JP2004292942A - Highly corrosion resistant painted steel sheet superior in image clarity while giving little load to environment - Google Patents

Highly corrosion resistant painted steel sheet superior in image clarity while giving little load to environment Download PDF

Info

Publication number
JP2004292942A
JP2004292942A JP2003121687A JP2003121687A JP2004292942A JP 2004292942 A JP2004292942 A JP 2004292942A JP 2003121687 A JP2003121687 A JP 2003121687A JP 2003121687 A JP2003121687 A JP 2003121687A JP 2004292942 A JP2004292942 A JP 2004292942A
Authority
JP
Japan
Prior art keywords
phase
mass
steel sheet
zinc
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121687A
Other languages
Japanese (ja)
Other versions
JP3924261B2 (en
Inventor
Kazuhiko Honda
和彦 本田
Hidetoshi Hatanaka
英利 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003121687A priority Critical patent/JP3924261B2/en
Publication of JP2004292942A publication Critical patent/JP2004292942A/en
Application granted granted Critical
Publication of JP3924261B2 publication Critical patent/JP3924261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly corrosion resistant painted steel sheet superior in image clarity while giving little load to the environment. <P>SOLUTION: The manufactured highly corrosion resistant painted steel sheet superior in image clarity while giving little load to the environment has a Zn alloy-plated layer comprising 4-22 mass% Al, 1-5 mass% Mg, 0.1 mass% or less Ti, 0.5 mass% or less Si and the balance Zn with unavoidable impurities, on the surface of the steel sheet; a film layer containing 100 pts. mass water born resin by a solid content and 0.1-3,000 pts. mass silane coupling agent thereon as a substrate processing layer; and an organic coating layer of a 0.2-100 μm thick as a top layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、塗装鋼板に係わり、更に詳しくは、環境負荷の大きいとされるクロムを含まずに優れた耐食性を有し、種々の用途、例えば家電用や建材用鋼板として適用できる塗装鋼板に関するものである。
【0002】
【従来の技術】
塗装金属板は、金属板を先に成形加工して複雑な形状物とした後に塗装を加える方式に比べ、塗装工程が合理化できる、品質が均一になる、塗料の消費量が節約される等の利点があることから、これまで多く使用されており、今後とも使用量は増加すると考えられる。
【0003】
一般に塗装金属板は、冷延鋼板、亜鉛めっき系鋼板、その他の金属板に予め塗装をした後、任意の形状に成形加工して最終の用途に供するものであり、例えば、冷蔵庫、洗濯機、電子レンジなどの家電製品、自動販売機、事務機器、自動車、エアコン室外機などの金属製品に用いられている。
【0004】
こうした塗装鋼板の耐食性を向上させることを目的として本発明者らは、塗装溶融Zn−Al−Mg−Siめっき鋼板を提案した(特許文献1)。
【0005】
また、本発明者らは、前記溶融Zn−Al−Mg−Siめっき鋼板にCa、Be、Ti、Cu、Ni、Co、Cr、Mnの1種又は2種以上を添加することにより、更に耐食性に優れた塗装鋼板が得られることを明らかにした(特許文献2)。
【0006】
これらはいずれも、耐食性に優れるめっき鋼板の上にクロメート処理と呼ばれる耐食性と密着性に優れる下地処理を施し、その上に耐食性に優れるクロム系防錆顔料を含む下塗り層を有し、更にその上に着色された上塗り層を有する構造をとっている。
【0007】
こうしたクロメート処理及びクロム系防錆顔料から溶出する可能性のある6価のクロムは環境負荷が大きな物質であるため、本発明者らは、環境負荷の小さい塗装溶融Zn−Al−Mg−Siめっき鋼板を提案した(特許文献3)。
【0008】
また、溶融Zn−Al−Mgめっき鋼板にTi、B、Siを添加することにより表面外観が良好になることが提案されている(特許文献4)。
【0009】
【特許文献1】
特許第3179446号公報
【特許文献2】
特開2000−64061号公報
【特許文献3】
特許第3090207号公報
【特許文献4】
特開2001−295015号公報
【0010】
【発明が解決しようとする課題】
Zn−Mg−Alの三元系合金は3質量%Mg−4質量%Al−93質量%Znに三元共晶点を持ち、それよりAl濃度が高い場合、初晶としてAl相が晶出する。
【0011】
溶融めっき時のめっき凝固速度が十分に確保されている場合、Al相が大きく成長しないうちにめっきが凝固するため表面平滑性は問題とならないが、めっき凝固速度が小さい場合、このAl相が先に大きく成長することによってめっき表面に凸凹が形成され、表面平滑性が劣化するという問題点を有している。
【0012】
このため、このような表面平滑性が低い鋼板で塗装鋼板を製造した場合、0.2〜100μm程度の厚さの比較的薄い塗膜ではめっき表面の凸凹を完全には隠蔽できず、塗装鋼板の鮮映性が劣化するという問題点を有している。
【0013】
また、前記特許文献1〜3に開示される技術では、塗装鋼板の鮮映性が劣化するという問題は考慮されていない。
【0014】
また、前記特許文献4に開示される技術では、表面外観を劣化させるZn11Mg相の生成・成長を抑制する目的としてTiとBを添加しているが、表面平滑性や塗装後の鮮映性が劣化するという問題は考慮されておらず、金属間化合物についても言及されていない。
【0015】
そこで、本発明は、上記問題点に鑑みなされたものであり、4質量%を超えるような高Al濃度の場合でも十分鮮映性が優れ、環境負荷の小さい高耐食性塗装鋼板を提供することを目的としている。
【0016】
【課題を解決するための手段】
本発明者らは、鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板の開発について鋭意研究を重ねた結果、鋼板の表面に添加元素の添加量を最適化した亜鉛系めっきを形成した後、下地処理としてクロメート処理の代わりにシランカップリング系処理を施し、その上にクロム系防錆顔料の代わりにクロムフリー防錆顔料を有する塗膜を施すことで、鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板を得られることを知見した。
【0017】
即ち、本発明は上記知見に基いて閑静したもので、本発明の要旨は以下のとおりである。
【0018】
(1) 鋼板の片面又は両面に、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0019】
(2) 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0020】
(3) 鋼板の片面又は両面に、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔Al相〕、〔ZnMg相〕及び〔Zn相〕の1種又は2種以上が混在した金属組織を有し、且つ、〔Al相〕、〔ZnMg相〕及び〔Zn相〕の1種又は2種以上の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性の優れた高耐食性塗装鋼板。
【0021】
(4) 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔MgSi相〕、〔Al相〕及び〔ZnMg相〕が混在した金属組織を有し、且つ、〔Al相〕と〔ZnMg相〕の1種又は2種の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0022】
(5) 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔MgSi相〕、〔Al相〕、〔ZnMg相〕及び〔Zn相〕が混在した金属組織を有し、且つ、〔Al相〕、〔ZnMg相〕及び〔Zn相〕の1種又は2種以上の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0023】
(6) 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔MgSi相〕、〔Al相〕及び〔Zn相〕が混在した金属組織を有し、且つ、〔Al相〕と〔Zn相〕の1種又は2種の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0024】
(7) 上記(3)乃至(6)のいずれかに記載のTi−Al系金属間化合物が、TiAlであることを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0025】
(8) 上記(3)乃至(6)のいずれかに記載のTi−Al系金属間化合物が、Ti(Al1−XSi(但し、X=0〜0.5である)であることを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0026】
(9) めっき層中の〔Al相〕の中に含有されるTi−Al系金属間化合物が、Zn−Alの共析反応によって析出したZn相中に存在することを特徴とする上記(3)乃至(8)のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0027】
(10) めっき層中の〔Al相〕の樹枝状晶の大きさが500μm以下であることを特徴とする上記(1)乃至(9)のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0028】
(11) 下地処理層の皮膜層に固形分として、微粒シリカ1〜2000質量部、エッチング性フッ化物0.1〜1000質量部のうちいずれか1種以上を更に含有することを特徴とする、上記(1)乃至(10)のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0029】
(12) 有機被膜が熱硬化型の樹脂塗膜であることを特徴とする上記(1)乃至(11)のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0030】
(13) 有機皮膜層が防錆顔料を含む下塗り層と着色された上塗り層からなる上記(1)乃至(12)のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0031】
(14) 上記(1)乃至(13)のいずれかに記載の有機皮膜中の防錆顔料がケイ酸イオン、リン酸イオン、バナジン酸イオン、モリブデン酸イオンのうち一種類以上を放出するものであることを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0032】
(15) 下地処理層の乾燥後の付着量が10〜3000mg/mであることを特徴とする上記(1)乃至(14)のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0033】
【発明の実施形態】
以下に本発明を詳細に説明する。
【0034】
本発明において、塗装鋼板とは、鋼板上に亜鉛系めっき層とシランカップリング処理,及び有機皮膜からなる層を順次付与したものである。本発明の下地鋼板としては、熱延鋼板、冷延鋼板共に使用でき、鋼種もAlキルド鋼、Ti、Nb等を添加した極低炭素鋼板、及び、これらにP、Si、Mn等の強化元素を添加した高強度鋼、ステンレス鋼等種々のものが適用できる。
【0035】
下層の亜鉛系めっき層は、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下、残部がZn及び不可避不純物からなるめっき層か、或いは、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下、残部がZn及び不可避不純物からなるめっき層である。
【0036】
Zn−Al−Mg−Ti系めっき層においてAlの含有量を4〜10質量%に限定した理由は、Alの含有量が10質量%を超えるとめっき密着性の低下が見られるため、Siを添加していないめっき層中のAlの含有量は10質量%以下にする必要があるためである。また、4質量%未満では初晶としてAl相が晶出しないため、平滑性低下の問題がないためである。
【0037】
従って、本発明における高耐食性塗装鋼板においては、特にAl濃度が10質量%を超えるような高濃度の場合には、めっき密着性を確保するために、めっき層中にSiを添加することが必須である。
【0038】
一方、Zn−Al−Mg−Ti−Si系めっき層において、Alの含有量を4〜22質量%に限定した理由は、4質量%未満では初晶としてAl相が晶出しないため、平滑性低下の問題がないためであり、22質量%を超えると耐食性を向上させる効果が飽和するためである。
【0039】
Siの含有量を0.5質量%以下(但し、0質量%を除く)に限定した理由は、Siは密着性を向上させる効果があるが、0.5質量%を超えると密着性を向上させる効果が飽和するからである。望ましくは0.00001〜0.5質量%である、更に望ましくは0.0001〜0.5質量%である。
【0040】
Siの添加はAlの含有量が10質量%を超えるめっき層には必須であるが、Alの含有量が10%以下のめっき層においてもめっき密着性向上に効果が大きいため、加工が厳しい部材に使用する等、高いめっき密着性を必要とする場合にはSiを添加することが有効である。また、Si添加によりめっき層の凝固組織中に〔MgSi相〕が晶出する。この〔MgSi相〕は加工部耐食性向上に効果があるため、Siの添加量を多くし、めっき層の凝固組織中に〔MgSi相〕が混在した金属組織を作製することがより望ましい。
【0041】
Mgの含有量を1〜5質量%に限定した理由は、1質量%未満では耐食性を向上させる効果が不十分であるためであり、5質量%を超えるとめっき層が脆くなって密着性が低下するためである。
【0042】
Tiの含有量を0.1質量%以下(0質量%は除く)に限定した理由は、TiはTi−Al系金属間化合物を晶出させ、鮮映性を向上させる効果があるが、0.1質量%を超えるとめっき後の外観が粗雑になり、外観不良が発生する。また、Ti−Al系金属間化合物がめっき表面に濃化し表面平滑性を低下させる。望ましくは0.00001〜0.1質量%である。更に、望ましくは0.00001〜0.01質量%未満である。
【0043】
本めっき層は、〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔Zn相〕、〔Al相〕、〔ZnMg相〕、〔MgSi相〕、Ti−Al系金属間化合物の1つ以上を含む金属組織ができる。
【0044】
ここで、〔Al/Zn/ZnMgの三元共晶組織〕とは、Al相と、Zn相と金属間化合物ZnMg相との三元共晶組織であり、この三元共晶組織を形成しているAl相は例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」(Zn相を固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離して現れる。また、該三元共晶組織中のZn相は少量のAlを固溶し、場合によっては更に少量のMgを固溶したZn固溶体である。該三元共晶組織中のZnMg相は、Zn−Mgの二元系平衡状態図のZn:約84質量%の付近に存在する金属間化合物相である。状態図で見る限りそれぞれの相にはSi、Tiが固溶していないか、固溶していても極微量であると考えられるがその量は通常の分析では明確に区別できないため、この3つの相からなる三元共晶組織を本明細書では〔Al/Zn/ZnMgの三元共晶組織〕と表す。
【0045】
