JPH0360919B2 - - Google Patents

Info

Publication number
JPH0360919B2
JPH0360919B2 JP58157768A JP15776883A JPH0360919B2 JP H0360919 B2 JPH0360919 B2 JP H0360919B2 JP 58157768 A JP58157768 A JP 58157768A JP 15776883 A JP15776883 A JP 15776883A JP H0360919 B2 JPH0360919 B2 JP H0360919B2
Authority
JP
Japan
Prior art keywords
film
chromate
treatment
corrosion resistance
composite silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58157768A
Other languages
Japanese (ja)
Other versions
JPS6050179A (en
Inventor
Tomihiro Hara
Takeshi Ataya
Masaaki Yamashita
Akira Enatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP58157768A priority Critical patent/JPS6050179A/en
Publication of JPS6050179A publication Critical patent/JPS6050179A/en
Publication of JPH0360919B2 publication Critical patent/JPH0360919B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車用片面高耐食性被覆鋼板の製造
方法に関する。 近年、自動車車体用鋼板として耐食性に優れた
鋼板の要求が高まりつつあり、このため従来より
使用されている冷延鋼板に代り耐食性の高い表面
処理鋼板を使用する傾向が強くなつている。 このような表面処理鋼板としては、まず亜鉛メ
ツキ鋼板をあげることができるが、この種の鋼板
では耐食性を高めるために亜鉛の付着量を多くす
る必要があり、これに伴つて加工性、溶接性が劣
化するという問題がある。このような問題を改善
するためNi、Fe、Mn、Mo、Co、Al、Cr等の元
素を1種または2種以上添加した亜鉛合金メツキ
鋼板や多層メツキ鋼板が研究開発されており、こ
れらの鋼板では上記亜鉛メツキ鋼板に比較して溶
接性、加工性を劣化させることなく耐食性を向上
させることができる。しかし、鋼板が自動車車体
内板の袋構造部や曲り部(ヘミング部)に適用さ
れる場合その表面には高度な耐食性が要求される
ものであり、上記したような亜鉛合金メツキ鋼板
や多層メツキ鋼板ではその耐食性がいまひとつ十
分でないという問題がある。高度な耐食性を有す
る鋼板として、特公昭45−24230号や特公昭47−
6882号にみられるようなジンクリツチ系塗膜を施
した防錆鋼板が研究開発されており、その代表的
なものはジンクロメタルの名称で知られている。
しかし、この防錆被覆鋼板においても、プレス成
形等の加工部では被覆の剥離を生じる場合があ
り、自動車車体用材料等の要求に応ずべき耐食性
防錆被覆鋼板としては、未だ十分に満足できるも
のとは言い難い。 また、ジンクロメタルの非防錆塗装面(鋼板
面)には、ジンクリツチ塗膜を約270℃で高温焼
付する際テンパーカラーと称される難溶性酸化膜
が形成され、このため自動車メーカー等の需要家
サイドで実施するリン酸塩処理の反応が劣り、不
均一なリン酸皮膜が形成され、塗装後品質性能が
劣化することになる。特に、鋼成分中にSi、Mn
等を通常の軟鋼板よりも多く含有した高張力鋼板
の場合では、Si、Mn等により選択酸化皮膜が形
成され、その傾向が顕著になる。このため例えば
特開昭56−152768号などでは、非防錆塗装面に塗
装焼付処理前に特定元素化合物を塗布し、テンパ
ーカラーを防止するようにした方法が提案されて
いるが、このような方法の採用は製造工程を複雑
化させるだけでなく、塗布される特定元素が却つ
て化成処理性を阻害する等の弊害を生じてしまう
という問題があり、完全なテンパーカラー対策と
は言い難い。鋼板の非防錆被覆面は自動車車体の
外面に採用され、3コート3ベーク塗装後の表面
外観と塗装品質は高いレベルが要求されるもので
あり、この意味で上記したテンパーカラー対策は
不可欠のものであるということができる。 本発明はこのような従来技術の欠点に鑑み研究
開発されたもので、非被覆面にテンパーカラーを
生ぜしめることなく、良好な化成処理性および塗
装性が得られ、しかも、片面において優れた耐食
性を有する自動車用片面高耐食性被覆鋼板を製造
することができる方法を提供せんとするものであ
る。 このため本発明は、鋼板の片面に亜鉛合金メツ
キを施し付着量1g/m2以上の亜鉛合金メツキ皮
膜を形成せしめた後、該メツキ面のみに対し塗布
型はクロメート処理を施すことにより付着量1000
mg/m2以下のクロメート皮膜を形成せしめ、続い
て有機複合シリケート溶液で処理を行つてクロメ
ート皮膜の上に付着量0.5〜4.0g/m2の有機複合
シリケート皮膜を形成せしめ、その後100〜250℃
で鋼板を加熱処理するようにしたものであり、こ
れにより片面において優れた耐食性の皮膜構造を
得ることができるとともに、加熱処理を250℃以
下で行うため、高温加熱による鋼板非被覆面での
テンパーカラーの発生を適切に防止し、良好な化
成処理性および塗装性を得ることができる。 本件出願人は先に、亜鉛を基金属とした合金メ
ツキ鋼板の表面にクロメート皮膜と有機複合シリ
ケート皮膜の2層皮膜を形成した複合被覆鋼板を
特願昭55−182112号(特開昭57−108292号)にお
いて提案しており、この複合被覆鋼板は優れた耐
食性を有している。本発明はこの複合被覆に着目
し、これを鋼板片面に適用し且つこれと適当な熱
処理とを組み合せることにより被覆面においてよ
り高度な耐食性が得られ、また非被覆面において
優れた化成処理性、塗装性が得られる鋼板の製造
を可能ならしめたものである。 本発明では鋼板の片面についてのみ、(1)亜鉛合
金メツキを施し、(2)次いで塗布型クロメート処理
を施し、(3)さらに有機複合シリケート溶液で処理
を行い、(4)その後100〜250℃で加熱処理し、成品
を得る。 本発明ではまず、鋼板(冷延鋼板)の片面にの
み亜鉛合金メツキが施される。このように、特に
亜鉛を基金属とした合金メツキを施す理由は、こ
の種のメツキは通常の亜鉛メツキに較べ腐食が進
行しにくい上、その上に形成されるクロメート皮
膜及び有機複合シリケート皮膜との相乗的な効果
により高い耐食性を発揮できるからである。 この亜鉛合金メツキのメツキ付着量は1g/m2
以上必要であり、これを下回ると耐食性が劣化す
る。またこのメツキ付着量は300g/m2を超えて
も耐食性の大きな向上は期待できず、却つてコス
ト高となる。このメツキ付着量は通常1〜60g/
m2、好ましくは5〜40g/m2の範囲で選定され
る。 この亜鉛合金メツキとしては、亜鉛−鉄合金メ
ツキ、亜鉛−ニツケル合金メツキ、亜鉛−マンガ
ン合金メツキ、亜鉛−アルミ合金メツキ、亜鉛−
コバルト−クロム合金メツキ、さらには、これら
任意のメツキ成分にNi、Fe、Mn、Mo、Co、
Al、Cr等の元素を1種又は2種以上添加したも
のを用いることができ、さらに、上記したような
メツキのうち同種又は異種のものを2種以上施し
た複合メツキであつてもよく、例えば、Fe含有
量の異なるFe−Zn合金メツキを2層以上施すこ
ともできる。 これら亜鉛系合金メツキのメツキ方法は電解
法、溶融法、気相法等のうち実施可能ないずれの
方法を採用することもできるが、一般には片面メ
ツキの容易性等から電気メツキが有利である。 本発明では以上のメツキ面に対しクロメート処
理を施しクロメート皮膜を形成せしめる。このク
ロメート皮膜は、クロム付着量(dry)として
1000mg/m2以下とする必要があり、1000mg/m2
超えるとクロメート皮膜自体の剥離が生じ、プレ
ス時に皮膜剥離を生じてしまう等、加工性が劣化
し、また溶接性も劣化してしまう。ただクロム付
着量が1mg/m2未満では皮膜が不均一となり好ま
しくない。クロメート皮膜の好ましい付着量は10
〜200mg/m2(以上金属クロム換算)である。 このようなクロメート皮膜の形成方式には、塗
布型、電解型及び反応型の3タイプがあるが、本
発明では塗布型のクロメート処理によりクロメー
ト皮膜を形成せしめる必要がある。反応型クロメ
ート処理では鋼板の片面処理が難しく、このため
本発明には適用しない。塗布型クロメート処理液
は、部分的に環元されたクロム酸溶液を主成分と
し、必要に応じこれに水分散型又は水溶性のアク
リル樹脂等の有機樹脂及び/又は数十〜数千Åの
シリカ粒子(シリカゾル、ヒユームドシリカ)を
含有せしめたものである。この場合Cr3+/Cr6+
割合は1/1〜1/3、PHは1.5〜4.0(より好ましくは
2〜3)が好ましい。Cr3+/Cr6+の割合は一般の
有機還元剤(例えば糖類、アルコール特等)や無
機還元剤を使用して所定の割合に調節する。また
塗布型クロメート処理としては、ロールコーター
法、浸漬法、スプレー法等、いずれの方法を使用
してもよいが、片面のみクロメート処理を施すと
いう必要から、ロールコーター法が有利である。
塗布型クロメート処理では、クロメート処理後水
洗することなく乾燥して皮膜を得る。このように
水洗することなく乾燥するのは、通常行なわれる
水洗ではCr6+が除去されるため、Cr3+/Cr6+の割
合をそのまま安定して継続させ、次工程での有機
複合シリケート溶液で処理してシーリングを行わ
せるためである。 一方、電解型クロメート処理では、無水クロム
酸と硫酸、フツ化物又はハロゲン酸系酸等のアニ
オンの1種又は2種以上を含有する浴で陰極電解
処理を施し、水洗・乾燥して皮膜を形成せしめ
る。 以上の2つの処理方式によるクロメート皮膜を
比較すると、塗布型クロメートは電解型クロメー
トと比較して皮膜中に6価クロムを多く含有して
いるため耐食性が優れており、その上、後述する
ように比較的高温側で加熱処理した場合、皮膜が
緻密で且つ強固になるため、より耐食性が良好に
なる。 なお、本発明では、片面にのみクロメート処理
を施し、他面にはクロムを付着させないようにす
ることが重要である。この他方の面に微量でもク
ロムが付着すると化成処理の反応性が劣り、塗装
品質が劣化することになる。 以上のクロメート処理に続き、同じくメツキ面
に対し、有機複合シリケート溶液による片面処理
が行われ、クロメート皮膜上に有機複合シリケー
ト皮膜が形成される。この有機複合シリケートの
皮膜付着量(dry)は、0.5g/m2〜4.0g/m2
範囲で選定される必要があり、より好ましくは
1.0g/m2〜3.0g/m2の範囲が適当である。付着
量が0.5g/m2以下では十分な耐食性が得られず、
また4.0g/m2以上ではスポツト溶接性が劣化す
るため好ましくない。 有機複合シリケートは、水分散性シリカを必須
成分とし、これに水溶性又は水分散性の有機高分
子樹脂をシラン化合物の存在下で混合して10℃以
上、沸点以下、好ましくは50〜90℃の温度範囲で
反応させることによつて得られる。水分散性シリ
カとは所謂シリカゾル又はコロイダルシリカと呼
ばれている粒子径数十Å〜数千Åのものである。
水溶性又は水分散性の有機高分子樹脂としては、
ポリビニルアルコール、ヒドロキシエチルセルロ
ース、ポリエステル、アルキツド、エポキシ、ア
クリル共重合体等があげられるが、シリカと反応
すればいずれの樹脂でもよい。但し、自動車用下
塗り塗料であるカチオン電着塗料(エポキシ樹脂
ベース)の密着性を重視する場合、エポキシ樹脂
が良好であり、有機樹脂分100部に対して少なく
とも30部含有させることが好ましい。また、前記
シラン化合物はシリカと有機樹脂との複合化の際
に反応促進剤として使用する。このシラン化合物
としては、市販のシランカツプリング剤で良く、
例えばビニルトリエトキシシラン、ビニルトリス
(β−メトキシエトキシ)シラン、ビニルトリス
(β−メトキシエトキシ)シラン、γ−グリシド
オキシプロピルトリメトキシシラン、γ−メタク
リルオキシプロピルトリメトキシシラン、N=β
(アミノエチル)−γ−アミノプロピルトリメトキ
シシラン、γ−アミノプロピルトリエトキシシラ
