(なお、以下の説明では、複数の係止部5a〜5cを単に5と記すことがある)。6は凹部4の下縁に内側継手管11の内径とほぼ等しい内径に形成された突出段部、7は凹部4の周方向に設けた複数のボルト挿通孔である。
【0018】
内側継手管11は、上部に鋼管32の外径とほぼ等しい外径の拡径部12が設けられており、拡径部12の下部には段部13(当接部)を介して、外側継手管1の内径とほぼ等しい外径の本体部14が設けられている。そして、本体部14には周方向にほぼ等間隔で、段部13から下端部に達する複数のスリット15が設けられており、これにより、本体部14は周方向に分割されて縮径機能を有する複数の分割片14aが形成されている。
【0019】
16a,16b,16cは外側継手管1の第1〜第3の係止部5a〜5cに対応して、各分割片14aの外周面に突設された第1〜第3の係合突部で、その上面が外周面と直交し下部には傾斜面17が設けられており、第1の係合突部16aの上面から段部13までの高さHは、外側継手管1の第1の係止部5aから上端部2までの高さHとほぼ等しく形成されている(なお、以下の説明では、複数の係合突部16a〜16cを単に16と記すことがある)。18は各分割片14aの第1の係合突部16aの下方にそれぞれ設けられたボルト孔で、このボルト孔18は外側継手管1のボルト挿通孔7に対応して設けたものであるが、ボルト孔18に代えてボルト挿通孔を設け、その内壁側にナットを取付けてもよい。
【0020】
次に、本発明を鋼管杭の接合に実施した場合の施工手順の一例について説明する。なお、接合対象である鋼管杭31a,32aの端部には、あらかじめ工場等において外側継手管1及び内側継手管11が溶接により接合されており、これら鋼管杭31a,32aが工事現場に輸送されるものとする。
【0021】
先ず、図2(a)に示すように、外側継手管1が接合された鋼管杭31aを地中に打込む。打込みが進んで上杭である鋼管杭32aを接続する状態になったときは、先端部に内側継手管11が接合された鋼管杭32aを鋼管杭31a上に位置させて位置決めし、鋼管杭32aの自重による圧下力により下降させ、図2(b)に示すように、外側継手管1の上端部に設けた傾斜面3と、内側継手管11の第1の係合突部16aの下部に設けた傾斜面17とを利用して、内側継手管11の各分割片14aを撓ませて本体部14を縮径させ、外側継手管1内に挿入する。
【0022】
鋼管杭32aを引続き下降させると、内側継手管11の各分割片14aがさらに撓んで縮径され、内側継手管11は第1の係合突部16aの外周面が外側継管1の内周面に沿って下降し、段部13(当接部)が外側継手管1の上端部2に当接したときは圧下を停止する。このとき、第1〜第3の係合突部16a〜16cは、それぞれ第1〜第3の係止部5a〜5cに対応して位置する。このときの状態を図2(c)に示す。
【0023】
この状態で、外側継手管1のボルト挿通孔7に挿通したボルト35を、内側継手管11の各ボルト孔18に螺入して締付ければ、図3に示すように、その外壁が外側継手管1の内壁に当接又は近接し、第1〜第3の係合突部16a〜16cが外側継手管1の第1〜第3の係止部5a〜5cに確実に係止して、上下の鋼管杭31a,32aは、外側継手管1と内側継手管11を介して強固に接合される。
【0024】
この場合、内側継手管11を外側継手管1内に圧入し終ったときに、内側継手管11の各分割片14aが内側に塑性変形して元の状態(拡径する)に戻らないのではないかと懸念される。しかしながら、発明者らの多くの実験の結果によれば、各分割片14aは基本的には塑性変形することなく元の状態に戻り、係合突部16a〜16cはそれぞれ係止部5a〜5cに係止した。しかし、係合突部16a〜16cをより確実に係止部5a〜5cに係止させるためには、ボルト35を用いて両者を固定することが必要である。
【0025】
このようにして嵌合された鋼管杭31a,32aにおいては、上杭である鋼管杭32aに加わる圧縮荷重は、内側継手管11の段部13と外側継手管1の上端部2を介して鋼管杭31aに伝達される。また、引張荷重は、内側継手管11の複数の係合突部16a〜16cと外側継手管1の複数の係止部5a〜5cを介して鋼管杭31aに伝達されるので、大きな引張荷重に対しても十分対応することができる。
【0026】
本実施の形態によれば、係合突部16を特に高くすることなく、比較的小さい圧入力で内側継手管11を外側継手管1内に圧入することができ、その上係止部5a〜5cと係合突部16a〜16cとの重なりが大きくなったため、前述のように大きな引張荷重に対しても十分対応することができる。
また、鋼管杭32aの端部に接合した内側継手管11を、鋼管杭32aの自重により外側継手管1内に圧入してボルト35で固定するだけで、他の部材等を使用することなく鋼管杭31aと32aを接合することができるので、構造が簡単で施工がきわめて容易であり、コストを低減できるばかりでなく、作業性を大幅に向上することができる。
【0027】
また、外側継手管1の外径及び内側継手管11の大径部12の外径を、接合する鋼管杭31a,32aの外形とほぼ等しくしたので、継手部Jが鋼管杭31a,32aの外周面から出張ることがなく、このため、鋼管杭31a,32aを地中に打込む際の貫入抵抗を小さくすることができる。
なお、外側継手管1のボルト挿通孔7にボルト35の頭部が挿入される大径部を設ければ、接合後の外側継手管1の外周面にボルト35の頭部が突出することがないので、地中への貫入抵抗をより低減することができる。ただし、この場合は、ボルト35の頭部に六角レンチ等が係合する穴を設けておくことが必要である。
【0028】
上記の説明では、本実施の形態に係る継手構造を鋼管杭31a,32aの接合に用いた場合を示したが、本発明はこれに限定するものではなく、杭以外の鋼管を接合する場合にも本発明を実施することができる。なお、この場合は、内側継手管11を外側継手管1内に圧入する際に、圧入機等を必要とする場合がある。
【0029】
[実施の形態2]
図4は本発明の実施の形態2に係る鋼管の継手部の一部断面図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態は、内側継手管11の内周面の上部に、幅(高さ)Lの凹溝20を設けたものである(図には、凹溝20の上縁部を段部13と同じ位置にした場合を示してある)。
また、図5は本実施の形態の他の例を示すもので、本例は、内側継手管11の外周面の上部にその上縁部を段部13と同じ位置にして凹溝20を設けたものである。なお、図4、図5で示した凹溝20は、内側継手管11の大径部12と最上部の係合突部16cとの間であれば、他の場所に設けてもよい。
【0030】
本実施の形態における継手部Jの施工手順は、実施の形態1の場合とほぼ同様であるが、内側継手管11の内周面又は外周面に凹溝20を設けてこの部分の肉厚を薄くして剛性を低下させたので各分割片14aが撓み易くなり、このため圧入力を小さくでき、大径の継手部Jでも内側継手管11に接合された鋼管杭32aの自重により、内側継手部11を外側継手部1内に圧入することができる。
【0031】
このように、凹溝20は、内側継手管11の内周面又は外周面の段部13と係合突部16との間の適宜位置に設けることができ、図4に示すように、凹溝20の上縁部と分割片14aの下端部間の距離Lが長いほど凹溝20にかかる曲げモーメントが大きくなるため、各分割片14aの縮径方向への撓み量が大きくなり、これに伴って圧入力が小さくなる。また、凹溝20の軸方向の長さ(幅)Lが長くなるにしたがって、圧入力は小さくなる。
【0032】
ところで、継手部Jが大径化すると、外側継手管1及び内側継手管11の切削加工の加工精度が悪くなるため、板厚を応力上必要な最低板厚より厚く選定することが必要であり、これにより、内側継手管11の分割片14aの撓み量が小さくなって外側継手管1に圧入する際の圧入力が増大する。このため圧入力を上部の鋼管杭32aの自重以下に抑えるためには、内側継手管11の分割片14aの軸方向の長さを長くして撓み易くする必要があるが、このようにすることにより、継手部Jが大形化するばかりでなく、コストの上昇は避けられない。
【0033】
本実施の形態においては、内側継手管11の本体部14(分割片14a)の内周面又は外周面に凹溝20を設け、この部分の剛性を低くして撓み易くしたので、継手部Jの軸方向の長さを長くすることなく、外側継手管1内への圧入力を上部の鋼管杭32aの自重以下に抑えることができる。
これにより、継手部Jのコストの低減は勿論、大径化した継手部の場合でも圧入機等を使用する必要がないので、施工が容易で作業性を高めることができる。
【0034】
[実施の形態3]
図6は本発明の実施の形態3に係る鋼管の継手部の要部の説明図及び内側継手管の分割片の内面説明図である。
本実施の形態は、図6に示すように、実施の形態1(図1)の外側継手管1に設けた複数のボルト挿通孔7に代えてボルト孔18を設けると共に、内側継手管11の各分割片14aに設けたボルト孔18に代えて、下端部に開口する逆U字状の嵌合部21を設けたものである。なお、外側継手管1の係止部5、内側継手管11の係合突部16は2段に設けた場合が示してある。また、ボルト35のねじ部の先端部には、外側からボルト35を回転しうるように、例えば六角型の如き多角形の係止穴36が設けられている。
【0035】
上記のように構成した本実施の形態の施工にあたっては、外側継手管1が接合された鋼管杭31aが地中に打込まれ、上部の鋼管杭32a(図示せず)を接続する状態になったとき又はあらかじめ、図7(a)に示すように、外部継手管11のボルト孔18に内側からボルト35の先端部を螺入する。
そして、先端部に内側継手管11が接合された鋼管杭32aを自重による圧下力により下降させ、図7(b)に示すように、内側継手管11の各分割片14aに設けた嵌合部21を、外側継手管1に取付けたボルト35に嵌合する。このとき、内側継手管11の係合突部16a,16bは外側継手管1の係合部5a,5bに対応して位置する。
【0036】