また、〔Al相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、これは例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」(Zn相を固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl″相はめっき浴のAlやMg濃度に応じて固溶するZn量やMg量が相違する。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離するが、常温で見られる島状の形状は高温でのAl″相の形骸を留めたものであると見てよい。状態図で見る限りこの相にはSi、Tiが固溶していないか、固溶していても極微量であると考えられるが通常の分析では明確に区別できないため、この高温でのAl″相に由来し且つ形状的にはAl″相の形骸を留めている相を本明細書では〔Al相〕と呼ぶ。この〔Al相〕は前記の三元共晶組織を形成しているAl相とは顕微鏡観察において明瞭に区別できる。
【0046】
また、〔Zn相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlさらには少量のMgを固溶していることもある。状態図で見る限りこの相にはSi、Tiが固溶していないか、固溶していても極微量であると考えられる。この〔Zn相〕は前記の三元共晶組織を形成しているZn相とは顕微鏡観察において明瞭に区別できる。
【0047】
また、〔ZnMg相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlを固溶していることもある。状態図で見る限りこの相にはSi、Tiが固溶していないか、固溶していても極微量であると考えられる。この〔ZnMg相〕は前記の三元共晶組織を形成しているZnMg相とは顕微鏡観察において明瞭に区別できる。
【0048】
また、〔MgSi相〕とは、めっき層の凝固組織中に明瞭な境界をもって島状に見える相である。状態図で見る限りZn、Al、Tiは固溶していないか、固溶していても極微量であると考えられる。この〔MgSi相〕はめっき中では顕微鏡観察において明瞭に区別できる。
【0049】
また、Ti−Al系金属間化合物とは、めっき層の凝固組織中に明瞭な境界をもって島状に見える相である。状態図で見る限りTiAlであると考えられるが、分析するとSiが観察されることから、Siを固溶したTiAl又はAlの一部がSiに置き換わったTi(Al1−XSiであると考えられる。
【0050】
本発明の溶融めっき鋼材において、このTi−Al系金属間化合物は、〔Al相〕、〔ZnMg相〕、〔Zn相〕の中に存在することを特徴とする。Ti−Al系金属間化合物の含有形態を〔Al相〕、〔ZnMg相〕、〔Zn相〕の中に限定した理由は、それ以外の位置に存在するTi−Al系金属間化合物では、鮮映性を向上させることができないためである。〔Al相〕、〔ZnMg相〕、〔Zn相〕の中に存在するTi−Al系金属間化合物が鮮映性を向上させる理由は、Ti−Al系金属間化合物が、〔Al相〕、〔ZnMg相〕、〔Zn相〕の核となることでこれらの結晶の晶出を促進させ、微細で多数の組織とするためであると考えられる。即ち、結晶が微細になるとめっき層表面の凹凸が抑制され、めっき表面が平滑になり、比較的薄い塗膜でもめっき表面の凸凹を隠蔽できるようになり、塗装鋼板の鮮映性が向上すると考えられる。
【0051】
この効果は、特に〔Al相〕において顕著である。〔Al相〕の樹枝状晶の大きさを500μm以下に制御することにより、表面が平滑になり、摩擦係数が低下する。望ましくは400μm以下である。更に望ましくは300μm以下である。
【0052】
本発明者等が多数のめっき中の金属組織を調査した結果、大部分の金属組織の中から大きさ数μmの金属間化合物が観察された。〔Al相〕中に存在する金属間化合物の一例を図1に示す。図1の上段の図(a)は、本発明におけるめっき鋼材のめっき層の顕微鏡写真(倍率1000倍)であり、該写真中の各組織の分布状態を図示したものが下段の図(b)である。この図からも判るように、本発明におけるめっき鋼材のめっき層の顕微鏡写真によって明確に各組織を特定することができる。
【0053】
図1ではAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」に相当するものの中にTi−Al系金属間化合物が観察される。この高温でのAl″相は、Al−Znの二元系平衡状態図における277℃で起こる共析反応により、常温では通常は微細なAl相と微細なZn相に分離して現れる。ここで亜共析反応の場合、高温で晶出したAl″相は、Al−Zn−Mgの三元系平衡状態図における三元共晶温度からZn相の析出を開始し、Al−Znの二元系平衡状態図における共析反応に相当する温度で残ったAl″相が微細なAl相と微細なZn相の共析組織となる。
【0054】
図2の上段の図(a)は、図1のAl″相を拡大した顕微鏡写真(倍率3500倍)であり、該写真中の各組織の分布状態を図示したものが下段の図(b)である。Al″相を詳細に観察すると、析出したZn相がAl″相の外側とTi−Al系金属間化合物の周りに存在することが観察される。
【0055】
本発明において金属間化合物の大きさは特に限定しないが、発明者らが観察したものは、大きさ10μm以下であった。また、めっき組織中の金属間化合物の存在割合も特に限定しないが、〔Al相〕、〔ZnMg相〕、〔Zn相〕のどれかに1割以上存在することが望ましい。
【0056】
本発明において、めっき鋼板の製造方法については特に限定するところはなく、通常の無酸化炉方式の溶融めっき法が適用できる。
【0057】
金属間化合物の添加方法については特に限定するところはなく、金属間化合物の微粉末を浴中に混濁させる方法や、金属間化合物を浴に溶解させる方法等が適用できるが、無酸化炉方式の溶融めっき法を使用した連続ライン等で製造する場合、めっき浴中にTiを溶解させる方法が適当である。めっき浴中にTiを溶解させる方法としては、Ti−Zn系金属間化合物を添加する方法が低温、短時間で溶解可能なため効率的である。添加するTi−Zn系金属間化合物としては、Zn15Ti、Zn10Ti、ZnTi、ZnTi、ZnTi、ZnTi等がある。こうした金属間化合物を単独或いはZn、Zn−Al、Zn−Al−Mg合金中に混合させてめっき浴に添加すると、溶解したTiがめっき中にTi−Al系金属間化合物として晶出し、表面平滑性と成形性を向上させる。
【0058】
めっきの付着量については特に制約は設けないが、耐食性の観点から10g/m以上、加工性の観点から350g/m以下で有ることが望ましい。
【0059】
亜鉛めっき層中には、これ以外にFe、Sb、Pb、Snを単独或いは複合で0.5質量%以内含有してもよい。また、Ca、Be、Cu、Ni、Co、Cr、Mn、P、B、Nb、Biや3族元素を合計で0.5質量%以下含有しても本発明の効果を損なわず、その量によっては更に耐食性が改善される等好ましい場合もある。
【0060】
次に、本発明の塗装鋼板に用いる下地処理層は、水性樹脂をベースとしてシランカップリング剤を含むことを特徴としている。この下地処理層とZn−Mg−Al−Ti系合金めっき、或いは、Zn−Mg−Al−Si−Ti系合金めっきを組み合わせることにより相乗的に加工部の耐食性が向上する。下地処理層の水性樹脂としては、水溶性樹脂のほか、本来水不溶性でありながらエマルジョンやサスペンジョンのように水中に微分散された状態になりうる樹脂を含めて言う。このような水性樹脂として使用できるものは、例えば、ポリオレフィン系樹脂、アクリルオレフィン系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエステル系樹脂、アルキド系樹脂、フェノール系樹脂、その他の熱硬化型樹脂が挙げられ、架橋可能な樹脂が望ましい。特に好ましい樹脂は、アクリルオレフィン系樹脂、ポリウレタン系樹脂、及び両者の混合樹脂である。これらの水性樹脂の2種類以上を混合或いは重合して使用しても良い。
【0061】
シランカップリング剤は、水性樹脂の存在下で、めっきと塗膜の両者と強固に結合し、塗膜の密着性を飛躍的に向上させ、ひいては加工部の耐食性を向上させる。シランカップリング剤としては、例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、アミノシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシルジメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド、γ−クロロプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシランなどを挙げることができる。
【0062】
シランカップリング剤の含有量は固形分換算で、水性樹脂100質量部に対して、0.1〜3000質量部であることが望ましい。0.1質量部未満ではシランカップリング剤の量が不十分であるため、加工時に十分な密着性が得られず耐食性が劣る。3000質量部を超えると密着性向上効果が飽和するため不経済である。
【0063】
更に微粒シリカを添加すると耐擦り傷性、塗膜密着性、耐食性が向上する。本発明において微粒シリカとは,微細な粒径をもつために水中に分散させた場合に安定に水分散状態を維持でき、半永久的に沈降が認められないような特色を有するシリカを総称していうものである。このような微粒シリカとしては、ナトリウムなどの不純物が少なく、弱アルカリ系のものであれば、特に限定されない。例えば、「スノーテックスN」(日産化学工業社製)、「アデライトAT−20N」(旭電化工業社製)などの市販のシリカなどを用いることができる。
【0064】
微粒シリカの含有量は固形分換算で、水性樹脂100質量部に対して1〜2000質量部、更に好ましくは10〜400質量部である。1質量部未満では添加した効果が少なく、2000質量部を超えると耐食性向上の効果が飽和して不経済である。また、エッチング性フッ化物を添加すると塗膜密着性が向上される。ここでエッチング性フッ化物としては、フッ化亜鉛四水和物、ヘキサフルオロケイ酸亜鉛六水和物などを使用することができる。エッチング性フッ化物の含有量は固形分換算で、水性樹脂100質量部に対して1〜1000質量部であることが好ましい。1質量部未満では添加の効果が少なく、1000質量部を超えるとエッチングの効果が飽和して塗膜密着性が改善されないので不経済である。
【0065】
また、必要に応じて界面活性剤、防錆抑制剤、発泡剤などを添加しても良い。下地処理層の乾燥後の付着量は10〜3000mg/mが好適である。10mg/m未満では密着性が劣り加工部の耐食性が不十分である。一方、3000mg/mを超えると不経済であるばかりか加工性も低下して耐食性も劣るようになる。
【0066】
下地処理層の塗布方法は特別限定するものではなく、一般に公知の塗装方法、例えば、ロールコート、エアースプレー、エアーレススプレー、浸漬などが適用できる。塗布後の乾燥・焼き付けは熱風炉、誘導加熱炉、近赤外線炉、等公知の方法、或いは、これらを組み合わせた方法で行えばよい。また、使用する水性樹脂の種類によっては紫外線や電子線などによって硬化させることもできる。或いは強制乾燥を用いずに自然乾燥してもよいし、めっき鋼板を予め加熱しておいて、その上に塗布して自然乾燥してもよい。
【0067】
次に塗装鋼板の上層の有機被膜としては、ポリエステル樹脂、アミノ樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フッ素樹脂等が例として挙げられ、特に限定されるものではないが、特に加工が厳しい製品に使用する場合、熱硬化型の樹脂塗膜が最も好ましい。熱硬化型の樹脂塗膜としては、エポキシポリエステル塗料、ポリエステル塗料、メラミンポリエステル塗料、ウレタンポリエステル塗料等のポリエステル系塗料や、アクリル塗料が挙げられる。
【0068】
ポリエステル樹脂の酸成分の一部を脂肪酸に置き換えたアルキッド樹脂や、油で変性しないオイルフリーアルキッド樹脂に、メラミン樹脂やポリイソシアネート樹脂を硬化剤として併用したポリエステル系の塗料、及び各種架橋剤と組み合わせたアクリル塗料は、他の塗料に比べて加工性が良いため、厳しい加工の後にも塗膜に亀裂などが発生しないためである。
【0069】
膜厚は、0.2〜100μmが適正である。膜厚を0.2μm以上とした理由は、膜厚が0.2μm未満では耐食性が確保できないためである。また、膜厚を100μm以下とした理由は,膜厚が100μmを超えるとコスト面から不利になるためである。望ましくは、50μm以下である。有機被膜層は、単層でも複層でもかまわない。
【0070】
なお、本発明の方法に使用される有機被膜には、必要に応じ、可塑剤、酸化防止剤、熱安定剤、無機粒子、顔料、有機潤滑などの添加剤を配合される。
【0071】
有機被覆層は公知の方法で下地処理層の上に塗装される。例えば、ロールコーター、カーテンコーター、静電塗装、スプレー塗装、浸漬塗装などである。その後、熱風、誘導加熱、近赤外、遠赤外、などの加熱によって乾燥・硬化される。有機被覆層の樹脂が電子線や紫外線で硬化するものであればこれらの照射によって硬化される。これらの併用であってもよい。
【0072】
本発明の塗装鋼板で化成処理層と着色された有機層の間に、必要に応じて防錆顔料を添加した皮膜層を下塗り層として有することができる。この下塗り層は主に耐食性の向上を目的とするが、その他に成形加工性、耐薬品性なども考慮して設計される。下塗り層を構成する樹脂としては、一般に公知の樹脂、例えば、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、メラミン樹脂などをそのまま或いは組み合わせて使用できる。防錆顔料としては一般に公知のもの、例えば、▲1▼リン酸亜鉛、リン酸鉄、リン酸アルミニウム、亜リン酸亜鉛、等のリン酸系防錆顔料、▲2▼モリブデン酸カルシウム、モリブデン酸アルミニウム、モリブデン酸バリウム、等のモリブデン酸系防錆顔料、▲3▼酸化バナジウムなどのバナジウム系防錆顔料、▲4▼カルシウムシリケートなどのシリケート系顔料、▲5▼水分散シリカ、ヒュームドシリカ、等の微粒シリカなどを用いることができる。
【0073】
防錆顔料の添加量は皮膜の固形分基準に1〜40質量%がよい。1質量%より少ないと耐食性の改良が十分でなく、40質量%を超えると加工性が低下して、加工時に有機被膜層の脱落が起こり、耐食性も劣るようになる。
【0074】
防錆顔料を含む下塗り層の塗布は一般に公知の方法でできる。例えば、ロールコート、カーテンコート、エアースプレー、エアーレススプレー、浸漬、刷毛塗り、バーコートなどである。その後、熱風、誘導加熱、近赤外、遠赤外、などの加熱によって乾燥・硬化される。有機被覆層の樹脂が電子線や紫外線で硬化するものであればこれらの照射によって硬化される。これらの併用であってもよい。
【0075】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0076】
(実施例1)
まず、厚さ0.85mmの冷延鋼板を準備し、これに400〜600℃で浴中の添加元素量を変化させためっき浴で3秒溶融めっきを行い、Nワイピングでめっき付着量を片面140g/mに調整し、冷却速度10℃/s以下で冷却した。得られためっき鋼板のめっき組成を表1に示す。また、めっき鋼板を断面からSEMで観察し、めっき層の金属組織を観察した結果を同じく表1に示す。
【0077】
Ti−Al系金属間化合物は、めっき鋼板を10度傾斜で研磨した後、EPMAで観察し、〔Al相〕、〔ZnMg相〕、〔Zn相〕の中に存在するものを観察した。
【0078】
めっき層中の〔Al相〕の樹枝状晶の大きさは、めっき鋼板の表面をCMAでマッピングし、得られたAlのマッピングを使用して樹脂状晶の長径を測定した。測定は、5×5cmの範囲を行い、大きいものから順に5つの樹脂状晶の長径を測定し、その平均値を〔Al相〕の樹枝状晶の大きさとして使用した。
【0079】
次に、脱脂剤として日本パーカライジング(株)製FC−364Sを使用し、2質量%、60℃、10秒間浸漬、その後、水洗、乾燥の工程でめっき鋼板の脱脂処理を行った。次いで、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/mとした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0080】
その上に、下塗り塗装として日本ペイント製P641プライマー塗料(ポリエステル樹脂系)の防錆顔料を表1に記載した防錆顔料(亜リン酸亜鉛、カルシウムシリケート、バナジン酸/リン酸混合系、モリブデン酸系)に変更したものをバーコーターで塗布し、熱風乾燥炉で最高到達板温が220℃となる条件で焼き付けて膜厚を5μmになるように調整した。下塗り塗装の上に、上塗り塗装として、日本ペイント製FL100HQ(ポリエステル樹脂系)をバーコーターで塗布し、熱風乾燥炉で到達板温が220℃となる条件で焼き付けて膜厚を15μmに調整した。
【0081】
以上のようにして作製した塗装鋼板に対して3T折り曲げ加工(原板を3枚はさんだ状態で180°の折り曲げ加工)を施し、塩水噴霧(5%NaCl、35℃、2hr)→乾燥(60℃、30%RH、4hr)→湿潤(50℃、95%RH、2hr)からなるサイクル腐食試験を120サイクル行った。サイクル腐食試験後に加工部の赤錆発生面積率を目視で観察した。評点は、赤錆5%未満を5、赤錆5%以上10%未満を4、赤錆10%以上20%未満を3、20%以上30%未満を2、30%以上を1、として評点3以上を合格とした。
【0082】
鮮映性は携帯用鮮明度光沢度計(PGD計)での鮮映性測定値(Gd値)を測定した。鮮映性は、Gd値が0.6以上のものを合格、Gd値が0.6未満のものを不合格とした。
【0083】
評価結果を表1に示す。番号18は、Ti−Al系金属間化合物を含有しないため、Al相が成長し、鮮映性が不合格となった。番号19は、Tiの含有量が多すぎたため、Ti−Al系金属間化合物が表面に濃化し、鮮映性が不合格となった。番号20は、Mg、Al、Si、Tiが本発明の範囲外であるため、耐食性が不合格となった。これら以外はいずれも良好な鮮映性、耐食性を示した。
【0084】
【表1】