ン等のトリアルコキシシラン化合物等をあげるこ
とができる。 有機複合シリケートにおける水分散性シリカと
水溶性又は水分散性の有機樹脂との配合割合は固
形分の重量百分比で5:95〜95:5、好ましくは
10:90〜60:40とする。またシラン化合物の添加
割合は、シリカと有機樹脂の固形分総重量に対し
て0.5〜15wt%とする。 以上のようにして得られる有機複合シリケート
は1種か或いは2種以上を混合して用いても良
い。また更に、モリブデンやタングステン或いは
バナジウムの酸素酸若しくはその塩或いはチタニ
ウムかジルコニウムのアルコキシドキシレート化
合物を添加しても良い。これらの添加剤を1種又
は2種以上、シリカゾルと有機樹脂の全固形分に
対して14wt%以下、好ましくは0.2〜8wt%添加
することにより耐食性を向上させることができ
る。更に該有機複合シリケート溶液にメラミン等
の硬化剤を添加すると、より大きな効果がある。 以上のようにクロメート皮膜と有機複合シリケ
ート皮膜を形成せしめた後、本発明においては表
面板温で100〜250℃の加熱処理を施す。本発明で
はこのような温度域の加熱により被覆面の耐食性
がさらに向上するとともに、このような加熱によ
る耐食性向上効果を250℃以下の温度域で達成で
きるため、非被覆面でのテンパーカラーの発生を
適切に防止できる。加熱温度が250℃を超えると、
クロメート皮膜にクラツクが入つたり或いは不動
態化作用のある可溶性Cr6+が減少するなどして耐
食性が劣化するおそれがあり、したがつて250℃
が加熱温度の上限とされる。加熱処理は耐食性の
面から100℃以上の温度で行う必要がある。加熱
方式は所定の温度が得られれば熱風乾燥、赤外線
加熱、インダクシヨンヒーター等、いずれの方式
でもよい。また加熱保持時間は数秒〜数分程度で
あり、長時間の保持は経済的に不利となるだけで
なく、皮膜性能が劣化するおそれもあり好ましく
ない。 この加熱処理の目的は、第1に有機複合シリケ
ート成分中のシリカゾル/シリカゾル、シリカゾ
ル/有機高分子、有機高分子/有機高分子の組合
せによる皮膜熱硬化である。例えばシリカゾルは
常温でも水分の蒸発とともに乾燥皮膜を形成する
性質をもつているが、加熱処理でシリカゾルのシ
ラノール基
The present invention relates to a method for manufacturing a single-sided highly corrosion-resistant coated steel sheet for automobiles. In recent years, there has been an increasing demand for steel sheets with excellent corrosion resistance as steel sheets for automobile bodies, and for this reason, there is a strong tendency to use surface-treated steel sheets with high corrosion resistance in place of conventionally used cold-rolled steel sheets. The first example of such surface-treated steel sheets is galvanized steel sheets, but with this type of steel sheet, it is necessary to increase the amount of zinc deposited in order to improve corrosion resistance, and along with this, workability and weldability There is a problem of deterioration. In order to improve these problems, zinc alloy plated steel sheets and multi-layer plated steel sheets are being researched and developed to which one or more elements such as Ni, Fe, Mn, Mo, Co, Al, Cr, etc. are added. Compared to the above-mentioned galvanized steel sheet, the steel sheet can have improved corrosion resistance without deteriorating weldability and workability. However, when a steel plate is applied to the bag structure or bent part (hemming part) of an automobile body plate, a high degree of corrosion resistance is required on the surface, and zinc alloy plated steel plates and multilayer plated steel plates as mentioned above are required. Steel plates have a problem in that their corrosion resistance is not quite sufficient. As a steel plate with a high degree of corrosion resistance, special
Research and development has been carried out on anti-corrosion steel sheets coated with zinc-rich coatings, such as the one seen in No. 6882, and the representative one is known as Zinchrome Metal.
However, even with this anti-corrosion coated steel sheet, peeling of the coating may occur in the processed parts such as press forming, and it is still sufficient as a corrosion-resistant and anti-rust coated steel sheet that meets the requirements for automobile body materials, etc. It's hard to say. In addition, a poorly soluble oxide film called temper color is formed on the non-rust-preventing painted surface (steel plate surface) of zinc chrome metal when the zinc-rich coating is baked at a high temperature of approximately 270°C. The reaction of the phosphate treatment carried out on the house side is poor, and an uneven phosphate film is formed, resulting in a deterioration of quality performance after painting. In particular, Si and Mn are included in the steel components.
In the case of a high-strength steel sheet containing more of Si, Mn, etc. than a normal mild steel sheet, a selective oxidation film is formed due to Si, Mn, etc., and this tendency becomes noticeable. For this reason, for example, JP-A No. 56-152768 proposes a method in which a specific elemental compound is applied to a non-corrosive painted surface before the paint baking treatment to prevent temper color. Adoption of this method not only complicates the manufacturing process, but also causes problems such as the specific elements applied actually inhibiting chemical conversion treatment properties, so it cannot be said to be a complete measure against temper color. The non-corrosion coated surface of steel plates is used on the exterior of automobile bodies, and a high level of surface appearance and paint quality is required after 3-coat, 3-bake painting.In this sense, the above-mentioned temper color measures are essential. It can be said that it is a thing. The present invention has been researched and developed in view of the shortcomings of the prior art, and provides good chemical conversion treatment and paintability without producing temper color on the uncoated surface, as well as excellent corrosion resistance on one side. It is an object of the present invention to provide a method capable of manufacturing a single-sided coated steel sheet for automobiles having high corrosion resistance. For this reason, the present invention applies zinc alloy plating to one side of a steel sheet to form a zinc alloy plating film with an adhesion amount of 1 g/m 2 or more, and then applies chromate treatment to only the plated surface to reduce the adhesion amount. 1000
A chromate film of 0.5 to 4.0 g/m 2 is formed on the chromate film by treatment with an organic composite silicate solution , and then a chromate film of 100 to 250 ℃