ついで、外側継手管1の外側からボルト35のねじ部の先端部に設けた係止穴36に、例えばL型六角レンチを係合させてボルト35をさらに締付ければ、複数の係合突部16a,16bが係止部5a,5bにそれぞれ係止し、鋼管杭31a,32aは外側継手管1と内側継手管11を介して強固に接合される。
本実施の形態の効果は、実施の形態1の場合とほぼ同様である。
【0037】
[実施の形態4]
実施の形態1〜3のように、内側継手管11にスリット15が設けられていると、鋼管杭32aに溶接接合したときに、溶接による熱変形で各分割片14aの先端部側が外側に変形(拡径)する傾向がある。このため、内側継手管11の外径を外側継手管1の内径とほぼ等しく形成すると、外側継手管1内への圧入時に、内側継手管11の分割片14aの外径が当初より大きくなって圧入力が増大するため、上杭(鋼管杭32a)の自重だけでは圧入できなくなることがある。
【0038】
このようなことから、本実施の形態においては、図8に示すように、内側継手管11の外径を、溶接による変形量に対応して外側継手管1の内径より若干小さくして、外側継手管1の内壁と内側継手管11の外壁との間に初期隙間gを設けたものである。これにより、内側継手管11の各分割片14aが溶接により外側に変形しても、圧入力の増大を防止することができ、内側継手管11を特別な外力を用いることなく、上杭(鋼管杭32a)の自重により外側継手管1内に圧入することができる。
【0039】
また、接合対象である鋼管杭31a,32aの板厚が厚い場合は、引張荷重に耐えうるように係合突部16a〜16cの高さ(突出長)を高くする必要がある。このように構成すると、内側継手管11の外側継手管1内への圧入時の各分割片14aの半径方向への変形量(縮径量)が大きくなり、上杭(鋼管杭32a)の自重で圧入するためには、軸方向の分割片14aの長さを長くして半径方向に変形しやすくする必要がある。しかし、このようにすると、継手部が大形化するばかりでなく、コストが高くなるという問題がある。
【0040】
このような場合、本実施の形態のように、外側継手管1内の内壁と内側継手管11の外壁との間に初期隙間gを設けることにより、外側継手管1内への内側継手管11の圧入時に、分割片14aの内側への変形量が小さくてすみ、小さい圧入力で接合することができる。
【0041】
本実施の形態によれば、外側継手管1の内壁と内側継手管11の外壁との間に初期隙間を設け、内側継手管11を外側継手管1内に圧入したのち、ボルト35により内側継手管11の分割片14aを外側継手管1側に引き寄せて外側に変形させ、係止突部16a〜16cを係止部5a〜5cに係止させることにより両鋼管杭31a,32aを確実に接合することができ、大きな引張荷重にも十分耐えることができる。なお、このとき、内側継手管11の分割片14aの基部に、ボルト35の引き込みによる初期応力が発生するが、引き込み量が小さいためこの初期応力が継手強度に与える影響はきわめて小さい。
【0042】
ところで、上述の実施の形態1〜4においては、ボルト35により、内側継手管11の係合突部16a〜16cを外側継手管1の係止部5a〜5cに確実に係止させ、あるいは、外側継手管1との間に初期隙間を有する内側継手管11を外側に変形させて係合突部16a〜16cを係止部5a〜5cに確実に係止させる場合について述べたが、ボルト35は、さらに以下に述べるような機能も備えている。
【0043】
外側継手管1と内側継手管11で接合されて地中に設置されたた鋼管杭に引張荷重が作用すると、この引張荷重は内側継手管11から外側継手管1を介して下部鋼管杭に伝達されるが、内側継手管11には複数のスリット15が設けられているため、引張荷重により分割片14aが内側(縮径方向)に変形しやすくなる。引張荷重が大きくなり内側継手管11の内側への変形量が大きくなると、図9に破線で示すように、内側継手管11の係合突部16a〜16cが外側継手管1の係止部5a〜5cから外れてしまうおそれがある。
【0044】
本発明によれば、前述のように、外側継手管1と内側継手管11とをボルト35で固定することにより、内側継手管11に大きな引張荷重が作用しても内側への変形が拘束されるため、係合突部16a〜16cが係止部5a〜5cから外れるのを防止でき、大きな引張荷重にも耐えることができる。
【0045】
[実施の形態5]
図10は本発明の実施の形態5に係る一部を断面で示した鋼管の継手構造の模式図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
上記の各実施の形態においては、内側継手管11にスリット15を設けて縮径機能をもたせ、この内側継手管11を外側継手管1内に圧入してその係合突部16を係止部5に係止させる場合を示したが、本実施の形態は外側継手管1にスリットを設けて拡径機能をもたせ、この外側継手管1内に内側継手管11を圧入して、その係合突部16a,16bを係止部5a,5bに係止させるようにしたものである。
【0046】
図10において、外側継手管1の本体部8の周方向には、ほぼ等間隔で上端部に開口し下部が突出段部6に達する複数のスリット9が設けられ、これにより、本体部8を周方向に分割して拡径機能を有する複数の分割片8aを形成したものである。なお、ボルト挿通孔7は最上段の係止部5bの上方に設けられている。また、内側継手管11には、円筒状の本体部14の上部に、外側継手管1のボルト挿通孔7に対応してボルト孔18が設けられている。なお、このボルト孔18をボルト挿通孔とし、その内壁面にナットを溶接により取付けてもよい。
【0047】
次に、本実施の形態を鋼管杭の接合に実施した場合の施工手順の一例について説明する。なお、接合対象である鋼管杭31a,32aの端部には、あらかじめ工場等において外側継手管1及び内側継手管11が溶接によりそれぞれ接合されているものとする。
【0048】
図11(a)に示すように、外側継手管1が接合された鋼管杭31aが上杭である鋼管杭32aを接合する状態まで打込まれたときは、先端部に内側継手管11が接合された鋼管杭32aを鋼管杭31aの上方に位置させて位置決めし、鋼管杭32aの自重による圧下力により下降させ、図11(b)に示すように、外側継手管1の上端部に設けた傾斜面3と、内側継手管11の最下部の係合突部16aの下部に設けた傾斜面17とを利用して、外側継手管1の各分割片8aを外方に撓ませて本体部8を拡径させ、外側継手管1内に挿入する。
【0049】
鋼管杭32aを引続き下降させると、内側継手管11の第1(最下部)の係合突部16aが外側継手管1の内周面に沿って下降し、外側継手管1の各分割片8aがさらに撓んで拡径され、段部13(当接部)が外側継手管1の上端部2に当接したときは圧下を停止する。このときの状態を図11(c)に示す。
【0050】
この状態で、外側継手管1のボルト挿通孔7に挿通したボルト35を、内側継手管11のボルト孔18に螺入して締付ければ、図12に示すように、外側継手管1の内壁が内側継手管11の外壁に当接又は近接し、複数の係合突部16a,16bが係止部5a,5bにそれぞれ係止して、上下の鋼管杭31a,32aは、外側継手管1と内側継手管11を介して強固に接合される。
【0051】
本実施の形態は、実施の形態1の場合とほぼ同様の効果を得ることができるが、さらに、外側継手管1の本体部8の下部内周面には凹部4が設けられているので、この部分の剛性が低くなり、実施の形態2の場合と同様に、各分割片8aを撓み易くすることができる。
【0052】
[実施の形態6]
実施の形態5のように、外側継手管1にスリット9を設けて複数の分割片8aを形成し、内側継手管11を圧入する際に外側継手管1を拡径させ、圧入後に両者をボルト35で固定するような継手構造において、上杭(鋼管杭32a)に圧縮荷重が作用すると、この圧縮荷重は、内側継手管11の段部(当接部)13、外側継手管1の上端部2を経て下杭(鋼管杭31a)に伝達される。この場合、外側継手管1にはスリット8aが設けられているので、分割片8aが座屈破壊をおこすおそれがある。
【0053】
本実施の形態においては、図13に示すように、外側継手管31aと内側継手管11との接合が完了した状態で、内側継手管11の先端部11aを外側継手管1の突出段部6に当接させると共に、内側継手管11の段部13と外側継手管1の上端部2との間に隙間gを設けるようにしたものである。
このように構成したことにより、圧縮荷重は内側継手管11の先端部11aから外側継手管1の突出段部6を経て下杭(鋼管杭31a)に伝達され、外側継手管1の上端部2には圧縮荷重が作用しないので、各分割片8aが座屈破壊をおこすおそれがない。
【0054】
[実施の形態7]
ところで、上記のように、縮径機能を有する内側継手管11に複数の係合突部16を設けた本発明において、図14に示すように、例えば同じ高さ(突出長)hの係合突部16a,16b,16cを設けた場合は、内側継手管11を外側継手管1内に圧入する際に、第1〜第3の係合突部16a〜16cが順次外側継手管1の内壁に摺接して下降するため、最上部の係合突部16cが外側継手管1の内壁に当ったときは、この係合突部16cの高さに規制されて各分割片14aの撓み量bが最大になり、この状態で内側継手管を圧入しなければならないので、大きな圧入力Pが必要になる。
【0055】
本実施の形態は、上記の問題を解決するために、図15に示すように、2段目以上の係合突部16b,16cの高さ(突出長)h,hを、最下部の係合突部16aの高さhより低く形成したものである。
これにより、内側継手管11を外側継手管1内に圧入する際に、圧入の始めから最終段階に達するまで、常に最下部の係合突部16aのみが外側継手管1の内壁に摺接して下降し、2段目以上の係合突部16a,16cが外側継手管1の内壁に当ることはない。このため、分割片14aの撓み量bは最下部の係合突部16aの高さhに規制されて大幅に小さくなり、係合突部16を1段設けた場合と同じになるので、小さい圧下力で内側継手管11を外側継手管1内に圧入することができる。
【0056】
本実施の形態においは、図16(a)に示すように、2段目以上の係合突部16b,16cを同じ高さhにし、かつ最下部の係合突部16aの高さhより低くてもよく、あるいは、図16(b)に示すように、2段目以上の係合突部16b,16bの高さh,hを最下部の係合突部16aの高さhより低く、かつ上方になるにしたがって順次低くなるようにしてもよい。