Figure 2004292942
【0085】
(実施例2)
まず、厚さ0.85mmの冷延鋼板を準備し、これに400〜600℃で浴中の添加元素量を変化させためっき浴で3秒溶融めっきを行い、Nワイピングでめっき付着量を片面140g/mに調整し、冷却速度10℃/s以下で冷却した。得られためっき鋼板のめっき組成を表2に示す。また、めっき鋼板を断面からSEMで観察し、めっき層の金属組織を観察した結果を同じく表2に示す。
【0086】
Ti−Al系金属間化合物は、めっき鋼板を10度傾斜で研磨した後、EPMAで観察し、〔Al相〕、〔ZnMg相〕、〔Zn相〕の中に存在するものを観察した。
【0087】
めっき層中の〔Al相〕の樹枝状晶の大きさは、めっき鋼板の表面をCMAでマッピングし、得られたAlのマッピングを使用して樹脂状晶の長径を測定した。測定は、5×5cmの範囲を行い、大きいものから順に5つの樹脂状晶の長径を測定し、その平均値を〔Al相〕の樹枝状晶の大きさとして使用した。
【0088】
次に、脱脂剤として日本パーカライジング(株)製FC−364Sを使用し、2質量%、60℃、10秒間浸漬、その後、水洗、乾燥の工程でめっき鋼板の脱脂処理を行った。次いで、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/mとした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0089】
塗装は、エポキシポリエステル塗料、ポリエステル塗料、メラミンポリエステル塗料、ウレタンポリエステル塗料、アクリル塗料をそれぞれバーコーターで塗装し、熱風乾燥炉で焼き付けて表2に示す膜厚に調整した。
【0090】
鮮映性は携帯用鮮明度光沢度計(PGD計)での鮮映性測定値(Gd値)を測定した。鮮映性は、Gd値が0.6以上のものを合格、Gd値が0.6未満のものを不合格とした。
【0091】
耐食性は、JIS B−7729に準ずるエリクセン試験機を使用して7mm押し出した加工部をJIS Z−2371に準ずる塩水噴霧試験で72hr試験し、白錆が発生しなかったものを合格、白錆が発生したものを不合格とした。
【0092】
評価結果を表2に示す。番号29は、塗膜厚が本発明の範囲外であるため、耐食性が不合格となった。これら以外はいずれも良好な鮮映性、耐食性を示した。
【0093】
【表2】
Figure 2004292942
【0094】
(実施例3)
まず、厚さ0.85mmの冷延鋼板を準備し、これに450℃のZn−Mg−Al−Si−Tiめっき浴で3秒溶融めっきを行い、Nワイピングでめっき付着量を片面140g/mに調整し、冷却速度10℃/s以下で冷却した。得られためっき鋼板のめっき層中組成は、Mg3%、Al11%、Si0.2%、Ti0.009%であった。
【0095】
めっき鋼板は、脱脂剤として日本パーカライジング(株)製FC−364Sを使用し、2質量%、60℃、10秒間浸漬し、その後、水洗、乾燥の工程で脱脂処理を行った。次いで、表3に示す組成の下地処理材を塗布し熱風乾燥炉で乾燥した。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、メチルトリクロロシランを使用した。シリカとしては「スノーテックスN、表中ではST−Nと記載」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0096】
なお、比較材の鋼板は塗布型のクロメート処理液に浸漬して、クロメート処理を行った。クロメート皮膜の付着量はCr換算量で50mg/mとした。
【0097】
次に、下塗り塗装として日本ペイント製P641プライマー塗料(ポリエステル樹脂系、表中の樹脂種はポリエステルとした)、日本ペイント製P108プライマー(エポキシ樹脂系、表中の樹脂種はエポキシとした)、日本ペイント製P304プライマー(ウレタン樹脂系、表中の樹脂種はウレタンとした)の防錆顔料を表2に記載した防錆顔料(亜リン酸亜鉛、カルシウムシリケート、バナジン酸/リン酸混合系、モリブデン酸系)に変更したものをバーコーターで塗布し、熱風乾燥炉で最高到達板温が220℃となる条件で焼き付けて膜厚を5μmになるように調整した。下塗り塗装の上に、上塗り塗装として、日本ペイント製FL100HQ(ポリエステル樹脂系)をバーコーターで塗布し、熱風乾燥炉で到達板温が220℃となる条件で焼き付けて膜厚を15μmに調整した。
【0098】
以上のようにして作製した塗装鋼板に対して3T折り曲げ加工(原板を3枚はさんだ状態で180°の折り曲げ加工)を施し、塩水噴霧(5%NaCl、35℃、2hr)→乾燥(60℃、30%RH、4hr)→湿潤(50℃、95RH、2hr)からなるサイクル腐食試験を120サイクル行った。サイクル腐食試験後に加工部の赤錆発生面積率を目視で観察した。評点は、赤錆5%未満を5、赤錆5%以上10%未満を4、赤錆10%以上20%未満を3、20%以上30%未満を2、30%以上を1、として評点3以上を合格とした。
【0099】
鮮映性は携帯用鮮明度光沢度計(PGD計)での鮮映性測定値(Gd値)を測定した。鮮映性は、Gd値が0.6以上のものを合格、Gd値が0.6未満のものを不合格とした。
【0100】
評価結果を表3に示す。番号15はシランカップリング剤の含有量が本発明の範囲外であるため、加工部耐食性が不合格となった。番号16、17は下地処理層の付着量含有量が本発明の範囲外であるため、加工部耐食性が不合格となった。番号28、29は下地処理層にクロメート処理を使用しているため環境負荷が大きく不合格となった。これら以外はいずれも良好な鮮映性、耐食性を示した。
【0101】
【表3】
Figure 2004292942
【0102】
(実施例4)
まず、厚さ0.85mmの冷延鋼板を準備し、これに520℃で浴中の添加元素量を変化させためっき浴で3秒溶融めっきを行い、Nワイピングでめっき付着量を片面140g/mに調整し、冷却速度10℃/s以下で冷却した。得られためっき鋼板のめっき組成を表4に示す。また、めっき鋼板を断面からSEMで観察し、めっき層の金属組織を観察した結果を同じく表4に示す。
【0103】
Ti−Al系金属間化合物は、めっき鋼板を10度傾斜で研磨した後、EPMAで観察し、〔Al相〕、〔ZnMg相〕、〔Zn相〕の中に存在するものを観察した。また、〔Al相〕の中に存在するTi−Al系金属間化合物については、EPMAで観察し、Zn−Alの共析反応によって析出したZn相中への存在有無を観察した。更にTi−Al系金属間化合物のEPMA観察を行い、Ti−Al系金属間化合物のSi含有有無を観察した。
【0104】
次に、脱脂剤として日本パーカライジング(株)製FC−364Sを使用し、2質量%、60℃、10秒間浸漬し、その後、水洗、乾燥の工程でめっき鋼板の脱脂処理を行った。次いで、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/mとした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0105】
その上に、プライマーとしてエポキシポリエステル塗料をバーコーターで塗装し、熱風乾燥炉で焼き付けて膜厚を5μmに調整した。トップコートは、ポリエステル塗料をバーコーターで塗装し、熱風乾燥炉で焼き付けて膜厚を20μmに調整した。
【0106】
密着性は、デュポン衝撃試験後の塗装めっき鋼板に粘着テープを貼り、その後引き剥がし、めっき及び塗膜が剥離しなかった場合を○、めっき又は塗膜の剥離が10%未満の場合を△、めっき又は塗膜が10%以上剥離した場合を×とした。デュポン試験は先端に1/2インチの丸みを持つ撃ち型を使用し、1kgの重りを1mの高さから落下させて行った。
【0107】
加工後耐食性の評価は、3T折り曲げ加工(原板を3枚はさんだ状態で180°の折り曲げ加工)を施したサンプルの折り曲げ部について、CCT120サイクル後の赤錆発生状況を以下に示す評点づけで判定した。CCTは、SST2hr→乾燥4hr→湿潤2hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
評価結果を表4に示す。番号2はAlとSiの添加量が本発明の範囲外であるため密着性が不合格となった。これら以外はいずれも、密着性、加工後耐食性が良好な結果となった。特にSiを添加しためっき鋼板は良好な密着性と加工後耐食性を示した。
【0108】
【表4】
Figure 2004292942
【0109】
【発明の効果】
以上述べてきたように,本発明により,高Al濃度の場合でも十分鮮映性が優れ,環境負荷の大きなクロムを含有せずに,加工部の耐食性に優れる塗装鋼板を製造することが可能となり,工業上極めて優れた効果を奏することができる。
【図面の簡単な説明】
【図1】めっき鋼板のめっき層の「Al″相」中に存在する金属間化合物の一例を示す図で、(a)はめっき層の顕微鏡写真(倍率1000倍)であり、(b)は該写真中の各組織の分布状態を示す図である。
【図2】(a)は「Al″相」を拡大した顕微鏡写真(倍率3500倍)であり、(b)は各組織の分布状態を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coated steel sheet, and more particularly to a coated steel sheet having excellent corrosion resistance without containing chromium, which is considered to have a large environmental load, and which can be used as a steel sheet for various applications, for example, for home appliances and building materials. It is.
[0002]
[Prior art]
Painted metal plate can streamline the coating process, make the quality uniform, save paint consumption, etc., compared with the method of forming a metal plate first to form a complicated shape and then painting. Because of its advantages, it has been widely used and its usage is expected to increase in the future.
[0003]
In general, a coated metal plate is a cold-rolled steel plate, a galvanized steel plate, or a pre-painted metal plate, and then formed into an arbitrary shape and provided for final use.For example, a refrigerator, a washing machine, It is used for home appliances such as microwave ovens, metal products such as vending machines, office equipment, automobiles, and air conditioner outdoor units.
[0004]
The present inventors have proposed a coated hot-dip Zn-Al-Mg-Si plated steel sheet for the purpose of improving the corrosion resistance of such a coated steel sheet (Patent Document 1).
[0005]
Further, the present inventors further added one or more of Ca, Be, Ti, Cu, Ni, Co, Cr, and Mn to the hot-dip Zn-Al-Mg-Si plated steel sheet to further increase corrosion resistance. (Patent Document 2).
[0006]
All of these have been subjected to an undercoating treatment called chromate treatment, which is excellent in corrosion resistance and adhesion, on a plated steel sheet excellent in corrosion resistance, and further have an undercoat layer containing a chromium-based rust preventive pigment excellent in corrosion resistance. It has a structure having an overcoat layer which is colored in a color.
[0007]
Since hexavalent chromium, which may be eluted from the chromate treatment and the chromium-based rust-preventive pigment, is a substance having a large environmental load, the present inventors have developed a coating molten Zn-Al-Mg-Si plating with a small environmental load. A steel plate was proposed (Patent Document 3).
[0008]
Further, it has been proposed that the surface appearance is improved by adding Ti, B, and Si to a hot-dip Zn-Al-Mg plated steel sheet (Patent Document 4).
[0009]
[Patent Document 1]
Japanese Patent No. 3179446
[Patent Document 2]
JP 2000-64061 A
[Patent Document 3]
Japanese Patent No. 3090207
[Patent Document 4]
JP 2001-295015 A
[0010]
[Problems to be solved by the invention]
The ternary alloy of Zn-Mg-Al has a ternary eutectic point in 3% by mass Mg-4% by mass Al-93% by mass Zn, and when the Al concentration is higher than that, an Al phase is crystallized as a primary crystal. I do.
[0011]
If the plating solidification rate during hot-dip plating is sufficiently ensured, the plating will solidify before the Al phase grows significantly, so surface smoothness will not be a problem. As a result, unevenness is formed on the plating surface due to large growth, and the surface smoothness is deteriorated.
[0012]
Therefore, when a coated steel sheet is manufactured using such a steel sheet having a low surface smoothness, the unevenness of the plating surface cannot be completely hidden with a relatively thin coating film having a thickness of about 0.2 to 100 μm. Has a problem that the sharpness of the image is deteriorated.
[0013]
Further, the techniques disclosed in Patent Documents 1 to 3 do not consider the problem that the sharpness of a coated steel sheet deteriorates.
[0014]
In the technology disclosed in Patent Document 4, Zn which deteriorates the surface appearance is used. 11 Mg 2 Although Ti and B are added for the purpose of suppressing the formation and growth of the phase, the problem that the surface smoothness or the sharpness after coating deteriorates is not considered, and intermetallic compounds are mentioned. Absent.
[0015]
In view of the above, the present invention has been made in view of the above problems, and provides a highly corrosion-resistant coated steel sheet having sufficiently excellent sharpness even at a high Al concentration of more than 4% by mass and a small environmental load. The purpose is.
[0016]
[Means for Solving the Problems]
The present inventors have conducted intensive research on the development of a highly corrosion-resistant coated steel sheet with excellent clarity and a low environmental load.As a result, after forming a zinc-based plating in which the amount of the added element is optimized on the surface of the steel sheet, By applying a silane coupling-based treatment instead of chromate treatment as a base treatment, and applying a coating film having a chromium-free rust-preventive pigment instead of a chromium-based rust-preventive pigment on it, it has excellent clarity and low environmental impact. It was found that a highly corrosion-resistant coated steel sheet could be obtained.
[0017]
That is, the present invention is quiet based on the above findings, and the gist of the present invention is as follows.
[0018]
(1) A zinc-based plating layer containing 4 to 10% by mass of Al, 1 to 5% by mass of Mg, and 0.1% by mass or less of Ti on one or both surfaces of a steel sheet, with the balance being zinc and unavoidable impurities. Having thereon a coating layer containing 100 parts by mass of an aqueous resin as a solid content and 0.1 to 3000 parts by mass of a silane coupling agent as a base treatment layer, and an organic layer having a thickness of 0.2 to 100 μm as an upper layer. High corrosion-resistant coated steel sheet with excellent clarity and low environmental load, characterized by having a coating layer.
[0019]
(2) One or both surfaces of the steel sheet contains 4 to 22% by mass of Al, 1 to 5% by mass of Mg, 0.1% by mass or less of Ti, 0.5% by mass or less of Si, and the balance is zinc and A zinc-based plating layer composed of unavoidable impurities, and a coating layer containing 100 parts by mass of an aqueous resin as a solid content and 0.1 to 3000 parts by mass of a silane coupling agent as a base treatment layer thereon; A highly corrosion-resistant coated steel sheet having excellent clarity and low environmental load, having an organic coating layer having a thickness of 0.2 to 100 μm.
[0020]
(3) A zinc-based plating layer containing 4 to 10% by mass of Al, 1 to 5% by mass of Mg, and 0.1% by mass or less of Ti on one or both surfaces of a steel sheet, with the balance being zinc and unavoidable impurities. Having thereon a coating layer containing 100 parts by mass of an aqueous resin as a solid content and 0.1 to 3000 parts by mass of a silane coupling agent as a base treatment layer, and an organic layer having a thickness of 0.2 to 100 μm as an upper layer. The zinc-based plating layer of a coated steel sheet having a coating layer is [Al / Zn / Zn 2 [Al phase], [Zn 2 Mg phase] and [Zn phase] have a metal structure in which one or more kinds are mixed, and [Al phase], [Zn phase] 2 A highly corrosion-resistant coated steel sheet having excellent clarity, characterized in that one or two or more of [Mg phase] and [Zn phase] contain a Ti-Al-based intermetallic compound.
[0021]
(4) One or both surfaces of the steel sheet contains 4 to 22% by mass of Al, 1 to 5% by mass of Mg, 0.1% by mass or less of Ti, 0.5% by mass or less of Si, and the balance is zinc and A zinc-based plating layer composed of unavoidable impurities, and a coating layer containing 100 parts by mass of an aqueous resin as a solid content and 0.1 to 3000 parts by mass of a silane coupling agent as a base treatment layer thereon; The zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 0.2 to 100 μm is [Al / Zn / Zn 2 Mg ternary eutectic structure] 2 Si phase], [Al phase] and [Zn 2 Mg phase] and a mixture of [Al phase] and [Zn 2 Mg phase], a Ti—Al-based intermetallic compound is contained in one or two kinds thereof, and a highly corrosion-resistant coated steel sheet having excellent clarity and low environmental load.
[0022]
(5) On one or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, the balance being zinc and A zinc-based plating layer composed of unavoidable impurities, and a coating layer containing 100 parts by mass of an aqueous resin as a solid content and 0.1 to 3000 parts by mass of a silane coupling agent as a base treatment layer thereon; The zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 0.2 to 100 μm is [Al / Zn / Zn 2 Mg ternary eutectic structure] 2 Si phase], [Al phase], [Zn 2 (Mg phase) and [Zn phase], and [Al phase], [Zn 2 A highly corrosion-resistant coated steel sheet having excellent clarity and low environmental load, characterized in that one or more of the [Mg phase] and the [Zn phase] contain a Ti-Al-based intermetallic compound.
[0023]
(6) On one or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and A zinc-based plating layer composed of unavoidable impurities, and a coating layer containing 100 parts by mass of an aqueous resin as a solid content and 0.1 to 3000 parts by mass of a silane coupling agent as a base treatment layer thereon; The zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 0.2 to 100 μm is [Al / Zn / Zn 2 Mg ternary eutectic structure] 2 Si phase], [Al phase] and [Zn phase] are mixed, and a Ti-Al intermetallic compound is contained in one or two of [Al phase] and [Zn phase]. High corrosion resistance coated steel sheet with excellent clarity and low environmental impact characterized by containing.