The steel plate is heat-treated at a temperature of 250°C, which makes it possible to obtain a film structure with excellent corrosion resistance on one side.In addition, since the heat treatment is carried out at a temperature below 250°C, the tempering of the uncoated surface of the steel plate due to high-temperature heating is reduced. It is possible to appropriately prevent color generation and obtain good chemical conversion treatment properties and paintability. The applicant had previously filed a patent application No. 55-182112 (Japanese Unexamined Patent Publication No. 57-182) for a composite coated steel sheet in which a two-layer film of a chromate film and an organic composite silicate film was formed on the surface of an alloy-plated steel sheet using zinc as the base metal. 108292), and this composite coated steel sheet has excellent corrosion resistance. The present invention focuses on this composite coating, and by applying it to one side of a steel plate and combining it with appropriate heat treatment, higher corrosion resistance can be obtained on the coated side, and excellent chemical conversion treatment properties can be obtained on the uncoated side. This makes it possible to manufacture steel sheets that are paintable. In the present invention, only one side of the steel plate is subjected to (1) zinc alloy plating, (2) coating-type chromate treatment, (3) further treatment with an organic composite silicate solution, and (4) subsequent heating at 100 to 250°C. heat-treated to obtain a finished product. In the present invention, zinc alloy plating is first applied to only one side of a steel plate (cold rolled steel plate). In this way, the reason why we use alloy plating that uses zinc as a base metal is that this type of plating is less prone to corrosion than normal zinc plating, and is also less susceptible to corrosion due to the chromate film and organic composite silicate film that are formed on it. This is because high corrosion resistance can be exhibited due to the synergistic effect of. The coating weight of this zinc alloy plating is 1g/m 2
If it is less than this, the corrosion resistance will deteriorate. Furthermore, even if the amount of plating exceeds 300 g/m 2 , no significant improvement in corrosion resistance can be expected, and on the contrary, the cost will increase. The amount of plating deposited is usually 1 to 60g/
m 2 , preferably in the range of 5 to 40 g/m 2 . This zinc alloy plating includes zinc-iron alloy plating, zinc-nickel alloy plating, zinc-manganese alloy plating, zinc-aluminum alloy plating, and zinc-aluminum alloy plating.
Cobalt-chromium alloy plating, furthermore, these optional plating components include Ni, Fe, Mn, Mo, Co,
One or more types of elements such as Al and Cr may be added, and furthermore, it may be a composite plating in which two or more of the same or different types of platings as described above are applied. For example, two or more layers of Fe-Zn alloy plating with different Fe contents can be applied. As for the plating method for these zinc-based alloy platings, any practicable method such as electrolytic method, melting method, vapor phase method, etc. can be adopted, but in general, electroplating is advantageous due to the ease of single-sided plating. . In the present invention, the above plated surface is subjected to chromate treatment to form a chromate film. This chromate film has a chromium deposit (dry)
It needs to be 1000mg/m2 or less ; if it exceeds 1000mg/ m2 , the chromate film itself will peel off, which will cause the film to peel off during pressing, resulting in poor workability and poor weldability. . However, if the amount of chromium deposited is less than 1 mg/m 2 , the film will be non-uniform, which is not preferable. The preferred amount of chromate film is 10
~200mg/m 2 (the above is converted into metallic chromium). There are three types of methods for forming such a chromate film: a coating type, an electrolytic type, and a reaction type. In the present invention, it is necessary to form a chromate film by a coating type chromate treatment. Reactive chromate treatment is difficult to treat on one side of a steel plate, and therefore is not applicable to the present invention. The coating-type chromate treatment liquid has a partially cyclic chromic acid solution as its main component, and if necessary, it is coated with an organic resin such as water-dispersible or water-soluble acrylic resin and/or tens to thousands of Å. It contains silica particles (silica sol, fumed silica). In this case, the ratio of Cr 3+ /Cr 6+ is preferably 1/1 to 1/3, and the pH is preferably 1.5 to 4.0 (more preferably 2 to 3). The ratio of Cr 3+ /Cr 6+ is adjusted to a predetermined ratio using a general organic reducing agent (eg, sugar, alcohol, etc.) or an inorganic reducing agent. Further, as the coating type chromate treatment, any method such as a roll coater method, a dipping method, a spray method, etc. may be used, but the roll coater method is advantageous since it is necessary to perform the chromate treatment on only one side.