【0057】
また、実施の形態5のように、外側継手管1にスリット9を設け、その中に内側継手管11を圧入する場合は、図17に示すように、内側継手管11の係合突部16a〜16cの高さhをすべて等しく形成すると共に、この係合突部16a〜16cが係止する外側継手管1の係止部5a〜5cに対応する外側継手管1の内壁1bを拡径し、前記2段面以下の係止部5b,5aの係止面の拡径内壁1bと接する位置b,c(以下、先端部という)を、最上段の係止部5cの内壁1aに接する先端部aより低い位置b,c(外壁側の位置)に設けたものである。
【0058】
上記の各実施の形態においては、外側継手管1が接合された鋼管杭31aを地中に打設し、この鋼管杭31aに内側継手管11が接合された鋼管杭31aを自重により下降させて接合する場合について説明したが、内側継手管11が接合された鋼管杭32aを地中に打設し、外側継手管1が接合された鋼管杭31aを自重により下降させて外側継手管1を内側継手管11に嵌合して接合し、鋼管杭32a,31aを接合するようにしてもよい。
【0059】
【発明の効果】
本発明は、外側継手管内に縮径機能を有する内側継手管を圧入して複数段の係合突部を外側継手管の複数段の係止部にそれぞれ係止させるようにして係止部と係合突部との重なりを大きくしたので、大きな引張荷重に対しても十分対応することができる。また、構造が簡単で施工が容易であり、コストを低減できて信頼性の高い鋼管の継手構造を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る一部を断面で示した鋼管の継手構造の模式図である。
【図2】実施の形態1の継手構造の施工手順の一例を示す説明図である。
【図3】実施の形態1の継手構造により2本の鋼管を接合した状態を示す一部を省略した縦断面図である。
【図4】本発明の実施の形態2に係る一部を省略した鋼管の継手構造の縦断面図である。
【図5】実施の形態2の他の例の一部を省略した縦断面図である。
【図6】本発明の実施の形態3に係る鋼管の継手構造の要部の説明図及び内側継手管の分割片の内面説明図である。
【図7】実施の形態3の施工手順の一例の説明図である。
【図8】本発明の実施の形態4に係る鋼管の継手構造の要部の説明図である。
【図9】実施の形態1〜4のボルトの機能説明図である。
【図10】本発明の実施の形態5に係る一部を断面で示した鋼管の継手構造の模式図である。
【図11】実施の形態5の施工手順の一例を示す説明図である。
【図12】実施の形態5の継手構造により2本の鋼管を接合した状態を示す一部を省略した断面図である。
【図13】本発明の実施の形態6に係る鋼管の継手構造の要部の説明図である。
【図14】本発明の実施の形態7に係る鋼管の継手構造の要部の説明図である。
【図15】本発明の実施の形態7に係る鋼管の継手構造の要部の説明図である。
【図16】本発明の実施の形態7に係る鋼管の継手構造の要部の説明図である。
【図17】本発明の実施の形態7に係る鋼管の継手構造の要部の説明図である。
【符号の説明】
1 外側継手管
2 上端部
5a,5b,5c 係止部
7 ボルト挿通孔
8,14 本体部
11 内側継手管
12 大径部
13 段部(当接部)
8a,14a 分割片
9,15 スリット
16a,16b,16c 係合突部
18 ボルト孔
20 凹溝
21 嵌合部
31,32 鋼管
31a,32a 鋼管杭
35 ボルト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a joint structure of a steel pipe, for example, a steel pipe pile, a precast concrete pile (a PHC pile, a PRC pile, an SC pile) in a pipe axis direction, and a method of joining steel pipes.
[0002]
[Prior art]
Steel pipe piles such as soil-cement synthetic steel pipe piles are generally constructed by welding and joining piles at construction sites.
However, in the case of welded piles, (1) the quality of the welded part depends on the skill of the welder, and (2) the construction depends on the weather. Had been rare.
[0003]
As an example of a joining structure of steel pipes not based on welding, a cylindrical connecting part having an outer diameter smaller than the diameter of the steel pipe is coaxially connected and fixed to a butt end of each steel pipe to be connected, and this cylindrical connecting part is fixed. A large number of screw holes are provided on the side surface of the cylindrical connection portion, and these cylindrical connection portions connected and fixed to each steel pipe are butted against each other, and the outer periphery of the two butted cylindrical connection portions is appropriately divided into an arc shape. Covering each divided piece with a divided cylindrical joint having a large number of bolt insertion holes, aligning each bolt insertion hole of this divided cylindrical joint with each screw hole of the cylindrical connection portion, and fitting these bolt insertion holes. The steel pipes are connected to each other by screwing a bolt end into a screw hole through a bolt and tightening, and each split cylindrical joint fixed to the cylindrical connection portion and a head of each tightened bolt are connected to the steel pipe. Than the outside diameter of There are those do not appear (e.g., see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-11-81304 (pages 2 to 4, FIG. 1)
[0005]
[Problems to be solved by the invention]
The steel pipe connection structure described in Patent Document 1 uses a split cylindrical joint separate from a steel pipe pile. In order to integrate the steel pipe pile, not only the upper joint and the lower joint are engaged but also the split cylindrical joint is used. High-precision manufacturing is required in consideration of the engagement between the joint and the upper and lower joints, making it difficult to manufacture and expensive. In addition, it is necessary to separately transport and attach the divided cylindrical joint, and the workability is poor.
Furthermore, when the diameter and thickness of the steel pipe joints are increased, the weight of the divided cylindrical joint increases, and the transportability and workability are further deteriorated, such as the necessity of bringing in new heavy equipment such as a crane. There are various problems.
