JPWO2015083807A1 - Steel pipe pile joint structure - Google Patents

Steel pipe pile joint structure Download PDF

Info

Publication number
JPWO2015083807A1
JPWO2015083807A1 JP2015551567A JP2015551567A JPWO2015083807A1 JP WO2015083807 A1 JPWO2015083807 A1 JP WO2015083807A1 JP 2015551567 A JP2015551567 A JP 2015551567A JP 2015551567 A JP2015551567 A JP 2015551567A JP WO2015083807 A1 JPWO2015083807 A1 JP WO2015083807A1
Authority
JP
Japan
Prior art keywords
fitting
steel pipe
pipe pile
joint structure
outer fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015551567A
Other languages
Japanese (ja)
Other versions
JP6202102B2 (en
Inventor
弘信 松宮
弘信 松宮
雅司 北濱
雅司 北濱
妙中 真治
真治 妙中
津留 英司
英司 津留
惟史 伊藤
惟史 伊藤
義法 小林
義法 小林
俊彦 坂本
俊彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JPWO2015083807A1 publication Critical patent/JPWO2015083807A1/en
Application granted granted Critical
Publication of JP6202102B2 publication Critical patent/JP6202102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/52Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
    • E02D5/523Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/52Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
    • E02D5/523Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments
    • E02D5/526Connection means between pile segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

この鋼管杭の継手構造は、第1鋼管杭と第2鋼管杭とを同軸に連結する、鋼管杭の継手構造であって、前記第1鋼管杭に近い外嵌段部であるほど外嵌谷部の板厚が大きく形成され、前記第2鋼管杭に近い内嵌段部であるほど内嵌谷部の板厚が大きく形成され、内嵌端部が外嵌端部に挿入されて相対回転させて嵌合させた状態で、内嵌先端面と、この内嵌先端面の対向面とが、所定の離間距離(D)で離間し、引張力を負担させる引張側当接面の総面積が、圧縮力を負担する外嵌先端面の面積と、圧縮力を負担する圧縮側当接面の総面積との合計面積以下である。The steel pipe pile joint structure is a steel pipe pile joint structure that connects the first steel pipe pile and the second steel pipe pile coaxially, and the outer fitting valley is closer to the outer fitting step portion than the first steel pipe pile. The plate thickness of the inner fitting valley portion is made larger as the inner fitting step closer to the second steel pipe pile is formed, and the inner fitting end portion is inserted into the outer fitting end portion and relatively rotated. The total area of the tension-side contact surface in which the inner fitting front end surface and the facing surface of the inner fitting front end surface are separated by a predetermined separation distance (D) and bear a tensile force. However, it is less than or equal to the total area of the area of the front end surface of the external fitting that bears the compressive force and the total area of the compression-side contact surface that bears the compressive force.

Description

本発明は、第1鋼管杭と第2鋼管杭とを軸心方向に連結させるための鋼管杭の継手構造に関する。
本願は、2013年12月6日に、日本に出願された特願2013−252957号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a joint structure of steel pipe piles for connecting a first steel pipe pile and a second steel pipe pile in the axial direction.
This application claims priority on December 6, 2013 based on Japanese Patent Application No. 2013-252957 for which it applied to Japan, and uses the content here.

従来より、第1鋼管杭と第2鋼管杭とを軸心方向に連結させる継手構造として、溶接継手及び機械式継手が利用されている。
溶接継手は、第1鋼管杭と第2鋼管杭とを端部同士で突き合わせて溶接することにより得られる。しかし、溶接継手による継手構造は施工性に難点があり、溶接部の品質及び作業時間は現場環境や作業者の熟練度によって大きく左右される。
Conventionally, welded joints and mechanical joints have been used as joint structures for connecting the first steel pipe pile and the second steel pipe pile in the axial direction.
A welded joint is obtained by abutting and welding the first steel pipe pile and the second steel pipe pile at their ends. However, the joint structure by the welded joint has a difficulty in workability, and the quality and working time of the welded part greatly depend on the field environment and the skill level of the worker.

そこで、施工性に優れた鋼管杭の継手構造として、特許文献1及び特許文献2に開示されるような、機械式継手による鋼管杭の継手構造が提案されている。   Then, the joint structure of the steel pipe pile by a mechanical joint which is disclosed by patent document 1 and patent document 2 is proposed as a joint structure of the steel pipe pile excellent in workability.

特許文献1に開示された鋼管杭の継手構造では、軸心方向に隣接する第1杭及び第2杭に、互いに嵌合自在な一対の外嵌端部と内嵌端部とが各別に形成される。そして、外嵌端部に内嵌端部を挿入させた状態で軸心回りに相対回転させることで互いに係合し合う係合部と被係合部とが、外嵌端部及び内嵌端部に形成される。
この特許文献1に開示された鋼管杭の継手構造は、係合した係合部と被係合部とが第1杭又は第2杭の径方向に離間するのを阻止するための離間阻止手段が、係合部と被係合部とに設けられる。
In the joint structure of steel pipe piles disclosed in Patent Document 1, a pair of externally fitted end portions and internally fitted end portions that can be fitted to each other are formed on the first pile and the second pile adjacent to each other in the axial direction. Is done. Then, the engaging portion and the engaged portion that are engaged with each other by being relatively rotated around the axis center in a state where the inner fitting end portion is inserted into the outer fitting end portion are the outer fitting end portion and the inner fitting end. Formed in the part.
The joint structure of the steel pipe pile disclosed in Patent Document 1 is a separation preventing means for preventing the engaged engagement portion and the engaged portion from separating in the radial direction of the first pile or the second pile. Are provided at the engaging portion and the engaged portion.

特許文献2に開示された鋼管杭の継手構造では、軸心方向に隣接する第1杭及び第2杭に、互いに嵌合自在な一対の外嵌端部と内嵌端部とが各別に形成される。そして、外嵌端部に内嵌端部を挿入させた状態で、軸心回りに回転させることで互いに係合し合う係合凸部と被係合凸部とが外嵌端部と内嵌端部に軸心方向で複数形成される。
この特許文献2に開示された鋼管杭の継手構造は、外嵌端部が先端部側に設けた係合凸部の形成箇所ほど基端部側に設けた係合凸部の形成箇所よりも大径に形成されて、内嵌端部が先端部側に設けた被係合凸部の形成箇所ほど基端部側に設けた被係合凸部の形成箇所よりも小径に形成される。
In the joint structure of steel pipe piles disclosed in Patent Document 2, a pair of externally fitted end portions and internally fitted end portions that can be fitted to each other are formed on the first pile and the second pile adjacent to each other in the axial direction. Is done. Then, in a state where the inner fitting end is inserted into the outer fitting end, the engaging convex portion and the engaged convex portion that are engaged with each other by rotating around the axial center are formed between the outer fitting end portion and the inner fitting end. A plurality of end portions are formed in the axial direction.
In the joint structure of steel pipe piles disclosed in Patent Document 2, the formation position of the engagement convex portion provided on the base end side is closer to the formation portion of the engagement convex portion provided with the outer fitting end portion on the distal end side. It is formed to have a large diameter, and the inner fitting end portion is formed to have a smaller diameter than the formation portion of the engaged convex portion provided on the proximal end side as the formation portion of the engaged convex portion provided on the distal end side.

日本国特開平11−43937号公報Japanese Unexamined Patent Publication No. 11-43937 日本国特開平11−43936号公報Japanese Unexamined Patent Publication No. 11-43936

鋼管杭の継手構造では、外嵌端部及び内嵌端部の基端側から先端側に向けて、係合部、係合凸部から被係合部、被係合凸部に伝達される引張力が低下する。   In the joint structure of the steel pipe pile, it is transmitted from the proximal end side to the distal end side of the outer fitting end portion and the inner fitting end portion to the engaged portion and the engaged convex portion from the engaging convex portion. Tensile force decreases.

しかし、特許文献1に開示された鋼管杭の継手構造では、外嵌端部及び内嵌端部の基端側から先端側に向けて、被係合部に伝達される引張力が低下するにもかかわらず、被係合部の板厚が軸心方向で同一とされている。このため、特許文献1に開示された鋼管杭の継手構造は、特に、外嵌端部及び内嵌端部の先端側の板厚に無駄な部分が多くなり、必要以上に板厚が増加してコスト上昇を招くという問題点があった。   However, in the steel pipe pile joint structure disclosed in Patent Document 1, the tensile force transmitted to the engaged portion decreases from the proximal end side to the distal end side of the outer fitting end portion and the inner fitting end portion. Nevertheless, the plate thickness of the engaged portion is the same in the axial direction. For this reason, especially the joint structure of the steel pipe pile disclosed by patent document 1 has a useless part in plate | board thickness at the front end side of an external fitting end part and an internal fitting end part, and plate | board thickness increases more than necessary. There was a problem that the cost increased.

一方、特許文献2に開示された鋼管杭の継手構造では、外嵌端部及び内嵌端部の基端側から先端側に向けて、被係合凸部に伝達される引張力が低下することに対応させて、被係合凸部の板厚を基端側から先端側に向けて徐々に小さくされている。しかし、この特許文献2に開示された鋼管杭の継手構造では、外嵌端部及び内嵌端部の先端側で被係合凸部の板厚が小さくなることで、外嵌端部及び内嵌端部の先端側で被係合凸部の圧縮耐力が低下して、被係合凸部が座屈変形するという問題点があった。   On the other hand, in the joint structure of the steel pipe pile disclosed in Patent Document 2, the tensile force transmitted to the engaged convex portion decreases from the proximal end side to the distal end side of the outer fitting end portion and the inner fitting end portion. Correspondingly, the thickness of the engaged convex portion is gradually reduced from the base end side toward the front end side. However, in the joint structure of the steel pipe pile disclosed in Patent Document 2, the plate thickness of the engaged convex portion is reduced on the distal end side of the outer fitting end portion and the inner fitting end portion, so that the outer fitting end portion and the inner fitting end portion are reduced. There is a problem in that the compressive proof stress of the engaged convex portion is reduced at the distal end side of the fitting end portion, and the engaged convex portion is buckled and deformed.

本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、外嵌端部及び内嵌端部の先端側の板厚を小さくして、材料コストの上昇を抑制すると同時に、先端側の最薄部の座屈変形を防止することのできる鋼管杭の継手構造を提供することにある。   The present invention has been devised in view of the above-described problems, and the object of the present invention is to increase the material cost by reducing the thickness of the outer fitting end portion and the distal end side of the inner fitting end portion. It is providing the joint structure of the steel pipe pile which can prevent buckling deformation of the thinnest part of the front end side while suppressing.

本発明の態様は下記の通りである。
(1)本発明の第一の態様は、第1鋼管杭と第2鋼管杭とを同軸に連結する、鋼管杭の継手構造である。この鋼管杭の継手構造は、前記第1鋼管杭に設けられ、前記第1鋼管杭の第1軸心の延在方向に沿って複数の外嵌段部が形成された外嵌端部と、前記第2鋼管杭に設けられ、前記第2鋼管杭の第2軸心の延在方向に沿って複数の内嵌段部が形成された内嵌端部と、を備え、前記複数の外嵌段部の各々が、前記第1軸心に向かう方向に突出するとともに前記第1軸心を中心とする周方向に複数形成された外嵌山部と、互いに隣り合う前記各外嵌山部の間に形成された外嵌溝部と、前記各外嵌山部に隣接してかつ前記第1鋼管杭に近い基端側に形成された外嵌谷部と、を備え、前記複数の内嵌段部の各々が、前記第2軸心から離間する方向に突出するとともに前記第2軸心を中心とする周方向に複数形成された内嵌山部と、互いに隣り合う前記各内嵌山部の間に形成された内嵌溝部と、前記各内嵌山部に隣接してかつ前記第2鋼管杭に近い基端側に形成された内嵌谷部と、を備え、前記複数の外嵌段部では、前記第1鋼管杭に近い外嵌段部であるほど前記外嵌谷部の板厚が大きく形成され、前記複数の内嵌段部では、前記第2鋼管杭に近い内嵌段部であるほど前記内嵌谷部の板厚が大きく形成され、前記内嵌端部が前記外嵌端部に挿入されて相対回転させて嵌合させた状態で、前記内嵌端部の先端側の内嵌先端面と、この内嵌先端面の対向面とが、所定の離間距離Dで離間し、前記複数の外嵌段部と前記複数の内嵌段部との間で互いに当接する当接面のうち、引張力を負担させる引張側当接面の総面積が、圧縮力を負担する前記外嵌端部の先端側の外嵌先端面の面積と、圧縮力を負担する圧縮側当接面の総面積との合計面積以下である。

(2)上記(1)に記載の鋼管杭の継手構造では、前記引張側当接面の総面積が、前記圧縮側当接面の総面積以下であってもよい。
(3)上記(1)又は(2)に記載の鋼管杭の継手構造では、前記内嵌端部の先端側に最も近い内嵌段部の前記内嵌山部において、前記第2軸心方向に向かう方向の突出高さをh、前記第2軸心の延在方向の長さをlと定義したとき、前記所定の離間距離Dが下記の式(A)を満たしてもよい。
D≧(h+l0.5−l・・・式(A)
(4)上記(1)〜(3)のいずれか一項に記載の鋼管杭の継手構造では、前記複数の内嵌段部における前記内嵌山部の突出高さ同士、及び、前記複数の外嵌段部における前記外嵌山部の突出高さ同士の少なくとも一方が、略同一であってもよい。
(5)上記(1)〜(4)のいずれか一項に記載の鋼管杭の継手構造では、前記内嵌先端面の前記対向面が、前記外嵌端部の前記基端側の外嵌基端面であってもよい。
(6)上記(1)〜(4)のいずれか一項に記載の鋼管杭の継手構造では、前記内嵌先端面の前記対向面が、前記第1鋼管杭の端面であってもよい。
Aspects of the present invention are as follows.
(1) A first aspect of the present invention is a joint structure of steel pipe piles that connects the first steel pipe pile and the second steel pipe pile coaxially. The steel pipe pile joint structure is provided in the first steel pipe pile, and an outer fitting end portion in which a plurality of outer fitting step portions are formed along the extending direction of the first axis of the first steel pipe pile; An inner fitting end portion provided on the second steel pipe pile and formed with a plurality of inner fitting step portions along the extending direction of the second axis of the second steel pipe pile, and the plurality of outer fittings. Each of the stepped portions protrudes in a direction toward the first axis and a plurality of outer fitting mountain portions formed in the circumferential direction around the first axis, and each of the outer fitting mountain portions adjacent to each other. A plurality of internal fitting steps, each including an external fitting groove portion formed between the outer fitting groove portions and an outer fitting valley portion formed adjacent to each of the outer fitting mountain portions and close to the first steel pipe pile. Each of the portions protrudes in a direction away from the second axis and a plurality of internally fitted mountain portions formed in the circumferential direction around the second axis are adjacent to each other. A plurality of inner fitting groove portions formed between the fitting mountain portions, and inner fitting valley portions formed on the proximal end side adjacent to the respective inner fitting mountain portions and close to the second steel pipe pile, In the outer fitting step portion, the outer fitting step portion closer to the first steel pipe pile has a larger plate thickness of the outer fitting valley portion, and the plurality of inner fitting step portions are closer to the second steel pipe pile. The thickness of the inner fitting valley portion is increased as the inner fitting stepped portion is formed, and the inner fitting end is inserted into the outer fitting end portion and relatively rotated to be fitted. The internal fitting front end surface on the front end side of the part and the opposing surface of the internal fitting front end surface are separated by a predetermined separation distance D, and between the plurality of outer fitting stepped portions and the plurality of inner fitting stepped portions. Of the contact surfaces that contact each other, the total area of the tension side contact surfaces that bear the tensile force is the same as the area of the outer fitting front end surface of the outer fitting end that bears the compressive force and the compressive force. You Is less than or equal to the total area of the total area of the compression-side contact surface.