In coating type chromate treatment, a film is obtained by drying without washing with water after the chromate treatment. The reason for drying without washing with water is that Cr 6+ is removed by normal washing with water, so the Cr 3+ /Cr 6+ ratio remains stable and the organic composite silicate is used in the next process. This is for sealing by treatment with a solution. On the other hand, in electrolytic chromate treatment, cathodic electrolysis is performed in a bath containing chromic anhydride and one or more anions such as sulfuric acid, fluoride, or halogen acids, and a film is formed by washing with water and drying. urge Comparing the chromate films produced by the above two treatment methods, the coated chromate film contains more hexavalent chromium in the film than the electrolytic chromate film, so it has superior corrosion resistance. When heat-treated at a relatively high temperature, the film becomes dense and strong, resulting in better corrosion resistance. In the present invention, it is important to perform chromate treatment on only one side and avoid adhering chromium to the other side. If even a small amount of chromium adheres to this other surface, the reactivity of the chemical conversion treatment will be poor and the quality of the coating will deteriorate. Following the above chromate treatment, the plated surface is similarly treated with an organic composite silicate solution on one side, and an organic composite silicate film is formed on the chromate film. The coating weight (dry) of this organic composite silicate needs to be selected in the range of 0.5g/m 2 to 4.0g/m 2 , more preferably
A range of 1.0 g/m 2 to 3.0 g/m 2 is suitable. If the amount of adhesion is less than 0.5g/ m2 , sufficient corrosion resistance cannot be obtained.
Moreover, if it exceeds 4.0 g/m 2 , spot weldability deteriorates, which is not preferable. The organic composite silicate has water-dispersible silica as an essential component, and a water-soluble or water-dispersible organic polymer resin is mixed therein in the presence of a silane compound to produce a product at a temperature of 10°C or higher and below the boiling point, preferably 50 to 90°C. It can be obtained by reacting at a temperature range of . The water-dispersible silica is so-called silica sol or colloidal silica and has a particle diameter of several tens of angstroms to several thousand angstroms.
As water-soluble or water-dispersible organic polymer resins,
Examples include polyvinyl alcohol, hydroxyethyl cellulose, polyester, alkyd, epoxy, and acrylic copolymers, but any resin may be used as long as it reacts with silica. However, when attaching importance to the adhesion of a cationic electrodeposition paint (based on epoxy resin), which is an undercoat for automobiles, epoxy resin is preferable, and it is preferable to contain at least 30 parts per 100 parts of organic resin. Further, the silane compound is used as a reaction accelerator when silica and organic resin are combined. As this silane compound, a commercially available silane coupling agent may be used.
For example, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, vinyltris(β-methoxyethoxy)silane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N=β
Examples include trialkoxysilane compounds such as (aminoethyl)-γ-aminopropyltrimethoxysilane and γ-aminopropyltriethoxysilane. The mixing ratio of water-dispersible silica and water-soluble or water-dispersible organic resin in the organic composite silicate is 5:95 to 95:5, preferably 5:95 to 95:5 in terms of solid weight percentage.
The hours will be 10:90-60:40. The addition ratio of the silane compound is 0.5 to 15 wt% based on the total solid weight of silica and organic resin. The organic composite silicates obtained as described above may be used alone or in combination of two or more. Furthermore, molybdenum, tungsten, or vanadium oxygen acids or salts thereof, or titanium or zirconium alkoxide oxylate compounds may be added. Corrosion resistance can be improved by adding one or more of these additives to 14 wt% or less, preferably 0.2 to 8 wt%, based on the total solid content of the silica sol and organic resin. Further, if a curing agent such as melamine is added to the organic composite silicate solution, a greater effect can be obtained. After forming the chromate film and the organic composite silicate film as described above, in the present invention, heat treatment is performed at a surface plate temperature of 100 to 250°C. In the present invention, the corrosion resistance of the coated surface is further improved by heating in such a temperature range, and since the effect of improving corrosion resistance by such heating can be achieved in a temperature range of 250°C or less, the occurrence of temper color on the uncoated surface is prevented. can be appropriately prevented. If the heating temperature exceeds 250℃,
Corrosion resistance may deteriorate due to cracks in the chromate film or a decrease in soluble Cr 6+ , which has a passivating effect.
is the upper limit of the heating temperature. Heat treatment must be performed at a temperature of 100°C or higher from the viewpoint of corrosion resistance. The heating method may be any method such as hot air drying, infrared heating, induction heater, etc. as long as a predetermined temperature is obtained. Further, the heating holding time is about several seconds to several minutes, and holding for a long time is not only economically disadvantageous but also undesirable because there is a risk that the film performance will deteriorate. The purpose of this heat treatment is first to thermally cure the film by the combination of silica sol/silica sol, silica sol/organic polymer, and organic polymer/organic polymer in the organic composite silicate component. For example, silica sol has the property of forming a dry film as water evaporates even at room temperature, but when heated, the silanol groups of silica sol