[0024]
(7) The Ti-Al-based intermetallic compound according to any of (3) to (6) above, 3 Highly corrosion-resistant coated steel sheet with excellent clarity and low environmental impact.
[0025]
(8) The Ti-Al-based intermetallic compound according to any of (3) to (6) is 1-X Si X ) 3 (Where X = 0 to 0.5), a highly corrosion-resistant coated steel sheet having excellent clarity and low environmental load.
[0026]
(9) The method according to (3), wherein the Ti-Al-based intermetallic compound contained in the [Al phase] in the plating layer is present in the Zn phase precipitated by a Zn-Al eutectoid reaction. And (8) a highly corrosion-resistant coated steel sheet having excellent clarity and low environmental load.
[0027]
(10) The method according to any one of (1) to (9) above, wherein the size of the dendrites of the [Al phase] in the plating layer is 500 μm or less. Small high corrosion resistant painted steel plate.
[0028]
(11) The coating layer of the undercoat layer further contains, as solids, at least one of 1 to 2000 parts by mass of fine silica and 0.1 to 1000 parts by mass of etchable fluoride. The highly corrosion-resistant coated steel sheet according to any one of the above (1) to (10), which has excellent clarity and low environmental load.
[0029]
(12) The highly corrosion-resistant coated steel sheet according to any one of the above (1) to (11), wherein the organic coating is a thermosetting resin coating and has excellent clarity and low environmental load.
[0030]
(13) The highly corrosion-resistant coated steel sheet according to any one of the above (1) to (12), wherein the organic film layer comprises an undercoat layer containing a rust-preventive pigment and a colored overcoat layer, and has excellent clarity and low environmental load.
[0031]
(14) The rust preventive pigment in the organic film according to any one of (1) to (13), which releases one or more of silicate ion, phosphate ion, vanadate ion, and molybdate ion. Highly corrosion-resistant coated steel sheet with excellent clarity and low environmental impact.
[0032]
(15) The adhesion amount of the undercoat layer after drying is 10 to 3000 mg / m. 2 The highly corrosion-resistant coated steel sheet according to any one of the above (1) to (14), which has excellent clarity and low environmental load.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0034]
In the present invention, the coated steel sheet is a steel sheet in which a zinc-based plating layer, a silane coupling treatment, and a layer made of an organic film are sequentially applied. As the base steel sheet of the present invention, both hot-rolled steel sheets and cold-rolled steel sheets can be used, and the type of steel is an ultra-low carbon steel sheet added with Al-killed steel, Ti, Nb, etc. Various materials, such as high-strength steel and stainless steel to which is added, can be applied.
[0035]
The lower zinc-based plating layer is a plating layer composed of Al: 4 to 10% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, with the balance being Zn and unavoidable impurities, or Al: 4%. ~ 22% by mass, Mg: 1 ~ 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being Zn and unavoidable impurities.
[0036]
The reason for limiting the content of Al in the Zn-Al-Mg-Ti-based plating layer to 4 to 10% by mass is that when the content of Al exceeds 10% by mass, a decrease in plating adhesion is observed. This is because the Al content in the plating layer not added needs to be 10% by mass or less. Also, when the content is less than 4% by mass, the Al phase does not crystallize as a primary crystal, and thus there is no problem of a decrease in smoothness.
[0037]
Therefore, in the highly corrosion-resistant coated steel sheet of the present invention, especially when the Al concentration is higher than 10% by mass, it is essential to add Si to the plating layer in order to secure plating adhesion. It is.
[0038]
On the other hand, the reason for limiting the Al content to 4 to 22% by mass in the Zn—Al—Mg—Ti—Si-based plating layer is that if the content is less than 4% by mass, the Al phase does not crystallize as primary crystals, so This is because there is no problem of reduction, and when it exceeds 22% by mass, the effect of improving corrosion resistance is saturated.
[0039]
The reason that the content of Si is limited to 0.5% by mass or less (excluding 0% by mass) is that Si has an effect of improving the adhesion, but if it exceeds 0.5% by mass, the adhesion is improved. This is because the effect of saturating becomes saturated. It is preferably 0.00001 to 0.5% by mass, and more preferably 0.0001 to 0.5% by mass.
[0040]
The addition of Si is indispensable for a plating layer having an Al content of more than 10% by mass. However, even for a plating layer having an Al content of 10% or less, the effect of improving the plating adhesion is great, so that a member that is strictly processed. When high plating adhesion is required, for example, when Si is used, it is effective to add Si. In addition, the addition of Si causes [Mg 2 Si phase] is crystallized. This [Mg 2 Si phase] has the effect of improving the corrosion resistance of the processed portion, so the amount of Si added is increased and [Mg 2 It is more desirable to produce a metal structure in which [Si phase] is mixed.
[0041]
The reason why the content of Mg is limited to 1 to 5% by mass is that if it is less than 1% by mass, the effect of improving the corrosion resistance is insufficient. If it exceeds 5% by mass, the plating layer becomes brittle and the adhesion becomes poor. It is because it decreases.
[0042]
The reason for limiting the content of Ti to 0.1% by mass or less (excluding 0% by mass) is that Ti has an effect of crystallizing a Ti-Al-based intermetallic compound and improving sharpness, If it exceeds 0.1% by mass, the appearance after plating becomes coarse and poor appearance occurs. Further, the Ti-Al-based intermetallic compound concentrates on the plating surface and lowers the surface smoothness. Desirably, it is 0.00001 to 0.1% by mass. Further, the content is desirably 0.00001 to less than 0.01% by mass.
[0043]
This plating layer is made of [Al / Zn / Zn 2 [Ternary eutectic structure of Mg] in the matrix [Zn phase], [Al phase], [Zn 2 Mg phase], [Mg 2 Si phase], and a metal structure containing at least one of a Ti—Al-based intermetallic compound is formed.
[0044]
Here, [Al / Zn / Zn 2 Ternary eutectic structure of Mg] means an Al phase, a Zn phase and an intermetallic compound Zn. 2 An Al phase forming a ternary eutectic structure with a Mg phase is, for example, an “Al ″ phase” (Zn) at a high temperature in a ternary equilibrium diagram of Al—Zn—Mg. This is an Al solid solution that dissolves the phase and contains a small amount of Mg). The Al ″ phase at a high temperature usually appears at room temperature as being separated into a fine Al phase and a fine Zn phase.The Zn phase in the ternary eutectic structure dissolves a small amount of Al to form a solid solution. Is a Zn solid solution in which a small amount of Mg is further dissolved.Zn in the ternary eutectic structure 2 The Mg phase is an intermetallic compound phase existing near Zn: about 84% by mass in a binary equilibrium diagram of Zn—Mg. According to the phase diagram, it is considered that Si and Ti do not form a solid solution in each phase, or even if they do form a solid solution, they are considered to be extremely small. However, the amounts cannot be clearly distinguished by ordinary analysis. In the present specification, a ternary eutectic structure composed of three phases is referred to as [Al / Zn / Zn 2 Mg ternary eutectic structure].
[0045]
Further, the [Al phase] is a phase that looks like an island with a clear boundary in the matrix of the ternary eutectic structure. This is, for example, a high temperature in the ternary system diagram of Al-Zn-Mg. (Al solid solution that dissolves Zn phase and contains a small amount of Mg). The Al "phase at this high temperature differs in the amount of solid solution Zn and Mg depending on the Al and Mg concentrations in the plating bath. The Al" phase at this high temperature usually has a fine Al phase and a fine Zn phase at room temperature. Although it separates into phases, the island-like shape seen at room temperature may be regarded as retaining the form of the Al ″ phase at high temperature. From the phase diagram, Si and Ti are dissolved in this phase. It is considered that it is not present, or even if it forms a solid solution, it is considered to be a very small amount, but it cannot be clearly distinguished by ordinary analysis. This phase is referred to herein as an [Al phase], which can be clearly distinguished from the Al phase forming the ternary eutectic structure by microscopic observation.
[0046]
The [Zn phase] is a phase that looks like an island with a clear boundary in the matrix of the above ternary eutectic structure, and actually has a small amount of Al and a small amount of Mg dissolved therein. There is also. From the phase diagram, it is considered that Si and Ti are not dissolved in this phase, or even if they are dissolved, they are minimal. This [Zn phase] can be clearly distinguished from the Zn phase forming the ternary eutectic structure by microscopic observation.
[0047]
Also, [Zn 2 Mg phase] is a phase that looks like an island with a clear boundary in the matrix of the ternary eutectic structure, and may actually dissolve a small amount of Al. From the phase diagram, it is considered that Si and Ti are not dissolved in this phase, or even if they are dissolved, they are minimal. This [Zn 2 Mg phase] is Zn which forms the above-mentioned ternary eutectic structure. 2 The Mg phase can be clearly distinguished by microscopic observation.
[0048]
Also, [Mg 2 Si phase] is a phase which looks like an island with a clear boundary in the solidification structure of the plating layer. From the state diagram, it is considered that Zn, Al, and Ti do not form a solid solution, or even if they do form a solid solution, they are in a very small amount. This [Mg 2 Si phase] can be clearly distinguished by microscopic observation during plating.
[0049]
The Ti-Al intermetallic compound is a phase that looks like an island with a clear boundary in the solidification structure of the plating layer. TiAl as far as the phase diagram shows 3 However, since Si is observed in the analysis, TiAl containing Si as a solid solution is considered. 3 Alternatively, Ti (Al in which part of Al is replaced by Si) 1-X Si X ) 3 It is considered to be.
[0050]
In the hot-dip coated steel material of the present invention, the Ti-Al-based intermetallic compound includes [Al phase], [Zn 2 Mg phase] and [Zn phase]. [Al phase], [Zn 2 The reason for limiting to the [Mg phase] and [Zn phase] is that the Ti-Al-based intermetallic compound existing at other positions cannot improve the sharpness. [Al phase], [Zn 2 The reason why the Ti-Al-based intermetallic compound present in the [Mg phase] and [Zn phase] improves the sharpness is that the Ti-Al-based intermetallic compound has [Al phase] and [Zn 2 It is considered that the nuclei of [Mg phase] and [Zn phase] promote crystallization of these crystals to form a fine and large number of structures. That is, it is considered that when the crystal becomes finer, the unevenness of the plating layer surface is suppressed, the plating surface becomes smooth, and the unevenness of the plating surface can be concealed even with a relatively thin coating film, and the sharpness of the coated steel plate is improved. Can be
[0051]
This effect is particularly remarkable in the [Al phase]. By controlling the size of the [Al phase] dendrites to 500 μm or less, the surface becomes smooth and the friction coefficient decreases. Desirably, it is 400 μm or less. More preferably, it is 300 μm or less.
[0052]
As a result of investigating the metal structures in many platings by the present inventors, an intermetallic compound having a size of several μm was observed from most of the metal structures. FIG. 1 shows an example of the intermetallic compound present in the [Al phase]. The upper diagram (a) in FIG. 1 is a micrograph (1000-fold magnification) of the plated layer of the plated steel material according to the present invention, and the lower diagram (b) illustrates the distribution state of each structure in the photograph. It is. As can be seen from this figure, each structure can be clearly identified from the micrograph of the plated layer of the plated steel material in the present invention.
[0053]
In FIG. 1, a Ti—Al-based intermetallic compound is observed among those corresponding to the “Al ″ phase” at a high temperature in the ternary equilibrium diagram of Al—Zn—Mg. The Al ″ phase at this high temperature usually appears as a fine Al phase and a fine Zn phase at room temperature due to the eutectoid reaction occurring at 277 ° C. in the Al-Zn binary equilibrium diagram. In the case of the hypoeutectoid reaction, the Al ″ phase crystallized at a high temperature starts precipitation of the Zn phase from the ternary eutectic temperature in the ternary equilibrium diagram of Al—Zn—Mg, and the binary phase of Al—Zn The Al ″ phase remaining at a temperature corresponding to the eutectoid reaction in the system equilibrium diagram becomes an eutectoid structure of a fine Al phase and a fine Zn phase.