[0006]
The present invention has been made in order to solve the above-described problems, and has a simple and easy-to-construct structure, can reduce costs, and furthermore, has a highly reliable steel pipe that can sufficiently cope with a large tensile load. It is an object of the present invention to provide a joint structure and a method for joining steel pipes.
[0007]
[Means for Solving the Problems]
(1) The joint structure of a steel pipe according to the present invention has a plurality of locking portions in the axial direction of the inner peripheral surface, has an outer joint pipe joined to one steel pipe, has a diameter reducing function, and has an outer periphery. A plurality of engagement projections are provided in the axial direction of the surface to be engaged with the engagement portions of the outer joint pipe, and an inner joint pipe joined to the other steel pipe is provided. The fitting tube is press-fitted so that the engaging projections are respectively locked to the locking portions of the outer joint tube.
[0008]
(2) A concave groove is provided on the inner peripheral surface or the outer peripheral surface between the large-diameter portion and the engagement projection of the inner joint pipe of (1).
(3) At the lower end of the inner joint pipe of the above (1) or (2), a fitting portion for fitting to a bolt provided on the outer joint pipe is provided.
[0009]
(4) An initial gap was provided between the outer joint pipe and the inner joint pipe in any of the above (1) to (3).
(5) The height of the second-stage or higher engagement projections of the plurality of engagement projections provided on the inner joint pipe according to any one of (1) to (4) is set to the first-stage engagement. It was formed lower than the height of the protrusion.
[0010]
(6) Further, the steel pipe joint structure according to the present invention has a diameter-expanding function, is provided with a plurality of locking portions in the axial direction of the inner peripheral surface, and has an outer joint steel pipe connected to one steel pipe. A plurality of engagement projections are provided in the axial direction of the outer peripheral surface to be engaged with the engagement portions of the outer joint pipe, and an inner joint pipe joined to the other steel pipe is provided in the outer joint pipe. The inner joint pipe is press-fitted so that the engagement protrusions of the inner joint pipe are locked to the locking portions of the outer joint pipe, respectively.
[0011]
(7) When the inner joint pipe is press-fitted into the outer joint pipe of the above (6), the distal end of the inner joint pipe abuts on the projecting step of the outer joint pipe and is provided on the upper outer periphery of the inner joint pipe. The gap was formed between the contact portion and the upper end of the outer joint pipe.
(8) Of the plurality of locking portions provided on the outer joint pipe of (6) or (7), the tip of the locking portion of the second or lower stage from the top is shifted from the tip of the uppermost locking portion. Formed on the outer wall side.
(9) The outer joint pipe of any of the above (1) to (8) and the inner joint pipe pressed into the outer joint pipe were integrally fixed by bolts.
[0012]
(10) The steel pipe according to any one of the above (1) to (9) is a steel pipe pile, and one of the inner joint pipe joined to the other steel pipe pile is placed inside the outer joint pipe joined to one steel pipe pile. The steel pipe pile was press-fitted by its own weight.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In view of the problems such as the connection structure of steel pipes described in Patent Document 1 described above, the inventor of the present invention joined an outer joint pipe to one steel pipe of two steel pipes to be joined, and The inner joint pipe is joined to the steel pipe of the above, a locking part is provided in the circumferential direction of the inner wall of the outer joint pipe, and an engaging projection is provided on the outer wall of the inner joint pipe to be locked to the locking part. A plurality of slits are provided in the joint pipe to have a diameter reducing function, the inner joint pipe is press-fitted (or fitted) into the outer joint pipe, and the engaging projection is locked to the locking portion, and the two steel pipes are connected. A joint structure for joining was proposed.
Such a steel pipe joint structure is extremely useful because it has a simple structure, is easy to manufacture and construct, and can reduce costs.
[0014]
By the way, in such a steel pipe joint structure, when the steel pipe to be joined becomes thick, the height of the engaging projection of the inner joint pipe which resists a tensile load is increased, and the steel pipe overlaps with the locking part. Need to be larger. However, when the height of the engagement protrusion is increased, when the inner joint pipe having the diameter reducing function is press-fitted (or fitted) into the outer joint pipe, the amount of radial bending (reduced diameter) of the inner joint pipe is reduced. As a result, the press-in force increases. In addition, when the amount of bending of the inner joint pipe increases, the root portion is plasticized, which may cause a problem in strength.
[0015]
The present invention is configured so that it can sufficiently cope with a large tensile load in the above-described steel pipe joint structure, and will be described in detail below with reference to embodiments.
[0016]
[Embodiment 1]
FIG. 1 is a schematic diagram of a joint structure for a steel pipe, a part of which is shown in cross section according to Embodiment 1 of the present invention.
In the figure, J is a joint part for joining two steel pipes 31 and 32, and a lower end part is a cylindrical outer joint pipe 1 welded to one steel pipe 31 to be joined, and an upper end part is the other end. And a cylindrical inner joint pipe 11 which is welded to the steel pipe 32.
[0017]
The outer joint pipe 1 is formed so that its outer diameter is substantially equal to the outer diameter of the steel pipe 31, the inner peripheral surface of the upper end portion 2 is cut obliquely upward to provide an inclined surface 3, and the outer peripheral surface of the inner peripheral surface is formed. A recess 4 whose diameter is enlarged within a predetermined range is formed substantially below the central portion in the axial direction. Reference numerals 5a, 5b, and 5c denote first to third locking portions provided on the upper edge portion of the concave portion 4 and the inner peripheral surface above the recessed portion. FIG. However, it is sufficient that the plurality of locking portions 5a to 5c are simply referred to as 5 in the following description. Reference numeral 6 denotes a projecting step formed on the lower edge of the recess 4 to have an inner diameter substantially equal to the inner diameter of the inner joint pipe 11, and 7 denotes a plurality of bolt insertion holes provided in the circumferential direction of the recess 4.
[0018]
The inner joint pipe 11 is provided with an enlarged diameter part 12 having an outer diameter substantially equal to the outer diameter of the steel pipe 32 at an upper part, and a lower part of the enlarged diameter part 12 through a step part 13 (abutting part). A main body 14 having an outer diameter substantially equal to the inner diameter of the joint pipe 1 is provided. The main body 14 is provided with a plurality of slits 15 reaching the lower end from the step 13 at substantially equal intervals in the circumferential direction, whereby the main body 14 is divided in the circumferential direction and has a diameter reducing function. Having a plurality of divided pieces 14a.
[0019]
16a, 16b, 16c correspond to the first to third locking portions 5a to 5c of the outer joint pipe 1, and the first to third engaging projections projecting from the outer peripheral surface of each divided piece 14a. in its the upper surface perpendicular to the outer peripheral surface lower is provided with the inclined surface 17, the height H 2 of up to the step portion 13 from the upper surface of the first engaging projection 16a, the outer joint pipe 1 second is formed to be almost equal from the first engaging portion 5a and the height H 1 to the upper end 2 (in the following description, it may be referred to simply as 16 a plurality of engagement projections 16 a to 16 c). Reference numeral 18 denotes a bolt hole provided below the first engaging projection 16a of each split piece 14a. The bolt hole 18 is provided corresponding to the bolt insertion hole 7 of the outer joint pipe 1. Instead of the bolt hole 18, a bolt insertion hole may be provided, and a nut may be attached to the inner wall side.
[0020]
Next, an example of a construction procedure when the present invention is applied to joining of steel pipe piles will be described. The outer joint pipe 1 and the inner joint pipe 11 are welded to the ends of the steel pipe piles 31a and 32a to be joined in advance in a factory or the like, and these steel pipe piles 31a and 32a are transported to a construction site. Shall be.
[0021]
First, as shown in FIG. 2A, the steel pipe pile 31a to which the outer joint pipe 1 is joined is driven into the ground. When the driving is advanced and the steel pipe pile 32a, which is the upper pile, is connected, the steel pipe pile 32a, to which the inner joint pipe 11 is joined at the tip, is positioned and positioned on the steel pipe pile 31a, and the steel pipe pile 32a is positioned. As shown in FIG. 2 (b), the lower surface of the inner joint pipe 11 and the lower surface of the first engagement protrusion 16 a of the inner joint pipe 11 are lowered by the rolling force due to its own weight. Utilizing the inclined surface 17 provided, each divided piece 14a of the inner joint pipe 11 is bent to reduce the diameter of the main body portion 14 and inserted into the outer joint pipe 1.