【式】間の縮合反応によるシ ロキサン結合[Formula] loxane bond

【式】の形成中、シラノ ール基と有機樹脂成分の水酸基等との縮合反応に
よりさらに緻密な皮膜になると推定される。加熱
処理の第2の目的は、クロメート皮膜表層のCr6+
が有機複合シリケート皮膜中の水酸基、カルボキ
シル基等の極性基と反応して2層間の結合を強化
することである。さらに、加熱処理の第3の目的
は下地クロメート皮膜の緻密化による耐食性の向
上である。 以上のように本発明方法により製造される鋼板
は片面においては、素地としての亜鉛合金メツキ
により素材自体の腐食を可能な限り防止するとと
もに、その上に下地として塗布型クロメート皮膜
を形成することにより耐食性を向上させ、さらに
その上に上地として有機複合シリケート皮膜でシ
ーリングすることにより腐食環境下で不動態化作
用のあるCr6+の溶出を最低減に抑えることがで
き、優れた耐食性を発揮することができ、また、
有機複合シリケート皮膜自体により、優れたバリ
ア効果による高耐食性とその有機成分による塗装
密着性効果が得られるものであり、全体として優
れた未塗装耐食性と適度の塗装密着性が得られ
る。 一方、非被覆面(鋼板面)は片面クロメート処
理が容易な塗布型クロメートを採用することによ
りクロムの付着もほとんどなく、しかも加熱処理
温度が250℃以下で済むためテンパーカラーの発
生がなく、リン酸塩処理性、塗装性の良好な鋼板
表面性状を得ることができる。 次に本発明の実施例を説明する。 実施例 1 自動車車体対応の鋼板として第1表に示すよう
な異なるメツキ成分及び皮膜付着量と加熱処理温
度の本発明材につき耐食性試験を行つた。また比
較材として第2表に示す各鋼板についても同様の
試験を行つた。 各鋼板のメツキ成分は下記の通りであり、第1
表に示される各鋼板及び第2表中のクロメート皮
膜及び有機複合シリケート皮膜を有する各鋼板に
ついては、メツキ鋼板をアルカリ脱脂後、水洗・
乾燥し、これに塗布型クロメート処理液をロール
コーターで塗布し或いは電解クロメート処理浴に
浸漬して陰極電解により電極クロメート皮膜を形
成し、乾燥後第2層として有機複合シリケート処
理液をロールコーターで塗布した。さらに乾燥後
加熱処理し、10日間放置後耐食性試験を行つた。 Ni−Zn合金電気メツキ……Ni含有量12% Fe−Zn合金電気メツキ……Fe含有量25% Mn−Zn合金電気メツキ……Mn含有量60% なお、塗装型クロメート処理液、電解クロメー
ト条件、有機複合シリケート処理液及び耐食性試
験の詳細は以下の通りである。 Γ塗布型クロメート処理条件 Cr3+/Cr6+=2/3、PH=2.5(KOHでPH調整)、
固形分20g/のクロメート処理液を常温でロ
ールコーターにて塗布後乾燥した。 Γ電解クロメート処理条件 CrO3:50g/、H2SO4:0.5g/、浴温
50℃の浴により、電流密度0.1〜20A/dm2
電解時間0.5〜30秒で陰極電解処理し、水洗・
乾燥して皮膜を得た。 〔条件〕 電流密度 電解時間 クロム付着量 0.1A/dm2 2.0sec 0.5mg/m2 4.9 〃 0.5 〃 10.0 〃 4.9A/dm2 2.0sec 40 mg/m2 9.6 〃 4.0 〃 150 〃 20.0 〃 30.0 〃 1500 〃 なお、一部比較例で反応型クロメート処理を
行つたが、その処理は、CrO3:15g/、
Cr6+/Cr3+:3、Zn2+:3g/、H2SO4
9g/の成分の反応型クロメート処理液で、
50℃、5秒、スプレー1atmで処理する条件で
行つた。 Γ有機複合シリケート処理液 次のように合成したアクリル複合シリケート
とエポキシ複合シリケート(各々有機樹脂:シ
リカゾル=60:40)とを70:30の割合で混合し
て有機複合シリケート処理液とした(PH:95、
固形分20%) A アクリル複合シリケートの合成 温度計、撹拌機、冷却器、滴下ロートを備
えた1の4つ口フラスコにイソプロピルア
ルコール180部を入れ、窒素置換の後フラス
コ内の温度を約85℃に調整し、エチルアクリ
レート140部、メチルメタクリレート68部、
スチレン15部、N−n−ブトキシメチルアク
リルアミド15部、2−ヒドロキシエチルアク
リレート38部、アクリル酸24部からなる単量
体混合物を2、2′−アゾビス(2、4−ジメ
チルクレロ=トリル)6部よりなる触媒とと
もに約2時間を要して滴下する。滴下終了後
同温度でさらに5時間反応を続け、固形分63
%、酸価67の無色透明な樹脂溶液を得た。こ
のアクリル共重合体樹脂溶液500部に対して
38%アンモニア水45部を混合し、水を加えて
十分に撹拌することによつて固形分20%、PH
9.5のアクリル共重合体の水分散液を得た。
この水分散液300部をフラスコ中に仕込み、
室温下で十分に撹拌しながらコロイダルシリ
カ(日産化学工業(株)製、商品名「ストテツク
スN」)所定量を加え、つぎにγ−メタクリ
ルオキシプロピルトリメトキシシラン(信越
化学工業(株)製、商品名「KBM503」)1部を
撹拌下で滴下混合し、ついで85℃に加熱して
同温度にて2時間保持して反応せしめ、乳白
色で水分散性のアクリル複合シリケートを得
た。 B エポキシ複合シリケートの合成 エポキシ当量950を持つビスフエノールA
タイプのエポキシ樹脂(シエル化学(株)製、商
品名「エピコート10004」)310部、アマニ油
脂肪酸95部、桐油脂肪酸95部、キシレン15部
をフラスコに入れ、窒素を通じながら徐々に
加熱し、240℃まで上昇させた後、冷却し70
℃までに下つた時にエチレングリコールモノ
エチルエーテル200部を加え、固形分70%、
酸化54の油変性エポキシ樹脂溶液を得た。 この油変性エポキシ樹脂溶液から上記Aの
場合と同様な方法でエポキシ複合シリケート
を得た。 Γ耐食性試験 → | | | | | | | ―5%NaCl浸漬 40℃ 30分 ↓ 95%RH湿潤 50℃ 60分 ↓ 乾 燥 60℃ 30分(移行時間も含む) 以上を1サイクルとしたサイクルテストで行
い、250、500及び1000回の各サイクルで各供試
材の赤錆発生面積を評価した。 耐食性試験の結果を各表の右欄に示した。これ
らの表からも明らかなように本発明材が有する片
面の皮膜構造は、従来のジンクメタルや合金メツ
キに較べ優れた耐食性を有していることが判る。
また、第2表の比較材から明らかなように本発明
の条件を逸脱する範囲では、耐食性、スポツト溶
接性、成形性(プレス時の皮膜剥離等)のいずれ
か1つ以上に問題があり、自動車車体用の如き防
錆鋼板としては不向きであるということができ
る。
During the formation of [Formula], it is estimated that a more dense film is formed due to the condensation reaction between the silanol group and the hydroxyl group of the organic resin component. The second purpose of heat treatment is to reduce Cr 6+ on the surface layer of the chromate film.
reacts with polar groups such as hydroxyl groups and carboxyl groups in the organic composite silicate film to strengthen the bond between the two layers. Furthermore, the third purpose of the heat treatment is to improve the corrosion resistance by densifying the underlying chromate film. As described above, the steel sheet manufactured by the method of the present invention has a zinc alloy plating as a base plate to prevent corrosion of the material itself as much as possible, and a coated chromate film is formed on it as a base layer. By improving corrosion resistance and further sealing with an organic composite silicate film as a top layer, it is possible to minimize the elution of Cr 6+ , which has a passivating effect in corrosive environments, and exhibits excellent corrosion resistance. can also be
The organic composite silicate film itself provides high corrosion resistance due to its excellent barrier effect and paint adhesion effect due to its organic components, and as a whole provides excellent unpainted corrosion resistance and moderate paint adhesion. On the other hand, the non-coated surface (steel plate surface) is coated with chromate, which is easy to treat on one side, so there is almost no chromium adhesion, and since the heat treatment temperature is less than 250℃, there is no temper color and no phosphorescence. It is possible to obtain steel sheet surface properties with good acid treatment properties and paintability. Next, examples of the present invention will be described. Example 1 Corrosion resistance tests were conducted on the steel sheets of the present invention for use in automobile bodies, with different plating components, coating amounts, and heat treatment temperatures as shown in Table 1. Similar tests were also conducted on each steel plate shown in Table 2 as comparative materials. The plating components of each steel plate are as follows.
Regarding each steel plate shown in the table and each steel plate with a chromate film and an organic composite silicate film in Table 2, the plated steel plate is degreased with alkaline, then washed with water.