[0054]
FIG. 2 (a) in the upper part of FIG. 2 is a micrograph (magnification: 3500 ×) of the Al ″ phase in FIG. 1 in an enlarged scale, and FIG. 2 (b) in the lower part shows the distribution of each tissue in the photograph. When the Al ″ phase is observed in detail, it is observed that the precipitated Zn phase exists outside the Al ″ phase and around the Ti—Al-based intermetallic compound.
[0055]
In the present invention, the size of the intermetallic compound is not particularly limited, but the size observed by the inventors was 10 μm or less. Further, the proportion of the intermetallic compound in the plating structure is not particularly limited, but [Al phase], [Zn 2 [Mg phase] or [Zn phase] is preferably present in at least 10%.
[0056]
In the present invention, the method for producing the plated steel sheet is not particularly limited, and a normal hot-dip galvanizing method can be applied.
[0057]
There is no particular limitation on the method of adding the intermetallic compound, and a method of turbidizing the fine powder of the intermetallic compound in the bath, a method of dissolving the intermetallic compound in the bath, and the like can be applied. When manufacturing in a continuous line or the like using a hot-dip plating method, a method in which Ti is dissolved in a plating bath is appropriate. As a method of dissolving Ti in a plating bath, a method of adding a Ti—Zn-based intermetallic compound is efficient because it can be dissolved at a low temperature in a short time. As the Ti-Zn-based intermetallic compound to be added, Zn Fifteen Ti, Zn 10 Ti, Zn 5 Ti, Zn 3 Ti, Zn 2 There are Ti, ZnTi and the like. When such an intermetallic compound is used alone or mixed in a Zn, Zn-Al or Zn-Al-Mg alloy and added to a plating bath, the dissolved Ti crystallizes out as a Ti-Al-based intermetallic compound during plating, and the surface becomes smooth. Improves formability and moldability.
[0058]
There is no particular limitation on the amount of plating, but from the viewpoint of corrosion resistance, 10 g / m 2 As described above, from the viewpoint of workability, 350 g / m 2 It is desirable to have the following.
[0059]
The zinc plating layer may further contain Fe, Sb, Pb, and Sn singly or in a composite within 0.5% by mass. In addition, even if Ca, Be, Cu, Ni, Co, Cr, Mn, P, B, Nb, Bi or a Group 3 element is contained in a total amount of 0.5% by mass or less, the effect of the present invention is not impaired. Depending on the case, it may be preferable that the corrosion resistance is further improved.
[0060]
Next, the base treatment layer used for the coated steel sheet of the present invention is characterized by containing a silane coupling agent based on an aqueous resin. By combining this undercoating layer with Zn-Mg-Al-Ti-based alloy plating or Zn-Mg-Al-Si-Ti-based alloy plating, the corrosion resistance of the processed portion is synergistically improved. The term “aqueous resin” used in the undercoating layer includes, in addition to a water-soluble resin, a resin that is inherently insoluble in water but can be finely dispersed in water, such as an emulsion or a suspension. Those usable as such aqueous resins include, for example, polyolefin resins, acrylic olefin resins, polyurethane resins, polycarbonate resins, epoxy resins, polyester resins, alkyd resins, phenol resins, and other thermosetting resins. And a crosslinkable resin. Particularly preferred resins are acrylic olefin-based resins, polyurethane-based resins, and mixed resins of both. Two or more of these aqueous resins may be mixed or polymerized for use.
[0061]
The silane coupling agent firmly bonds to both the plating and the coating film in the presence of the aqueous resin, dramatically improving the adhesion of the coating film, and thereby improving the corrosion resistance of the processed portion. Examples of the silane coupling agent include γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, aminosilane, γ-methacryloxypropyltrimethoxysilane, N- β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, octadecyldimethyl [ 3- (trimethoxysilyl) propyl] ammonium chloride, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchloro Or the like can be given a run.
[0062]
The content of the silane coupling agent is desirably 0.1 to 3,000 parts by mass based on 100 parts by mass of the aqueous resin in terms of solid content. If the amount is less than 0.1 part by mass, the amount of the silane coupling agent is insufficient, so that sufficient adhesion cannot be obtained during processing and the corrosion resistance is poor. If it exceeds 3,000 parts by mass, the effect of improving the adhesion is saturated, which is uneconomical.
[0063]
Further, the addition of fine silica improves scratch resistance, coating film adhesion, and corrosion resistance. In the present invention, fine-particle silica is a generic term for silica having a characteristic such that when dispersed in water, it has a fine particle size, so that it can stably maintain a water-dispersed state and no semipermanent sedimentation is observed. Things. Such fine silica is not particularly limited as long as it has few impurities such as sodium and is a weak alkali type. For example, commercially available silica such as "Snowtex N" (manufactured by Nissan Chemical Industries, Ltd.) and "Adelite AT-20N" (manufactured by Asahi Denka Kogyo) can be used.
[0064]
The content of the fine silica is 1 to 2000 parts by mass, more preferably 10 to 400 parts by mass, based on 100 parts by mass of the aqueous resin in terms of solid content. If the amount is less than 1 part by mass, the effect of addition is small, and if it exceeds 2,000 parts by mass, the effect of improving corrosion resistance is saturated, which is uneconomical. Addition of an etching fluoride improves the adhesion of the coating film. Here, as the etchable fluoride, zinc fluoride tetrahydrate, zinc hexafluorosilicate hexahydrate and the like can be used. The content of the etching fluoride is preferably 1 to 1000 parts by mass in terms of solid content based on 100 parts by mass of the aqueous resin. If the amount is less than 1 part by mass, the effect of addition is small.
[0065]
Further, a surfactant, a rust inhibitor, a foaming agent, and the like may be added as necessary. The adhesion amount of the undercoat layer after drying is 10 to 3000 mg / m. 2 Is preferred. 10mg / m 2 If it is less than the above, the adhesion is poor and the corrosion resistance of the processed portion is insufficient. On the other hand, 3000 mg / m 2 When it exceeds, not only is it uneconomical, but also the workability is lowered and the corrosion resistance becomes poor.
[0066]
The method of applying the undercoat layer is not particularly limited, and a generally known coating method such as roll coating, air spray, airless spray, immersion, or the like can be applied. Drying and baking after the application may be performed by a known method such as a hot blast furnace, an induction heating furnace, a near-infrared furnace, or a combination thereof. Further, depending on the type of the aqueous resin used, the resin can be cured by ultraviolet rays or electron beams. Alternatively, natural drying may be performed without using forced drying, or a plated steel sheet may be heated in advance, applied thereon, and naturally dried.
[0067]
Next, examples of the organic coating of the upper layer of the coated steel sheet include polyester resin, amino resin, epoxy resin, acrylic resin, urethane resin, fluororesin, etc., and are not particularly limited. When used, a thermosetting resin coating is most preferred. Examples of the thermosetting resin coating film include polyester paints such as epoxy polyester paints, polyester paints, melamine polyester paints, urethane polyester paints, and acrylic paints.
[0068]
Combined with alkyd resin in which part of the acid component of polyester resin is replaced with fatty acid, oil-free alkyd resin not modified with oil, polyester-based paint using melamine resin or polyisocyanate resin as curing agent, and various crosslinking agents This is because the acrylic paint has better workability than other paints, so that cracks and the like do not occur in the coating film even after severe processing.
[0069]
The appropriate film thickness is 0.2 to 100 μm. The reason for setting the film thickness to 0.2 μm or more is that if the film thickness is less than 0.2 μm, corrosion resistance cannot be ensured. The reason for setting the film thickness to 100 μm or less is that if the film thickness exceeds 100 μm, it is disadvantageous in terms of cost. Desirably, it is 50 μm or less. The organic coating layer may be a single layer or multiple layers.
[0070]
The organic coating used in the method of the present invention may contain additives such as a plasticizer, an antioxidant, a heat stabilizer, inorganic particles, a pigment, and an organic lubricant, if necessary.
[0071]
The organic coating layer is applied on the base treatment layer by a known method. For example, a roll coater, a curtain coater, an electrostatic coating, a spray coating, a dip coating, and the like. Thereafter, drying and curing are performed by heating with hot air, induction heating, near-infrared radiation, far-infrared radiation, or the like. If the resin of the organic coating layer can be cured by electron beams or ultraviolet rays, it is cured by these irradiations. These may be used in combination.
[0072]
In the coated steel sheet of the present invention, a coating layer to which a rust preventive pigment is added as necessary may be provided as an undercoat layer between the chemical conversion treatment layer and the colored organic layer. This undercoat layer is designed mainly for the purpose of improving corrosion resistance, but is also designed in consideration of molding workability, chemical resistance and the like. As the resin constituting the undercoat layer, generally known resins, for example, polyester resins, urethane resins, acrylic resins, epoxy resins, melamine resins and the like can be used as they are or in combination. As rust preventive pigments, generally known rust preventive pigments such as (1) phosphoric acid rust preventive pigments such as zinc phosphate, iron phosphate, aluminum phosphate and zinc phosphite; (2) calcium molybdate, molybdate Molybdate anticorrosive pigments such as aluminum and barium molybdate; (3) vanadium anticorrosive pigments such as vanadium oxide; (4) silicate pigments such as calcium silicate; (5) water dispersed silica and fumed silica; And the like can be used.
[0073]
The addition amount of the rust preventive pigment is preferably 1 to 40% by mass based on the solid content of the film. If the amount is less than 1% by mass, the corrosion resistance is not sufficiently improved, and if it exceeds 40% by mass, the workability is reduced, and the organic coating layer falls off during the processing, resulting in poor corrosion resistance.
[0074]
The undercoat layer containing the rust-preventive pigment can be applied by a generally known method. For example, roll coating, curtain coating, air spray, airless spray, dipping, brush coating, bar coating, and the like. Thereafter, drying and curing are performed by heating with hot air, induction heating, near-infrared radiation, far-infrared radiation, or the like. If the resin of the organic coating layer can be cured by electron beams or ultraviolet rays, it is cured by these irradiations. These may be used in combination.
[0075]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
[0076]
(Example 1)
First, a cold-rolled steel sheet having a thickness of 0.85 mm is prepared, and hot-dip plating is performed on the cold-rolled steel sheet at 400 to 600 ° C. for 3 seconds in a plating bath in which the amount of added elements in the bath is changed. 2 140 g / m of coating weight on one side by wiping 2 And cooled at a cooling rate of 10 ° C./s or less. Table 1 shows the plating composition of the resulting plated steel sheet. Table 1 also shows the results of observing the plated steel sheet from the cross section by SEM and observing the metallographic structure of the plated layer.
[0077]
Ti-Al-based intermetallic compounds were obtained by polishing a plated steel plate at an inclination of 10 degrees, and then observing it with EPMA. 2 Mg phase] and [Zn phase] were observed.
[0078]
The size of the dendrites of the [Al phase] in the plating layer was determined by mapping the surface of the plated steel sheet with CMA and measuring the major axis of the resinous crystal using the obtained Al mapping. The measurement was performed in a range of 5 × 5 cm, and the major axes of five resinous crystals were measured in order from the largest, and the average value was used as the size of the dendrites of the [Al phase].
[0079]