(2) In the joint structure of steel pipe piles according to (1) above, the total area of the tension side contact surface may be equal to or less than the total area of the compression side contact surface.
(3) In the joint structure of steel pipe piles according to (1) or (2) above, in the inner fitting mountain portion of the inner fitting step portion closest to the distal end side of the inner fitting end portion, the second axial direction When the projecting height in the direction toward H is defined as h and the length in the extending direction of the second axis is defined as l, the predetermined separation distance D may satisfy the following formula (A).
D ≧ (h 2 + l 2 ) 0.5 −l Formula (A)
(4) In the steel pipe pile joint structure according to any one of (1) to (3) above, the protruding heights of the internally fitted mountain portions in the plurality of internally fitted step portions, and the plurality of At least one of the projecting heights of the outer fitting mountain portion in the outer fitting step portion may be substantially the same.
(5) In the steel pipe pile joint structure according to any one of (1) to (4), the opposing surface of the inner fitting distal end surface is an outer fitting on the proximal end side of the outer fitting end portion. It may be a base end face.
(6) In the steel pipe pile joint structure according to any one of the above (1) to (4), the facing surface of the inner fitting front end face may be an end face of the first steel pipe pile.

上記(1)に記載の鋼管杭の継手構造によれば、複数の外嵌段部では、第1鋼管杭に近い外嵌段部であるほど外嵌谷部の板厚が大きく形成されるとともに、複数の内嵌段部では、第2鋼管杭に近い内嵌段部であるほど内嵌谷部の板厚が大きく形成される構成を有する。従って、基端側に比べて伝達される引張力及び圧縮力が小さい先端側の部位における板厚が合理的に小さくされているため、材料コストの上昇を抑制すると同時に、外嵌最薄部及び内嵌最薄部の座屈変形を防止することができる。
更に、上記(1)に記載の鋼管杭の継手構造によれば、内嵌端部が外嵌端部に挿入されて同軸に相対回転させて嵌合させた状態で、内嵌端部の先端側の内嵌先端面と、この内嵌先端面の対向面とが、所定の離間距離Dで離間する。従って、内嵌先端面にその対向面からの圧縮力が伝達されることを防ぐことができるため、圧縮力作用時に変形しやすい内嵌最薄部の座屈変形を防止することができる。
更に、上記(1)に記載の鋼管杭の継手構造によれば、複数の外嵌段部と複数の内嵌段部との間で互いに当接する当接面のうち、引張力を負担させる引張側当接面の総面積が、圧縮力を負担する外嵌端部の先端側の外嵌先端面の面積と、圧縮力を負担する圧縮側当接面の総面積との合計面積以下である。従って、外嵌最薄部が万一座屈変形して外嵌先端面で負担出来る圧縮力が小さくなった場合であっても、残りの段部の圧縮側当接面で圧縮力に抵抗することができる。このため、外嵌端部全体及び内嵌端部全体で所定の圧縮耐力を保持することが可能となる。
上記(2)に記載の鋼管杭の継手構造によれば、引張側当接面の総面積が、圧縮側当接面の総面積以下とされる。従って、外嵌最薄部が万一座屈変形して外嵌先端面で圧縮力を負担出来なくなった場合であっても、残りの段部の圧縮側当接面で圧縮力に抵抗することができる。このため、外嵌端部全体及び内嵌端部全体で所定の圧縮耐力をより確実に保持することが可能となる。
上記(3)に記載の鋼管杭の継手構造によれば、離間距離Dが上記式(A)を満たすように設定される。従って、鋼管杭の継手構造が曲げ変形した場合であっても、内嵌先端面にはその対向面からの圧縮力が伝達されないため、圧縮力作用時に変形しやすい内嵌最薄部の座屈変形をより確実に防止することができる。

上記(4)に記載の鋼管杭の継手構造によれば、複数の内嵌段部における内嵌山部の突出高さ同士、及び、複数の外嵌段部における外嵌山部の突出高さ同士の少なくとも一方が、略同一である。従って、内嵌段部及び/又は外嵌段部の切削加工性が向上する。
上記(5)又は(6)に記載の鋼管杭の継手構造によれば、内嵌先端面の対向面を、外嵌端部の基端側の外嵌基端面又は第1鋼管杭の端面とする構造設計を採用することができる。
According to the steel pipe pile joint structure described in the above (1), in the plurality of external fitting stepped portions, the outer fitting valley portion has a larger plate thickness as the outer fitting stepped portion is closer to the first steel pipe pile. In addition, the plurality of internally fitted step portions have a configuration in which the plate thickness of the internally fitted valley portion is increased as the inner fitted step portion is closer to the second steel pipe pile. Therefore, since the plate thickness at the distal end side where the tensile force and compressive force transmitted compared to the proximal end side are small is reasonably reduced, the increase in material cost is suppressed, and at the same time, the thinnest outer fitting portion and The buckling deformation of the thinnest inner fitting can be prevented.
Furthermore, according to the joint structure of the steel pipe pile described in the above (1), the tip of the inner fitting end portion is inserted in the outer fitting end portion and is coaxially rotated and fitted. The inner fitting front end surface and the opposite surface of the inner fitting front end surface are separated by a predetermined separation distance D. Therefore, since it is possible to prevent the compressive force from the opposing surface from being transmitted to the inner fitting front end surface, it is possible to prevent buckling deformation of the thinnest inner fitting portion that is easily deformed when the compressive force is applied.
Furthermore, according to the joint structure of the steel pipe pile described in the above (1), the tension that bears the tensile force among the contact surfaces that contact each other between the plurality of external fitting stepped portions and the plurality of internal fitting stepped portions. The total area of the side abutment surface is equal to or less than the total area of the area of the front end of the external fitting end that bears the compression force and the total area of the compression side abutment that bears the compression force. . Therefore, even if the thinnest part of the outer fitting is buckled and the compressive force that can be borne by the outer fitting front end surface becomes small, the compression side abutment surface of the remaining step part resists the compressive force. be able to. For this reason, it becomes possible to hold | maintain predetermined compression strength in the whole outer fitting end part and the whole inner fitting end part.
According to the joint structure of the steel pipe pile described in (2) above, the total area of the tension side contact surface is equal to or less than the total area of the compression side contact surface. Therefore, even if the thinnest part of the outer fitting should buckle and be unable to bear the compressive force at the outer fitting end face, it resists the compressive force at the compression side contact surface of the remaining stepped part. Can do. For this reason, it becomes possible to hold | maintain predetermined compression strength more reliably in the whole outer fitting end part and the whole inner fitting end part.
According to the joint structure of steel pipe piles described in (3) above, the separation distance D is set so as to satisfy the above formula (A). Therefore, even when the joint structure of the steel pipe pile is bent and deformed, the compressive force from the facing surface is not transmitted to the inner fitting front end surface, so that the buckling of the thinnest part of the inner fitting that easily deforms when compressive force is applied. Deformation can be prevented more reliably.

According to the joint structure of steel pipe piles described in the above (4), the protruding heights of the internally fitted mountain portions in the plurality of internally fitted step portions, and the projected height of the externally fitted mountain portions in the plurality of externally fitted step portions. At least one of them is substantially the same. Therefore, the machinability of the inner fitting step and / or the outer fitting step is improved.
According to the steel pipe pile joint structure according to the above (5) or (6), the opposing surface of the inner fitting front end surface is the outer fitting base end surface on the base end side of the outer fitting end portion or the end surface of the first steel pipe pile. Structural design can be adopted.

本発明の一実施形態に係る鋼管杭の継手構造を示す斜視図である。It is a perspective view which shows the joint structure of the steel pipe pile which concerns on one Embodiment of this invention. 上記継手構造の外嵌端部を示す図であって、軸心を含む断面で見た場合の断面図である。It is a figure which shows the external fitting end part of the said joint structure, Comprising: It is sectional drawing at the time of seeing in the cross section containing an axial center. 上記継手構造の外嵌端部を示す図であって、要部の断面斜視図である。It is a figure which shows the external fitting end part of the said joint structure, Comprising: It is a cross-sectional perspective view of the principal part. 上記継手構造の内嵌端部を示す正面図である。It is a front view which shows the internal fitting end part of the said joint structure. 上記継手構造の内嵌端部を示す図であって、要部の断面斜視図である。It is a figure which shows the internal fitting end part of the said joint structure, Comprising: It is a cross-sectional perspective view of the principal part. 上記継手構造の外嵌端部に内嵌端部を挿入する状態を示す斜視図である。It is a perspective view which shows the state which inserts an internal fitting end part in the external fitting end part of the said joint structure. 上記継手構造の外嵌端部に内嵌端部を挿入して相対回転させた後の状態を示す図であって、一部が断面視された斜視図である。It is a figure which shows the state after inserting an internal fitting end part in the outer fitting end part of the said joint structure, and making it rotate relatively, Comprising: It is the perspective view by which one part was seen by the cross section. 上記継手構造の要部を示す部分断面図である。It is a fragmentary sectional view which shows the principal part of the said joint structure. 上記継手構造の第1変形例を示す部分断面図である。It is a fragmentary sectional view showing the 1st modification of the above-mentioned joint structure. 上記継手構造の離間距離Dの好ましい下限値を説明するための部分断面図である。It is a fragmentary sectional view for explaining the desirable lower limit of separation distance D of the above-mentioned joint structure. 上記継手構造の第2変形例を示す部分断面図である。It is a fragmentary sectional view showing the 2nd modification of the above-mentioned joint structure. 上記継手構造の外嵌端部を示す底面図である。It is a bottom view which shows the external fitting end part of the said joint structure. 上記継手構造の内嵌端部を示す平面図である。It is a top view which shows the internal fitting end part of the said joint structure. 上記継手構造の外嵌端部を示す平面図である。It is a top view which shows the external fitting end part of the said joint structure. 上記継手構造の内嵌端部を示す底面図である。It is a bottom view which shows the internal fitting end part of the said joint structure. 上記継手構造の外嵌端部に作用する引張力を示す要部断面図である。It is principal part sectional drawing which shows the tensile force which acts on the external fitting end part of the said joint structure. 上記継手構造の外嵌端部に作用する圧縮力を示す要部断面図である。It is principal part sectional drawing which shows the compressive force which acts on the external fitting end part of the said joint structure. 上記継手構造の内嵌端部に作用する引張力を示す要部断面図である。It is principal part sectional drawing which shows the tensile force which acts on the internal fitting end part of the said joint structure. 上記継手構造の内嵌端部に作用する圧縮力を示す要部断面図である。It is principal part sectional drawing which shows the compressive force which acts on the internal fitting end part of the said joint structure. 上記継手構造の第3変形例を示す要部断面図である。It is principal part sectional drawing which shows the 3rd modification of the said joint structure. 上記継手構造の第4変形例を示す要部断面図である。It is principal part sectional drawing which shows the 4th modification of the said joint structure. 上記継手構造の外嵌端部の当接面を示す要部断面図である。It is principal part sectional drawing which shows the contact surface of the external fitting end part of the said joint structure. 上記継手構造の内嵌端部の当接面を示す要部断面図である。It is principal part sectional drawing which shows the contact surface of the internal fitting end part of the said joint structure.

以下、本発明の一実施形態に係る鋼管杭の継手構造7(以下、本実施形態に係る継手構造7、或いは、単に継手構造7と呼ぶ場合がある)について、図面を参照しながら詳細に説明する。
尚、以下の説明においては、鋼管杭の軸心延在方向を軸心方向Y、軸心方向Yに直交する方向を軸心直交方向X、鋼管杭の軸心回りの方向を周方向Wと呼称する場合がある。
Hereinafter, a steel pipe pile joint structure 7 according to an embodiment of the present invention (hereinafter, sometimes referred to as a joint structure 7 according to the present embodiment or simply a joint structure 7) will be described in detail with reference to the drawings. To do.
In the following description, the axial direction of the steel pipe pile is defined as the axial direction Y, the direction orthogonal to the axial direction Y is the axial orthogonal direction X, and the direction around the axial center of the steel pipe pile is the circumferential direction W. Sometimes called.

本実施形態に係る継手構造7は、地盤上に構築される構造物の基礎杭等において、図1に示すように、第1軸心を有し断面略円形状の第1鋼管杭1と、第2軸心を有し断面略円形状の第2鋼管杭2とを同軸(軸心方向Y)に連結する機械式継手として設けられる。   The joint structure 7 according to the present embodiment includes a first steel pipe pile 1 having a first axial center and a substantially circular cross section as shown in FIG. 1 in a foundation pile or the like of a structure constructed on the ground, The second steel pipe pile 2 having a second axial center and having a substantially circular cross section is provided as a mechanical joint that connects coaxially (axial direction Y).

第1鋼管杭1の上端部には、軸心方向Yに沿って複数の外嵌段部4が形成された外嵌端部3が溶接等で接合される。第2鋼管杭2の下端部には、軸心方向Yに沿って複数の内嵌段部6が形成された内嵌端部5が溶接等で接合される。外嵌端部3と内嵌端部5とは互いに嵌合自在な構造を有する。   An outer fitting end portion 3 in which a plurality of outer fitting step portions 4 are formed along the axial direction Y is joined to the upper end portion of the first steel pipe pile 1 by welding or the like. An inner fitting end portion 5 in which a plurality of inner fitting step portions 6 are formed along the axial direction Y is joined to the lower end portion of the second steel pipe pile 2 by welding or the like. The outer fitting end portion 3 and the inner fitting end portion 5 have a structure that can be fitted to each other.

外嵌端部3に形成された複数の外嵌段部4の各々は、その軸心に向かう方向に突出するとともに周方向Wに複数形成された外嵌山部31と、周方向Wに互いに隣り合う各々の外嵌山部31の間に形成された外嵌溝部32と、各々の外嵌山部31に隣接してかつ第1鋼管杭に近い基端側に形成された外嵌谷部33と、を有する。
各々の外嵌段部4において、外嵌溝部32及び外嵌谷部33は、図1に示すように、互いに面一となるように同じ板厚で形成されることが嵌合性及び加工性の観点から好ましい。
本実施形態に係る継手構造7では、図1に示すように複数の外嵌段部4の各々に対し、4つの外嵌山部31が周方向Wに所定間隔を空けて形成されているが、本発明はこの構造のみに限定されない。
Each of the plurality of outer fitting step portions 4 formed on the outer fitting end portion 3 protrudes in the direction toward the axis and is formed with a plurality of outer fitting mountain portions 31 formed in the circumferential direction W, and in the circumferential direction W. An outer fitting groove 32 formed between each adjacent outer fitting mountain portion 31, and an outer fitting valley portion formed adjacent to each outer fitting mountain portion 31 and close to the first steel pipe pile. 33.
In each outer fitting step part 4, the fitting groove part 32 and the fitting valley part 33 are formed with the same plate thickness so as to be flush with each other as shown in FIG. From the viewpoint of
In the joint structure 7 according to the present embodiment, as shown in FIG. 1, four outer fitting mountain portions 31 are formed at predetermined intervals in the circumferential direction W with respect to each of the plurality of outer fitting step portions 4. The present invention is not limited to this structure.

内嵌端部5に形成された複数の内嵌段部6の各々は、その軸心から離間する方向に突出するとともに周方向Wに複数形成された内嵌山部51と、周方向Wに互いに隣り合う各々の内嵌山部51の間に形成された内嵌溝部52と、各々の内嵌山部51に隣接してかつ第2鋼管杭に近い基端側に形成された内嵌谷部53と、を有する。
各々の内嵌段部6において、内嵌溝部52及び内嵌谷部53は、図1に示すように、互いに面一となるように同じ板厚で形成されることが嵌合性及び加工性の観点から好ましい。
本実施形態に係る継手構造7では、図1に示すように複数の内嵌段部6の各々に対し、4つの内嵌山部51が周方向Wに所定間隔を空けて形成されているが、本発明はこの構造のみに限定されない。
Each of the plurality of inner fitting stepped portions 6 formed in the inner fitting end portion 5 protrudes in a direction away from the axial center and has a plurality of inner fitting mountain portions 51 formed in the circumferential direction W, and in the circumferential direction W. Internal fitting groove portions 52 formed between the respective internal fitting mountain portions 51 adjacent to each other, and an internal fitting valley formed on the proximal end side adjacent to each internal fitting mountain portion 51 and close to the second steel pipe pile. Part 53.
In each internal fitting step part 6, the internal fitting groove part 52 and the internal fitting valley part 53 are formed with the same plate thickness so as to be flush with each other, as shown in FIG. From the viewpoint of
In the joint structure 7 according to the present embodiment, as shown in FIG. 1, four inner fitting mountain portions 51 are formed at predetermined intervals in the circumferential direction W with respect to each of the plurality of inner fitting step portions 6. The present invention is not limited to this structure.

また、本実施形態に係る継手構造7では、図1に示すように、外嵌端部3と内嵌端部5との嵌合後の相対回転を抑止するための回転抑止キーを挿入するためのキー溝Pが周方向Wに4箇所形成されているが、キー溝は形成されなくてもよい。   Further, in the joint structure 7 according to the present embodiment, as shown in FIG. 1, a rotation inhibiting key for inhibiting relative rotation after fitting between the outer fitting end portion 3 and the inner fitting end portion 5 is inserted. Although four key grooves P are formed in the circumferential direction W, the key grooves need not be formed.

本実施形態に係る継手構造7においては、図2に示すように、外嵌端部3の軸心方向Yに4段の外嵌段部4が形成される。すなわち、外嵌端部3は、外嵌端部3の軸心方向Yで先端側から基端側まで、順番に第1外嵌段部41、第2外嵌段部42、第3外嵌段部43、及び第4外嵌段部44を有する。   In the joint structure 7 according to the present embodiment, as shown in FIG. 2, the four external fitting step portions 4 are formed in the axial direction Y of the external fitting end portion 3. That is, the outer fitting end portion 3 includes the first outer fitting step portion 41, the second outer fitting step portion 42, and the third outer fitting in order from the distal end side to the proximal end side in the axial direction Y of the outer fitting end portion 3. A step portion 43 and a fourth outer fitting step portion 44 are provided.

各々の外嵌段部4では、外嵌山部31の板厚よりも外嵌溝部32の板厚が小さくされ、外嵌山部31と外嵌溝部32とが周方向Wで交互に形成される。そして、複数の外嵌段部4の外嵌山部31が軸心方向Yで略一列に配置される。
同様に、各々の外嵌段部4では、外嵌山部31の板厚よりも外嵌谷部33の板厚が小さくされ、外嵌山部31と外嵌谷部33とが軸心方向Yで交互に形成される。
In each outer fitting step part 4, the thickness of the outer fitting groove part 32 is made smaller than the thickness of the outer fitting mountain part 31, and the outer fitting mountain part 31 and the outer fitting groove part 32 are alternately formed in the circumferential direction W. The And the external fitting peak part 31 of the some external fitting step part 4 is arrange | positioned in the axial direction Y at substantially one line.
Similarly, in each external fitting step part 4, the plate thickness of the external fitting valley part 33 is made smaller than the plate thickness of the external fitting mountain part 31, and the external fitting mountain part 31 and the external fitting valley part 33 are axial directions. Alternatingly formed with Y.

図3に示すように、外嵌谷部33の板厚は、外嵌端部3の基端側に近い外嵌段部4ほど大きく形成される。
すなわち、第1外嵌段部41の外嵌谷部33の板厚は、第2外嵌段部42の外嵌谷部33の板厚よりも小さく、第2外嵌段部42の外嵌谷部33の板厚は、第3外嵌段部43の外嵌谷部33の板厚よりも小さく、第3外嵌段部43の外嵌谷部33の板厚は、第4外嵌段部44の外嵌谷部33の板厚よりも小さく形成される。
As shown in FIG. 3, the plate thickness of the external fitting valley portion 33 is formed to be larger as the external fitting step portion 4 is closer to the proximal end side of the external fitting end portion 3.
That is, the plate thickness of the external fitting valley portion 33 of the first external fitting step portion 41 is smaller than the plate thickness of the external fitting valley portion 33 of the second external fitting step portion 42, and the external fitting of the second external fitting step portion 42 is performed. The plate thickness of the valley portion 33 is smaller than the plate thickness of the external fitting valley portion 33 of the third external fitting step portion 43, and the plate thickness of the external fitting valley portion 33 of the third external fitting step portion 43 is the fourth external fitting. It is formed smaller than the plate thickness of the externally fitting valley portion 33 of the step portion 44.

第1外嵌段部41の外嵌谷部33は、外嵌端部3のうちで板厚が最も小さな外嵌最薄部30として形成され、第1外嵌段部41の外嵌山部31の軸心方向Yの先端側には外嵌先端面34が略平面状に形成される。
また、第4外嵌段部44の外嵌谷部33の軸心方向Yの基端側には外嵌余長部45が形成される。この外嵌余長部45の先端側には、外嵌基端面35が全周に亘って形成される。
The outer fitting valley portion 33 of the first outer fitting step portion 41 is formed as the outer fitting thinnest portion 30 having the smallest plate thickness among the outer fitting end portions 3, and the outer fitting mountain portion of the first outer fitting step portion 41. An outer fitting front end surface 34 is formed in a substantially flat shape on the front end side in the axial direction Y of 31.
Further, an extra fitting extra length portion 45 is formed on the proximal end side in the axial direction Y of the outer fitting valley portion 33 of the fourth outer fitting step portion 44. An outer fitting base end face 35 is formed over the entire circumference at the distal end side of the outer fitting extra length portion 45.

本実施形態に係る継手構造7においては、図4に示すように、内嵌端部5の軸心方向Yに4段の内嵌段部6が形成される。すなわち、内嵌端部5は、内嵌端部5の軸心方向Yで先端側から基端側まで、順番に第1内嵌段部61、第2内嵌段部62、第3内嵌段部63、及び第4内嵌段部64を有する。   In the joint structure 7 according to the present embodiment, as shown in FIG. 4, four steps of internal fitting step portions 6 are formed in the axial direction Y of the internal fitting end portion 5. That is, the inner fitting end portion 5 includes the first inner fitting step portion 61, the second inner fitting step portion 62, and the third inner fitting portion in order from the distal end side to the proximal end side in the axial direction Y of the inner fitting end portion 5. A step portion 63 and a fourth internal fitting step portion 64 are provided.

各々の内嵌段部6では、内嵌山部51の板厚よりも内嵌溝部52の板厚が小さくされ、内嵌山部51と内嵌溝部52とが周方向Wで交互に形成される。そして、複数の内嵌段部6の内嵌山部51が軸心方向Yで略一列に配置される。
同様に、各々の内嵌段部6では、内嵌山部51の板厚よりも内嵌谷部53の板厚が小さくされ、内嵌山部51と内嵌谷部53とが軸心方向Yで交互に形成される。
In each internal fitting step portion 6, the thickness of the internal fitting groove portion 52 is made smaller than the thickness of the internal fitting mountain portion 51, and the internal fitting mountain portions 51 and the internal fitting groove portions 52 are alternately formed in the circumferential direction W. The And the internal fitting mountain part 51 of the some internal fitting step part 6 is arrange | positioned in the axial direction Y at a substantially line.
Similarly, in each internal fitting step part 6, the plate thickness of the internal fitting valley part 53 is made smaller than the plate thickness of the internal fitting mountain part 51, and the internal fitting mountain part 51 and the internal fitting valley part 53 are axial direction. Alternatingly formed with Y.

図5に示すように、内嵌谷部53の板厚は、内嵌端部5の基端側に近い内嵌段部ほど大きく形成される。
すなわち、第1内嵌段部61の内嵌谷部53の板厚は、第2内嵌段部62の内嵌谷部53の板厚よりも小さく、第2内嵌段部62の内嵌谷部53の板厚は、第3内嵌段部63の内嵌谷部53の板厚よりも小さく、第3内嵌段部63の内嵌谷部53の板厚は、第4内嵌段部64の内嵌谷部53の板厚よりも小さく形成される。
As shown in FIG. 5, the plate thickness of the internal fitting valley portion 53 is formed to be larger as the internal fitting step portion closer to the proximal end side of the internal fitting end portion 5.
That is, the plate thickness of the internal fitting valley portion 53 of the first internal fitting step portion 61 is smaller than the plate thickness of the internal fitting valley portion 53 of the second internal fitting step portion 62, and the internal fitting of the second internal fitting step portion 62. The plate thickness of the valley portion 53 is smaller than the plate thickness of the internal fitting valley portion 53 of the third internal fitting step portion 63, and the plate thickness of the internal fitting valley portion 53 of the third internal fitting step portion 63 is the fourth internal fitting. It is formed smaller than the plate thickness of the internal fitting valley portion 53 of the step portion 64.

第1内嵌段部61の内嵌谷部53は、内嵌端部5のうちで板厚が最も小さな内嵌最薄部50として形成され、第1内嵌段部61の内嵌山部51の軸心方向Yの先端側には内嵌先端面54が略平面状に形成される。
また、第4内嵌段部64の内嵌谷部53の軸心方向Yの基端側には内嵌余長部65が形成される。この内嵌余長部65の先端側には、内嵌基端面55が全周に亘って形成される。
The inner fitting valley portion 53 of the first inner fitting step portion 61 is formed as the inner fitting thinnest portion 50 having the smallest plate thickness among the inner fitting end portions 5, and the inner fitting mountain portion of the first inner fitting step portion 61. An inner fitting front end face 54 is formed in a substantially flat shape on the front end side in the axial direction Y of 51.
Further, an inner fitting surplus length portion 65 is formed on the proximal end side in the axial direction Y of the inner fitting valley portion 53 of the fourth inner fitting step portion 64. An inner fitting base end face 55 is formed over the entire circumference on the distal end side of the inner fitting surplus length portion 65.

本実施形態に係る継手構造7では、第1鋼管杭1と第2鋼管杭2とを同軸に連結するために、図6、図7に示すように、外嵌端部3と内嵌端部5とを互いに嵌合させる。尚、図7は外嵌端部3の一部を切断した状態を示す斜視図である。   In the joint structure 7 according to the present embodiment, in order to connect the first steel pipe pile 1 and the second steel pipe pile 2 coaxially, as shown in FIGS. 6 and 7, an outer fitting end portion 3 and an inner fitting end portion are provided. 5 are fitted to each other. FIG. 7 is a perspective view showing a state in which a part of the external fitting end 3 is cut.