After drying, apply a coating type chromate treatment liquid using a roll coater or immerse it in an electrolytic chromate treatment bath to form an electrode chromate film by cathodic electrolysis.After drying, apply an organic composite silicate treatment liquid as a second layer using a roll coater. Coated. Furthermore, after drying, it was heat-treated, and after being left for 10 days, a corrosion resistance test was conducted. Ni-Zn alloy electroplating...Ni content 12% Fe-Zn alloy electroplating...Fe content 25% Mn-Zn alloy electroplating...Mn content 60% Paint type chromate treatment liquid, electrolytic chromate conditions The details of the organic composite silicate treatment solution and corrosion resistance test are as follows. Γ coating type chromate treatment conditions Cr 3+ /Cr 6+ = 2/3, PH = 2.5 (PH adjustment with KOH),
A chromate treatment solution with a solid content of 20 g was applied at room temperature using a roll coater and then dried. Γ electrolytic chromate treatment conditions CrO 3 : 50g/, H 2 SO 4 : 0.5g/, bath temperature
A current density of 0.1 to 20 A/dm 2 using a 50°C bath.
Cathode electrolysis treatment with an electrolysis time of 0.5 to 30 seconds, washing with water,
A film was obtained by drying. [Conditions] Current density Electrolysis time Chromium deposition amount 0.1A/dm 2 2.0sec 0.5mg/m 2 4.9 〃 0.5 〃 10.0 〃 4.9A/dm 2 2.0sec 40 mg/m 2 9.6 〃 4.0 〃 150 〃 20.0 〃 30.0〃 1500 〃 In some comparative examples, reactive chromate treatment was performed, but the treatment was performed using CrO 3 :15g/,
Cr 6+ /Cr 3+ : 3, Zn 2+ : 3g/, H 2 SO 4 :
With a reactive chromate treatment solution containing 9g/component,
The treatment was carried out at 50°C for 5 seconds and with a spray of 1 atm. Γ Organic composite silicate treatment liquid Acrylic composite silicate and epoxy composite silicate (organic resin: silica sol = 60:40, respectively) synthesized as follows were mixed at a ratio of 70:30 to prepare an organic composite silicate treatment liquid (PH :95,
Solid content 20%) A Synthesis of acrylic composite silicate Put 180 parts of isopropyl alcohol into a four-necked flask equipped with a thermometer, stirrer, condenser, and dropping funnel, and after purging with nitrogen, lower the temperature inside the flask to about 85%. ℃, 140 parts of ethyl acrylate, 68 parts of methyl methacrylate,
A monomer mixture consisting of 15 parts of styrene, 15 parts of N-n-butoxymethylacrylamide, 38 parts of 2-hydroxyethyl acrylate, and 24 parts of acrylic acid was mixed with 6 parts of 2,2'-azobis(2,4-dimethylclero-tolyl). It takes about 2 hours to drop the mixture together with a catalyst consisting of 1.0 parts. After the dropwise addition, the reaction was continued for another 5 hours at the same temperature, and the solid content decreased to 63
%, and a colorless and transparent resin solution with an acid value of 67 was obtained. For 500 parts of this acrylic copolymer resin solution
Mix 45 parts of 38% ammonia water, add water and stir thoroughly to reduce solid content to 20% and pH
An aqueous dispersion of acrylic copolymer No. 9.5 was obtained.
Pour 300 parts of this aqueous dispersion into a flask,
Add a predetermined amount of colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name "Stotex N") while stirring thoroughly at room temperature, and then add γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., 1 part of the product (trade name: "KBM503") was added dropwise and mixed under stirring, and then heated to 85°C and kept at the same temperature for 2 hours to react, to obtain a milky white, water-dispersible acrylic composite silicate. B Synthesis of epoxy composite silicate Bisphenol A with epoxy equivalent weight 950
310 parts of type epoxy resin (manufactured by Ciel Kagaku Co., Ltd., trade name ``Epicote 10004''), 95 parts of linseed oil fatty acid, 95 parts of tung oil fatty acid, and 15 parts of xylene were placed in a flask, and heated gradually while passing nitrogen through the flask. After raising to 70°C, cool
When the temperature has dropped to ℃, add 200 parts of ethylene glycol monoethyl ether to make the solid content 70%.
An oil-modified epoxy resin solution with oxidation level 54 was obtained. An epoxy composite silicate was obtained from this oil-modified epoxy resin solution in the same manner as in the case of A above. Γ Corrosion resistance test → | | | | | | | -5%NaCl immersion 40℃ 30 minutes ↓ 95%RH humidity 50℃ 60 minutes ↓ Drying 60℃ 30 minutes (including transition time) Cycle test with the above as one cycle The red rust occurrence area of each sample material was evaluated at 250, 500, and 1000 cycles. The results of the corrosion resistance test are shown in the right column of each table. As is clear from these tables, it can be seen that the one-sided film structure of the material of the present invention has superior corrosion resistance compared to conventional zinc metal or alloy plating.
Furthermore, as is clear from the comparative materials in Table 2, within the range that deviates from the conditions of the present invention, there are problems in one or more of corrosion resistance, spot weldability, and formability (film peeling during pressing, etc.). It can be said that it is unsuitable as a rust-proof steel plate for automobile bodies.