[0022]
When the steel pipe pile 32a is continuously lowered, each of the divided pieces 14a of the inner joint pipe 11 is further bent and reduced in diameter, and the inner joint pipe 11 is formed such that the outer peripheral surface of the first engagement projection 16a is the inner periphery of the outer joint pipe 1. When the step 13 (contact portion) comes into contact with the upper end portion 2 of the outer joint pipe 1, the rolling down is stopped. At this time, the first to third engagement projections 16a to 16c are located corresponding to the first to third engagement portions 5a to 5c, respectively. The state at this time is shown in FIG.
[0023]
In this state, if the bolt 35 inserted into the bolt insertion hole 7 of the outer joint pipe 1 is screwed into each bolt hole 18 of the inner joint pipe 11 and tightened, as shown in FIG. The first to third engaging projections 16a to 16c are securely locked to the first to third locking portions 5a to 5c of the outer joint pipe 1 by abutting or approaching the inner wall of the pipe 1, The upper and lower steel pipe piles 31 a and 32 a are firmly joined via the outer joint pipe 1 and the inner joint pipe 11.
[0024]
In this case, when the inner joint pipe 11 has been pressed into the outer joint pipe 1, each of the divided pieces 14 a of the inner joint pipe 11 is plastically deformed inward and does not return to the original state (expanded in diameter). It is feared that there is. However, according to the results of many experiments conducted by the inventors, each of the divided pieces 14a basically returns to the original state without plastic deformation, and the engaging projections 16a to 16c are respectively engaged with the locking parts 5a to 5c. Was locked. However, in order to more reliably lock the engaging projections 16a to 16c to the locking portions 5a to 5c, it is necessary to fix both using the bolt 35.
[0025]
In the steel pipe piles 31a and 32a fitted as described above, the compressive load applied to the steel pipe pile 32a as the upper pile is transmitted through the step 13 of the inner joint pipe 11 and the upper end 2 of the outer joint pipe 1. It is transmitted to the pile 31a. Further, since the tensile load is transmitted to the steel pipe pile 31a via the plurality of engagement protrusions 16a to 16c of the inner joint pipe 11 and the plurality of locking parts 5a to 5c of the outer joint pipe 1, the tensile load is reduced. It is possible to respond sufficiently.
[0026]
According to the present embodiment, the inner joint pipe 11 can be press-fitted into the outer joint pipe 1 with a relatively small press force without particularly increasing the engagement protrusion 16, and the upper locking portions 5 a to 5 c can be pressed. Since the overlap between the projection 5c and the engagement projections 16a to 16c is increased, it is possible to sufficiently cope with a large tensile load as described above.
Also, the inner joint pipe 11 joined to the end of the steel pipe pile 32a is simply pressed into the outer joint pipe 1 by the weight of the steel pipe pile 32a and fixed with the bolt 35, without using other members and the like. Since the piles 31a and 32a can be joined, the structure is simple and the construction is extremely easy. Not only can the cost be reduced, but also the workability can be greatly improved.
[0027]
Further, since the outer diameter of the outer joint pipe 1 and the outer diameter of the large-diameter portion 12 of the inner joint pipe 11 are substantially equal to the outer diameters of the steel pipe piles 31a and 32a to be joined, the joint J becomes the outer periphery of the steel pipe piles 31a and 32a. Therefore, the steel pipe piles 31a, 32a can be driven into the ground with less penetration resistance.
If a large-diameter portion into which the head of the bolt 35 is inserted is provided in the bolt insertion hole 7 of the outer joint pipe 1, the head of the bolt 35 may protrude from the outer peripheral surface of the joined outer joint pipe 1. Therefore, the resistance to penetration into the ground can be further reduced. However, in this case, it is necessary to provide a hole for engaging a hexagon wrench or the like in the head of the bolt 35.
[0028]
In the above description, the case where the joint structure according to the present embodiment is used for joining the steel pipe piles 31a and 32a has been described. However, the present invention is not limited to this. The present invention can also be implemented. In this case, when the inner joint pipe 11 is press-fitted into the outer joint pipe 1, a press-fitting machine or the like may be required.
[0029]
[Embodiment 2]
FIG. 4 is a partial cross-sectional view of a joint portion of a steel pipe according to Embodiment 2 of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
This embodiment, the upper part of the inner peripheral surface of the inner joint tube 11, the width (height) is provided with a recessed groove 20 of the L 2 (in the figure, a stepped portion of the edge on the groove 20 13 is shown.
FIG. 5 shows another example of the present embodiment. In this example, a concave groove 20 is provided at the upper part of the outer peripheral surface of the inner joint pipe 11 with its upper edge at the same position as the stepped part 13. It is a thing. The concave groove 20 shown in FIGS. 4 and 5 may be provided in another place as long as it is between the large-diameter portion 12 of the inner joint pipe 11 and the uppermost engaging projection 16c.
[0030]
The construction procedure of the joint portion J in the present embodiment is almost the same as that in the first embodiment, but a concave groove 20 is provided on the inner or outer peripheral surface of the inner joint pipe 11 to reduce the thickness of this portion. Since the rigidity is reduced by reducing the thickness, each divided piece 14a is easily bent, so that the press-in force can be reduced, and even in the large-diameter joint portion J, the inner weight of the steel pipe pile 32a joined to the inner joint pipe 11 causes The part 11 can be pressed into the outer joint part 1.
[0031]
As described above, the concave groove 20 can be provided at an appropriate position between the step 13 and the engaging projection 16 on the inner peripheral surface or the outer peripheral surface of the inner joint pipe 11, and as shown in FIG. since the bending moment increases according to the upper flange and the split pieces 14a distance L 1 is longer groove 20 between the lower end portion of the groove 20, the deflection amount is increased in the diameter direction of the divided pieces 14a, which Accordingly, the press-in force becomes smaller. Further, according to the axial length of the groove 20 (width) L 2 is longer, the force-insertion force is reduced.
[0032]
By the way, when the diameter of the joint portion J increases, the machining accuracy of the cutting process of the outer joint pipe 1 and the inner joint pipe 11 deteriorates. Therefore, it is necessary to select the plate thickness to be larger than the minimum plate thickness necessary for stress. Thereby, the amount of bending of the divided piece 14a of the inner joint pipe 11 is reduced, and the press-fitting force when press-fitting the outer joint pipe 1 is increased. For this reason, in order to suppress the pressing force to be equal to or less than the own weight of the upper steel pipe pile 32a, it is necessary to increase the axial length of the divided piece 14a of the inner joint pipe 11 so as to be easily bent. This not only increases the size of the joint J, but also increases the cost.
[0033]
In the present embodiment, a concave groove 20 is provided in the inner peripheral surface or the outer peripheral surface of the main body portion 14 (divided piece 14a) of the inner joint pipe 11, and the rigidity of this portion is reduced to facilitate bending. Can be suppressed to be equal to or less than the weight of the upper steel pipe pile 32a without increasing the axial length of the steel pipe pile 32a.
This not only reduces the cost of the joint portion J, but also eliminates the need to use a press-fitting machine or the like even in the case of a joint portion having a large diameter, thereby facilitating construction and improving workability.
[0034]
[Embodiment 3]
FIG. 6 is an explanatory view of a main part of a joint portion of a steel pipe according to Embodiment 3 of the present invention and an inner surface explanatory view of a split piece of an inner joint pipe.
In the present embodiment, as shown in FIG. 6, a bolt hole 18 is provided instead of the plurality of bolt insertion holes 7 provided in the outer joint pipe 1 of the first embodiment (FIG. 1), and In place of the bolt hole 18 provided in each of the divided pieces 14a, an inverted U-shaped fitting portion 21 opened at the lower end is provided. The case where the locking portion 5 of the outer joint pipe 1 and the engagement protrusion 16 of the inner joint pipe 11 are provided in two stages is shown. At the tip of the threaded portion of the bolt 35, a polygonal locking hole 36 such as a hexagon is provided so that the bolt 35 can be rotated from the outside.
[0035]
In the construction of the present embodiment configured as described above, the steel pipe pile 31a to which the outer joint pipe 1 is joined is driven into the ground to connect the upper steel pipe pile 32a (not shown). At this time or in advance, as shown in FIG. 7A, the tip of the bolt 35 is screwed into the bolt hole 18 of the external joint pipe 11 from inside.
Then, the steel pipe pile 32a, to which the inner joint pipe 11 is joined at the distal end, is lowered by the rolling force due to its own weight, and as shown in FIG. 7 (b), the fitting section provided on each divided piece 14a of the inner joint pipe 11 21 is fitted to a bolt 35 attached to the outer joint pipe 1. At this time, the engagement projections 16a and 16b of the inner joint pipe 11 are located corresponding to the engagement parts 5a and 5b of the outer joint pipe 1.
[0036]
Then, for example, an L-shaped hexagon wrench is engaged with the locking hole 36 provided at the tip of the screw portion of the bolt 35 from the outside of the outer joint pipe 1 to further tighten the bolt 35. The steel pipe piles 31a and 32a are firmly joined via the outer joint pipe 1 and the inner joint pipe 11, respectively.
The effect of this embodiment is almost the same as that of the first embodiment.
[0037]
[Embodiment 4]
When slit 15 is provided in inner joint pipe 11 as in Embodiments 1 to 3, when welded to steel pipe pile 32a, the tip side of each split piece 14a is deformed outward due to thermal deformation due to welding. (Diameter expansion). For this reason, if the outer diameter of the inner joint pipe 11 is formed substantially equal to the inner diameter of the outer joint pipe 1, the outer diameter of the split piece 14a of the inner joint pipe 11 at the time of press-fitting into the outer joint pipe 1 becomes larger than the initial diameter. Since press-fitting increases, press-fitting may not be possible with the weight of the upper pile (steel pipe pile 32a) alone.
[0038]
For this reason, in the present embodiment, as shown in FIG. 8, the outer diameter of the inner joint pipe 11 is made slightly smaller than the inner diameter of the outer joint pipe 1 in accordance with the amount of deformation due to welding. An initial gap g is provided between the inner wall of the joint pipe 1 and the outer wall of the inner joint pipe 11. Thereby, even if each of the divided pieces 14a of the inner joint pipe 11 is deformed outward by welding, it is possible to prevent an increase in press-in force, and the inner joint pipe 11 can be connected to the upper pile (steel pipe) without using a special external force. The pile 32a) can be pressed into the outer joint pipe 1 by its own weight.
[0039]
When the steel pipe piles 31a and 32a to be joined are thick, it is necessary to increase the height (projection length) of the engagement projections 16a to 16c so as to withstand the tensile load. With such a configuration, when the inner joint pipe 11 is pressed into the outer joint pipe 1, the amount of deformation (diameter reduction) of each of the divided pieces 14a in the radial direction increases, and the weight of the upper pile (steel pipe pile 32a) is reduced. In order to press-fit it, it is necessary to increase the length of the split piece 14a in the axial direction to make it easier to deform in the radial direction. However, in this case, there is a problem that not only the size of the joint is increased, but also the cost is increased.
[0040]
In such a case, by providing an initial gap g between the inner wall in the outer joint pipe 1 and the outer wall of the inner joint pipe 11 as in the present embodiment, the inner joint pipe 11 is inserted into the outer joint pipe 1. During the press-fitting, the amount of deformation of the divided pieces 14a to the inside can be small, and joining can be performed with a small press-fit.
[0041]
According to the present embodiment, an initial gap is provided between the inner wall of the outer joint pipe 1 and the outer wall of the inner joint pipe 11, and the inner joint pipe 11 is press-fitted into the outer joint pipe 1, and then the inner joint pipe 11 is bolted. The split piece 14a of the pipe 11 is drawn toward the outer joint pipe 1 to be deformed outward, and the locking projections 16a to 16c are locked to the locking parts 5a to 5c, thereby securely joining the steel pipe piles 31a and 32a. And can sufficiently withstand a large tensile load. At this time, an initial stress is generated at the base of the split piece 14a of the inner joint pipe 11 due to the drawing in of the bolt 35, but since the drawing amount is small, the influence of the initial stress on the joint strength is extremely small.
[0042]
By the way, in the above-described first to fourth embodiments, the engaging projections 16a to 16c of the inner joint pipe 11 are securely locked to the locking portions 5a to 5c of the outer joint pipe 1 by the bolt 35, or The case has been described in which the inner joint pipe 11 having an initial gap with the outer joint pipe 1 is deformed outward to securely lock the engaging projections 16a to 16c with the locking parts 5a to 5c. Also has the following functions.
[0043]
When a tensile load is applied to a steel pipe pile installed underground by being joined by the outer joint pipe 1 and the inner joint pipe 11, the tensile load is transmitted from the inner joint pipe 11 to the lower steel pipe pile via the outer joint pipe 1. However, since the plurality of slits 15 are provided in the inner joint pipe 11, the split pieces 14a are easily deformed inward (in the diameter reducing direction) by a tensile load. When the tensile load increases and the amount of deformation of the inner joint pipe 11 to the inside increases, the engagement protrusions 16a to 16c of the inner joint pipe 11 move to the locking portions 5a of the outer joint pipe 1 as shown by broken lines in FIG. To 5c.
[0044]
According to the present invention, as described above, by fixing the outer joint pipe 1 and the inner joint pipe 11 with the bolts 35, even if a large tensile load is applied to the inner joint pipe 11, deformation to the inside is restricted. Therefore, it is possible to prevent the engaging projections 16a to 16c from being disengaged from the locking portions 5a to 5c, and to withstand a large tensile load.
[0045]
[Embodiment 5]
FIG. 10 is a schematic diagram of a joint structure of a steel pipe showing a part according to a fifth embodiment of the present invention in cross section. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
In each of the above embodiments, the inner joint pipe 11 is provided with the slit 15 so as to have a diameter reducing function, and the inner joint pipe 11 is press-fitted into the outer joint pipe 1 so that the engaging projection 16 is engaged with the engaging portion. 5 shows a case where the outer joint pipe 1 is provided with a slit so as to have a diameter increasing function, and the inner joint pipe 11 is press-fitted into the outer joint pipe 1 to engage with the outer joint pipe 1. The projections 16a, 16b are locked to the locking portions 5a, 5b.
[0046]
In FIG. 10, a plurality of slits 9 are provided in the circumferential direction of the main body 8 of the outer joint pipe 1 at substantially equal intervals and open to the upper end and reach the lower step 6. A plurality of divided pieces 8a having a diameter expanding function are formed by being divided in the circumferential direction. The bolt insertion hole 7 is provided above the uppermost locking portion 5b. Further, a bolt hole 18 is provided in the upper part of the cylindrical main body 14 in the inner joint pipe 11 so as to correspond to the bolt insertion hole 7 of the outer joint pipe 1. The bolt hole 18 may be a bolt insertion hole, and a nut may be attached to the inner wall surface by welding.
[0047]
Next, an example of a construction procedure in a case where the present embodiment is applied to joining of steel pipe piles will be described. It is assumed that the outer joint pipe 1 and the inner joint pipe 11 are welded to the ends of the steel pipe piles 31a and 32a to be joined in advance in a factory or the like.
[0048]
As shown in FIG. 11 (a), when the steel pipe pile 31a to which the outer joint pipe 1 is joined is driven into a state where the steel pipe pile 32a which is the upper pile is joined, the inner joint pipe 11 is joined to the tip. The steel pipe pile 32a thus positioned is positioned above the steel pipe pile 31a and is lowered by the rolling force of the steel pipe pile 32a by its own weight, and is provided at the upper end of the outer joint pipe 1 as shown in FIG. Utilizing the inclined surface 3 and the inclined surface 17 provided below the lowermost engagement projection 16a of the inner joint pipe 11, each of the divided pieces 8a of the outer joint pipe 1 is bent outward to form a main body. 8 is expanded and inserted into the outer joint pipe 1.
[0049]
When the steel pipe pile 32a is continuously lowered, the first (lowest) engagement projection 16a of the inner joint pipe 11 is lowered along the inner peripheral surface of the outer joint pipe 1, and each divided piece 8a of the outer joint pipe 1 is lowered. When the step portion 13 (contact portion) comes into contact with the upper end portion 2 of the outer joint pipe 1, the reduction is stopped. The state at this time is shown in FIG.
[0050]
In this state, if the bolt 35 inserted into the bolt insertion hole 7 of the outer joint pipe 1 is screwed into the bolt hole 18 of the inner joint pipe 11 and tightened, as shown in FIG. Abuts or approaches the outer wall of the inner joint pipe 11, the plurality of engaging projections 16 a, 16 b are respectively engaged with the engaging portions 5 a, 5 b, and the upper and lower steel pipe piles 31 a, 32 a are connected to the outer joint pipe 1. And through the inner joint pipe 11.
[0051]
In the present embodiment, substantially the same effect as in the case of Embodiment 1 can be obtained. However, since the lower inner peripheral surface of the main body 8 of the outer joint pipe 1 is provided with the concave portion 4, The rigidity of this portion is reduced, and each divided piece 8a can be easily bent as in the case of the second embodiment.
[0052]
Embodiment 6
As in the fifth embodiment, a slit 9 is provided in the outer joint pipe 1 to form a plurality of divided pieces 8a, and when the inner joint pipe 11 is press-fitted, the outer joint pipe 1 is expanded in diameter. In a joint structure fixed at 35, when a compressive load acts on the upper pile (steel pipe pile 32a), this compressive load is applied to the step (abutting portion) 13 of the inner joint pipe 11 and the upper end of the outer joint pipe 1. 2 and transmitted to the lower pile (steel pipe pile 31a). In this case, since the outer joint pipe 1 is provided with the slit 8a, there is a possibility that the split piece 8a may cause buckling failure.
[0053]
In the present embodiment, as shown in FIG. 13, in a state where the joint between the outer joint pipe 31 a and the inner joint pipe 11 is completed, the distal end 11 a of the inner joint pipe 11 is connected to the projecting step 6 of the outer joint pipe 1. together they are brought into contact is obtained by the provided clearance g 1 between the step portion 13 and the upper portion 2 of the outer joint pipe 1 of the inner joint tube 11.
With this configuration, the compressive load is transmitted from the distal end 11a of the inner joint pipe 11 to the lower pile (steel pipe pile 31a) via the projecting step 6 of the outer joint pipe 1, and the upper end 2 of the outer joint pipe 1 is formed. Since no compressive load is applied to, there is no risk that each of the divided pieces 8a will cause buckling failure.
[0054]
Embodiment 7
Incidentally, as described above, in the present invention having a plurality of engagement projections 16 on the inner joint tube 11 having a reduced diameter function, as shown in FIG. 14, for example, the same height (projection length) engagement of h 1 When the joint portions 16a, 16b, and 16c are provided, when the inner joint pipe 11 is press-fitted into the outer joint tube 1, the first to third engagement protrusions 16a to 16c are sequentially arranged on the outer joint tube 1. When the uppermost engaging projection 16c comes into contact with the inner wall of the outer joint pipe 1 because it slides down on the inner wall and falls, the amount of bending of each divided piece 14a is restricted by the height of the engaging projection 16c. b 1 is maximized, since they must be pressed into the inner joint tube in this state, a large fitting force P 1 becomes necessary.
[0055]
This embodiment, in order to solve the above problem, as shown in FIG. 15, the second stage or more engaging projections 16b, the height of 16c (the projection length) h 2, h 3, bottom it is obtained by forming lower than the height h 1 of the projection 16a of the.
Thereby, when the inner joint pipe 11 is press-fitted into the outer joint pipe 1, only the lowermost engagement protrusion 16 a is always in sliding contact with the inner wall of the outer joint pipe 1 from the start of press-fitting to the final stage. It descends, and the second and higher engaging projections 16 a and 16 c do not hit the inner wall of the outer joint pipe 1. Therefore, deflection of b 2 of the split pieces 14a is regulated to the height h 1 of the bottom of the projection 16a become much smaller, so the same as the case of providing the engaging projections 16 one step The inner joint pipe 11 can be pressed into the outer joint pipe 1 with a small rolling force.
[0056]
Form odor of this embodiment, as shown in FIG. 16 (a), 2-stage or more engaging projections 16b, 16c to the same height h 2, and the height h of the bottom of the projection 16a may be lower than 1, or, as shown in FIG. 16 (b), 2-stage or more engaging projections 16b, the height h 2, h 3 and 16b at the bottom of the projection 16a high it is lower than h 1, and may be made successively lower with increasing upwards.
[0057]
Further, when the slit 9 is provided in the outer joint pipe 1 and the inner joint pipe 11 is press-fitted therein as in the fifth embodiment, as shown in FIG. To the height h of all the outer joint pipes 1 corresponding to the locking portions 5a to 5c of the outer joint pipe 1 to which the engaging projections 16a to 16c are locked. Positions b and c (hereinafter, referred to as distal ends) of the engaging surfaces of the engaging portions 5b and 5a below the two-step surface are in contact with the inner wall 1b of the uppermost engaging portion 5c. It is provided at positions b and c (positions on the outer wall side) lower than the part a.
[0058]
In each of the above embodiments, the steel pipe pile 31a to which the outer joint pipe 1 is joined is driven into the ground, and the steel pipe pile 31a to which the inner joint pipe 11 is joined to the steel pipe pile 31a is lowered by its own weight. Although the case of joining has been described, the steel pipe pile 32a to which the inner joint pipe 11 is joined is cast into the ground, and the steel pipe pile 31a to which the outer joint pipe 1 is joined is lowered by its own weight to bring the outer joint pipe 1 inside. The steel pipe piles 32a and 31a may be joined by fitting and joining to the joint pipe 11.
[0059]
【The invention's effect】
According to the present invention, the inner joint pipe having a diameter decreasing function is press-fitted into the outer joint pipe, and the plurality of engagement projections are respectively engaged with the plurality of engagement parts of the outer joint pipe. Since the overlap with the engaging projection is increased, it is possible to sufficiently cope with a large tensile load. Moreover, the structure is simple, the construction is easy, the cost can be reduced, and a highly reliable steel pipe joint structure can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of a joint structure for a steel pipe, a part of which is shown in cross section according to Embodiment 1 of the present invention.
FIG. 2 is an explanatory diagram illustrating an example of a procedure for installing the joint structure according to the first embodiment;
FIG. 3 is a partially omitted longitudinal sectional view showing a state where two steel pipes are joined by the joint structure of the first embodiment.
FIG. 4 is a longitudinal sectional view of a joint structure of a steel pipe with a part omitted according to a second embodiment of the present invention.
FIG. 5 is a longitudinal sectional view in which a part of another example of the second embodiment is omitted.
FIG. 6 is an explanatory view of a main part of a joint structure for a steel pipe according to Embodiment 3 of the present invention and an inner surface explanatory view of a split piece of an inner joint pipe.
FIG. 7 is an explanatory diagram of an example of a construction procedure according to a third embodiment.
FIG. 8 is an explanatory diagram of a main part of a steel pipe joint structure according to a fourth embodiment of the present invention.
FIG. 9 is an explanatory diagram of functions of bolts according to the first to fourth embodiments.
FIG. 10 is a schematic diagram of a joint structure for a steel pipe, a part of which is shown in cross section according to a fifth embodiment of the present invention.
FIG. 11 is an explanatory diagram illustrating an example of a construction procedure according to the fifth embodiment.
FIG. 12 is a partially omitted cross-sectional view showing a state where two steel pipes are joined by a joint structure according to a fifth embodiment.
FIG. 13 is an explanatory diagram of a main part of a joint structure for a steel pipe according to a sixth embodiment of the present invention.
FIG. 14 is an explanatory diagram of a main part of a joint structure for a steel pipe according to a seventh embodiment of the present invention.
FIG. 15 is an explanatory diagram of a main part of a steel pipe joint structure according to a seventh embodiment of the present invention.
FIG. 16 is an explanatory diagram of a main part of a joint structure for a steel pipe according to a seventh embodiment of the present invention.
FIG. 17 is an explanatory diagram of main parts of a joint structure for a steel pipe according to Embodiment 7 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer joint pipe 2 Upper end part 5a, 5b, 5c Locking part 7 Bolt insertion hole 8, 14 Main body part 11 Inner joint pipe 12 Large diameter part 13 Step (contact part)
8a, 14a Split pieces 9, 15 Slits 16a, 16b, 16c Engagement projection 18 Bolt hole 20 Concave groove 21 Fitting part 31, 32 Steel pipe 31a, 32a Steel pipe pile 35 Bolt

Claims (10)

内周面の軸方向に複数段の係止部を有し、一方の鋼管に接合された外側継手管と、
縮径機能を有し、外周面の軸方向に前記外側継手管の係止部に係止する複数段の係合突部が設けられ、他方の鋼管に接合された内側継手管とを有し、
前記外側継手管内に前記内側継手管を圧入してその係合突部を前記外側継手管の係止部にそれぞれ係止させることを特徴とする鋼管の継手構造。
An outer joint pipe having a plurality of stages of locking portions in the axial direction of the inner peripheral surface and joined to one steel pipe,
It has a diameter reducing function, and has an inner joint pipe joined to the other steel pipe, provided with a plurality of stages of engaging projections that are engaged with the engaging portions of the outer joint pipe in the axial direction of the outer peripheral surface. ,
A joint structure for steel pipes, wherein the inner joint pipe is press-fitted into the outer joint pipe, and the engaging projections are respectively engaged with the engaging portions of the outer joint pipe.
前記内側継手管の大径部と係合突部との間において、内周面又は外周面に凹溝を設けたことを特徴とする請求項1記載の鋼管の継手構造。The joint structure for a steel pipe according to claim 1, wherein a concave groove is provided on an inner peripheral surface or an outer peripheral surface between the large diameter portion of the inner joint pipe and the engagement protrusion. 前記内側継手管の下端部に、外側継手管に設けたボルトに嵌合する嵌合部を設けたことを特徴とする請求項1又は2記載の鋼管の継手構造。The joint structure for a steel pipe according to claim 1, wherein a fitting portion that fits with a bolt provided on the outer joint pipe is provided at a lower end of the inner joint pipe. 前記外側継手管と内側継手管との間に初期隙間を設けたことを特徴とする請求項1〜3のいずれかに記載の鋼管の継手構造。The joint structure for a steel pipe according to any one of claims 1 to 3, wherein an initial gap is provided between the outer joint pipe and the inner joint pipe. 前記内側継手管に設けた複数段の係合突部のうち、2段目以上の係合突部の高さを1段目の係合突部の高さより低く形成したことを特徴とする請求項1〜4のいずれかに記載の鋼管の継手構造。The height of the second-stage or higher engaging projections of the plurality of stages of the engaging projections provided on the inner joint pipe is lower than the height of the first-stage engaging projections. Item 5. A joint structure for a steel pipe according to any one of Items 1 to 4. 拡径機能を有し、内周面の軸方向に複数段の係止部が設けられ、一方の鋼管に接続された外側継手鋼管と、
外周面の軸方向に前記外側継手管の係止部に係止する複数段の係合突部が設けられ、他方の鋼管に接合された内側継手管とを有し、
前記外側継手管内に前記内側継手管を圧入して前記内側継手管の係合突部を前記外側継手管の係止部にそれぞれ係止させることを特徴とする鋼管の継手構造。
An outer joint steel pipe having a diameter increasing function, provided with a plurality of locking portions in the axial direction of the inner peripheral surface, and connected to one steel pipe,
A plurality of engagement projections are provided in the axial direction of the outer peripheral surface for engagement with the engagement portions of the outer joint pipe, and an inner joint pipe joined to the other steel pipe,
A joint structure for steel pipes, wherein the inner joint pipe is press-fitted into the outer joint pipe so that engagement projections of the inner joint pipe are respectively engaged with engaging portions of the outer joint pipe.
前記外側継手管内に内側継手管を圧入したときに、該内側継手管の先端部が外側継手管の突出段部に当接し、該内側継手管の上部外周に設けた当接部と前記外側継手管の上端部との間に隙間が形成されるように構成したことを特徴とする請求項6記載の鋼管継手構造。When the inner joint pipe is press-fitted into the outer joint pipe, a tip portion of the inner joint pipe comes into contact with a projecting step of the outer joint pipe, and a contact portion provided on an upper outer periphery of the inner joint pipe and the outer joint pipe The steel pipe joint structure according to claim 6, wherein a gap is formed between the steel pipe and the upper end of the pipe. 前記外側継手管に設けた複数の係止部のうち、上から2段目以下の係止部の先端部を最上段の係止部の先端部より外壁側に形成したことを特徴とする請求項6又は7記載の鋼管の継手構造。The tip of the second or lower locking portion from the top of the plurality of locking portions provided on the outer joint pipe is formed closer to the outer wall than the tip of the uppermost locking portion. Item 8. A joint structure for a steel pipe according to item 6 or 7. 前記外側継手管と該外側継手管内に圧入された内側継手管とをボルトにより一体に固定したことを特徴とする請求項1〜8のいずかに記載の鋼管の継手構造。The steel pipe joint structure according to any one of claims 1 to 8, wherein the outer joint pipe and the inner joint pipe press-fitted in the outer joint pipe are integrally fixed by bolts. 前記鋼管が鋼管杭であり、一方の鋼管杭に接合された外側継手管内に、他方の鋼管杭に接合された内側継手管をいずれか一方の鋼管杭の自重により圧入することを特徴とする請求項1〜9のいずれかに記載の鋼管の継手構造。The steel pipe is a steel pipe pile, and an inner joint pipe joined to the other steel pipe pile is press-fitted into an outer joint pipe joined to one steel pipe pile by its own weight of one of the steel pipe piles. Item 10. A joint structure for a steel pipe according to any one of Items 1 to 9.
JP2003082666A 2003-03-25 2003-03-25 Joint structure of steel pipe Withdrawn JP2004293035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082666A JP2004293035A (en) 2003-03-25 2003-03-25 Joint structure of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082666A JP2004293035A (en) 2003-03-25 2003-03-25 Joint structure of steel pipe

Publications (1)

Publication Number Publication Date
JP2004293035A true JP2004293035A (en) 2004-10-21

Family

ID=33398357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082666A Withdrawn JP2004293035A (en) 2003-03-25 2003-03-25 Joint structure of steel pipe

Country Status (1)

Country Link
JP (1) JP2004293035A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083807A1 (en) * 2013-12-06 2015-06-11 新日鐵住金株式会社 Joint structure for steel pipe pile
KR101688836B1 (en) * 2015-10-22 2016-12-22 주식회사 만도 Structure for preventing axial backlash of planetary gear system
JP2018123506A (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 Screw joint with mechanism to prevent inverse rotation
JP2019196589A (en) * 2018-05-07 2019-11-14 Jfeスチール株式会社 Joint structure of steel pipe
JPWO2022270266A1 (en) * 2021-06-24 2022-12-29
WO2023074257A1 (en) * 2021-10-29 2023-05-04 Jfeスチール株式会社 Multiple-step insertion joint, steel pipe with joint, structure, method of constructing structure, and methods of designing and producing multiple-step insertion joint

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083807A1 (en) * 2013-12-06 2015-06-11 新日鐵住金株式会社 Joint structure for steel pipe pile
CN105658876A (en) * 2013-12-06 2016-06-08 新日铁住金株式会社 Joint structure for steel pipe pile
AU2014358146B2 (en) * 2013-12-06 2017-01-05 Nippon Steel Corporation Joint structure for steel pipe pile
JPWO2015083807A1 (en) * 2013-12-06 2017-03-16 新日鐵住金株式会社 Steel pipe pile joint structure
TWI623670B (en) * 2013-12-06 2018-05-11 新日鐵住金股份有限公司 Joint structure of steel pipe pile
KR101688836B1 (en) * 2015-10-22 2016-12-22 주식회사 만도 Structure for preventing axial backlash of planetary gear system
JP2018123506A (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 Screw joint with mechanism to prevent inverse rotation
JP2019196589A (en) * 2018-05-07 2019-11-14 Jfeスチール株式会社 Joint structure of steel pipe
JPWO2022270266A1 (en) * 2021-06-24 2022-12-29
WO2023074257A1 (en) * 2021-10-29 2023-05-04 Jfeスチール株式会社 Multiple-step insertion joint, steel pipe with joint, structure, method of constructing structure, and methods of designing and producing multiple-step insertion joint

Similar Documents

Publication Publication Date Title
RU2718652C1 (en) Mechanical coupling for machine building and structural pipes
JP4626450B2 (en) Threaded joint structure of metal pipe
JP4600407B2 (en) Steel pipe joint structure
JP2004293035A (en) Joint structure of steel pipe
JP2004270204A (en) Joint structure of steel pipe and joining method of steel pipe
JP2005220742A (en) Structure of steel pipe joint
JP4000930B2 (en) Steel pipe joint structure
JP2011231561A (en) Upper and lower steel pipes jointing structure for steel pipe column and jointing method thereof
JP4642003B2 (en) Building structure connection method and connection structure
WO2009125559A1 (en) Structure for increasing pipe connection strength of split joint
JP2011132702A (en) Joint structure of steel pipe pile of rotary press-fitting type and construction method of the same
JP5836865B2 (en) Joint structure between steel pipe pile and pile head, and concrete foundation construction method using this joint structure
JP4239610B2 (en) Steel pipe joining method
JP3252961B2 (en) Fixed parts and bolt parts used for steel pipe column connection
JP2006046007A (en) Joint member
JP6238695B2 (en) Steel pipe sheet pile foundation method
JP2021195966A (en) Pipe coupling structure
JP4347149B2 (en) Mechanical joint of a longitudinal connection device for piles with means for preventing looseness
JP2007063955A (en) Connection structure
JP2000257058A (en) Columnar body and columnar body connecting structure
JP2004076533A (en) Pile connecting structure
WO2022190754A1 (en) Method for manufacturing steel pipe sheet pile having mechanical joint pipe
JP3848284B2 (en) Segment connection structure, connection method, and joint member
JP2006188889A (en) Joint structure of pile
JP2017089268A (en) Steel pipe coupler structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606