具体的には、まず、図6に示すように、第2鋼管杭2に取り付けられた内嵌端部5を第1鋼管杭1に取り付けられた外嵌端部3に挿入する。各々の内嵌段部6において、内嵌山部51の軸心直交方向Xの高さは、嵌合時に対応する外嵌溝部32の軸心直交方向Xの深さ以下に設定される。これにより、内嵌山部51を外嵌溝部32に通過可能な構造となる。   Specifically, first, as shown in FIG. 6, the inner fitting end portion 5 attached to the second steel pipe pile 2 is inserted into the outer fitting end portion 3 attached to the first steel pipe pile 1. In each inner fitting step part 6, the height of the inner fitting mountain part 51 in the axial center orthogonal direction X is set to be equal to or less than the depth of the outer fitting groove part 32 corresponding to the fitting time in the axial center orthogonal direction X. As a result, the inner fitting mountain portion 51 can pass through the outer fitting groove portion 32.

次に、図7に示すように、内嵌端部5を外嵌端部3に挿入した状態で、第1鋼管杭1と第2鋼管杭2とを軸心回りの周方向Wに相対回転させる。各々の内嵌段部6において、内嵌谷部53の軸心直交方向Xの深さは、嵌合時に対応する外嵌山部31の軸心直交方向Xの高さ以上に設計される。これにより、外嵌山部31を内嵌谷部53に嵌合可能な構造となる。   Next, as shown in FIG. 7, the first steel pipe pile 1 and the second steel pipe pile 2 are relatively rotated in the circumferential direction W around the axis center with the inner fitting end 5 inserted into the outer fitting end 3. Let In each inner fitting step portion 6, the depth of the inner fitting valley portion 53 in the axial center orthogonal direction X is designed to be greater than the height of the outer fitting mountain portion 31 corresponding to the fitting in the axial center orthogonal direction X. Thereby, it becomes a structure which can fit the external fitting mountain part 31 to the internal fitting trough part 53. FIG.

図8は、本実施形態に係る継手構造7の内嵌端部5を外嵌端部3に挿入して相対回転させた状態の概略断面図である。この図8に示すように、継手構造7は、外嵌端部3の先端側の外嵌先端面34と、内嵌端部5の基端側の内嵌基端面55とが対向する外嵌対向部36と、内嵌端部5の先端側の内嵌先端面54と、外嵌端部3の基端側の外嵌基端面35とが対向する内嵌対向部56とを有する。   FIG. 8 is a schematic cross-sectional view of a state in which the inner fitting end portion 5 of the joint structure 7 according to the present embodiment is inserted into the outer fitting end portion 3 and is relatively rotated. As shown in FIG. 8, the joint structure 7 has an outer fitting in which an outer fitting distal end surface 34 on the distal end side of the outer fitting end portion 3 and an inner fitting proximal end surface 55 on the proximal end side of the inner fitting end portion 5 face each other. It has the opposing part 36, the internal fitting front end surface 54 of the front end side of the internal fitting end part 5, and the internal fitting opposing part 56 which the external fitting base end surface 35 of the base end side of the external fitting end part 3 opposes.

図8に示すように、第4外嵌段部44を除く外嵌段部4(第1外嵌段部41、第2外嵌段部42、第3外嵌段部43)及び第1内嵌段部61を除く内嵌段部6(第4内嵌段部64、第3内嵌段部63、第2内嵌段部62)において、内嵌山部51の軸心方向Yの長さは、嵌合時に対応する外嵌谷部33の軸心方向Yの長さと略同等に設計されるとともに、外嵌山部31の軸心方向Yの長さは、嵌合時に対応する内嵌谷部53の軸心方向Yの長さと略同等に設計される。これにより、軸心方向Yで外嵌山部31と内嵌山部51とを係合させることが可能となる。   As shown in FIG. 8, the outer fitting step portion 4 (the first outer fitting step portion 41, the second outer fitting step portion 42, the third outer fitting step portion 43) excluding the fourth outer fitting step portion 44 and the first inner portion. In the inner fitting step portion 6 (fourth inner fitting step portion 64, third inner fitting step portion 63, second inner fitting step portion 62) excluding the fitting step portion 61, the length of the inner fitting mountain portion 51 in the axial direction Y The length of the external fitting valley portion 33 corresponding to the fitting time in the axial direction Y is designed to be substantially the same as the length of the external fitting mountain portion 31 in the axial direction Y. It is designed to be approximately equal to the length of the fitting valley portion 53 in the axial direction Y. Thereby, it is possible to engage the outer fitting mountain portion 31 and the inner fitting mountain portion 51 in the axial direction Y.

一方、第4外嵌段部44と第1内嵌段部61においては、図8に示すように、内嵌山部51の軸心方向Yの長さは、外嵌谷部33の軸心方向Yの長さよりも小さく設計される。これにより、内嵌対向部56で内嵌先端面54と、その対向面である外嵌基端面35とが所定の離間距離D(mm)で離間されることになり、内嵌対向部56に内嵌間隙57が形成される。   On the other hand, in the fourth outer fitting step portion 44 and the first inner fitting step portion 61, the length in the axial direction Y of the inner fitting mountain portion 51 is the axial center of the outer fitting valley portion 33, as shown in FIG. It is designed to be smaller than the length in the direction Y. As a result, the inner fitting front end surface 54 and the outer fitting base end surface 35 which is the opposite surface are separated by a predetermined separation distance D (mm) at the inner fitting facing portion 56, and the inner fitting facing portion 56 is separated from the inner fitting facing portion 56. An internal fitting gap 57 is formed.

図9は本発明の第1変形例に係る鋼管杭の継手構造107を示す概略断面図である。この継手構造107では、外嵌余長部45の板厚が第4外嵌段部44の外嵌谷部33の板厚と同等になるように設定されている。この構造によれば、外嵌端部3の材料コストを低減させるとともに、外嵌谷部33の切削加工性を向上させて、外嵌端部3の製造コストを低減させることが可能となる。
この継手構造107の場合、内嵌先端面54の対向面は第1鋼管杭1の端面である。従って、内嵌対向部56で内嵌先端面54と、その対向面である第1鋼管杭1の端面とが所定の離間距離D(mm)で離間されることにより、内嵌対向部56に内嵌間隙157が形成される。
FIG. 9 is a schematic cross-sectional view showing a steel pipe pile joint structure 107 according to a first modification of the present invention. In this joint structure 107, the plate thickness of the external fitting extra length portion 45 is set to be equal to the plate thickness of the external fitting valley portion 33 of the fourth external fitting step portion 44. According to this structure, it is possible to reduce the material cost of the external fitting end portion 3, improve the machinability of the external fitting valley portion 33, and reduce the manufacturing cost of the external fitting end portion 3.
In the case of this joint structure 107, the facing surface of the inner fitting front end surface 54 is the end surface of the first steel pipe pile 1. Therefore, when the inner fitting front end surface 54 and the end surface of the first steel pipe pile 1 which is the opposite surface are separated by a predetermined separation distance D (mm) in the inner fitting facing portion 56, An internal fitting gap 157 is formed.

内嵌間隙57,157が形成されることにより、内嵌先端面54に軸心方向Yの圧縮力が伝達されることを回避することが可能となる。従って、内嵌最薄部50の座屈変形を防止することが可能となる。   By forming the internal fitting gaps 57 and 157, it is possible to avoid the transmission of the compressive force in the axial direction Y to the internal fitting front end surface 54. Accordingly, it is possible to prevent buckling deformation of the innermost fitting thinnest portion 50.

内嵌間隙57,157の離間距離D(mm)は、0mm超であればよい。ただし、鋼管杭が曲げ変形した場合であっても内嵌先端面54に軸心方向Yの圧縮力が伝達されることを回避するために、離間距離D(mm)を下記式(1)を満たすように設定することが好ましい。   The separation distance D (mm) between the internal fitting gaps 57 and 157 may be more than 0 mm. However, in order to avoid the compressive force in the axial direction Y being transmitted to the internally fitted front end surface 54 even when the steel pipe pile is bent and deformed, the separation distance D (mm) is expressed by the following formula (1). It is preferable to set so as to satisfy.

D≧(h+l0.5−l・・・式(1)

h(mm):内嵌端部の先端側に最も近い内嵌段部における内嵌山部の、軸心に向かう方向の突出高さ
l(mm):内嵌端部の先端側に最も近い内嵌段部における内嵌山部の、軸心の延在方向の長さ
D ≧ (h 2 + l 2 ) 0.5 −l Equation (1)

h (mm): Projection height in the direction toward the axial center of the internal fitting step at the internal fitting step closest to the distal end side of the internal fitting end 1 (mm): closest to the distal end side of the internal fitting end Length in the extending direction of the axial center of the internal fitting peak at the internal fitting step

上記式(1)は、図10に示すように、内嵌最薄部50と内嵌山部51との接続点を曲げ中心点Cとする曲げ変形を想定して導出した式である。
すなわち、上記式(1)を満たすように離間距離D(mm)を設定することで、鋼管杭が曲げ変形した場合であっても内嵌先端面54がその対向面に接触することを確実に回避することが可能となる。
As shown in FIG. 10, the above formula (1) is a formula derived on the assumption of bending deformation in which the connection point between the thinnest inner fitting portion 50 and the inner fitting mountain portion 51 is the bending center point C.
That is, by setting the separation distance D (mm) so as to satisfy the above formula (1), it is ensured that the inner fitting front end surface 54 comes into contact with the facing surface even when the steel pipe pile is bent and deformed. It can be avoided.

図11は、本発明の第2変形例に係る継手構造207を示す要部断面図である。この継手構造207では、外嵌対向部36においても内嵌対向部56と同様に、外嵌間隙37が形成されている。この構造によれば、外嵌先端面34に軸心方向Yの圧縮力が伝達されることを回避することが可能となり、外嵌最薄部30の座屈変形を防止することが可能となる。図示は省略するが、内嵌余長部65の板厚が第4内嵌段部64の内嵌谷部53の板厚と同等になるように設定されていてもよい。その場合、外嵌先端面34の対向面は第2鋼管杭2の端面である。また、外嵌間隙37の離間距離D’(mm)は0mm超であればよく、下記式(2)を満たすように設定してもよい。   FIG. 11 is a cross-sectional view of an essential part showing a joint structure 207 according to a second modification of the present invention. In this joint structure 207, the outer fitting gap 37 is formed in the outer fitting facing portion 36 as well as the inner fitting facing portion 56. According to this structure, it is possible to avoid transmission of the compressive force in the axial direction Y to the outer fitting front end surface 34, and it is possible to prevent buckling deformation of the outer fitting thinnest portion 30. . Although illustration is omitted, the plate thickness of the internal fitting excess length portion 65 may be set to be equal to the plate thickness of the internal fitting valley portion 53 of the fourth internal fitting step portion 64. In that case, the opposing surface of the outer fitting front end surface 34 is the end surface of the second steel pipe pile 2. Further, the separation distance D ′ (mm) of the external fitting gap 37 may be more than 0 mm, and may be set so as to satisfy the following formula (2).

D’≧(h’+l’0.5−l’・・・式(2)

h’(mm):外嵌端部の先端側に最も近い外嵌段部における外嵌山部の、軸心に向かう方向の突出高さ
l’(mm):外嵌端部の先端側に最も近い外嵌段部における外嵌山部の、軸心の延在方向の長さ
D ′ ≧ (h ′ 2 + l ′ 2 ) 0.5 −l ′ (2)

h ′ (mm): Projection height in the direction toward the axis of the external fitting step at the external fitting step portion closest to the distal end side of the external fitting end portion l ′ (mm): on the distal end side of the external fitting end portion The length in the extending direction of the shaft center of the outer fitting peak at the nearest outer fitting step

ただし、内嵌対向部56側の方が、外嵌対向部36側よりも鋼管部からの偏心により、圧縮力作用時に座屈変形が生じやすい。従って、外嵌間隙37を設けることにより得られる座屈変形防止効果は、内嵌間隙57を設けることにより得られる座屈変形防止効果よりも小さい。   However, the inner fitting facing portion 56 side is more likely to be buckled and deformed when the compressive force is applied due to the eccentricity from the steel pipe portion than the outer fitting facing portion 36 side. Therefore, the buckling deformation preventing effect obtained by providing the outer fitting gap 37 is smaller than the buckling deformation preventing effect obtained by providing the inner fitting gap 57.

次に、本実施形態に係る継手構造7の当接面8に関して説明する。
本実施形態に係る継手構造7では、内嵌端部5を外嵌端部3に挿入して相対回転させることで、各々の外嵌段部4及び内嵌段部6において、外嵌山部31と内嵌山部51とが軸心方向Yで互いに当接される当接面8が形成される。
Next, the contact surface 8 of the joint structure 7 according to this embodiment will be described.
In the joint structure 7 according to the present embodiment, the inner fitting end portion 5 is inserted into the outer fitting end portion 3 and is relatively rotated, so that the outer fitting step portion 4 and the inner fitting step portion 6 have an outer fitting mountain portion. A contact surface 8 is formed in which 31 and the internally fitted mountain portion 51 are in contact with each other in the axial direction Y.

第1鋼管杭1と第2鋼管杭2とが連結された状態では、第1鋼管杭1及び第2鋼管杭2から外嵌端部3及び内嵌端部5に、軸心方向Yで引張力及び圧縮力が作用する際、軸心方向Yに作用する引張力及び圧縮力に対して、外嵌山部31と内嵌山部51とが軸心方向Yの当接面8で抵抗する。   In a state where the first steel pipe pile 1 and the second steel pipe pile 2 are connected, the first steel pipe pile 1 and the second steel pipe pile 2 are pulled in the axial direction Y from the outer fitting end 3 and the inner fitting end 5. When the force and the compressive force are applied, the outer fitting mountain portion 31 and the inner fitting mountain portion 51 resist the tensile force and the compressive force acting in the axial direction Y at the contact surface 8 in the axial direction Y. .

本実施形態に係る継手構造7では、図12A、図12Bに示すように、各々の外嵌段部4及び内嵌段部6において外嵌山部31と内嵌山部51とが互いに当接される当接面8のうち、外嵌端部3の基端側及び内嵌端部5の基端側が、引張力を負担させる引張側当接面81である。   In the joint structure 7 according to the present embodiment, as shown in FIGS. 12A and 12B, the outer fitting mountain portion 31 and the inner fitting mountain portion 51 come into contact with each other in each of the outer fitting step portion 4 and the inner fitting step portion 6. Among the contact surfaces 8 to be applied, the proximal end side of the outer fitting end portion 3 and the proximal end side of the inner fitting end portion 5 are tensile side contact surfaces 81 that bear a tensile force.

そして、図12A、図12Bに示すように、第1外嵌段部41の外嵌山部31と第4内嵌段部64の内嵌山部51とが、引張側当接面81で引張面積At1を有し、第2外嵌段部42の外嵌山部31と第3内嵌段部63の内嵌山部51とが、引張側当接面81で引張面積At2を有し、第3外嵌段部43の外嵌山部31と第2内嵌段部62の内嵌山部51とが、引張側当接面81で引張面積At3を有し、第4外嵌段部44の外嵌山部31と第1内嵌段部61の内嵌山部51とが、引張側当接面81で引張面積At4を有する。   Then, as shown in FIGS. 12A and 12B, the outer fitting mountain portion 31 of the first outer fitting step portion 41 and the inner fitting mountain portion 51 of the fourth inner fitting step portion 64 are pulled by the pull side contact surface 81. The outer fitting mountain portion 31 of the second outer fitting step portion 42 and the inner fitting mountain portion 51 of the third inner fitting step portion 63 have a tensile area At2 at the tension side contact surface 81, and have an area At1. The outer fitting mountain portion 31 of the third outer fitting step portion 43 and the inner fitting mountain portion 51 of the second inner fitting step portion 62 have a tensile area At3 at the tension-side contact surface 81, and the fourth outer fitting step portion. The outer fitting mountain portion 31 of 44 and the inner fitting mountain portion 51 of the first inner fitting step portion 61 have a tensile area At 4 on the tensile-side contact surface 81.

また、本実施形態に係る継手構造7では、図13A、図13Bに示すように、各々の外嵌段部4及び内嵌段部6において外嵌山部31と内嵌山部51とが互いに当接される当接面8のうち、外嵌端部3の先端側及び内嵌端部5の先端側が、圧縮力を負担させる圧縮側当接面86である。   Moreover, in the joint structure 7 which concerns on this embodiment, as shown to FIG. 13A and FIG. 13B, in each outer fitting step part 4 and each inner fitting step part 6, the outer fitting mountain part 31 and the inner fitting mountain part 51 mutually mutually. Among the contact surfaces 8 to be contacted, the distal end side of the outer fitting end portion 3 and the distal end side of the inner fitting end portion 5 are compression side abutting surfaces 86 that bear a compressive force.

そして、図13A、図13Bに示すように、第2外嵌段部42の外嵌山部31と第4内嵌段部64の内嵌山部51とが、圧縮側当接面86で圧縮面積Ac1を有し、第3外嵌段部43の外嵌山部31と第3内嵌段部63の内嵌山部51とが、圧縮側当接面86で圧縮面積Ac2を有し、第4外嵌段部44の外嵌山部31と第2内嵌段部62の内嵌山部51とが、圧縮側当接面86で圧縮面積Ac3を有する。   Then, as shown in FIGS. 13A and 13B, the outer fitting mountain portion 31 of the second outer fitting step portion 42 and the inner fitting mountain portion 51 of the fourth inner fitting step portion 64 are compressed by the compression side contact surface 86. The outer fitting mountain portion 31 of the third outer fitting step portion 43 and the inner fitting mountain portion 51 of the third inner fitting step portion 63 have a compression area Ac2 at the compression side abutment surface 86. The outer fitting mountain portion 31 of the fourth outer fitting step portion 44 and the inner fitting mountain portion 51 of the second inner fitting step portion 62 have a compression area Ac3 at the compression side contact surface 86.

本実施形態に係る継手構造7では、外嵌対向部36で外嵌先端面34と内嵌基端面55とが当接され、一方、内嵌対向部56では内嵌先端面54と外嵌基端面35とが当接されない構造を有する。
従って、本実施形態に係る継手構造7においては、
(A)軸心方向Yに作用する引張力に対しては、外嵌山部31と内嵌山部51とが互いに当接される4箇所の引張側当接面81のみで抵抗し、
(B)軸心方向Yに作用する圧縮力に対しては、外嵌端部3の先端側の外嵌先端面34、及び、外嵌山部31と内嵌山部51とが互いに当接される3箇所の圧縮側当接面86のみで抵抗する。
In the joint structure 7 according to the present embodiment, the outer fitting front end face 34 and the inner fitting base end face 55 are brought into contact with each other at the outer fitting facing portion 36, while the inner fitting front end face 54 and the outer fitting base end 55 are brought into contact with each other. It has a structure in which the end face 35 is not brought into contact.
Therefore, in the joint structure 7 according to the present embodiment,
(A) The tensile force acting in the axial direction Y is resisted only by the four tensile side contact surfaces 81 where the outer fitting mountain portion 31 and the inner fitting mountain portion 51 are in contact with each other,
(B) For the compressive force acting in the axial direction Y, the outer fitting front end surface 34 on the front end side of the outer fitting end portion 3 and the outer fitting mountain portion 31 and the inner fitting mountain portion 51 abut each other. Only the three compression-side contact surfaces 86 are resisted.

尚、上述の第2変形例に係る継手構造207(図11)のように、外嵌対向部36においても内嵌対向部56と同様に、外嵌間隙37が形成されている構造を有する場合、継手構造207においては、
(A’)軸心方向Yに作用する引張力に対しては、外嵌山部31と内嵌山部51とが互いに当接される4箇所の引張側当接面81のみで抵抗し、
(B’)軸心方向Yに作用する圧縮力に対しては、外嵌山部31と内嵌山部51とが互いに当接される3箇所の圧縮側当接面86のみで抵抗する。
In addition, as in the joint structure 207 (FIG. 11) according to the second modified example described above, the outer fitting facing portion 36 has a structure in which the outer fitting gap 37 is formed as in the inner fitting facing portion 56. In the joint structure 207,
(A ′) The tensile force acting in the axial direction Y is resisted only by the four tension side contact surfaces 81 where the outer fitting mountain portion 31 and the inner fitting mountain portion 51 are in contact with each other,
(B ′) The compression force acting in the axial direction Y is resisted only by the three compression side contact surfaces 86 on which the outer fitting mountain portion 31 and the inner fitting mountain portion 51 are in contact with each other.

外嵌段部4と内嵌段部6とで互いに当接される当接面8のうち、引張力を負担させる引張側当接面81の総面積(At1+At2+At3+At4)は、圧縮力を負担させる外嵌先端面34の面積(第2変形例に係る継手構造207の場合は0)と、圧縮力を負担させる圧縮側当接面86の総面積(Ac1+Ac2+Ac3)との合計面積以下となるように形成される。   The total area (At1 + At2 + At3 + At4) of the tension side abutment surface 81 that bears the tensile force among the abutment surfaces 8 that are in contact with each other between the outer fitting stepped portion 4 and the inner fitting stepped portion 6 is an outer portion that bears the compressive force. Formed to be equal to or less than the total area of the fitting tip surface 34 (0 in the case of the joint structure 207 according to the second modification) and the total area (Ac1 + Ac2 + Ac3) of the compression-side contact surface 86 bearing the compressive force. Is done.

また、外嵌段部4と内嵌段部6とで互いに当接される当接面8のうち、引張力を負担させる引張側当接面81の総面積(At1+At2+At3+At4)が、圧縮力を負担させる圧縮側当接面86の総面積(Ac1+Ac2+Ac3)以下となるように形成されることが好ましい。   In addition, the total area (At1 + At2 + At3 + At4) of the tension side abutment surface 81 that bears the tensile force among the abutment surfaces 8 that are in contact with each other between the outer fitting stepped portion 4 and the inner fitting stepped portion 6 bears the compressive force. The compression-side contact surface 86 is preferably formed to have a total area (Ac1 + Ac2 + Ac3) or less.

このように、本実施形態に係る継手構造7では、引張側当接面81が形成される段数よりも、圧縮側当接面86が形成される段数の方が少ないにもかかわらず、引張側当接面81の総面積を、圧縮力を負担させる外嵌先端面34の面積と、圧縮側当接面86の総面積との合計面積以下とするように、各々の外嵌山部31及び内嵌山部51が互いに当接される当接面8が形成される。   Thus, in the joint structure 7 according to the present embodiment, the number of steps on which the compression-side contact surface 86 is formed is smaller than the number of steps on which the tension-side contact surface 81 is formed. Each of the outer fitting ridge portions 31 and the total fitting area 31 is set so that the total area of the abutting surface 81 is equal to or less than the total area of the outer fitting front end surface 34 that bears the compressive force and the total area of the compression side abutting surface 86. A contact surface 8 is formed on which the internal fitting mountain portions 51 are in contact with each other.

尚、外嵌先端面34に、外嵌端部3と内嵌端部5の嵌合後の相対回転を抑止するための回転抑止キーを挿入するためのキー溝Pが形成される場合、「圧縮力を負担させる外嵌先端面34の面積」は、キー溝が形成されている箇所の面積を含まない。回転抑止キーは基本的に圧縮力を負担しないためである。   In addition, when the key groove P for inserting the rotation suppression key for suppressing the relative rotation after fitting of the outer fitting end portion 3 and the inner fitting end portion 5 is formed on the outer fitting front end surface 34, “ The “area of the outer fitting front end surface 34 that bears the compressive force” does not include the area of the portion where the key groove is formed. This is because the rotation suppression key basically does not bear the compression force.

本実施形態に係る継手構造7では、圧縮力を負担させる外嵌先端面34の面積と、圧縮側当接面86の総面積との合計面積を、引張側当接面81の総面積以上とすることで、軸心方向Yで引張力と同等以上の大きさで作用する圧縮力に対して、外嵌先端面及び各々の外嵌山部31及び内嵌山部51の圧縮側当接面86のみで抵抗することができる。
また、圧縮側当接面86の総面積を、引張側当接面81の総面積以上とする場合には、軸心方向Yで引張力と同等以上の大きさで作用する圧縮力に対して、各々の外嵌山部31及び内嵌山部51の圧縮側当接面86のみで抵抗することができる。
In the joint structure 7 according to the present embodiment, the total area of the outer fitting front end surface 34 that bears the compressive force and the total area of the compression side contact surface 86 is equal to or greater than the total area of the tension side contact surface 81. Thus, against the compression force acting in the axial direction Y with a magnitude equal to or greater than the tensile force, the outer fitting front end surface and the compression-side contact surface of each outer fitting mountain portion 31 and inner fitting mountain portion 51 Only 86 can resist.
Further, when the total area of the compression-side contact surface 86 is equal to or greater than the total area of the tension-side contact surface 81, the compression force acting in the axial direction Y with a magnitude equal to or greater than the tensile force. Resistance can be achieved only by the compression-side contact surface 86 of each of the outer fitting mountain portion 31 and the inner fitting mountain portion 51.

本実施形態に係る継手構造7では、外嵌先端面34と内嵌基端面55とが外嵌対向部36で当接された場合であっても、第1外嵌段部41の外嵌山部31に圧縮力が実質的に作用しないため、第1外嵌段部41の外嵌山部31に作用する圧縮力を設計上で考慮することを必要としない。   In the joint structure 7 according to this embodiment, even if the outer fitting front end surface 34 and the inner fitting base end surface 55 are in contact with each other by the outer fitting facing portion 36, the outer fitting mountain of the first outer fitting step portion 41 is used. Since the compressive force does not substantially act on the portion 31, it is not necessary to consider the compressive force acting on the external fitting mountain portion 31 of the first external fitting step portion 41 in design.

図14に、本実施形態に係る継手構造7の外嵌端部3において伝達される引張力を示す。
第1外嵌段部41の外嵌谷部33には、第1外嵌段部41の外嵌山部31に作用する引張力が伝達される。第2外嵌段部42の外嵌谷部33には、第1外嵌段部41、及び、第2外嵌段部42の外嵌山部31に作用する引張力が合わさって伝達される。第3外嵌段部43の外嵌谷部33には、第1外嵌段部41、第2外嵌段部42、及び、第3外嵌段部43の外嵌山部31に作用する引張力が合わさって伝達される。第4外嵌段部44の外嵌谷部33には、第1外嵌段部41、第2外嵌段部42、第3外嵌段部43、及び、第4外嵌段部44の外嵌山部31に作用する引張力が合わさって伝達される。
In FIG. 14, the tensile force transmitted in the external fitting end part 3 of the joint structure 7 which concerns on this embodiment is shown.
A tensile force acting on the outer fitting mountain portion 31 of the first outer fitting step portion 41 is transmitted to the outer fitting valley portion 33 of the first outer fitting step portion 41. Tensile force acting on the first outer fitting step portion 41 and the outer fitting mountain portion 31 of the second outer fitting step portion 42 is transmitted to the outer fitting valley portion 33 of the second outer fitting step portion 42 together. . The outer fitting valley portion 33 of the third outer fitting step portion 43 acts on the first outer fitting step portion 41, the second outer fitting step portion 42, and the outer fitting mountain portion 31 of the third outer fitting step portion 43. The tensile force is transmitted together. The outer fitting valley portion 33 of the fourth outer fitting step portion 44 includes a first outer fitting step portion 41, a second outer fitting step portion 42, a third outer fitting step portion 43, and a fourth outer fitting step portion 44. The tensile force acting on the outer fitting mountain portion 31 is transmitted together.

同様に、図15に、本実施形態に係る継手構造7の外嵌端部3において伝達さる圧縮力を示す。
第2外嵌段部42の外嵌谷部33には、第2外嵌段部42の外嵌山部31に作用する圧縮力が伝達される。第3外嵌段部43の外嵌谷部33には、第2外嵌段部42、及び、第3外嵌段部43の外嵌山部31に作用する圧縮力が合わさって伝達される。第4外嵌段部44の外嵌谷部33には、第2外嵌段部42、第3外嵌段部43、及び、第4外嵌段部44の外嵌山部31に作用する圧縮力が合わさって伝達される。
Similarly, in FIG. 15, the compressive force transmitted in the external fitting end part 3 of the joint structure 7 which concerns on this embodiment is shown.
A compression force acting on the outer fitting mountain portion 31 of the second outer fitting step portion 42 is transmitted to the outer fitting valley portion 33 of the second outer fitting step portion 42. A compression force acting on the second outer fitting step portion 42 and the outer fitting mountain portion 31 of the third outer fitting step portion 43 is transmitted to the outer fitting valley portion 33 of the third outer fitting step portion 43 together. . The outer fitting valley portion 33 of the fourth outer fitting step portion 44 acts on the second outer fitting step portion 42, the third outer fitting step portion 43, and the outer fitting mountain portion 31 of the fourth outer fitting step portion 44. The compressive force is combined and transmitted.

このように、本実施形態に係る継手構造7では、外嵌端部3の基端側から先端側に向けて、外嵌山部31から外嵌谷部33に伝達される引張力及び圧縮力が低下することから、外嵌端部3の先端側で外嵌谷部33の板厚を小さくしても、これらの引張力及び圧縮力に抵抗することができる。これにより、外嵌端部3の基端側から先端側に向けて、外嵌谷部33の板厚を小さくして、外嵌端部3全体の板厚の増大を抑制することで、材料コストの上昇を抑制することが可能となる。   Thus, in the joint structure 7 according to the present embodiment, the tensile force and the compressive force transmitted from the external fitting mountain portion 31 to the external fitting valley portion 33 from the proximal end side to the distal end side of the external fitting end portion 3. Therefore, even if the thickness of the external fitting valley portion 33 is reduced on the distal end side of the external fitting end portion 3, it is possible to resist these tensile and compressive forces. Thereby, by reducing the plate thickness of the external fitting valley portion 33 from the base end side to the distal end side of the external fitting end portion 3, and suppressing the increase in the plate thickness of the entire external fitting end portion 3, the material An increase in cost can be suppressed.

本実施形態に係る継手構造7では、外嵌端部3の先端側の第1外嵌段部41で外嵌谷部33の板厚を小さくして、外嵌端部3の材料コストの上昇を抑制すると同時に、第1外嵌段部41の外嵌山部31に圧縮力が極力作用しないものとすることで、第1外嵌段部41で外嵌谷部33に圧縮力が実質的に伝達されないものとなり、外嵌最薄部30の座屈変形を防止することが可能となる。   In the joint structure 7 according to the present embodiment, the plate thickness of the outer fitting valley portion 33 is reduced at the first outer fitting step portion 41 on the distal end side of the outer fitting end portion 3, and the material cost of the outer fitting end portion 3 is increased. And at the same time, the compression force is not substantially applied to the outer fitting mountain portion 31 of the first outer fitting step portion 41, so that the compression force is substantially applied to the outer fitting valley portion 33 in the first outer fitting step portion 41. Therefore, the buckling deformation of the thinnest outer fitting portion 30 can be prevented.

また、本実施形態に係る継手構造7では、第1外嵌段部41の外嵌山部31に圧縮力が作用しても、第1外嵌段部41の外嵌谷部33に圧縮耐力を期待しない。このため、継手構造7は、第1外嵌段部41の外嵌谷部33に伝達された圧縮力で外嵌最薄部30が座屈変形した場合であっても、第2外嵌段部42、第3外嵌段部43及び第4外嵌段部44の外嵌谷部33で圧縮力に抵抗することができるため、外嵌端部3全体で所定の圧縮耐力を保持することが可能となる。   Further, in the joint structure 7 according to the present embodiment, even if a compressive force acts on the outer fitting mountain portion 31 of the first outer fitting step portion 41, the compressive strength is applied to the outer fitting valley portion 33 of the first outer fitting step portion 41. Do not expect. For this reason, the joint structure 7 has the second outer fitting step even when the outer fitting thinnest portion 30 is buckled and deformed by the compressive force transmitted to the outer fitting valley portion 33 of the first outer fitting step portion 41. Since the compression force can be resisted by the external fitting valley portion 33 of the part 42, the third external fitting step portion 43, and the fourth external fitting step portion 44, the entire external fitting end portion 3 can maintain a predetermined compression strength. Is possible.

図16に、本実施形態に係る継手構造7の内嵌端部5において伝達される引張力を示す。
第1内嵌段部61の内嵌谷部53には、第1内嵌段部61の内嵌山部51に作用する引張力が伝達される。第2内嵌段部62の内嵌谷部53には、第1内嵌段部61及び第2内嵌段部62の内嵌山部51に作用する引張力が合わさって伝達される。第3内嵌段部63の内嵌谷部53には、第1内嵌段部61、第2内嵌段部62、及び、第3内嵌段部63の内嵌山部51に作用する引張力が合わさって伝達される。第4内嵌段部64の内嵌谷部53には、第1内嵌段部61、第2内嵌段部62、第3内嵌段部63、及び、第4内嵌段部64の内嵌山部51に作用する引張力が合わさって伝達される。
In FIG. 16, the tensile force transmitted in the internal fitting end part 5 of the joint structure 7 which concerns on this embodiment is shown.
A tensile force acting on the inner fitting mountain portion 51 of the first inner fitting step portion 61 is transmitted to the inner fitting valley portion 53 of the first inner fitting step portion 61. Tensile forces acting on the first internal fitting step portion 61 and the internal fitting mountain portion 51 of the second internal fitting step portion 62 are transmitted together to the internal fitting valley portion 53 of the second internal fitting step portion 62. The inner fitting valley portion 53 of the third inner fitting step portion 63 acts on the first inner fitting step portion 61, the second inner fitting step portion 62, and the inner fitting mountain portion 51 of the third inner fitting step portion 63. The tensile force is transmitted together. The inner trough 53 of the fourth inner step 64 has a first inner step 61, a second inner step 62, a third inner step 63, and a fourth inner step 64. The tensile force acting on the inner fitting mountain portion 51 is transmitted together.

同様に、図17に、本実施形態に係る継手構造7の内嵌端部5において伝達される圧縮力を示す。
第2内嵌段部62の内嵌谷部53には、第2内嵌段部62の内嵌山部51に作用する圧縮力が伝達される。第3内嵌段部63の内嵌谷部53には、第2内嵌段部62、及び、第3内嵌段部63の内嵌山部51に作用する圧縮力が合わさって伝達される。第4内嵌段部64の内嵌谷部53には、第2内嵌段部62、第3内嵌段部63、及び、第4内嵌段部64の内嵌山部51に作用する圧縮力が合わさって伝達される。
Similarly, in FIG. 17, the compressive force transmitted in the internal fitting end part 5 of the joint structure 7 which concerns on this embodiment is shown.
A compression force acting on the inner fitting mountain portion 51 of the second inner fitting step portion 62 is transmitted to the inner fitting valley portion 53 of the second inner fitting step portion 62. The compressive force acting on the second internal fitting step portion 62 and the internal fitting mountain portion 51 of the third internal fitting step portion 63 is transmitted to the internal fitting valley portion 53 of the third internal fitting step portion 63 together. . The inner fitting valley portion 53 of the fourth inner fitting step portion 64 acts on the second inner fitting step portion 62, the third inner fitting step portion 63, and the inner fitting mountain portion 51 of the fourth inner fitting step portion 64. The compressive force is combined and transmitted.

このように、本実施形態に係る継手構造7では、内嵌端部5の基端側から先端側に向けて、内嵌山部51から内嵌谷部53に伝達される引張力及び圧縮力が低下することから、内嵌端部5の先端側で内嵌谷部53の板厚を小さくしても、これらの引張力及び圧縮力に抵抗することができる。これにより、継手構造7は、内嵌端部5の基端側から先端側に向けて、内嵌谷部53の板厚を小さくして、内嵌端部5全体の板厚の増大を抑制することで、材料コストの上昇を抑制することが可能となる。   Thus, in the joint structure 7 according to the present embodiment, the tensile force and the compressive force transmitted from the inner fitting mountain portion 51 to the inner fitting valley portion 53 from the proximal end side to the distal end side of the inner fitting end portion 5. Therefore, even if the thickness of the inner fitting valley portion 53 is reduced on the distal end side of the inner fitting end portion 5, it is possible to resist these tensile force and compression force. Thereby, the joint structure 7 reduces the plate | board thickness of the internal fitting trough part 53 toward the front end side from the base end side of the internal fitting end part 5, and suppresses the increase in the board thickness of the internal fitting end part 5 whole. By doing so, it is possible to suppress an increase in material cost.

継手構造7は、内嵌端部5の先端側の第1内嵌段部61で内嵌谷部53の板厚を小さくして、内嵌端部5の材料コストの上昇を抑制すると同時に、内嵌間隙57により第1内嵌段部61の内嵌山部51に圧縮力が作用しないものとすることで、第1内嵌段部61で内嵌谷部53に圧縮力が伝達されないものとなり、内嵌最薄部50の座屈変形を防止することが可能となる。   The joint structure 7 reduces the plate thickness of the inner fitting valley portion 53 at the first inner fitting step portion 61 on the distal end side of the inner fitting end portion 5 and suppresses an increase in material cost of the inner fitting end portion 5. The compression force is not transmitted to the internal fitting valley portion 53 in the first internal fitting step portion 61 because the internal fitting gap 57 prevents the compression force from acting on the internal fitting mountain portion 51 of the first internal fitting step portion 61. Thus, it is possible to prevent buckling deformation of the thinnest inner fitting portion 50.

図18Aは本発明の第3変形例に係る継手構造307を示す。この継手構造307のように、複数の外嵌段部4及び内嵌段部6の一部又は全部で、外嵌谷部33及び内嵌山部51の軸心直交方向Xの側面にテーパを設けてもよい。   FIG. 18A shows a joint structure 307 according to a third modification of the present invention. Like this joint structure 307, a part or all of the plurality of outer fitting stepped portions 4 and inner fitting stepped portions 6 are tapered on the side surfaces in the direction orthogonal to the axial center X of the outer fitting valley portion 33 and the inner fitting mountain portion 51. It may be provided.

図18Bは本発明の第4変形例に係る継手構造407を示す。この継手構造407のように、複数の外嵌段部4及び内嵌段部6の一部又は全部で、内嵌谷部53及び外嵌山部31の軸心直交方向Xの側面にテーパを設けてもよい。   FIG. 18B shows a joint structure 407 according to a fourth modification of the present invention. As in the joint structure 407, a part or all of the plurality of outer fitting stepped portions 4 and the inner fitting stepped portion 6 are tapered on the side surfaces in the axial orthogonal direction X of the inner fitting valley portion 53 and the outer fitting mountain portion 31. It may be provided.

本実施形態に係る継手構造7では、図19に示すように、外嵌端部3の先端側から基端側に向けて、各々の外嵌段部4の外嵌山部31が、軸心直交方向Xの内側に配置される。
本実施形態に係る継手構造7では、中心軸から第1外嵌段部41の外嵌山部31までの半径r41、中心軸から第2外嵌段部42の外嵌山部31までの半径r42、中心軸から第3外嵌段部43の外嵌山部31までの半径r43、中心軸から第4外嵌段部44の外嵌山部31までの半径r44と定義した場合に、r41>r42>r43>r44の関係が満たされる。
In the joint structure 7 according to the present embodiment, as shown in FIG. 19, the external fitting mountain portions 31 of the respective external fitting step portions 4 are axially centered from the distal end side to the proximal end side of the external fitting end portion 3. It is arranged inside the orthogonal direction X.
In the joint structure 7 according to the present embodiment, a radius r41 from the central axis to the external fitting mountain portion 31 of the first external fitting step portion 41, and a radius from the central axis to the external fitting mountain portion 31 of the second external fitting step portion 42. When r42 is defined as a radius r43 from the central axis to the external fitting mountain portion 31 of the third external fitting stepped portion 43, and a radius r44 from the central axis to the external fitting mountain portion 31 of the fourth external fitting stepped portion 44, r41 The relationship of>r42>r43> r44 is satisfied.

更に、本実施形態に係る継手構造7では、図19に示すように、第1外嵌段部41の外嵌山部31で外嵌端部3の基端側の高さをht1、第2外嵌段部42の外嵌山部31で外嵌端部3の基端側の高さをht2、第3外嵌段部43の外嵌山部31で外嵌端部3の基端側の高さをht3、第4外嵌段部44の外嵌山部31で外嵌端部3の基端側の高さをht4と定義した場合に、ht1≦ht2≦ht3≦ht4の関係が満たされる。   Furthermore, in the joint structure 7 according to the present embodiment, as shown in FIG. 19, the height of the base end side of the outer fitting end portion 3 at the outer fitting mountain portion 31 of the first outer fitting step portion 41 is set to ht1, The height of the base end side of the external fitting end portion 3 at the external fitting mountain portion 31 of the external fitting step portion 42 is ht2, and the base end side of the external fitting end portion 3 at the external fitting mountain portion 31 of the third external fitting step portion 43. Is defined as ht3, and the height of the base end side of the outer fitting end portion 3 is defined as ht4 in the outer fitting mountain portion 31 of the fourth outer fitting step portion 44, the relationship of ht1 ≦ ht2 ≦ ht3 ≦ ht4 is established. It is filled.

ここで、ht1=ht2=ht3=ht4の関係が満たされるように、外嵌山部31の高さが略同一に設定されてもよい。この場合、外嵌山部31の切削加工性の観点から好ましい。   Here, the heights of the external fitting mountain portions 31 may be set to be substantially the same so that the relationship of ht1 = ht2 = ht3 = ht4 is satisfied. In this case, it is preferable from the viewpoint of the cutting workability of the external fitting mountain portion 31.

また、r41>r42>r43>r44の関係に追従して、ht1<ht2<ht3<ht4の関係が満たされるように、外嵌山部31の高さを設定することで、各々の外嵌段部4の外嵌山部31において、引張面積At1、引張面積At2、引張面積At3及び引張面積At4を略同一にしてもよい。   Further, following the relationship of r41> r42> r43> r44, the height of the external fitting mountain portion 31 is set so that the relationship of ht1 <ht2 <ht3 <ht4 is satisfied, so that each external fitting step In the external fitting mountain portion 31 of the portion 4, the tensile area At1, the tensile area At2, the tensile area At3, and the tensile area At4 may be substantially the same.

同様に、本実施形態に係る継手構造7では、図19に示すように、第2外嵌段部42の外嵌山部31で外嵌端部3の先端側の高さをhc1、第3外嵌段部43の外嵌山部31で外嵌端部3の基端側の高さをhc2、第4外嵌段部44の外嵌山部31で外嵌端部3の基端側の高さをhc3、と定義した場合に、hc1≦hc2≦hc3の関係が満たされる。   Similarly, in the joint structure 7 according to the present embodiment, as shown in FIG. 19, the height of the front end side of the outer fitting end portion 3 at the outer fitting mountain portion 31 of the second outer fitting step portion 42 is hc1, third. The height of the base end side of the outer fitting end portion 3 is hc2 at the outer fitting mountain portion 31 of the outer fitting step portion 43, and the base end side of the outer fitting end portion 3 at the outer fitting mountain portion 31 of the fourth outer fitting step portion 44. Is defined as hc3, the relationship of hc1 ≦ hc2 ≦ hc3 is satisfied.

ここで、hc1=hc2=hc3の関係が満たされるように、外嵌山部31の高さが略同一に設定されてもよい。この場合、外嵌山部31の切削加工性の観点から好ましい。   Here, the height of the external fitting mountain portion 31 may be set to be substantially the same so that the relationship of hc1 = hc2 = hc3 is satisfied. In this case, it is preferable from the viewpoint of the cutting workability of the external fitting mountain portion 31.

また、r41>r42>r43>r44の関係に追従して、hc1<hc2<hc3の関係が満たされるように、外嵌山部31の高さを設定することで、各々の外嵌段部4の外嵌山部31において、圧縮面積Ac1、圧縮面積Ac2、及び圧縮面積Ac3を略同一にしてもよい。   In addition, following the relationship of r41> r42> r43> r44, the height of the outer fitting mountain portion 31 is set so that the relationship of hc1 <hc2 <hc3 is satisfied, so that each outer fitting step portion 4 is set. In the outer fitting mountain portion 31, the compression area Ac1, the compression area Ac2, and the compression area Ac3 may be substantially the same.

本実施形態に係る継手構造7では、図20に示すように、内嵌端部5の先端側から基端側に向けて、各々の内嵌段部6の内嵌山部51が、軸心直交方向Xの外側に配置される。
本実施形態に係る継手構造7では、中心軸から第1内嵌段部61の内嵌山部51までの半径r61、中心軸から第2内嵌段部62の内嵌山部51までの半径r62、中心軸から第3内嵌段部63の内嵌山部51までの半径r63、中心軸から第4内嵌段部64の内嵌山部51までの半径r64と定義した場合に、r61<r62<r63<r64の関係が満たされる。
In the joint structure 7 according to the present embodiment, as shown in FIG. 20, the inner fitting mountain portions 51 of the respective inner fitting step portions 6 are axially centered from the distal end side to the proximal end side of the inner fitting end portion 5. It is arranged outside the orthogonal direction X.
In the joint structure 7 according to the present embodiment, a radius r61 from the central axis to the internal fitting mountain portion 51 of the first internal fitting step portion 61, and a radius from the central axis to the internal fitting mountain portion 51 of the second internal fitting step portion 62. When r62 is defined as a radius r63 from the central axis to the internal fitting mountain portion 51 of the third internal fitting step portion 63, and a radius r64 from the central axis to the internal fitting mountain portion 51 of the fourth internal fitting step portion 64, r61 The relationship <r62 <r63 <r64 is satisfied.

更に、本実施形態に係る継手構造7では、図20に示すように、第4内嵌段部64の内嵌山部51で内嵌端部5の基端側の高さをht1、第3内嵌段部63の内嵌山部51で内嵌端部5の基端側の高さをht2、第2内嵌段部62の内嵌山部51で内嵌端部5の基端側の高さをht3、第1内嵌段部61の内嵌山部51で内嵌端部5の基端側の高さをht4と定義した場合に、ht1≧ht2≧ht3≧ht4の関係が満たされる。   Furthermore, in the joint structure 7 according to the present embodiment, as shown in FIG. 20, the height of the base end side of the inner fitting end portion 5 at the inner fitting mountain portion 51 of the fourth inner fitting step portion 64 is set to ht1, The height of the base end side of the internal fitting end portion 5 at the internal fitting mountain portion 51 of the internal fitting step portion 63 is ht2, and the base end side of the internal fitting end portion 5 at the internal fitting mountain portion 51 of the second internal fitting step portion 62. Is defined as ht3, and the height of the base end side of the inner fitting end portion 5 is defined as ht4 in the inner fitting mountain portion 51 of the first inner fitting step portion 61, the relationship of ht1 ≧ ht2 ≧ ht3 ≧ ht4 is established. It is filled.


ここで、ht1=ht2=ht3=ht4の関係が満たされるように内嵌山部51の高さが略同一に設定されてもよい。この場合、内嵌山部51の切削加工性の観点から好ましい。

Here, the height of the inner fitting mountain portion 51 may be set to be substantially the same so that the relationship of ht1 = ht2 = ht3 = ht4 is satisfied. In this case, it is preferable from the viewpoint of the cutting workability of the internal fitting mountain portion 51.

また、r61<r62<r63<r64の関係に追従して、ht1<ht2<ht3<ht4の関係が満たされるように、内嵌山部51の高さを設定することで、各々の内嵌段部6の内嵌山部51において、引張面積At1、引張面積At2、引張面積At3及び引張面積At4を略同一にしてもよい。   Further, following the relationship of r61 <r62 <r63 <r64, by setting the height of the internal fitting mountain portion 51 so that the relationship of ht1 <ht2 <ht3 <ht4 is satisfied, each internal fitting step In the internal fitting mountain part 51 of the part 6, the tensile area At1, the tensile area At2, the tensile area At3, and the tensile area At4 may be substantially the same.

同様に、本実施形態に係る継手構造7では、図20に示すように、第4内嵌段部64の内嵌山部51で内嵌端部5の先端側の高さをhc1、第3内嵌段部63の内嵌山部51で内嵌端部5の基端側の高さをhc2、第2内嵌段部62の内嵌山部51で内嵌端部5の基端側の高さをhc3、と定義した場合に、hc1≧hc2≧hc3の関係が満たされる。   Similarly, in the joint structure 7 according to the present embodiment, as shown in FIG. 20, the height of the tip end side of the inner fitting end portion 5 at the inner fitting mountain portion 51 of the fourth inner fitting step portion 64 is hc1, third. The height of the base end side of the internal fitting end portion 5 at the internal fitting mountain portion 51 of the internal fitting step portion 63 is hc2, and the base end side of the internal fitting end portion 5 at the internal fitting mountain portion 51 of the second internal fitting step portion 62. Is defined as hc3, the relationship of hc1 ≧ hc2 ≧ hc3 is satisfied.

ここで、hc1=hc2=hc3の関係が満たされるように、内嵌山部51の高さが略同一に設定されてもよい。この場合、内嵌山部51の切削加工性の観点から好ましい。   Here, the heights of the internal fitting mountain portions 51 may be set substantially the same so that the relationship of hc1 = hc2 = hc3 is satisfied. In this case, it is preferable from the viewpoint of the cutting workability of the internal fitting mountain portion 51.

また、r61<r62<r63<r64の関係に追従して、hc1<hc2<hc3の関係が満たされるように、内嵌山部51の高さを設定することで、各々の内嵌段部6の内嵌山部51において、圧縮面積Ac1、圧縮面積Ac2、及び圧縮面積Ac3を略同一にしてもよい。   Further, following the relationship of r61 <r62 <r63 <r64, the height of the inner fitting mountain portion 51 is set so that the relationship of hc1 <hc2 <hc3 is satisfied, whereby each inner fitting step portion 6 is set. In the inner fitting mountain portion 51, the compression area Ac1, the compression area Ac2, and the compression area Ac3 may be substantially the same.

尚、引張面積At1、引張面積At2、引張面積At3及び引張面積At4が略同一に設定される場合、軸心方向Yに作用する引張力に対して、各々の外嵌段部4及び内嵌段部6の外嵌山部31及び内嵌山部51において、略均等に抵抗することができる。
また、圧縮面積Ac1、圧縮面積Ac2及び圧縮面積Ac3が略同一に設定されることで、軸心方向Yに作用する圧縮力に対して、各々の外嵌段部4及び内嵌段部6の外嵌山部31及び内嵌山部51において、略均等に抵抗することができる。
これにより、継手構造7は、軸心方向Yに作用する引張力及び圧縮力に対して、各々の外嵌段部4及び内嵌段部6の外嵌山部31及び内嵌山部51で、略均等に抵抗することができるため、外嵌端部3及び内嵌端部5の構造耐力上の無駄を低減させて、引張力及び圧縮力に対する構造計算を容易にすることが可能となる。
When the tensile area At1, the tensile area At2, the tensile area At3, and the tensile area At4 are set to be substantially the same, the external fitting step 4 and the internal fitting step are respectively applied to the tensile force acting in the axial direction Y. In the outer fitting mountain part 31 and the inner fitting mountain part 51 of the part 6, it can resist substantially equally.
In addition, the compression area Ac1, the compression area Ac2, and the compression area Ac3 are set to be substantially the same, so that the outer fitting step part 4 and the inner fitting step part 6 have a compressive force acting in the axial direction Y. In the external fitting mountain part 31 and the internal fitting mountain part 51, it can resist substantially equally.
As a result, the joint structure 7 can be applied to the outer fitting step portion 4 and the inner fitting step portion 51 of the inner fitting step portion 6 and the inner fitting step portion 51 with respect to the tensile force and compression force acting in the axial direction Y. Since it can resist substantially evenly, it is possible to reduce the waste in structural strength of the outer fitting end portion 3 and the inner fitting end portion 5 and facilitate the structural calculation for the tensile force and the compressive force. .

本願発明に係る継手構造7は、上述のように、複数の内嵌段部における内嵌山部の突出高さ同士、及び、複数の外嵌段部における外嵌山部の突出高さ同士の少なくとも一方が、略同一であってもよい。
本願発明における「略同一」とは、20%程度の製造誤差等を許容するものであり、外嵌山部31及び内嵌山部51にこれらの製造誤差等が生じた場合であっても、これらの面積は略同一に設定されたものとする。
In the joint structure 7 according to the present invention, as described above, the protrusion heights of the internal fitting mountain portions in the plurality of internal fitting step portions, and the protrusion heights of the external fitting mountain portions in the plurality of external fitting step portions are as described above. At least one of them may be substantially the same.
“Substantially the same” in the present invention allows a manufacturing error of about 20%, and even when these manufacturing errors occur in the outer fitting mountain portion 31 and the inner fitting mountain portion 51, These areas are set to be substantially the same.

以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。   As mentioned above, although the example of embodiment of this invention was demonstrated in detail, all the embodiment mentioned above showed only the example of actualization in implementing this invention, and these are the technical aspects of this invention. The range should not be interpreted in a limited way.

例えば、第1鋼管杭1に内嵌端部5が取り付けられるとともに、第2鋼管杭2に外嵌端部3が取り付けられてもよい。
また、外嵌端部3及び内嵌端部5の軸心方向Yで外嵌段部4及び内嵌段部6が如何なる段数で形成されてもよい。
また、各々の外嵌段部4や内嵌段部6において、各々の外嵌山部31及び内嵌山部51が軸心方向Yの位置をずらして略千鳥状に配置されるものであってもよい。
また、第1鋼管杭1又は第2鋼管杭2の端部を切削することで、第1鋼管杭1又は第2鋼管杭2そのものに外嵌端部3又は内嵌端部5が設けられてもよい。
For example, the inner fitting end 5 may be attached to the first steel pipe pile 1 and the outer fitting end 3 may be attached to the second steel pipe pile 2.
Further, the outer fitting step portion 4 and the inner fitting step portion 6 may be formed in any number of steps in the axial direction Y of the outer fitting end portion 3 and the inner fitting end portion 5.
Further, in each of the outer fitting stepped portion 4 and the inner fitting stepped portion 6, each of the outer fitting mountain portion 31 and the inner fitting mountain portion 51 is arranged in a substantially staggered manner with the position in the axial direction Y being shifted. May be.
Moreover, the external fitting end part 3 or the internal fitting end part 5 is provided in the 1st steel pipe pile 1 or the 2nd steel pipe pile 2 itself by cutting the edge part of the 1st steel pipe pile 1 or the 2nd steel pipe pile 2. Also good.

本発明によれば、外嵌端部及び内嵌端部の先端側の板厚を小さくして、材料コストの上昇を抑制すると同時に、先端側の最薄部の座屈変形を防止することのできる鋼管杭の継手構造を提供することが出来る。   According to the present invention, it is possible to reduce the plate thickness on the distal end side of the outer fitting end portion and the inner fitting end portion to suppress an increase in material cost, and at the same time, prevent buckling deformation of the thinnest portion on the distal end side. It is possible to provide a steel pipe pile joint structure.

1 :第1鋼管杭
2 :第2鋼管杭
3 :外嵌端部
30 :外嵌最薄部
31 :外嵌山部
32 :外嵌溝部
33 :外嵌谷部
34 :外嵌先端面
35 :外嵌基端面
36 :外嵌対向部
37 :外嵌間隙
4 :外嵌段部
41 :第1外嵌段部
42 :第2外嵌段部
43 :第3外嵌段部
44 :第4外嵌段部
45 :外嵌余長部
5 :内嵌端部
50 :内嵌最薄部
51 :内嵌山部
52 :内嵌溝部
53 :内嵌谷部
54 :内嵌先端面
55 :内嵌基端面
56 :内嵌対向部
57,157:内嵌間隙
6 :内嵌段部
61 :第1内嵌段部
62 :第2内嵌段部
63 :第3内嵌段部
64 :第4内嵌段部
65 :内嵌余長部
7,107,207,307,407:鋼管杭の継手構造
8 :当接面
81 :引張側当接面
86 :圧縮側当接面
P :キー溝
W :周方向
X :軸心直交方向
Y :軸心方向
1: 1st steel pipe pile 2: 2nd steel pipe pile 3: Outer fitting end part 30: Outer fitting thinnest part 31: Outer fitting mountain part 32: Outer fitting groove part 33: Outer fitting trough part 34: Outer fitting front end surface 35: Outer fitting base end face 36: Outer fitting facing portion 37: Outer fitting gap 4: Outer fitting step portion 41: First outer fitting step portion 42: Second outer fitting step portion 43: Third outer fitting step portion 44: Fourth outer Fitting step 45: extra fitting extra length part 5: inner fitting end part 50: inner fitting thinnest part 51: inner fitting mountain part 52: inner fitting groove part 53: inner fitting trough part 54: inner fitting front end face 55: inner fitting Base end face 56: Inner fitting facing portions 57, 157: Inner fitting gap 6: Inner fitting step portion 61: First inner fitting step portion 62: Second inner fitting step portion 63: Third inner fitting step portion 64: Fourth inner Fitting step portion 65: Internal fitting extra length portion 7, 107, 207, 307, 407: Steel pipe pile joint structure 8: Contact surface 81: Pull side contact surface 86: Compression side contact surface P: Keyway W: Circumferential direction X: Shaft center orthogonal direction Y: Shaft center direction

Claims (6)

第1鋼管杭と第2鋼管杭とを同軸に連結する、鋼管杭の継手構造であって、
前記第1鋼管杭に設けられ、前記第1鋼管杭の第1軸心の延在方向に沿って複数の外嵌段部が形成された外嵌端部と、
前記第2鋼管杭に設けられ、前記第2鋼管杭の第2軸心の延在方向に沿って複数の内嵌段部が形成された内嵌端部と、
を備え、
前記複数の外嵌段部の各々が、
前記第1軸心に向かう方向に突出するとともに前記第1軸心を中心とする周方向に複数形成された外嵌山部と、
互いに隣り合う前記各外嵌山部の間に形成された外嵌溝部と、
前記各外嵌山部に隣接してかつ前記第1鋼管杭に近い基端側に形成された外嵌谷部と、
を備え、
前記複数の内嵌段部の各々が、
前記第2軸心から離間する方向に突出するとともに前記第2軸心を中心とする周方向に複数形成された内嵌山部と、
互いに隣り合う前記各内嵌山部の間に形成された内嵌溝部と、
前記各内嵌山部に隣接してかつ前記第2鋼管杭に近い基端側に形成された内嵌谷部と、
を備え、
前記複数の外嵌段部では、前記第1鋼管杭に近い外嵌段部であるほど前記外嵌谷部の板厚が大きく形成され、
前記複数の内嵌段部では、前記第2鋼管杭に近い内嵌段部であるほど前記内嵌谷部の板厚が大きく形成され、
前記内嵌端部が前記外嵌端部に挿入されて相対回転させて嵌合させた状態で、前記内嵌端部の先端側の内嵌先端面と、この内嵌先端面の対向面とが、所定の離間距離Dで離間し、
前記複数の外嵌段部と前記複数の内嵌段部との間で互いに当接する当接面のうち、引張力を負担させる引張側当接面の総面積が、圧縮力を負担する前記外嵌端部の先端側の外嵌先端面の面積と、圧縮力を負担する圧縮側当接面の総面積との合計面積以下である
ことを特徴とする鋼管杭の継手構造。
It is a joint structure of a steel pipe pile that connects the first steel pipe pile and the second steel pipe pile coaxially,
An outer fitting end portion provided on the first steel pipe pile, wherein a plurality of outer fitting step portions are formed along the extending direction of the first axis of the first steel pipe pile;
An inner fitting end portion provided on the second steel pipe pile, wherein a plurality of inner fitting step portions are formed along the extending direction of the second axis of the second steel pipe pile;
With
Each of the plurality of external fitting steps is
A plurality of external fitting ridges projecting in a direction toward the first axis and formed in a plurality in a circumferential direction around the first axis;
An outer fitting groove formed between the outer fitting mountain parts adjacent to each other;
An outer fitting valley portion formed on the proximal end side adjacent to each outer fitting mountain portion and close to the first steel pipe pile,
With
Each of the plurality of internally fitted steps is
A plurality of internal fitting ridges protruding in a direction away from the second axis and formed in a circumferential direction around the second axis; and
Internal fitting groove portions formed between the internal fitting mountain portions adjacent to each other;
An inner trough portion formed on the proximal end side adjacent to each inner fitting mountain portion and close to the second steel pipe pile;
With
In the plurality of external fitting step portions, the plate thickness of the external fitting valley portion is formed to be larger as the outer fitting step portion is closer to the first steel pipe pile,
In the plurality of internal fitting step portions, the plate thickness of the internal fitting valley portion is formed so as to be an internal fitting step portion closer to the second steel pipe pile,
In a state where the inner fitting end is inserted into the outer fitting end and is relatively rotated and fitted, an inner fitting tip surface on the tip side of the inner fitting end, and an opposing surface of the inner fitting tip surface Are separated by a predetermined separation distance D,
Of the contact surfaces that are in contact with each other between the plurality of outer fitting stepped portions and the plurality of inner fitting stepped portions, the total area of the tension-side contact surfaces that bear the tensile force is the outer surface that bears the compressive force. A joint structure for steel pipe piles, which is equal to or less than a total area of an area of an outer fitting front end surface on a front end side of a fitting end portion and a total area of a compression side contact surface bearing a compressive force.
前記引張側当接面の総面積が、前記圧縮側当接面の総面積以下である
ことを特徴とする請求項1に記載の鋼管杭の継手構造。
The joint structure of a steel pipe pile according to claim 1, wherein a total area of the tension side contact surface is equal to or less than a total area of the compression side contact surface.
前記内嵌端部の先端側に最も近い内嵌段部の前記内嵌山部において、前記第2軸心に向かう方向の突出高さをh、前記第2軸心の延在方向の長さをlと定義したとき、前記所定の離間距離Dが下記の式(1)を満たすように設定される
ことを特徴とする請求項1に記載の鋼管杭の継手構造。
D≧(h+l0.5−l・・・式(1)
In the inner fitting ridge portion of the inner fitting step portion closest to the distal end side of the inner fitting end portion, h is the protruding height in the direction toward the second axis, and the length in the extending direction of the second axis. The steel pipe pile joint structure according to claim 1, wherein the predetermined separation distance D is set so as to satisfy the following formula (1) when L is defined as l.
D ≧ (h 2 + l 2 ) 0.5 −l Equation (1)
前記複数の内嵌段部における前記内嵌山部の突出高さ同士、及び、前記複数の外嵌段部における前記外嵌山部の突出高さ同士の少なくとも一方が、略同一である
ことを特徴とする請求項1に記載の鋼管杭の継手構造。
At least one of the protruding heights of the internal fitting ridges in the plurality of internal fitting steps and the protruding heights of the external fitting ridges in the plurality of external fitting steps are substantially the same. The steel pipe pile joint structure according to claim 1, wherein the steel pipe pile has a joint structure.
前記内嵌先端面の前記対向面が、前記外嵌端部の前記基端側の外嵌基端面である
ことを特徴とする請求項1〜4のいずれか一項に記載の鋼管杭の継手構造。
The steel pipe pile joint according to any one of claims 1 to 4, wherein the facing surface of the inner fitting distal end surface is an outer fitting proximal end surface on the proximal end side of the outer fitting end portion. Construction.
前記内嵌先端面の前記対向面が、前記第1鋼管杭の端面である
ことを特徴とする請求項1〜4のいずれか一項に記載の鋼管杭の継手構造。
The steel pipe pile joint structure according to any one of claims 1 to 4, wherein the facing surface of the inner fitting front end face is an end face of the first steel pipe pile.
JP2015551567A 2013-12-06 2014-12-04 Steel pipe pile joint structure Active JP6202102B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013252957 2013-12-06
JP2013252957 2013-12-06
PCT/JP2014/082168 WO2015083807A1 (en) 2013-12-06 2014-12-04 Joint structure for steel pipe pile

Publications (2)

Publication Number Publication Date
JPWO2015083807A1 true JPWO2015083807A1 (en) 2017-03-16
JP6202102B2 JP6202102B2 (en) 2017-09-27

Family

ID=53273553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015551567A Active JP6202102B2 (en) 2013-12-06 2014-12-04 Steel pipe pile joint structure

Country Status (10)

Country Link
JP (1) JP6202102B2 (en)
KR (1) KR101879964B1 (en)
CN (1) CN105658876A (en)
AU (1) AU2014358146B2 (en)
HK (1) HK1223992A1 (en)
MY (1) MY180215A (en)
PH (1) PH12016500755A1 (en)
SG (1) SG11201601933PA (en)
TW (1) TWI623670B (en)
WO (1) WO2015083807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111395326A (en) * 2020-03-31 2020-07-10 安徽建筑大学 Connecting structure between adjacent pile sections of thin-walled tubular pile

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887808A (en) * 2016-05-31 2016-08-24 浙江工业大学 Concrete pipe pile and construction method thereof
CN107338791A (en) * 2017-07-05 2017-11-10 汤始建华建材(苏州)有限公司 A kind of novel tubular pile sub-assembly
KR101885528B1 (en) * 2017-12-14 2018-09-10 도원산업(주) Bolt-less device for connecting phc piles
CN110090415A (en) * 2018-01-29 2019-08-06 锦美运动用品(东莞)有限公司 multi-section combined bat structure
WO2020166607A1 (en) 2019-02-12 2020-08-20 株式会社技研製作所 Pile joint, pile link structure, and pile link method
CA3045359C (en) 2019-04-19 2024-05-21 Trinity Products, Llc Fittings for joining lengths of pipe by a press-fit connection and pipe assembly formed using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143937A (en) * 1997-07-29 1999-02-16 Kubota Corp Pile coupling part structure
JPH1143936A (en) * 1997-07-29 1999-02-16 Kubota Corp Pile coupling part structure
JP2004293035A (en) * 2003-03-25 2004-10-21 Jfe Steel Kk Joint structure of steel pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877746B2 (en) * 2005-06-17 2007-02-07 株式会社クボタ Pile joint structure
NL2004010C2 (en) * 2009-12-23 2011-06-27 Ihc Holland Ie Bv COUPLING FOR THE REMOVABLE CONNECTION OF TUBES.
CN202945601U (en) * 2012-10-25 2013-05-22 国鼎(南通)管桩有限公司 Thin-wall steel tube centrifugal concrete (TSC) and prestress high concrete (PHC) combined pile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143937A (en) * 1997-07-29 1999-02-16 Kubota Corp Pile coupling part structure
JPH1143936A (en) * 1997-07-29 1999-02-16 Kubota Corp Pile coupling part structure
JP2004293035A (en) * 2003-03-25 2004-10-21 Jfe Steel Kk Joint structure of steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111395326A (en) * 2020-03-31 2020-07-10 安徽建筑大学 Connecting structure between adjacent pile sections of thin-walled tubular pile

Also Published As

Publication number Publication date
PH12016500755B1 (en) 2016-05-30
HK1223992A1 (en) 2017-08-11
KR20160058165A (en) 2016-05-24
AU2014358146B2 (en) 2017-01-05
SG11201601933PA (en) 2016-04-28
PH12016500755A1 (en) 2016-05-30
TW201533299A (en) 2015-09-01
JP6202102B2 (en) 2017-09-27
MY180215A (en) 2020-11-25
KR101879964B1 (en) 2018-07-18
CN105658876A (en) 2016-06-08
WO2015083807A1 (en) 2015-06-11
TWI623670B (en) 2018-05-11
AU2014358146A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6202102B2 (en) Steel pipe pile joint structure
TWI541448B (en) Joint structure of steel pipe pile, and steel pipe pile
WO2016132650A1 (en) Joint mechanism and connection method for steel pipe
JP2011157755A (en) Steel segment and composite segment
JP6394180B2 (en) Steel pipe sheet pile joint structure
JP5391941B2 (en) Steel pipe concrete composite pile and joint structure of the steel pipe concrete composite pile
JP5538244B2 (en) Steel pipe connection structure
JP2017106304A (en) Segments
JP4989409B2 (en) Foundation pile structure, ready-made concrete pile, and joint hardware of ready-made concrete pile and steel pipe pile
JP4716121B2 (en) Steel column connection structure and steel column connection method
JP5418838B2 (en) Steel pipe sheet pile wall
JP2014227688A (en) Joint part structure of pile
JP5432320B2 (en) Foundation pile structure
JP6344225B2 (en) Steel pipe pile joint structure
JP2018091081A (en) Reinforcement structure of beam-column joint
JP4751207B2 (en) Connection structure of circular steel pipe column and H-section steel beam and pier using the connection structure
JP6508858B1 (en) Steel pipe piles, joints for steel pipe piles and convex members for welding
JP6079933B2 (en) Steel pipe pile joint structure
JP7463226B2 (en) Belt-shaped components for rehabilitating existing pipes
TWI823421B (en) Mechanical joints, steel pipes with joints, methods of manufacturing steel pipes with joints, structures including mechanical joints, construction methods of structures including mechanical joints, and design methods of mechanical joints
JP2023057363A (en) segment
JP5913987B2 (en) Steel sheet pile pile foundation and steel sheet pile wall
JP2016156125A (en) Steel pipe pile rotation suppressing structure
JP2018084060A (en) Wall body constituting member, wall body, and construction method for wall body
JP2022162291A (en) Joint structure of steel pipe

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6202102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350