【表】【table】

【表】 *冷延鋼板のうえに第1層としてダクロメツト
(クロム付着量として300mg/m2)を塗布し、
170℃加熱後第2層としてジンクロメツト(膜
厚2μ)を塗布し、270℃にて焼付。 耐食性評価基準 ◎…赤さび発生面積 0〜2 % 〇… 〃 3〜 10% △… 〃 11〜 50% ×… 〃 51〜100% 実施例 2 本実施例は非被覆面(鋼板面)の表面性状を調
べたもので、各種片面亜鉛合金メツキ鋼板のメツ
キ面にクロメート処理及び有機複合シリケート処
理を施した後、加熱処理して製造した供試材につ
き、非被覆面におけるテンパーカラー発生状況と
化成処理性を調べた。その結果を比較材とともに
第3表に示す。 なお、リン酸塩処理に関する化成処理性の調査
は次のような手順で行つた。供試材→脱脂(日本
パーカライジング社製「FC4357」28g/、55
〜60℃、120sec dip)→水洗→表面調整(日本パ
ーカライジング社製「RL4031」1g/、10sec
spray)→リン酸塩処理(日本パーカライジング
社製「Bt 3004」TA22ポイント、FAI1ポイン
ト、AC1.5〜2.0、48〜52℃、120sec dip)→水洗
→純水水洗→乾燥→結晶外観を走査型電子顕微鏡
(X1000〜2000倍)で観察。 第3表からも明らかなように、本発明法により
得られる鋼板の非被覆面は通常の冷延鋼板と変ら
ない表面性状を示していることが判る。これに対
して、本発明の加熱温度の上限を超えて加熱処理
しているジンクロメタルをはじめとする他の鋼板
では、テンパーカラーの発生及びリン酸塩処理性
の劣化という問題を生じている。
[Table] * Dacromet (300mg/m 2 of chromium deposited) is applied as the first layer on the cold-rolled steel plate.
After heating to 170℃, apply Zinchromet (film thickness 2μ) as a second layer and bake at 270℃. Corrosion resistance evaluation criteria ◎… Red rust occurrence area 0-2% 〇… 〃 3-10% △… 〃 11-50% ×… 〃 51-100% Example 2 This example shows the surface texture of the non-coated surface (steel plate surface) This study investigated the occurrence of temper color on the non-coated surface and the chemical conversion treatment of test materials manufactured by applying chromate treatment and organic composite silicate treatment to the plated surface of various single-sided zinc alloy plated steel sheets, and then heat treating them. I looked into gender. The results are shown in Table 3 together with comparative materials. The investigation of chemical conversion properties regarding phosphate treatment was conducted in the following manner. Test material → Degreasing (Nippon Parkerizing Co., Ltd. "FC4357" 28g/, 55
~60℃, 120sec dip)→Water washing→Surface conditioning (“RL4031” manufactured by Nippon Parkerizing Co., Ltd. 1g/, 10sec
spray) → Phosphate treatment (“Bt 3004” manufactured by Nippon Parkerizing Co., Ltd. TA22 points, FAI 1 point, AC1.5-2.0, 48-52℃, 120sec dip) → Water washing → Pure water washing → Drying → Scanning of crystal appearance Observe with an electron microscope (X1000-2000x). As is clear from Table 3, it can be seen that the uncoated surface of the steel sheet obtained by the method of the present invention exhibits a surface quality that is the same as that of a normal cold-rolled steel sheet. On the other hand, other steel sheets, including zinc chrome metal, which are heat-treated at temperatures exceeding the upper limit of the heating temperature of the present invention, have problems such as generation of temper color and deterioration of phosphate treatability.

【表】【table】

【表】 〓 ×…粗大 〓
[Table] 〓 ×… coarse 〓

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板の片面に亜鉛合金メツキを施し付着量1
g/m2以上の亜鉛合金メツキ皮膜を形成せしめた
後、該メツキ面のみに対し、塗布型クロメート処
理を施すことにより付着量1000mg/m2のクロメー
ト皮膜を形成せしめ、続いて有機複合シリケート
溶液で処理を行つてクロメート皮膜の上に付着量
0.5〜4.0g/m2の有機複合シリケート皮膜を形成
せしめ、その後100〜250℃で鋼板を加熱処理する
ことを特徴とする自動車用片面高耐食性被覆鋼板
の製造方法。
1 Zinc alloy plating is applied to one side of the steel plate and the adhesion amount is 1.
After forming a zinc alloy plating film with a coating weight of 1,000 mg/m 2 or more, a coating-type chromate treatment is applied only to the plating surface to form a chromate film with a coating amount of 1000 mg/m 2 , and then an organic composite silicate solution is applied. The amount of adhesion on the chromate film is
A method for manufacturing a single-sided highly corrosion-resistant coated steel sheet for automobiles, which comprises forming an organic composite silicate film of 0.5 to 4.0 g/m 2 and then heat-treating the steel sheet at 100 to 250°C.
JP58157768A 1983-08-31 1983-08-31 Production of steel plate coated with highly corrosion- resistant film on one side Granted JPS6050179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157768A JPS6050179A (en) 1983-08-31 1983-08-31 Production of steel plate coated with highly corrosion- resistant film on one side

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157768A JPS6050179A (en) 1983-08-31 1983-08-31 Production of steel plate coated with highly corrosion- resistant film on one side

Publications (2)

Publication Number Publication Date
JPS6050179A JPS6050179A (en) 1985-03-19
JPH0360919B2 true JPH0360919B2 (en) 1991-09-18

Family

ID=15656883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157768A Granted JPS6050179A (en) 1983-08-31 1983-08-31 Production of steel plate coated with highly corrosion- resistant film on one side

Country Status (1)

Country Link
JP (1) JPS6050179A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143265A (en) * 1986-12-05 1988-06-15 Kawasaki Steel Corp Production of organic coated steel sheet having excellent baking hardenability
US4775600A (en) * 1986-03-27 1988-10-04 Nippon Kokan Kabushiki Kaisha Highly corrosion-resistant surface-treated steel plate
JPS6335798A (en) * 1986-07-31 1988-02-16 Nippon Steel Corp Organic composite steel sheet having excellent cation electrodeposition paintability
JPS63203778A (en) * 1987-02-19 1988-08-23 Nippon Steel Corp Highly corrosion-resistant double-layered dispersion plated steel sheet
JPS63283935A (en) * 1987-05-18 1988-11-21 Nippon Steel Corp Organic composite steel sheet
JPH01127084A (en) * 1987-11-11 1989-05-19 Nippon Steel Corp Preparation of surface treated steel plate excellent in sharpness and cratering resistance
JPH0243398A (en) * 1988-07-29 1990-02-13 Nippon Steel Corp Organic composite plated steel sheet having excellent corrosion resistance
JPH02277799A (en) * 1988-09-19 1990-11-14 Nippon Steel Corp Organic composite plated steel sheet excellent in corrosion resistance
JPH0387399A (en) * 1990-03-07 1991-04-12 Nippon Steel Corp Organic composite plated steel sheet excellent in corrosion resistance
KR100573436B1 (en) 2001-10-30 2006-04-26 간사이 페인트 가부시키가이샤 Coating compound for forming titanium oxide film, method for forming titanium oxide film and metal substrate coated with titanium oxide film
JP7417888B2 (en) * 2019-02-28 2024-01-19 奥野製薬工業株式会社 Zinc-based composite plating solution, method for forming zinc-based composite plating film, and method for forming composite oxide film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108292A (en) * 1980-12-24 1982-07-06 Nippon Kokan Kk <Nkk> Conposite coated steel plate with superior corrosion resistance, coating adhesion and corrosion resistance after coating
JPS5834179A (en) * 1981-08-24 1983-02-28 Nisshin Steel Co Ltd Surface treatment for zinc plated steel plate
JPS58177476A (en) * 1982-04-12 1983-10-18 Kawasaki Steel Corp Surface treatment of steel plate electroplated with zinc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108292A (en) * 1980-12-24 1982-07-06 Nippon Kokan Kk <Nkk> Conposite coated steel plate with superior corrosion resistance, coating adhesion and corrosion resistance after coating
JPS5834179A (en) * 1981-08-24 1983-02-28 Nisshin Steel Co Ltd Surface treatment for zinc plated steel plate
JPS58177476A (en) * 1982-04-12 1983-10-18 Kawasaki Steel Corp Surface treatment of steel plate electroplated with zinc

Also Published As

Publication number Publication date
JPS6050179A (en) 1985-03-19

Similar Documents

Publication Publication Date Title
US4659394A (en) Process for preparation of highly anticorrosive surface-treated steel plate
US4407899A (en) Surface treated steel sheets for paint coating
JP3883831B2 (en) Surface-treated steel sheet with excellent white rust resistance and method for producing the same
JPS6033192B2 (en) Composite coated steel sheet with excellent corrosion resistance, paint adhesion, and paint corrosion resistance
JP5075321B2 (en) Aqueous treatment agent for metal surface
JPS6141744B2 (en)
US4970126A (en) Highly corrosion-resistant, multi-layer coated steel sheets
JPH0238583A (en) Double-ply coated steel sheet
US4537837A (en) Corrosion resistant metal composite with metallic undercoat and chromium topcoat
JPH0360919B2 (en)
JP5638191B2 (en) Chemical conversion treated metal plate and manufacturing method thereof
JPS60174879A (en) Production of corrosion-preventive steel sheet for multi-layer painting
JPH041070B2 (en)
JPH0128101B2 (en)
JP3923419B2 (en) Non-chromium treatment of non-chromium steel sheet
JPS642670B2 (en)
EP0230320B1 (en) Organic coated steel strip having improved bake hardenability and method for making
JP2521462B2 (en) High corrosion resistance multi-layer coated steel sheet
JP2004176131A (en) Highly corrosion resistant coated steel sheet having excellent image clarity
JP3900070B2 (en) Non-chromic treatment of galvanized steel sheet
JPS62152579A (en) Manufacture of steel plate of super high corrosion resistance and rust proofness
JP3195510B2 (en) Paint composition for thin film coated steel sheet
JP3156586B2 (en) Manufacturing method of galvanized steel sheet with excellent white rust resistance and scratch resistance
JPH0254779A (en) Manufacture of organic composite-plated steel sheet excellent in press formability and adhesive strength after coating
JPH01312082A (en) Production of organic coated steel sheet having superior corrosion resistance and adhesion to coating film