Next, FC-364S manufactured by Nippon Parkerizing Co., Ltd. was used as a degreasing agent, and immersed in 2% by mass at 60 ° C. for 10 seconds, followed by washing and drying to perform a degreasing treatment on the plated steel sheet. Next, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride was applied to 100 parts by mass of an acrylic olefin resin, and dried in a hot-air drying oven to deposit 200 mg. / M 2 And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0080]
Rust preventive pigments of Nippon Paint's P641 primer paint (polyester resin type) described in Table 1 were used as undercoats (zinc phosphite, calcium silicate, vanadic acid / phosphoric acid mixed system, molybdic acid) The modified (system) was applied by a bar coater and baked in a hot air drying furnace under the condition that the maximum temperature of the sheet reached 220 ° C., so that the film thickness was adjusted to 5 μm. On top of the undercoat, FL100HQ (polyester resin) manufactured by Nippon Paint was applied as a top coat using a bar coater, and baked in a hot air drying oven under the condition that the reached plate temperature was 220 ° C., to adjust the film thickness to 15 μm.
[0081]
The coated steel sheet produced as described above is subjected to 3T bending (180 ° bending with three original sheets sandwiched), and salt spray (5% NaCl, 35 ° C, 2 hours) → drying (60 ° C) , 30% RH, 4 hr) → wet (50 ° C., 95% RH, 2 hr) for 120 cycles of a corrosion test. After the cycle corrosion test, the red rust generation area ratio of the processed portion was visually observed. The rating is 5 when red rust is less than 5%, 4 when red rust is 5% or more and less than 10%, 3 when red rust is 10% or more and less than 20%, 2 when 20% or more and less than 30%, and 1 when 30% or more. Passed.
[0082]
The sharpness was measured by a sharpness measurement value (Gd value) with a portable sharpness gloss meter (PGD meter). Regarding the sharpness, those having a Gd value of 0.6 or more were accepted, and those having a Gd value of less than 0.6 were unacceptable.
[0083]
Table 1 shows the evaluation results. No. 18 did not contain a Ti-Al-based intermetallic compound, so the Al phase grew, and the sharpness was rejected. In No. 19, since the content of Ti was too large, the Ti-Al intermetallic compound was concentrated on the surface, and the sharpness was rejected. In No. 20, the corrosion resistance was rejected because Mg, Al, Si, and Ti were out of the range of the present invention. Other than these, all showed good sharpness and corrosion resistance.
[0084]
[Table 1]
Figure 2004292942
[0085]
(Example 2)
First, a cold-rolled steel sheet having a thickness of 0.85 mm is prepared, and hot-dip plating is performed on the cold-rolled steel sheet at 400 to 600 ° C. for 3 seconds in a plating bath in which the amount of added elements in the bath is changed. 2 140 g / m of coating weight on one side by wiping 2 And cooled at a cooling rate of 10 ° C./s or less. Table 2 shows the plating composition of the obtained plated steel sheet. Table 2 also shows the results of observing the plated steel sheet from the cross section by SEM and observing the metal structure of the plated layer.
[0086]
Ti-Al-based intermetallic compounds were obtained by polishing a plated steel plate at an inclination of 10 degrees, and then observing it with EPMA. 2 Mg phase] and [Zn phase] were observed.
[0087]
The size of the dendrites of the [Al phase] in the plating layer was determined by mapping the surface of the plated steel sheet with CMA and measuring the major axis of the resinous crystal using the obtained Al mapping. The measurement was performed in a range of 5 × 5 cm, and the major axes of five resinous crystals were measured in order from the largest, and the average value was used as the size of the dendrites of the [Al phase].
[0088]
Next, FC-364S manufactured by Nippon Parkerizing Co., Ltd. was used as a degreasing agent, and immersed in 2% by mass at 60 ° C. for 10 seconds, followed by washing and drying to perform a degreasing treatment on the plated steel sheet. Next, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride was applied to 100 parts by mass of an acrylic olefin resin, and dried in a hot-air drying oven to deposit 200 mg. / M 2 And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0089]
The coating was performed by coating each with an epoxy polyester paint, a polyester paint, a melamine polyester paint, a urethane polyester paint, and an acrylic paint with a bar coater and baking in a hot air drying oven to adjust the film thickness as shown in Table 2.
[0090]
The sharpness was measured by a sharpness measurement value (Gd value) with a portable sharpness gloss meter (PGD meter). Regarding the sharpness, those having a Gd value of 0.6 or more were accepted, and those having a Gd value of less than 0.6 were unacceptable.
[0091]
The corrosion resistance of the processed part extruded 7 mm using an Erichsen tester according to JIS B-7729 was tested for 72 hours in a salt spray test according to JIS Z-2371. Those that occurred were rejected.
[0092]
Table 2 shows the evaluation results. In the case of No. 29, the corrosion resistance was rejected because the coating film thickness was out of the range of the present invention. Other than these, all showed good sharpness and corrosion resistance.
[0093]
[Table 2]
Figure 2004292942
[0094]
(Example 3)
First, a cold-rolled steel sheet having a thickness of 0.85 mm is prepared, and hot-dip plating is performed on the cold-rolled steel sheet at 450 ° C. for 3 seconds in a Zn—Mg—Al—Si—Ti plating bath. 2 140 g / m of coating weight on one side by wiping 2 And cooled at a cooling rate of 10 ° C./s or less. The composition in the plating layer of the obtained plated steel sheet was Mg 3%, Al 11%, Si 0.2%, and Ti 0.009%.
[0095]
The plated steel sheet was immersed in 2% by mass, 60 ° C., and 10 seconds for 10 seconds using FC-364S manufactured by Nippon Parkerizing Co., Ltd. as a degreasing agent. Next, a base material having the composition shown in Table 3 was applied and dried in a hot air drying oven. The reached plate temperature during drying was 150 ° C. As the silane coupling agent, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and methyltrichlorosilane were used. "Snowtex N, described as ST-N in the table" (manufactured by Nissan Chemical Industries, Ltd.) was used as the silica, and zinc hexafluorosilicate hexahydrate was used as the etching fluoride.
[0096]
In addition, the steel plate of the comparative material was immersed in a coating type chromate treatment liquid to perform a chromate treatment. The amount of chromate film attached is 50 mg / m in terms of Cr. 2 And
[0097]
Nippon Paint P641 primer paint (polyester resin type, resin type in the table was polyester), Nippon Paint P108 primer (epoxy resin type, resin type in the table was epoxy) as base coat, Japan Rust preventive pigments (zinc phosphite, calcium silicate, vanadic acid / phosphoric acid mixture, molybdenum) described in Table 2 for paint rust preventive pigments of paint P304 primer (urethane resin type, resin type in the table was urethane) (Acid-based) was applied with a bar coater and baked in a hot air drying oven under the condition that the maximum temperature of the sheet reached 220 ° C., so that the film thickness was adjusted to 5 μm. On top of the undercoat, FL100HQ (polyester resin) manufactured by Nippon Paint was applied as a top coat using a bar coater, and baked in a hot air drying oven under the condition that the reached plate temperature was 220 ° C., to adjust the film thickness to 15 μm.
[0098]
The coated steel sheet produced as described above is subjected to 3T bending (180 ° bending with three original sheets sandwiched), and salt spray (5% NaCl, 35 ° C, 2 hours) → drying (60 ° C) , 30% RH, 4 hr) → wet (50 ° C., 95 RH, 2 hr), a cycle corrosion test of 120 cycles was performed. After the cyclic corrosion test, the red rust generation area ratio of the processed portion was visually observed. The score is 5 when red rust is less than 5%, 4 when red rust is 5% or more and less than 10%, 3 when red rust is 10% or more and less than 20%, 2 when 20% or more and less than 30%, and 1 when 30% or more. Passed.
[0099]
The sharpness was measured by a sharpness measurement value (Gd value) with a portable sharpness gloss meter (PGD meter). Regarding the sharpness, those having a Gd value of 0.6 or more were accepted, and those having a Gd value of less than 0.6 were unacceptable.
[0100]
Table 3 shows the evaluation results. In No. 15, the corrosion resistance of the processed portion was rejected because the content of the silane coupling agent was outside the range of the present invention. In Nos. 16 and 17, the corrosion resistance of the processed portion was rejected because the adhesion amount content of the base treatment layer was out of the range of the present invention. In Nos. 28 and 29, the chromate treatment was used for the base treatment layer, and the environmental load was large and the test was rejected. Other than these, all showed good sharpness and corrosion resistance.
[0101]
[Table 3]
Figure 2004292942
[0102]
(Example 4)
First, a cold-rolled steel sheet having a thickness of 0.85 mm is prepared, and hot-dip plating is performed on the cold-rolled steel sheet at 520 ° C. for 3 seconds in a plating bath in which the amount of added elements in the bath is changed. 2 140 g / m of coating weight on one side by wiping 2 And cooled at a cooling rate of 10 ° C./s or less. Table 4 shows the plating composition of the obtained plated steel sheet. Table 4 also shows the results of observing the plated steel sheet from the cross section by SEM and observing the metal structure of the plated layer.
[0103]
Ti-Al-based intermetallic compounds were obtained by polishing a plated steel plate at an inclination of 10 degrees, and then observing it with EPMA. 2 Mg phase] and [Zn phase] were observed. The Ti-Al intermetallic compound present in the [Al phase] was observed by EPMA, and the presence or absence in the Zn phase precipitated by the eutectoid reaction of Zn-Al was observed. Further, an EPMA observation of the Ti-Al-based intermetallic compound was performed, and the presence or absence of Si in the Ti-Al-based intermetallic compound was observed.
[0104]
Next, FC-364S manufactured by Nippon Parkerizing Co., Ltd. was used as a degreasing agent, immersed in 2% by mass at 60 ° C. for 10 seconds, and then subjected to a degreasing treatment of a plated steel sheet in a washing and drying process. Next, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride was applied to 100 parts by mass of an acrylic olefin resin, and dried in a hot-air drying oven to deposit 200 mg. / M 2 And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries, Ltd.) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0105]
On top of this, an epoxy polyester paint was applied as a primer with a bar coater and baked in a hot air drying oven to adjust the film thickness to 5 μm. For the top coat, a polyester coating was applied with a bar coater and baked in a hot-air drying oven to adjust the film thickness to 20 μm.
[0106]
Adhesion was measured by applying an adhesive tape to the coated steel sheet after the DuPont impact test and then peeling it off. ○: No plating or coating film peeled off, Δ: plating or coating film peeling less than 10%, The case where the plating or the coating film was peeled by 10% or more was evaluated as x. The Dupont test was performed by using a shooting type having a radius of 1/2 inch at the tip and dropping a 1 kg weight from a height of 1 m.
[0107]
The evaluation of corrosion resistance after processing was performed on the bent portion of the sample subjected to the 3T bending process (the bending process of 180 ° with three original sheets sandwiched), and the red rust occurrence state after 120 cycles of CCT was evaluated according to the following rating. . In the CCT, one cycle was defined as SST 2 hr → dry 4 hr → wet 2 hr. A score of 3 or more was considered as a pass.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
Table 4 shows the evaluation results. In the case of No. 2, the adhesion was rejected because the addition amounts of Al and Si were outside the range of the present invention. In all cases other than these, good results were obtained in adhesion and post-processing corrosion resistance. In particular, the plated steel sheet to which Si was added showed good adhesion and corrosion resistance after processing.
[0108]
[Table 4]
Figure 2004292942
[0109]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a coated steel sheet which has excellent sharpness even at a high Al concentration, does not contain chromium having a large environmental load, and has excellent corrosion resistance in a processed portion. In addition, industrially excellent effects can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an intermetallic compound present in an “Al” phase of a plating layer of a plated steel sheet, where (a) is a micrograph (× 1000) of the plating layer, and (b) is a photograph. It is a figure which shows the distribution state of each tissue in the photograph.
FIG. 2 (a) is a micrograph (magnification: 3500 times) of an enlarged “Al ″ phase”, and FIG. 2 (b) is a diagram showing the distribution of each tissue.

Claims (15)

鋼板の片面又は両面に、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。One side or both sides of the steel sheet has a zinc-based plating layer containing Al: 4 to 10% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, with the balance being zinc and unavoidable impurities. A coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.1 to 3000 parts by weight of a silane coupling agent as a base treatment layer, and an organic coating layer having a thickness of 0.2 to 100 μm as an upper layer. High corrosion-resistant coated steel sheet with excellent clarity and low environmental impact, characterized by having 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。One or both sides of the steel sheet contains 4 to 22% by mass of Al, 1 to 5% by mass of Mg, 0.1% by mass or less of Ti, 0.5% by mass or less of Si, and the balance is zinc and inevitable impurities. A zinc-based plating layer comprising a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.1 to 3000 parts by weight of a silane coupling agent as a base treatment layer. A highly corrosion-resistant coated steel sheet which has an organic coating layer having a thickness of 2 to 100 μm and has excellent clarity and low environmental load. 鋼板の片面又は両面に、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔Al相〕、〔ZnMg相〕及び〔Zn相〕の1種又は2種以上が混在した金属組織を有し、且つ、〔Al相〕、〔ZnMg相〕及び〔Zn相〕の1種又は2種以上の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性の優れた高耐食性塗装鋼板。One side or both sides of the steel sheet has a zinc-based plating layer containing Al: 4 to 10% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, with the balance being zinc and unavoidable impurities. A coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.1 to 3000 parts by weight of a silane coupling agent as a base treatment layer, and an organic coating layer having a thickness of 0.2 to 100 μm as an upper layer. One or two types of [Al phase], [Zn 2 Mg phase] and [Zn phase] in a base material having a zinc-based plating layer of [Al / Zn / Zn 2 Mg ternary eutectic structure] It is necessary to have a mixed metal structure as described above, and to include a Ti-Al intermetallic compound in one or more of [Al phase], [Zn 2 Mg phase] and [Zn phase]. High corrosion-resistant coated steel sheet with excellent clarity. 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔MgSi相〕、〔Al相〕及び〔ZnMg相〕が混在した金属組織を有し、且つ、〔Al相〕と〔ZnMg相〕の1種又は2種の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。One or both sides of the steel sheet contains 4 to 22% by mass of Al, 1 to 5% by mass of Mg, 0.1% by mass or less of Ti, 0.5% by mass or less of Si, and the balance is zinc and inevitable impurities. A zinc-based plating layer comprising a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.1 to 3000 parts by weight of a silane coupling agent as a base treatment layer. A zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 2 to 100 μm is formed on a substrate having a [ternary eutectic structure of Al / Zn / Zn 2 Mg], a [Mg 2 Si phase], an [Al phase], and [ has a metal structure Zn 2 Mg phase] are mixed, and a feature in that it contains Ti-Al system intermetallic compound in one or the [Al phase] [Zn 2 Mg phase] High corrosion resistance coated steel sheet with excellent clarity and low environmental impact. 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔MgSi相〕、〔Al相〕、〔ZnMg相〕及び〔Zn相〕が混在した金属組織を有し、且つ、〔Al相〕、〔ZnMg相〕及び〔Zn相〕の1種又は2種以上の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。One or both sides of the steel sheet contains 4 to 22% by mass of Al, 1 to 5% by mass of Mg, 0.1% by mass or less of Ti, 0.5% by mass or less of Si, and the balance is zinc and inevitable impurities. A zinc-based plating layer comprising a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.1 to 3000 parts by weight of a silane coupling agent as a base treatment layer. A zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 2 to 100 μm is formed on a substrate having a [ternary eutectic structure of Al / Zn / Zn 2 Mg] [Mg 2 Si phase], [Al phase], [ Zn 2 Mg phase] and [Zn phase] are mixed, and one or more of [Al phase], [Zn 2 Mg phase] and [Zn phase] contain Ti-Al Excellent sharpness characterized by containing an intermetallic compound and low environmental load High corrosion resistant painted steel plate. 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔MgSi相〕、〔Al相〕及び〔Zn相〕が混在した金属組織を有し、且つ、〔Al相〕と〔Zn相〕の1種又は2種の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。One or both sides of the steel sheet contains 4 to 22% by mass of Al, 1 to 5% by mass of Mg, 0.1% by mass or less of Ti, 0.5% by mass or less of Si, and the balance is zinc and inevitable impurities. A zinc-based plating layer comprising a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.1 to 3000 parts by weight of a silane coupling agent as a base treatment layer. A zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 2 to 100 μm is formed on a substrate having a [ternary eutectic structure of Al / Zn / Zn 2 Mg], a [Mg 2 Si phase], an [Al phase], and [ [Zn phase], and a Ti-Al intermetallic compound contained in one or two of [Al phase] and [Zn phase]. High corrosion resistance coated steel sheet with excellent environmental load and low environmental load. 請求項3乃至6のいずれかに記載のTi−Al系金属間化合物が、TiAlであることを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。Any TiAl-based intermetallic compound according to the small high corrosion resistance coated steel sheet environmental load excellent image clarity, which is a TiAl 3 of claims 3 to 6. 請求項3乃至6のいずれかに記載のTi−Al系金属間化合物が、Ti(Al1−XSi(但し、X=0〜0.5である)であることを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。Ti-Al system intermetallic compound according to any one of claims 3 to 6, characterized in that a Ti (Al 1-X Si X ) 3 ( provided that X = 0 to 0.5) High corrosion-resistant coated steel sheet with excellent clarity and low environmental impact. めっき層中の〔Al相〕の中に含有されるTi−Al系金属間化合物が、Zn−Alの共析反応によって析出したZn相中に存在することを特徴とする請求項3乃至8のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The Ti-Al-based intermetallic compound contained in the [Al phase] in the plating layer is present in a Zn phase precipitated by a Zn-Al eutectoid reaction. High corrosion-resistant coated steel sheet with excellent clarity and low environmental load as described in any of the above. めっき層中の〔Al相〕の樹枝状晶の大きさが500μm以下であることを特徴とする請求項1乃至9のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The highly corrosion-resistant coated steel sheet according to any one of claims 1 to 9, wherein dendrites of [Al phase] in the plating layer have a size of 500 µm or less. 下地処理層の皮膜層に固形分として、微粒シリカ1〜2000質量部、エッチング性フッ化物0.1〜1000質量部のうちいずれか1種以上を更に含有することを特徴とする、請求項1乃至10のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The coating layer of the undercoating layer further contains, as solids, at least one of 1 to 2,000 parts by mass of fine silica and 0.1 to 1000 parts by mass of an etching fluoride. 11. A highly corrosion-resistant coated steel sheet having excellent clarity and low environmental load according to any one of items 1 to 10. 有機被膜が熱硬化型の樹脂塗膜であることを特徴とする請求項1乃至11のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The highly corrosion-resistant coated steel sheet according to any one of claims 1 to 11, wherein the organic coating is a thermosetting resin coating. 有機皮膜層が防錆顔料を含む下塗り層と着色された上塗り層からなる請求項1乃至12のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The highly corrosion-resistant coated steel sheet according to any one of claims 1 to 12, wherein the organic coating layer comprises an undercoat layer containing a rust-preventive pigment and a colored overcoat layer. 請求項1乃至13のいずれかに記載の有機皮膜中の防錆顔料がケイ酸イオン、リン酸イオン、バナジン酸イオン、モリブデン酸イオンのうち一種類以上を放出するものであることを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The rust preventive pigment in the organic film according to any one of claims 1 to 13, which releases one or more of silicate ions, phosphate ions, vanadate ions, and molybdate ions. High corrosion resistance coated steel sheet with excellent clarity and low environmental impact. 下地処理層の乾燥後の付着量が10〜3000mg/mであることを特徴とする請求項1乃至14のいずれかに記載の鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。Small highly corrosion-resistant coated steel sheet excellent environmental load image clarity according to any one of claims 1 to 14, wherein the deposition amount after drying of the undercoat treated layer is 10~3000mg / m 2.
JP2003121687A 2003-02-03 2003-04-25 High corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact Expired - Fee Related JP3924261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121687A JP3924261B2 (en) 2003-02-03 2003-04-25 High corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003026210 2003-02-03
JP2003121687A JP3924261B2 (en) 2003-02-03 2003-04-25 High corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact

Publications (2)

Publication Number Publication Date
JP2004292942A true JP2004292942A (en) 2004-10-21
JP3924261B2 JP3924261B2 (en) 2007-06-06

Family

ID=33421291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121687A Expired - Fee Related JP3924261B2 (en) 2003-02-03 2003-04-25 High corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact

Country Status (1)

Country Link
JP (1) JP3924261B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052462A (en) * 2004-07-07 2006-02-23 Nippon Steel Corp Surface-treated plated steel plate having excellent corrosion resistance of worked portion
JP2007007904A (en) * 2005-06-28 2007-01-18 Nisshin Steel Co Ltd Organic resin coated hot dipping steel sheet
JP2008185502A (en) * 2007-01-31 2008-08-14 Sekisui House Ltd Combined degradation test method for painting steel plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158257A (en) * 1992-11-26 1994-06-07 Nippon Steel Corp Hot dip zn-al coated steel sheet having excellent appearance, age blackening resistance and corrosion resistance
JP3090207B1 (en) * 1999-06-22 2000-09-18 新日本製鐵株式会社 Painted steel sheet with excellent corrosion resistance and low environmental load
JP3179446B2 (en) * 1998-07-02 2001-06-25 新日本製鐵株式会社 Coated steel sheet and coated steel sheet excellent in corrosion resistance and method for producing the same
JP2001295015A (en) * 2000-02-09 2001-10-26 Nisshin Steel Co Ltd HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP2002371343A (en) * 2001-04-09 2002-12-26 Nippon Steel Corp Hot-dip plated steel cable superior in workability with high corrosion resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158257A (en) * 1992-11-26 1994-06-07 Nippon Steel Corp Hot dip zn-al coated steel sheet having excellent appearance, age blackening resistance and corrosion resistance
JP3179446B2 (en) * 1998-07-02 2001-06-25 新日本製鐵株式会社 Coated steel sheet and coated steel sheet excellent in corrosion resistance and method for producing the same
JP3090207B1 (en) * 1999-06-22 2000-09-18 新日本製鐵株式会社 Painted steel sheet with excellent corrosion resistance and low environmental load
JP2001295015A (en) * 2000-02-09 2001-10-26 Nisshin Steel Co Ltd HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP2002371343A (en) * 2001-04-09 2002-12-26 Nippon Steel Corp Hot-dip plated steel cable superior in workability with high corrosion resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052462A (en) * 2004-07-07 2006-02-23 Nippon Steel Corp Surface-treated plated steel plate having excellent corrosion resistance of worked portion
JP4546884B2 (en) * 2004-07-07 2010-09-22 新日本製鐵株式会社 Surface treated galvanized steel sheet with excellent corrosion resistance
JP2007007904A (en) * 2005-06-28 2007-01-18 Nisshin Steel Co Ltd Organic resin coated hot dipping steel sheet
JP4603430B2 (en) * 2005-06-28 2010-12-22 日新製鋼株式会社 Organic resin coated hot-dip steel sheet
JP2008185502A (en) * 2007-01-31 2008-08-14 Sekisui House Ltd Combined degradation test method for painting steel plate

Also Published As

Publication number Publication date
JP3924261B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
EP1199376B1 (en) Plated steel product, plated steel sheet and precoated steel sheet having excellent resistance to corrosion
JP3179446B2 (en) Coated steel sheet and coated steel sheet excellent in corrosion resistance and method for producing the same
JP3561421B2 (en) Painted steel plate with excellent corrosion resistance
JP2001089868A (en) Substrate treating agent for precoated metallic sheet, coated substrate treated metallic sheet coated with the same and precoated metallic sheet excellent in working adhesion of coating film using the same
JP4312583B2 (en) Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance
JP3567430B2 (en) Painted metal plate with excellent corrosion resistance
JP4002534B2 (en) High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact
JPH0360919B2 (en)
JP4312635B2 (en) Painted aluminized steel sheet with excellent corrosion resistance
JP3924261B2 (en) High corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact
JP3793522B2 (en) High corrosion-resistant coated steel sheet with excellent sharpness
JP3477174B2 (en) Non-chromate type surface treated metal sheet and method for producing the same
JP3124266B2 (en) Painted steel plate with excellent coating film adhesion and corrosion resistance of the processed part and low environmental load
JP2004176131A (en) Highly corrosion resistant coated steel sheet having excellent image clarity
JP3090207B1 (en) Painted steel sheet with excellent corrosion resistance and low environmental load
JP2011168855A (en) Polyvinyl chloride coated steel sheet having excellent end face corrosion resistance
JP4125950B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
JP2003268518A (en) Original sheet for coating having excellent workability
JP3936656B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
WO2023166858A1 (en) HOT-DIP Al-Zn PLATED STEEL SHEET, METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET
JP6772943B2 (en) Painted steel plate
JP3319385B2 (en) Painted galvanized steel sheet excellent in workability, scratch resistance and corrosion resistance and method for producing the same
JP2024080188A (en) Painted steel plate
JP3909016B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
JP2000167482A (en) Precoated metal sheet having excellent adhesion property with coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R151 Written notification of patent or utility model registration

Ref document number: 3924261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees