JP4002534B2 - High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact - Google Patents

High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact Download PDF

Info

Publication number
JP4002534B2
JP4002534B2 JP2003121688A JP2003121688A JP4002534B2 JP 4002534 B2 JP4002534 B2 JP 4002534B2 JP 2003121688 A JP2003121688 A JP 2003121688A JP 2003121688 A JP2003121688 A JP 2003121688A JP 4002534 B2 JP4002534 B2 JP 4002534B2
Authority
JP
Japan
Prior art keywords
phase
mass
steel sheet
coated steel
sharpness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003121688A
Other languages
Japanese (ja)
Other versions
JP2004292943A (en
Inventor
和彦 本田
英利 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003121688A priority Critical patent/JP4002534B2/en
Publication of JP2004292943A publication Critical patent/JP2004292943A/en
Application granted granted Critical
Publication of JP4002534B2 publication Critical patent/JP4002534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、塗装鋼板に係わり、更に詳しくは環境負荷の大きいとされるクロムを含まずに優れた塗膜密着性と耐食性を有し、種々の用途、例えば家電用や建材用鋼板として適用できる塗装鋼板に関するものである。
【0002】
【従来の技術】
塗装金属板は、金属板を先に成形加工して複雑な形状物とした後に塗装を加える方式に比べ、塗装工程が合理化できる、品質が均一になる、塗料の消費量が節約される等の利点があることから、これまで多く使用されており、今後とも使用量は増加すると考えられる。
【0003】
一般に塗装金属板は、冷延鋼板、亜鉛めっき系鋼板、その他の金属板に予め塗装をした後、任意の形状に成形加工して最終の用途に供するものであり、例えば、冷蔵庫、洗濯機、電子レンジなどの家電製品、自動販売機、事務機器、自動車、エアコン室外機などの金属製品に用いられている。
【0004】
こうした塗装鋼板の耐食性を向上させることを目的として本発明者らは、塗装溶融Zn−Al−Mg−Siめっき鋼板を提案した(特許文献1)。また、本発明者らは、この溶融Zn−Al−Mg−Siめっき鋼板にCa、Be、Ti、Cu、Ni、Co、Cr、Mnの1種又は2種以上を添加することにより、更に耐食性が優れた塗装鋼板が得られることを明らかにした(特許文献2)。
【0005】
これらはいずれも、耐食性に優れるめっき鋼板の上にクロメート処理と呼ばれる耐食性と密着性に優れる下地処理を施し、その上に耐食性に優れるクロム系防錆顔料を含む下塗り層を有し、更にその上に着色された上塗り層を有する構造をとっている。
【0006】
こうしたクロメート処理及びクロム系防錆顔料から溶出する可能性のある6価のクロムは環境負荷が大きな物質であるため、本発明者らは、環境負荷の小さい塗装溶融Zn−Al−Mg−Siめっき鋼板を提案した(特許文献3及び4)。
【0007】
また、溶融Zn−Al−Mgめっき鋼板にTi、B、Siを添加することにより表面外観が良好になることが開示されている(例えば、特許文献5)。
【0008】
【特許文献1】
特許第3179446号公報
【特許文献2】
特開2000−64061号公報
【特許文献3】
特許第3090207号公報
【特許文献4】
特許第3124266号公報
【特許文献5】
特開2001−295015号公報
【0009】
【発明が解決しようとする課題】
Zn−Mg−Alの三元系合金は3質量%Mg−4質量%Al−93質量%Znに三元共晶点を持ち、それよりAl濃度が高い場合、初晶としてAl相が晶出する。
【0010】
溶融めっき時のめっき凝固速度が十分に確保されている場合、Al相が大きく成長しないうちにめっきが凝固するため表面平滑性は問題とならないが、めっき凝固速度が小さい場合、このAl相が先に大きく成長することによってめっき表面に凸凹が形成され、表面平滑性が劣化するという問題点を有している。
【0011】
このため、このような表面平滑性が低い鋼板で塗装鋼板を製造した場合、0.2〜100μm程度の厚さの比較的薄い塗膜ではめっき表面の凸凹を完全には隠蔽できず、塗装鋼板の鮮映性が劣化するという問題点を有している。
【0012】
しかし、前記特許特許文献1〜4に開示される技術では、塗装鋼板の鮮映性が劣化するという問題は考慮されていない。
【0013】
また、前記特許文献5に開示される技術では、表面外観を劣化させるZn11Mg2相の生成・成長を抑制する目的としてTiとBを添加しているが、表面平滑性や塗装後の鮮映性が劣化するという問題は考慮されておらず、金属間化合物についても言及されていない。
【0014】
そこで、本発明は、上記問題点に鑑みなされたものであり、4質量%を超えるような高Al濃度の場合でも十分鮮映性が優れ、環境負荷の小さい高耐食性塗装鋼板を提供することを目的としている。
【0015】
【課題を解決するための手段】
本発明者らは、鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板の開発について鋭意研究を重ねた結果、鋼板の表面に添加元素の添加量を最適化した亜鉛系めっきを形成した後、下地処理としてクロメート処理の代わりにタンニン又はタンニン酸系処理を施し、その上にクロム系防錆顔料の代わりにクロムフリー防錆顔料を有する塗膜を施すことで、塗装密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板を得られることを知見した。
【0016】
即ち、本発明は上記知見に基いて完成したもので、本発明の要旨は以下のとおりである。
【0017】
(1) 鋼板の片面又は両面に、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0018】
(2) 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有することを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0019】
(3) 鋼板の片面又は両面に、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Al相〕、〔Zn2Mg相〕及び〔Zn相〕の1種又は2種以上が混在した金属組織を有し、且つ、〔Al相〕、〔Zn2Mg相〕及び〔Zn相〕の1種又は2種以上の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性の優れた高耐食性塗装鋼板。
【0020】
(4) 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕、〔Al相〕及び〔Zn2Mg相〕が混在した金属組織を有し、且つ、〔Al相〕と〔Zn2Mg相〕の1種又は2種の中にTi−Al系金属間化合物を含有することを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0021】
(5) 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕、〔Al相〕、〔Zn2Mg相〕及び〔Zn相〕が混在した金属組織を有し、且つ、〔Al相〕、〔Zn2Mg相〕及び〔Zn相〕の中にTi−Al系金属間化合物を含有することを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0022】
(6) 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕、〔Al相〕及び〔Zn相〕が混在した金属組織を有し、且つ、〔Al相〕と〔Zn相〕の1種又は2種の中にTi−Al系金属間化合物を含有することを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0023】
(7) 前記(3)乃至(6)のいずれかに記載のTi−Al系金属間化合物が、TiAl3であることを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0024】
(8) 前記(3)乃至(6)のいずれかに記載のTi−Al系金属間化合物が、Ti(Al1-XSiX3(但し、X=0〜0.5である)であることを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0025】
(9) めっき層中の〔Al相〕の中に含有されるTi−Al系金属間化合物が、Zn−Alの共析反応によって析出したZn相中に存在することを特徴とする前記(3)乃至(8)のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0026】
(10) めっき層中の〔Al相〕の樹枝状晶の大きさが500μm以下であることを特徴とする前記(1)乃至(9)のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0027】
(11) 下地処理層の皮膜層に固形分として、微粒シリカ10〜500質量部を更に含有することを特徴とする、前記(1)乃至(10)のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0028】
(12) 有機被膜が、熱硬化型の樹脂塗膜であることを特徴とする前記(1)乃至(11)のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0029】
(13) 有機皮膜層が防錆顔料を含む下塗り層と着色された上塗り層からなる前記(1)乃至(12)のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0030】
(14) 防錆顔料がケイ酸イオン、リン酸イオン、バナジン酸イオン、モリブデン酸イオンのうち一種類以上を放出するものであることを特徴とする前記(13)に記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0031】
(15) 下地処理層の乾燥後の付着量が10〜3000mg/m2であることを特徴とする前記(1)乃至(14)のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。
【0032】
【発明の実施形態】
以下に本発明を詳細に説明する。
【0033】
本発明において、塗装鋼板とは、鋼板上に亜鉛系めっき層とタンニン又はタンニン酸系処理、及び有機皮膜からなる層を順次付与したものである。本発明の下地鋼板としては、熱延鋼板、冷延鋼板共に使用でき、鋼種もAlキルド鋼、Ti、Nb等を添加した極低炭素鋼板、及び、これらにP、Si、Mn等の強化元素を添加した高強度鋼、ステンレス鋼等種々のものが適用できる。
【0034】
下層の亜鉛系めっき層は、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下、残部がZn及び不可避不純物からなるめっき層か、或いは、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下、残部がZn及び不可避不純物からなるめっき層である。
【0035】
Zn−Al−Mg−Ti系めっき層においてAlの含有量を4〜10質量%に限定した理由は、Alの含有量が10質量%を超えるとめっき密着性の低下が見られるため、Siを添加していないめっき層中のAlの含有量は10質量%以下にする必要があるためである。また、4質量%未満では初晶としてAl相が晶出しないため、平滑性低下の問題がないためである。
【0036】
従って、本発明における高耐食性塗装鋼板においては、特にAl濃度が10質量%を超えるような高濃度の場合には、めっき密着性を確保するために、めっき層中にSiを添加することが必須である。
【0037】
一方、Zn−Al−Mg−Ti−Si系めっき層において、Alの含有量を4〜22質量%に限定した理由は、4質量%未満では初晶としてAl相が晶出しないため、平滑性低下の問題がないためであり、22質量%を超えると耐食性を向上させる効果が飽和するためである。
【0038】
Siの含有量を0.5質量%以下(但し、0質量%を除く)に限定した理由は、Siは密着性を向上させる効果があるが、0.5質量%を超えると密着性を向上させる効果が飽和するからである。望ましくは0.00001〜0.5質量%である、更に望ましくは0.0001〜0.5質量%である。
【0039】
Siの添加はAlの含有量が10質量%を超えるめっき層には必須であるが、Alの含有量が10%以下のめっき層においてもめっき密着性向上に効果が大きいため、加工が厳しい部材に使用する等、高いめっき密着性を必要とする場合にはSiを添加することが有効である。また、Si添加によりめっき層の凝固組織中に〔Mg2Si相〕が晶出する。この〔Mg2Si相〕は加工部耐食性向上に効果があるため、Siの添加量を多くし、めっき層の凝固組織中に〔Mg2Si相〕が混在した金属組織を作製することがより望ましい。
【0040】
Mgの含有量を1〜5質量%に限定した理由は、1質量%未満では耐食性を向上させる効果が不十分であるためであり、5質量%を超えるとめっき層が脆くなって密着性が低下するためである。Tiの含有量を0.1質量%以下(0質量%は除く)に限定した理由は、TiはTi−Al系金属間化合物を晶出させ、鮮映性を向上させる効果があるが、0.1質量%を超えるとめっき後の外観が粗雑になり、外観不良が発生する。また、Ti−Al系金属間化合物がめっき表面に濃化し表面平滑性を低下させる。望ましくは0.00001〜0.1質量%である。更に望ましくは0.00001〜0.01質量%未満である。
【0041】
本めっき層は、〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Zn相〕、〔Al相〕、〔Zn2Mg相〕、〔Mg2Si相〕、Ti−Al系金属間化合物の1つ以上を含む金属組織ができる。
【0042】
ここで、〔Al/Zn/Zn2Mgの三元共晶組織〕とは、Al相と、Zn相と金属間化合物Zn2Mg相との三元共晶組織であり、この三元共晶組織を形成しているAl相は例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」(Zn相を固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離して現れる。また、該三元共晶組織中のZn相は少量のAlを固溶し、場合によっては更に少量のMgを固溶したZn固溶体である。該三元共晶組織中のZn2Mg相は、Zn−Mgの二元系平衡状態図のZn:約84質量%の付近に存在する金属間化合物相である。状態図で見る限りそれぞれの相にはSi、Tiが固溶していないか、固溶していても極微量であると考えられるがその量は通常の分析では明確に区別できないため、この3つの相からなる三元共晶組織を本明細書では〔Al/Zn/Zn2Mgの三元共晶組織〕と表す。
【0043】
また、〔Al相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、これは例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」(Zn相を固溶するAl固溶体であり,少量のMgを含む)に相当するものである。この高温でのAl″相はめっき浴のAlやMg濃度に応じて固溶するZn量やMg量が相違する。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離するが、常温で見られる島状の形状は高温でのAl゛相の形骸を留めたものであると見てよい。状態図で見る限りこの相にはSi、Tiが固溶していないか、固溶していても極微量であると考えられるが通常の分析では明確に区別できないため、この高温でのAl″相に由来し、且つ、形状的にはAl″相の形骸を留めている相を本明細書では〔Al相〕と呼ぶ。この〔Al相〕は前記の三元共晶組織を形成しているAl相とは顕微鏡観察において明瞭に区別できる。
【0044】
また、〔Zn相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlさらには少量のMgを固溶していることもある。状態図で見る限りこの相にはSi、Tiが固溶していないか、固溶していても極微量であると考えられる。この〔Zn相〕は前記の三元共晶組織を形成しているZn相とは顕微鏡観察において明瞭に区別できる。
【0045】
また、〔Zn2Mg相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlを固溶していることもある。状態図で見る限りこの相にはSi、Tiが固溶していないか、固溶していても極微量であると考えられる。この〔Zn2Mg相〕は前記の三元共晶組織を形成しているZn2Mg相とは顕微鏡観察において明瞭に区別できる。
【0046】
また、〔Mg2Si相〕とは、めっき層の凝固組織中に明瞭な境界をもって島状に見える相である。状態図で見る限りZn、Al、Tiは固溶していないか、固溶していても極微量であると考えられる。この〔Mg2Si相〕はめっき中では顕微鏡観察において明瞭に区別できる。
【0047】
また、Ti−Al系金属間化合物とは、めっき層の凝固組織中に明瞭な境界をもって島状に見える相である。状態図で見る限りTiAl3であると考えられるが、分析するとSiが観察されることから、Siを固溶したTiAl3又はAlの一部がSiに置き換わったTi(Al1-XSiX3(但し、X=0〜0.5である)であると考えられる。
【0048】
本発明の溶融めっき鋼材において、このTi−Al系金属間化合物は、〔Al相〕、〔Zn2Mg相〕、〔Zn相〕の中に存在することを特徴とする。Ti−Al系金属間化合物の含有形態を〔Al相〕、〔Zn2Mg相〕、〔Zn相〕の中に限定した理由は、それ以外の位置に存在するTi−Al系金属間化合物では、鮮映性を向上させることができないためである。〔Al相〕、〔Zn2Mg相〕、〔Zn相〕の中に存在するTi−Al系金属間化合物が鮮映性を向上させる理由は、Ti−Al系金属間化合物が、〔Al相〕、〔Zn2Mg相〕、〔Zn相〕の核となることでこれらの結晶の晶出を促進させ、微細で多数の組織とするためであると考えられる。即ち、結晶が微細になるとめっき層表面の凹凸が抑制され、めっき表面が平滑になり、比較的薄い塗膜でもめっき表面の凸凹を隠蔽できるようになり、塗装鋼板の鮮映性が向上すると考えられる。
【0049】
この効果は、特に〔Al相〕において顕著である。〔Al相〕の樹枝状晶の大きさを500μm以下に制御することにより、表面が平滑になり、摩擦係数が低下する。望ましくは400μm以下である。更に望ましくは300μm以下である。
【0050】
本発明者等が多数のめっき中の金属組織を調査した結果、大部分の金属組織の中から大きさ数μmの金属間化合物が観察された。〔Al相〕中に存在する金属間化合物の一例を図1に示す。図1の上段の図(a)は、本発明におけるめっき鋼材のめっき層の顕微鏡写真(倍率1000倍)であり、該写真中の各組織の分布状態を図示したものが下段の図(b)である。この図からも判るように、本発明におけるめっき鋼材のめっき層の顕微鏡写真によって明確に各組織を特定することができる。
【0051】
図1ではAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」に相当するものの中にTi−Al系金属間化合物が観察される。この高温でのAl″相は、Al−Znの二元系平衡状態図における277℃で起こる共析反応により、常温では通常は微細なAl相と微細なZn相に分離して現れる。ここで亜共析反応の場合、高温で晶出したAl″相は、Al−Zn−Mgの三元系平衡状態図における三元共晶温度からZn相の析出を開始し、Al−Znの二元系平衡状態図における共析反応に相当する温度で残ったAl″相が微細なAl相と微細なZn相の共析組織となる。
【0052】
図2の上段の図(a)は、図1(a)のAl″相を拡大した顕微鏡写真(倍率3500倍)であり、該写真中の各組織の分布状態を図示したものが下段の図(b)である。Al″相を詳細に観察すると、析出したZn相がAl″相の外側とTi−Al系金属間化合物の周りに存在することが観察される。
本発明において金属間化合物の大きさは特に限定しないが、発明者らが観察したものは、大きさ10μm以下であった。また、めっき組織中の金属間化合物の存在割合も特に限定しないが、〔Al相〕、〔Zn2Mg相〕、〔Zn相〕のどれかに1割以上存在することが望ましい。
【0053】
本発明において、めっき鋼板の製造方法については特に限定するところはなく、通常の無酸化炉方式の溶融めっき法が適用できる。
【0054】
金属間化合物の添加方法については特に限定するところはなく、金属間化合物の微粉末を浴中に混濁させる方法や、金属間化合物を浴に溶解させる方法等が適用できるが、無酸化炉方式の溶融めっき法を使用した連続ライン等で製造する場合、めっき浴中にTiを溶解させる方法が適当である。めっき浴中にTiを溶解させる方法としては、Ti−Zn系金属間化合物を添加する方法が低温、短時間で溶解可能なため効率的である。添加するTi−Zn系金属間化合物としては、Zn15Ti、Zn10Ti、Zn5Ti、Zn3Ti、Zn2Ti、ZnTi等がある。こうした金属間化合物を単独或いはZn、Zn−Al、Zn−Al−Mg合金中に混合させてめっき浴に添加すると、溶解したTiがめっき中にTi−Al系金属間化合物として晶出し、表面平滑性と成形性を向上させる。
【0055】
めっきの付着量については特に制約は設けないが、耐食性の観点から10g/m2以上、加工性の観点から350g/m2以下で有ることが望ましい。
【0056】
亜鉛めっき層中には、これ以外にFe、Sb、Pb、Snを単独或いは複合で0.5質量%以内含有してもよい。また、Ca、Be、Cu、Ni、Co、Cr、Mn、P、B、Nb、Biや3族元素を合計で0.5質量%以下含有しても本発明の効果を損なわず、その量によっては更に耐食性が改善される等好ましい場合もある。
【0057】
本発明の塗装鋼板に用いる下地処理層は、水性樹脂をベースとしてタンニン又はタンニン酸を含むことを特徴としている。この下地処理層とZn−Mg−Al−Ti系合金めっき層、或いは、Zn−Mg−Al−Si−Ti系合金めっき層を組み合わせることにより相乗的に塗装密着性と加工部の耐食性が向上する。
【0058】
本下地処理層のタンニン又はタンニン酸の役割は、めっき層と強固に反応して密着することと、一方で水性樹脂とも密着することにある。タンニン又はタンニン酸と密着した水性樹脂はその上に塗装される樹脂と強固に密着し、その結果としてめっき鋼板と塗膜が従来から使用されてきたクロメート処理を使用せずとも強固に密着するようになったものと考えられる。また、タンニンやタンニン酸そのものが水性樹脂を仲立ちとせずにめっき鋼板と塗膜の結合に関与している部分も存在するものと考えられる。
【0059】
下地処理層の水性樹脂としては、水溶性樹脂のほか、本来水不溶性でありながらエマルジョンやサスペンジョンのように水中に微分散された状態になりうる樹脂を含めて言う。このような水性樹脂として使用できるものは、例えば、ポリオレフィン系樹脂、アクリルオレフィン系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエステル系樹脂、アルキド系樹脂、フェノール系樹脂、その他の熱硬化型樹脂が挙げられ、架橋可能な樹脂が望ましい。特に好ましい樹脂は、アクリルオレフィン系樹脂、ポリウレタン系樹脂、及び、両者の混合樹脂である。これらの水性樹脂の2種類以上を混合或いは重合して使用しても良い。
【0060】
タンニンやタンニン酸は、水性樹脂の存在下で、Zn−Mg−Al−Ti系合金めっき、或いは、Zn−Mg−Al−Si−Ti系合金めっきと塗膜の両者と強固に結合し、塗膜の密着性を飛躍的に向上させ、ひいては加工部の耐食性を向上させる。タンニン又はタンニン酸としては加水分解できるタンニンでも縮合タンニンでもよく、これらの一部が分解されたものでも良い。タンニン及びタンニン酸は、ハマメタタンニン、五倍子タンニン、没食子タンニン、ミロバロンのタンニン、ジビジビのタンニン、アルガロビラのタンニン、バロニアのタンニン、カテキンなど特に限定するものではなく、市販のもの、例えば「タンニン酸:AL」(富士化学工業製)などを使用することができる。
【0061】
タンニン及びタンニン酸の含有量は樹脂100質量部に対して、タンニン又はタンニン酸0.2〜50質量部がよい。タンニン又はタンニン酸の含有量が0.2質量部未満ではこれらを添加した効果が見られず、塗膜密着性や加工部の耐食性が不十分である。一方、50質量部を超えると逆に耐食性が低下したり、処理液を長期間貯蔵しておくとゲル化したりして問題がある。
【0062】
更に微粒シリカを添加すると耐擦り傷性、塗膜密着性、耐食性が向上する。本発明において微粒シリカとは、微細な粒径をもつために水中に分散させた場合に安定に水分散状態を維持でき、半永久的に沈降が認められないような特色を有するシリカを総称していうものである。このような微粒シリカとしては、ナトリウムなどの不純物が少なく、弱アルカリ系のものであれば、特に限定されない。例えば、「スノーテックスN」(日産化学工業社製)、「アデライトAT−20N」(旭電化工業社製)などの市販のシリカなどを用いることができる。
【0063】
微粒シリカの含有量は固形分換算で、水性樹脂100質量部に対して10〜500質量部であることが好ましい。10質量部未満では添加した効果が少なく、500質量部を超えると耐食性向上の効果が飽和して不経済である。
【0064】
また、必要に応じて界面活性剤、防錆抑制剤、発泡剤、顔料などを添加しても良い。更に密着性を向上させるために、エッチング性フッ化物を添加してもよい。エッチング性フッ化物としては、例えば、フッ化亜鉛四水和物、ヘキサフルオロケイ酸亜鉛六水和物などを使用することができる。同じく、密着性を向上させる目的でシランカップリング剤を添加しても良い。シランカップリング剤としては、例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、アミノシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシルジメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド、γ−クロロプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシランなどを挙げることができる。
【0065】
下地処理層の塗布方法は特別限定するものではなく、一般に公知の塗装方法、例えば、ロールコート、エアースプレー、エアーレススプレー、浸漬などが適用できる。塗布後の乾燥・焼き付けは、樹脂の重合反応や硬化反応を考慮して、熱風炉、誘導加熱炉、近赤外線炉、等公知の方法或いはこれらを組み合わせた方法で行えばよい。また、使用する水性樹脂の種類によっては紫外線や電子線などによって硬化させることもできる。或いは強制乾燥を用いずに自然乾燥してもよいし、Zn−Mg−Al−Ti系合金めっき鋼板、或いは、Zn−Mg−Al−Si−Ti系合金めっき鋼板を予め加熱しておいて、その上に塗布して自然乾燥してもよい。
【0066】
下地処理層の乾燥後の付着量は10〜3000mg/m2が好適である。10mg/m2未満では密着性が劣り加工部の耐食性が不十分である。一方、3000mg/m2を超えると不経済であるばかりか加工性も低下して耐食性も劣るようになる。
【0067】
本発明の塗装鋼板は下地処理したZn−Mg−Al−Ti系合金めっき鋼板、或いは、Zn−Mg−Al−Si−Ti系合金めっき鋼板の上に有機被覆層を有することを特徴としている。有機被覆としてはポリオレフィン樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、塩化ビニル樹脂、フッ素系樹脂、ブチラール樹脂、ポリカーボネート樹脂、フェノール樹脂などである。これらの混合物や共重合物も使用できる。また、これらにイソシアネート樹脂、アミノ樹脂、シランカップリング剤或いはチタンカップリング剤等を補助成分として併用することができる。本発明によるプレコート鋼板は加工後に補修をされずにそのまま使用されるケースが多いので、厳しい加工が施される用途では、ポリエステル樹脂をメラミンで架橋する樹脂系、ポリエステル樹脂をウレタン樹脂(イソシアネート、イソシアネート樹脂)で架橋する樹脂系、塩化ビニル樹脂系、フッ素樹脂系(溶剤可溶型、アクリル樹脂との分散混合型)が望ましい。
【0068】
次に塗装鋼板の上層の有機被膜としては、ポリエステル樹脂、アミノ樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フッ素樹脂等が例として挙げられ、特に限定されるものではないが、特に加工が厳しい製品に使用する場合、熱硬化型の樹脂塗膜が最も好ましい。熱硬化型の樹脂塗膜としては、エポキシポリエステル塗料、ポリエステル塗料、メラミンポリエステル塗料、ウレタンポリエステル塗料等のポリエステル系塗料や、アクリル塗料が挙げられる。
【0069】
ポリエステル樹脂の酸成分の一部を脂肪酸に置き換えたアルキッド樹脂や、油で変性しないオイルフリーアルキッド樹脂に、メラミン樹脂やポリイソシアネート樹脂を硬化剤として併用したポリエステル系の塗料、及び各種架橋剤と組み合わせたアクリル塗料は、他の塗料に比べて加工性が良いため、厳しい加工の後にも塗膜に亀裂などが発生しないためである。
【0070】
膜厚は、0.2〜100μmが適正である。膜厚を0.2μm以上とした理由は、膜厚が0.2μm未満では耐食性が確保できないためである。また、膜厚を100μm以下とした理由は、膜厚が100μmを超えるとコスト面から不利になるためである。望ましくは、50μm以下である。有機被膜層は、単層でも複層でもかまわない。
【0071】
なお、本発明の方法に使用される有機被膜には、必要に応じて、可塑剤、酸化防止剤、熱安定剤、無機粒子、顔料、有機潤滑などの添加剤を配合させる。
【0072】
有機被覆層は公知の方法で下地処理層の上に塗装される。例えば、ロールコーター、カーテンコーター、静電塗装、スプレー塗装、浸漬塗装などである。その後、熱風、誘導加熱、近赤外、遠赤外、などの加熱によって乾燥・硬化される。有機被覆層の樹脂が電子線や紫外線で硬化するものであれば、これらの照射によって硬化される。これらの併用であってもよい。
【0073】
本発明の塗装鋼板で化成処理層と着色された有機層の間に、必要に応じて防錆顔料を添加した皮膜層を下塗り層として有することができる。この下塗り層は主に耐食性の向上を目的とするが、その他に成形加工性、耐薬品性なども考慮して設計される。下塗り層を構成する樹脂としては、一般に公知の樹脂、例えば、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、メラミン樹脂などをそのまま、或いは、組み合わせて使用できる。防錆顔料としては一般に公知のもの、例えば、(1)リン酸亜鉛、リン酸鉄、リン酸アルミニウム、亜リン酸亜鉛、等のリン酸系防錆顔料、(2)モリブデン酸カルシウム、モリブデン酸アルミニウム、モリブデン酸バリウム、等のモリブデン酸系防錆顔料、(3)酸化バナジウムなどのバナジウム系防錆顔料、(4)カルシウムシリケートなどのシリケート系顔料、(5)水分散シリカ、ヒュームドシリカ、等の微粒シリカなどを用いることができる。これらの防錆顔料は、それぞれリン酸イオン、モリブデン酸イオン、バナジン酸イオン、ケイ酸イオンを放出する。
【0074】
防錆顔料の添加量は皮膜の固形分基準に1〜40質量%がよい。1質量%より少ないと耐食性の改良が十分でなく、40質量%を超えると加工性が低下して、加工時に有機被膜層の脱落が起こり、耐食性も劣るようになる。
【0075】
防錆顔料を含む下塗り層の塗布は一般に公知の方法でできる。例えば、ロールコート、カーテンコート、エアースプレー、エアーレススプレー、浸漬、刷毛塗り、バーコートなどである。その後、熱風、誘導加熱、近赤外、遠赤外、などの加熱によって乾燥・硬化される。有機被覆層の樹脂が電子線や紫外線で硬化するものであればこれらの照射によって硬化される。これらの併用であってもよい。
【0076】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0077】
(実施例1)
まず、厚さ0.85mmの冷延鋼板を準備し、これに400〜600℃で浴中の添加元素量を変化させためっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を片面140g/m2に調整し、冷却速度10℃/s以下で冷却した。得られためっき鋼板のめっき組成を表1に示す。また、めっき鋼板を断面からSEMで観察し、めっき層の金属組織を観察した結果を同じく表1に示す。Ti−Al系金属間化合物は、めっき鋼板を10度傾斜で研磨した後、EPMAで観察し、〔Al相〕、〔Zn2Mg相〕、〔Zn相〕の中に存在するものを観察した。
【0078】
めっき層中の〔Al相〕の樹枝状晶の大きさは、めっき鋼板の表面をCMAでマッピングし、得られたAlのマッピングを使用して樹脂状晶の長径を測定した。測定は、5×5cmの範囲を行い、大きいものから順に5つの樹脂状晶の長径を測定し、その平均値を〔Al相〕の樹枝状晶の大きさとして使用した。
【0079】
次に、脱脂剤として日本パーカライジング(株)製FC−364Sを使用し、2質量%、60℃、10秒間浸漬し、その後、水洗、乾燥の工程で脱脂処理を行った。次いで、アクリルオレフィン樹脂100質量部に対しタンニン酸2.5質量部、シリカ30質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。タンニン酸としては「タンニン酸AL」富士化学工業(株)製を使用した。シリカとしては「スノーテックスN」(日産化学工業製)を使用した。
【0080】
その上に、下塗り塗装として日本ペイント製P641プライマー塗料(ポリエステル樹脂系)の防錆顔料を表1に記載した防錆顔料(亜リン酸亜鉛、カルシウムシリケート、バナジン酸/リン酸混合系、モリブデン酸系)に変更したものをバーコーターで塗布し、熱風乾燥炉で最高到達板温が220℃となる条件で焼き付けて膜厚を5μmになるように調整した。下塗り塗装の上に、上塗り塗装として、日本ペイント製FL100HQ(ポリエステル樹脂系)をバーコーターで塗布し、熱風乾燥炉で到達板温が220℃となる条件で焼き付けて膜厚を15μmに調整した。
【0081】
以上のようにして作製した塗装鋼板に対して3T折り曲げ加工(原板を3枚はさんだ状態で180°の折り曲げ加工)を施し、加工部の塗膜密着性試験と耐食性試験を行った。塗膜密着性試験は、加工部に粘着テープを貼り付け、これを勢い良く剥離したときの粘着テープへの塗膜の付着状況で評価した。評点は、試験した長さに対する付着した塗膜の長さの割合に基づき、0%以上2%未満を5、2%以上5%未満を4、付着量が5%以上30%を3、30%以上80%未満を2、80%以上を1、として評点4以上を合格とした。一方、耐食性の試験は、塩水噴霧(5%NaCl、35℃、2hr)→乾燥(60℃、30%RH、4hr)→湿潤(50℃、95%RH、2hr)からなるサイクル腐食試験を120サイクル行い、サイクル腐食試験後に加工部の赤錆発生面積率を目視で観察した。評点は、赤錆5%未満を5、赤錆5%以上10%未満を4、赤錆10%以上20%未満を3、20%以上30%未満を2、30%以上を1、として評点3以上を合格とした。
【0082】
鮮映性は携帯用鮮明度光沢度計(PGD計)での鮮映性測定値(Gd値)を測定した。鮮映性は、Gd値が0.6以上のものを合格、Gd値が0.6未満のものを不合格とした。
【0083】
評価結果を表1に示す。番号18は、Ti−Al系金属間化合物を含有しないため、Al相が成長し、鮮映性が不合格となった。番号19は、Tiの含有量が多すぎたため、Ti−Al系金属間化合物が表面に濃化し、鮮映性が不合格となった。番号20は、Mg、Al、Si、Tiが本発明の範囲外であるため、耐食性が不合格となった。これら以外はいずれも良好な塗膜密着性、鮮映性、耐食性を示した。
【0084】
【表1】

Figure 0004002534
【0085】
(実施例2)
まず、厚さ0.85mmの冷延鋼板を準備し、これに400〜600℃で浴中の添加元素量を変化させためっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を片面140g/m2に調整し、冷却速度10℃/s以下で冷却した。得られためっき鋼板のめっき組成を表2に示す。また、めっき鋼板を断面からSEMで観察し、めっき層の金属組織を観察した結果を同じく表2に示す。
【0086】
Ti−Al系金属間化合物は、めっき鋼板を10度傾斜で研磨した後、EPMAで観察し、〔Al相〕、〔Zn2Mg相〕、〔Zn相〕の中に存在するものを観察した。
【0087】
めっき層中の〔Al相〕の樹枝状晶の大きさは、めっき鋼板の表面をCMAでマッピングし、得られたAlのマッピングを使用して樹脂状晶の長径を測定した。測定は、5×5cmの範囲を行い、大きいものから順に5つの樹脂状晶の長径を測定し、その平均値を〔Al相〕の樹枝状晶の大きさとして使用した。
【0088】
次に、脱脂剤として日本パーカライジング(株)製FC−364Sを使用し、2質量%、60℃、10秒間浸漬し、その後、水洗、乾燥の工程で脱脂処理を行った。次いで、アクリルオレフィン樹脂100質量部に対しタンニン酸2.5質量部、シリカ30質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。タンニン酸としては「タンニン酸AL」富士化学工業(株)製を使用した。シリカとしては「スノーテックスN」(日産化学工業製)を使用した。
【0089】
塗装は、エポキシポリエステル塗料、ポリエステル塗料、メラミンポリエステル塗料、ウレタンポリエステル塗料、アクリル塗料をそれぞれバーコーターで塗装し、熱風乾燥炉で焼き付けて表2に示す膜厚に調整した。
【0090】
鮮映性は携帯用鮮明度光沢度計(PGD計)での鮮映性測定値(Gd値)を測定した。鮮映性は、Gd値が0.6以上のものを合格、Gd値が0.6未満のものを不合格とした。
【0091】
塗膜密着性は、JIS B−7729に準ずるエリクセン試験機を使用して7mm押し出した加工部に粘着テープを貼り付け、これを勢い良く剥離したときの押し出し部の外観を目視で判定した。目視で評価しにくい場合には、メチルバイオレットの3%アセトン溶液で染色し、染色された部分には被膜が存在し、染色されていない部分には被膜が存在しないとして密着性を評価した。評点は、剥離面積2%未満を5、2%以上20%未満を4、20%以上50%を3、50%以上80%未満を2、80%以上を1、として評点4以上を合格とした。
【0092】
耐食性は、JIS B−7729に準ずるエリクセン試験機を使用して7mm押し出した加工部をJIS Z−2371に準ずる塩水噴霧試験で72hr試験し、白錆が発生しなかったものを合格、白錆が発生したものを不合格とした。
【0093】
評価結果を表2に示す。番号29は、塗膜厚が本発明の範囲外であるため、耐食性が不合格となった。これら以外はいずれも良好な塗膜密着性、鮮映性、耐食性を示した。
【0094】
【表2】
Figure 0004002534
【0095】
(実施例3)
まず、厚さ0.85mmの冷延鋼板を準備し、これに450℃のZn−Mg−Al−Si−Tiめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を片面140g/m2に調整し、冷却速度10℃/s以下で冷却した。得られためっき鋼板のめっき層中組成は、Mg3%、Al11%、Si0.2%、Ti0.009%であった。
【0096】
めっき鋼板は、脱脂剤として日本パーカライジング(株)製FC−364Sを使用し、2質量%、60℃、10秒間浸漬し、その後、水洗、乾燥の工程で脱脂処理を行った。次いで、表3に示す組成の下地処理材を塗布し熱風乾燥炉で乾燥した。乾燥時の到達板温は150℃とした。タンニン酸としては「タンニン酸AL」富士化学工業(株)製、「BREWTAN」(オムニケム社製)、TANAL1(オムニケム社製)を使用した。シリカとしては「スノーテックスN、表中ではST−Nと記載」(日産化学工業製)を使用した。
【0097】
なお、比較材の鋼板は、塗布型のクロメート処理液に浸漬して、クロメート処理を行った。クロメート皮膜の付着量はCr換算量で50mg/m2とした。
【0098】
次に、下塗り塗装として日本ペイント製P641プライマー塗料(ポリエステル樹脂系、表中の樹脂種はポリエステルとした)、日本ペイント製P108プライマー(エポキシ樹脂系、表中の樹脂種はエポキシとした)、日本ペイント製P304プライマー(ウレタン樹脂系、表中の樹脂種はウレタンとした)の防錆顔料を表2に記載した防錆顔料(亜リン酸亜鉛、カルシウムシリケート、バナジン酸/リン酸混合系、モリブデン酸系)に変更したものをバーコーターで塗布し、熱風乾燥炉で最高到達板温が220℃となる条件で焼き付けて膜厚を5μmになるように調整した。下塗り塗装の上に、上塗り塗装として、日本ペイント製FL100HQ(ポリエステル樹脂系)をバーコーターで塗布し、熱風乾燥炉で到達板温が220℃となる条件で焼き付けて膜厚を15μmに調整した。
【0099】
以上のようにして作製した塗装鋼板に対して3T折り曲げ加工(原板を3枚はさんだ状態で180°の折り曲げ加工)を施し、加工部の塗膜密着性試験と耐食性試験を行った。塗膜密着性試験は、加工部に粘着テープを貼り付け、これを勢い良く剥離したときの粘着テープへの塗膜の付着状況で評価した。評点は、試験した長さに対する付着した塗膜の長さの割合に基づき、0%以上2%未満を5、2%以上5%未満を4、付着量が5%以上30%を3、30%以上80%未満を2、80%以上を1、として評点4以上を合格とした。一方、耐食性の試験は、塩水噴霧(5%NaCl、35℃、2hr)→乾燥(60℃、30%RH、4hr)→湿潤(50℃、95%RH、2hr)からなるサイクル腐食試験を120サイクル行った。サイクル腐食試験後に加工部の赤錆発生面積率を目視で観察した。評点は、赤錆5%未満を5、赤錆5%以上10%未満を4、赤錆10%以上20%未満を3、20%以上30%未満を2、30%以上を1、として評点3以上を合格とした。
【0100】
鮮映性は携帯用鮮明度光沢度計(PGD計)での鮮映性測定値(Gd値)を測定した。鮮映性は、Gd値が0.6以上のものを合格、Gd値が0.6未満のものを不合格とした。
【0101】
評価結果を表3に示す。番号15、17はタンニン酸の含有量が本発明の範囲外であるため、加工部耐食性が不合格となった。番号16、18は下地処理層の付着量が本発明の範囲外であるため、加工部耐食性が不合格となった。番号27、28は下地処理層にクロメート処理を使用しているため環境負荷が大きく不合格となった。これら以外はいずれも良好な塗膜密着性、鮮映性、耐食性を示した。
【0102】
【表3】
Figure 0004002534
【0103】
(実施例4)
まず、厚さ0.85mmの冷延鋼板を準備し、これに520℃で浴中の添加元素量を変化させためっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を片面140g/m2に調整し、冷却速度10℃/s以下で冷却した。得られためっき鋼板のめっき組成を表4に示す。また、めっき鋼板を断面からSEMで観察し、めっき層の金属組織を観察した結果を同じく表4に示す。
【0104】
Ti−Al系金属間化合物は、めっき鋼板を10度傾斜で研磨した後、EPMAで観察し、〔Al相〕、〔Zn2 Mg相〕、〔Zn相〕の中に存在するものを観察した。また、〔Al相〕の中に存在するTi−Al系金属間化合物については、EPMAで観察し、Zn−Alの共析反応によって析出したZn相中への存在有無を観察した。更にTi−Al系金属間化合物のEPMA観察を行い、Ti−Al系金属間化合物のSi含有有無を観察した。
【0105】
次に、脱脂剤として日本パーカライジング(株)製FC−364Sを使用し、2質量%、60℃、10秒間浸漬し、その後、水洗、乾燥の工程で脱脂処理を行った。次いで、アクリルオレフィン樹脂100質量部に対しタンニン酸2.5質量部、シリカ30質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。タンニン酸としては「タンニン酸AL」富士化学工業(株)製を使用した。シリカとしては「スノーテックスN」(日産化学工業製)を使用した。
【0106】
その上に、プライマーとしてエポキシポリエステル塗料をバーコーターで塗装し、熱風乾燥炉で焼き付けて膜厚を5μmに調整した。トップコートは、ポリエステル塗料をバーコーターで塗装し、熱風乾燥炉で焼き付けて膜厚を20μmに調整した。
【0107】
密着性は、デュポン衝撃試験後の塗装めっき鋼板に粘着テープを貼り、その後引き剥がし、めっき及び塗膜が剥離しなかった場合を○、めっき又は塗膜の剥離が10%未満の場合を△、めっき又は塗膜が10%以上剥離した場合を×とした。デュポン試験は先端に1/2インチの丸みを持つ撃ち型を使用し、1kgの重りを1mの高さから落下させて行った。
【0108】
加工後耐食性の評価は、3T折り曲げ加工(原板を3枚はさんだ状態で180°の折り曲げ加工)を施したサンプルの折り曲げ部について、CCT120サイクル後の赤錆発生状況を以下に示す評点づけで判定した。CCTは、SST2hr→乾燥4hr→湿潤2hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
評価結果を表4に示す。番号2はAlとSiの添加量が本発明の範囲外であるため密着性が不合格となった。これら以外はいずれも、密着性、加工後耐食性が良好な結果となった。特にSiを添加しためっき鋼板は良好な密着性と加工後耐食性を示した。
【0109】
【表4】
Figure 0004002534
【0110】
【発明の効果】
以上述べてきたように,本発明により,高Al濃度の場合でも十分鮮映性が優れ,環境負荷の大きなクロムを含有せずに,加工部の耐食性に優れる塗装鋼板を製造することが可能となり,工業上極めて優れた効果を奏することができる。
【図面の簡単な説明】
【図1】(a)は、本発明のめっき鋼材のめっき層についての図面代用顕微鏡写真(倍率1000倍)であり、(b)は写真中の各組織の分布状態を示す図である。
【図2】(a)は、図1の「Al″相」を拡大した図面代用顕微鏡写真(倍率3500倍)であり、(b)は写真中の各組織の分布状態を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coated steel sheet, and more specifically, has excellent coating film adhesion and corrosion resistance without containing chromium, which is said to have a large environmental load, and can be applied as a steel sheet for various uses such as home appliances and building materials. It relates to painted steel sheets.
[0002]
[Prior art]
Compared with the method in which a metal plate is first formed into a complex shape and then applied to a painted metal plate, the painting process can be streamlined, the quality is uniform, and the consumption of paint is saved. Since there are advantages, it has been used a lot so far, and the amount used will continue to increase.
[0003]
In general, a coated metal plate is a cold-rolled steel plate, a galvanized steel plate, and other metal plates that are pre-coated, and then molded into an arbitrary shape for use in the final use. For example, a refrigerator, a washing machine, Used in metal products such as household appliances such as microwave ovens, vending machines, office equipment, automobiles, and air conditioner outdoor units.
[0004]
In order to improve the corrosion resistance of such a coated steel sheet, the present inventors have proposed a coated molten Zn—Al—Mg—Si plated steel sheet (Patent Document 1). In addition, the inventors further added corrosion resistance by adding one or more of Ca, Be, Ti, Cu, Ni, Co, Cr, and Mn to the molten Zn—Al—Mg—Si plated steel sheet. It was clarified that a coated steel sheet excellent in the above can be obtained (Patent Document 2).
[0005]
Each of these has a surface treatment that is excellent in corrosion resistance and adhesion called chromate treatment on a plated steel sheet that is excellent in corrosion resistance, and has an undercoat layer containing a chromium-based rust preventive pigment that is excellent in corrosion resistance. It has a structure having a colored overcoat layer.
[0006]
Since hexavalent chromium that may be eluted from the chromate treatment and chromium-based anticorrosive pigment is a substance with a large environmental load, the present inventors have applied the coating molten Zn—Al—Mg—Si plating with a small environmental load. A steel plate was proposed (Patent Documents 3 and 4).
[0007]
Further, it is disclosed that the surface appearance is improved by adding Ti, B, and Si to a molten Zn—Al—Mg plated steel sheet (for example, Patent Document 5).
[0008]
[Patent Document 1]
Japanese Patent No. 3179446
[Patent Document 2]
JP 2000-64061 A
[Patent Document 3]
Japanese Patent No. 3090207
[Patent Document 4]
Japanese Patent No. 312266
[Patent Document 5]
JP 2001-295015 A
[0009]
[Problems to be solved by the invention]
A Zn-Mg-Al ternary alloy has a ternary eutectic point in 3 mass% Mg-4 mass% Al-93 mass% Zn, and when the Al concentration is higher than that, an Al phase is crystallized as the primary crystal. To do.
[0010]
If the plating solidification rate at the time of hot dipping is sufficiently secured, the surface smoothness will not be a problem because the plating solidifies before the Al phase grows greatly, but if the plating solidification rate is low, this Al phase However, there is a problem that unevenness is formed on the plating surface and the surface smoothness deteriorates.
[0011]
For this reason, when a coated steel sheet is produced with such a steel sheet having low surface smoothness, the unevenness of the plating surface cannot be completely hidden by a relatively thin coating film having a thickness of about 0.2 to 100 μm. There is a problem that the sharpness of the image deteriorates.
[0012]
However, the techniques disclosed in Patent Documents 1 to 4 do not consider the problem that the sharpness of the coated steel sheet deteriorates.
[0013]
In the technique disclosed in Patent Document 5, Zn that deteriorates the surface appearance is used.11Mg2Ti and B are added for the purpose of suppressing phase formation / growth, but the problem of deterioration of surface smoothness and sharpness after coating is not considered, and intermetallic compounds are also mentioned. Absent.
[0014]
Therefore, the present invention has been made in view of the above problems, and provides a highly corrosion-resistant coated steel sheet that is excellent in sharpness even in the case of a high Al concentration exceeding 4% by mass and has a small environmental load. It is aimed.
[0015]
[Means for Solving the Problems]
As a result of earnest research on the development of a highly corrosion-resistant coated steel sheet with excellent visibility and low environmental impact, the present inventors have formed a zinc-based plating that optimizes the additive element addition amount on the surface of the steel sheet, Applying tannin or tannic acid-based treatment instead of chromate treatment as a base treatment, and coating with chromium-free rust-preventive pigment instead of chromium-based rust-preventive pigment to improve paint adhesion and clarity It was found that a highly corrosion-resistant coated steel sheet with excellent environmental impact can be obtained.
[0016]
That is, the present invention has been completed based on the above findings, and the gist of the present invention is as follows.
[0017]
(1) A zinc-based plating layer containing Al: 4 to 10% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less on the one surface or both surfaces of a steel plate, with the balance being zinc and inevitable impurities And a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer, and an organic layer having a thickness of 0.2 to 100 μm as an upper layer A highly corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact, characterized by having a coating layer.
[0018]
(2) On one side or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and It has a zinc-based plating layer made of inevitable impurities, and has a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer on the upper layer. A highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness and having a small environmental load, characterized by having an organic coating layer having a thickness of 0.2 to 100 μm.
[0019]
(3) A zinc-based plating layer containing Al: 4 to 10% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less on the one surface or both surfaces of the steel plate, the balance being zinc and inevitable impurities And a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer, and an organic layer having a thickness of 0.2 to 100 μm as an upper layer Zinc-based plating layer of coated steel sheet with coating layer is [Al / Zn / Zn2[Al phase], [Zn] in the base of Mg ternary eutectic structure2It has a metal structure in which one or more of [Mg phase] and [Zn phase] are mixed, and [Al phase], [Zn phase]2A highly corrosion-resistant coated steel sheet having excellent sharpness, comprising a Ti—Al intermetallic compound in one or more of [Mg phase] and [Zn phase].
[0020]
(4) On one side or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and It has a zinc-based plating layer made of inevitable impurities, and has a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer on the upper layer. As a zinc-based plating layer of a coated steel plate having an organic coating layer having a thickness of 0.2 to 100 μm [Al / Zn / Zn2[Mg ternary eutectic structure] [Mg2[Si phase], [Al phase] and [Zn]2[Mg phase] has a mixed metal structure, and [Al phase] and [Zn phase]2A highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness, and having a low environmental impact, characterized by containing a Ti—Al intermetallic compound in one or two of the [Mg phase].
[0021]
(5) On one side or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and It has a zinc-based plating layer made of inevitable impurities, and has a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer on the upper layer. As a zinc-based plating layer of a coated steel plate having an organic coating layer having a thickness of 0.2 to 100 μm [Al / Zn / Zn2[Mg ternary eutectic structure] [Mg2Si phase], Al phase, Zn2It has a metal structure in which [Mg phase] and [Zn phase] are mixed, and [Al phase], [Zn phase]2A highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness and having a low environmental impact, characterized by containing a Ti—Al intermetallic compound in [Mg phase] and [Zn phase].
[0022]
(6) On one or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and It has a zinc-based plating layer made of inevitable impurities, and has a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer on the upper layer. As a zinc-based plating layer of a coated steel plate having an organic coating layer having a thickness of 0.2 to 100 μm [Al / Zn / Zn2[Mg ternary eutectic structure] [Mg2[Si phase], [Al phase] and [Zn phase] have a mixed metal structure, and Ti-Al intermetallic compound is included in one or two of [Al phase] and [Zn phase]. A highly corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness that has a low environmental impact.
[0023]
(7) The Ti—Al intermetallic compound according to any one of (3) to (6) is TiAl.ThreeA highly corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness that has a low environmental impact.
[0024]
(8) The Ti—Al-based intermetallic compound according to any one of (3) to (6) is Ti (Al1-XSiX)Three(However, X = 0 to 0.5) A highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness, and having a small environmental load.
[0025]
(9) The Ti-Al intermetallic compound contained in the [Al phase] in the plating layer is present in the Zn phase precipitated by Zn-Al eutectoid reaction (3) ) A highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness as defined in any one of (8) to (8) and having a low environmental impact.
[0026]
(10) The coating film adhesion and sharpness according to any one of (1) to (9) above, wherein the size of the [Al phase] dendrite in the plating layer is 500 μm or less. High corrosion resistance coated steel sheet with excellent environmental impact and low environmental impact.
[0027]
(11) The coating film adhesion according to any one of (1) to (10) above, further containing 10 to 500 parts by mass of fine silica as a solid content in the coating layer of the ground treatment layer High corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact.
[0028]
(12) The organic coating film is a thermosetting resin coating film, and is excellent in coating film adhesion and sharpness according to any one of the above (1) to (11) and having a low environmental impact. Corrosion resistant coated steel sheet.
[0029]
(13) The organic coating layer is composed of an undercoat layer containing a rust preventive pigment and a colored topcoat layer, and has excellent coating film adhesion and sharpness according to any one of the above (1) to (12), and has a small environmental load. High corrosion resistance coated steel sheet.
[0030]
  (14) The rust preventive pigment is characterized in that it releases one or more of silicate ion, phosphate ion, vanadate ion and molybdate ion.13)High corrosion-resistant coated steel sheet with excellent coating adhesion and sharpness, and low environmental impact.
[0031]
(15) Adhesion amount after drying of the ground treatment layer is 10 to 3000 mg / m2The highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness as defined in any one of (1) to (14) and having a small environmental load.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0033]
In the present invention, the coated steel sheet is obtained by sequentially providing a zinc-based plating layer, a tannin or tannic acid-based treatment, and a layer made of an organic film on the steel sheet. As the base steel sheet of the present invention, both hot-rolled steel sheets and cold-rolled steel sheets can be used, and the steel grades are ultra-low carbon steel sheets to which Al killed steel, Ti, Nb, etc. are added, and strengthening elements such as P, Si, Mn, etc. Various materials such as high-strength steel and stainless steel to which is added can be applied.
[0034]
The lower zinc-based plating layer is Al: 4 to 10% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, and the balance is Zn and inevitable impurities, or Al: 4 ˜22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, the balance being a plating layer made of Zn and inevitable impurities.
[0035]
The reason why the content of Al is limited to 4 to 10% by mass in the Zn-Al-Mg-Ti-based plating layer is that when the Al content exceeds 10% by mass, a decrease in plating adhesion is observed. This is because the Al content in the plating layer not added needs to be 10% by mass or less. In addition, when the amount is less than 4% by mass, the Al phase does not crystallize as the primary crystal, and there is no problem of reduced smoothness.
[0036]
Accordingly, in the highly corrosion-resistant coated steel sheet according to the present invention, it is essential to add Si to the plating layer in order to ensure plating adhesion, particularly when the Al concentration exceeds 10% by mass. It is.
[0037]
On the other hand, in the Zn-Al-Mg-Ti-Si-based plating layer, the reason why the Al content is limited to 4 to 22% by mass is that the Al phase does not crystallize as a primary crystal when the content is less than 4% by mass, so that smoothness is achieved. This is because there is no problem of reduction, and when it exceeds 22% by mass, the effect of improving the corrosion resistance is saturated.
[0038]
The reason for limiting the Si content to 0.5% by mass or less (excluding 0% by mass) is that Si has the effect of improving the adhesion, but if it exceeds 0.5% by mass, the adhesion is improved. This is because the effect to be saturated is saturated. Desirably, it is 0.00001-0.5 mass%, More desirably, it is 0.0001-0.5 mass%.
[0039]
The addition of Si is essential for plating layers with an Al content of more than 10% by mass. However, even in plating layers with an Al content of 10% or less, the effect of improving plating adhesion is great, so the processing is severe. It is effective to add Si when high plating adhesion is required. Further, by adding Si, [Mg2Si phase] crystallizes out. This [Mg2Since the Si phase is effective in improving the corrosion resistance of the processed part, the amount of Si added is increased, and [Mg]2It is more desirable to produce a metal structure in which the [Si phase] is mixed.
[0040]
The reason why the content of Mg is limited to 1 to 5% by mass is that if it is less than 1% by mass, the effect of improving the corrosion resistance is insufficient, and if it exceeds 5% by mass, the plating layer becomes brittle and adhesion is improved. It is because it falls. The reason why the content of Ti is limited to 0.1% by mass or less (excluding 0% by mass) is that Ti has the effect of crystallizing a Ti—Al intermetallic compound and improving the sharpness, but 0 When the amount exceeds 1% by mass, the appearance after plating becomes rough, resulting in poor appearance. In addition, the Ti—Al intermetallic compound is concentrated on the plating surface to reduce the surface smoothness. Desirably, it is 0.00001-0.1 mass%. More desirably, it is 0.00001-0.01 mass%.
[0041]
This plating layer is made of [Al / Zn / Zn2[Zn phase], [Al phase], [Zn phase] in the Mg ternary eutectic structure2Mg phase], [Mg2Si phase], a metal structure containing one or more of Ti—Al intermetallic compounds is formed.
[0042]
Here, [Al / Zn / Zn2Mg ternary eutectic structure] means Al phase, Zn phase and intermetallic compound Zn2This is a ternary eutectic structure with Mg phase, and the Al phase forming this ternary eutectic structure is, for example, an “Al ″ phase” (Zn at high temperature in an Al—Zn—Mg ternary equilibrium diagram. It is an Al solid solution that solidly dissolves the phase and contains a small amount of Mg). The Al ″ phase at high temperature usually appears separated into a fine Al phase and a fine Zn phase at room temperature. The Zn phase in the ternary eutectic structure dissolves a small amount of Al, and in some cases Is a Zn solid solution in which a small amount of Mg is solid-solved.Zn in the ternary eutectic structure2The Mg phase is an intermetallic compound phase existing in the vicinity of Zn: about 84 mass% in the Zn-Mg binary equilibrium diagram. As far as seen in the phase diagram, Si and Ti are not dissolved in each phase, or even if they are dissolved, it is considered that the amount is extremely small, but the amount cannot be clearly distinguished by ordinary analysis. In this specification, a ternary eutectic structure consisting of two phases is referred to as [Al / Zn / Zn2Mg ternary eutectic structure].
[0043]
In addition, the [Al phase] is a phase that looks like an island with a clear boundary in the ternary eutectic structure, which is, for example, at a high temperature in an Al—Zn—Mg ternary equilibrium diagram. "Al" phase "(Al solid solution in which Zn phase is dissolved, and contains a small amount of Mg). The Al ″ phase at this high temperature differs in the amount of Zn and Mg dissolved depending on the Al and Mg concentrations in the plating bath. The Al ″ phase at this high temperature is usually fine Al phase and fine Zn at room temperature. Although it separates into phases, it can be seen that the island-like shape seen at room temperature is the one that retains the shape of the Al ′ phase at high temperature. As can be seen from the phase diagram, Si and Ti are not dissolved in this phase, or even if they are dissolved, they are considered to be extremely small, but they cannot be clearly distinguished by ordinary analysis. A phase that is derived from a phase and that retains the shape of an Al ″ phase in shape is referred to as an “Al phase” in this specification. This [Al phase] can be clearly distinguished from the Al phase forming the ternary eutectic structure by microscopic observation.
[0044]
In addition, the [Zn phase] is a phase that looks like an island with a clear boundary in the ternary eutectic structure, and actually contains a small amount of Al and a small amount of Mg as a solid solution. There is also. As far as the phase diagram is concerned, it is considered that Si and Ti are not dissolved in this phase, or even if they are dissolved in a very small amount. This [Zn phase] can be clearly distinguished from the Zn phase forming the ternary eutectic structure by microscopic observation.
[0045]
[Zn2The “Mg phase” is a phase that looks like an island with a clear boundary in the substrate of the ternary eutectic structure, and a small amount of Al may actually be dissolved. As far as the phase diagram is concerned, it is considered that Si and Ti are not dissolved in this phase, or even if they are dissolved in a very small amount. This [Zn2Mg phase] is Zn forming the ternary eutectic structure.2It can be clearly distinguished from the Mg phase by microscopic observation.
[0046]
[Mg2The “Si phase” is a phase that looks like an island with a clear boundary in the solidified structure of the plating layer. As can be seen from the phase diagram, Zn, Al, and Ti are not dissolved or are considered to be extremely small even if they are dissolved. This [Mg2The Si phase] can be clearly distinguished by microscopic observation during plating.
[0047]
Further, the Ti—Al intermetallic compound is a phase that looks like an island with a clear boundary in the solidified structure of the plating layer. As far as the phase diagram is concerned, TiAlThreeAlthough Si is observed when analyzed, TiAl is a solid solution of Si.ThreeOr Ti (Al in which a part of Al is replaced by Si (Al1-XSiX)Three(However, X = 0 to 0.5).
[0048]
In the hot-dip galvanized steel material of the present invention, this Ti-Al intermetallic compound includes [Al phase], [Zn2It exists in [Mg phase] and [Zn phase]. The content of Ti-Al intermetallic compound is changed to [Al phase], [Zn2The reason for limiting to [Mg phase] and [Zn phase] is that the vividness cannot be improved with the Ti—Al intermetallic compounds present at other positions. [Al phase], [Zn2The reason why the Ti—Al intermetallic compound existing in the [Mg phase] and [Zn phase] improves the sharpness is that the Ti—Al intermetallic compound is the [Al phase], [Zn phase].2It is thought that this is because the crystallization of these crystals is promoted by becoming a nucleus of [Mg phase] and [Zn phase], and a fine and numerous structure is formed. That is, when the crystal becomes finer, unevenness on the surface of the plating layer is suppressed, the plating surface becomes smooth, and unevenness on the plating surface can be concealed even with a relatively thin coating film, which improves the clarity of the coated steel sheet. It is done.
[0049]
This effect is particularly remarkable in the [Al phase]. By controlling the size of the [Al phase] dendrites to 500 μm or less, the surface becomes smooth and the friction coefficient decreases. Desirably, it is 400 micrometers or less. More desirably, it is 300 μm or less.
[0050]
As a result of the inventors investigating a number of metal structures in plating, an intermetallic compound having a size of several μm was observed from most of the metal structures. An example of an intermetallic compound present in the [Al phase] is shown in FIG. The upper diagram (a) in FIG. 1 is a micrograph (magnification 1000 times) of the plating layer of the plated steel material in the present invention, and the lower diagram (b) illustrates the distribution state of each structure in the photograph. It is. As can be seen from this figure, each structure can be clearly identified by a micrograph of the plated layer of the plated steel material in the present invention.
[0051]
In FIG. 1, Ti—Al intermetallic compounds are observed in the one corresponding to the “Al ″ phase” at a high temperature in the Al—Zn—Mg ternary equilibrium diagram. This Al ″ phase at high temperature usually appears separated into a fine Al phase and a fine Zn phase at room temperature by a eutectoid reaction occurring at 277 ° C. in the binary equilibrium diagram of Al—Zn. In the hypoeutectoid reaction, the Al ″ phase crystallized at a high temperature starts to precipitate the Zn phase from the ternary eutectic temperature in the Al—Zn—Mg ternary equilibrium diagram, and the Al—Zn binary. The Al ″ phase remaining at the temperature corresponding to the eutectoid reaction in the system equilibrium diagram shows the eutectoid structure of the fine Al phase and the fine Zn phase.
[0052]
The upper diagram (a) of FIG. 2 is a micrograph (magnification of 3500 times) of the Al ″ phase of FIG. 1 (a), and the lower diagram shows the distribution state of each tissue in the photograph. (B) When the Al ″ phase is observed in detail, it is observed that the deposited Zn phase exists outside the Al ″ phase and around the Ti—Al intermetallic compound.
In the present invention, the size of the intermetallic compound is not particularly limited, but what the inventors have observed is a size of 10 μm or less. Further, the proportion of the intermetallic compound in the plating structure is not particularly limited, but [Al phase], [Zn2It is desirable that 10% or more of [Mg phase] and [Zn phase] exist.
[0053]
In the present invention, the method for producing a plated steel sheet is not particularly limited, and a normal non-oxidizing furnace type hot dipping method can be applied.
[0054]
The method for adding the intermetallic compound is not particularly limited, and a method of turbidizing the fine powder of the intermetallic compound in the bath or a method of dissolving the intermetallic compound in the bath can be applied. When manufacturing with a continuous line using a hot dipping method, a method of dissolving Ti in the plating bath is suitable. As a method of dissolving Ti in the plating bath, a method of adding a Ti—Zn-based intermetallic compound is efficient because it can be dissolved at a low temperature in a short time. As the Ti—Zn-based intermetallic compound to be added, Zn15Ti, ZnTenTi, ZnFiveTi, ZnThreeTi, Zn2There are Ti, ZnTi, and the like. When these intermetallic compounds are added alone or mixed in a Zn, Zn-Al, Zn-Al-Mg alloy and added to the plating bath, the dissolved Ti crystallizes as a Ti-Al intermetallic compound during plating, and the surface is smoothed. Improve moldability and moldability.
[0055]
There are no particular restrictions on the amount of plating applied, but 10 g / m from the viewpoint of corrosion resistance.2From the viewpoint of workability, 350 g / m2It is desirable that
[0056]
In addition to this, the galvanized layer may contain Fe, Sb, Pb and Sn alone or in combination within 0.5% by mass. Further, even if Ca, Be, Cu, Ni, Co, Cr, Mn, P, B, Nb, Bi or a group 3 element is contained in a total amount of 0.5% by mass or less, the effect of the present invention is not impaired, and the amount thereof Depending on the case, the corrosion resistance may be further improved.
[0057]
The base treatment layer used for the coated steel sheet of the present invention is characterized by containing tannin or tannic acid based on an aqueous resin. By combining this base treatment layer and a Zn-Mg-Al-Ti alloy plating layer or a Zn-Mg-Al-Si-Ti alloy plating layer, the coating adhesion and the corrosion resistance of the processed part are improved synergistically. .
[0058]
The role of tannin or tannic acid in the ground treatment layer is to react firmly with and adhere to the plating layer, and to adhere to the aqueous resin. Aqueous resin in close contact with tannin or tannic acid adheres firmly to the resin to be coated on it, and as a result, the plated steel sheet and the coating film adhere firmly without using the chromate treatment conventionally used. It is thought that it became. In addition, it is considered that there is a portion where tannin or tannic acid itself is involved in the bonding between the plated steel sheet and the coating film without interposing the aqueous resin.
[0059]
The water-based resin for the base treatment layer includes, in addition to water-soluble resins, resins that are essentially water-insoluble but can be finely dispersed in water, such as emulsions and suspensions. Examples of such water-based resins that can be used include polyolefin resins, acrylic olefin resins, polyurethane resins, polycarbonate resins, epoxy resins, polyester resins, alkyd resins, phenol resins, and other thermosetting resins. Type resin, and a crosslinkable resin is desirable. Particularly preferred resins are acrylic olefin resins, polyurethane resins, and mixed resins thereof. Two or more of these aqueous resins may be mixed or polymerized for use.
[0060]
Tannin and tannic acid are strongly bonded to both the Zn-Mg-Al-Ti alloy plating or the Zn-Mg-Al-Si-Ti alloy plating and the coating film in the presence of an aqueous resin. The adhesion of the film is drastically improved, and as a result, the corrosion resistance of the processed part is improved. The tannin or tannic acid may be hydrolyzable tannin or condensed tannin, or a part of them may be decomposed. Tannin and tannic acid are not particularly limited, such as Hamametatannin, pentaploid tannin, gallic tannin, milobaron tannin, dibibi tannin, argaroviran tannin, valonia tannin, catechin, etc., for example, “tannic acid: AL "(manufactured by Fuji Chemical Industry Co., Ltd.) can be used.
[0061]
The content of tannin and tannic acid is preferably 0.2 to 50 parts by mass of tannin or tannic acid with respect to 100 parts by mass of the resin. If the content of tannin or tannic acid is less than 0.2 parts by mass, the effect of adding these is not observed, and the coating film adhesion and the corrosion resistance of the processed part are insufficient. On the other hand, when the amount exceeds 50 parts by mass, the corrosion resistance is lowered, and when the treatment liquid is stored for a long period of time, gelation occurs.
[0062]
Further, when fine silica is added, the scratch resistance, coating film adhesion and corrosion resistance are improved. In the present invention, the fine silica is a general term for silica having such a characteristic that when dispersed in water since it has a fine particle diameter, it can stably maintain a water-dispersed state, and no semi-permanent settling is observed. Is. Such fine silica is not particularly limited as long as it has few impurities such as sodium and is weakly alkaline. For example, commercially available silica such as “Snowtex N” (manufactured by Nissan Chemical Industries, Ltd.) and “Adelite AT-20N” (manufactured by Asahi Denka Kogyo Co., Ltd.) can be used.
[0063]
The content of fine silica is preferably 10 to 500 parts by mass with respect to 100 parts by mass of the aqueous resin in terms of solid content. If it is less than 10 parts by mass, the added effect is small, and if it exceeds 500 parts by mass, the effect of improving corrosion resistance is saturated, which is uneconomical.
[0064]
Moreover, you may add surfactant, an antirust inhibitor, a foaming agent, a pigment, etc. as needed. Further, in order to improve the adhesion, an etching fluoride may be added. As the etching fluoride, for example, zinc fluoride tetrahydrate, zinc hexafluorosilicate hexahydrate and the like can be used. Similarly, a silane coupling agent may be added for the purpose of improving adhesion. Examples of the silane coupling agent include γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, aminosilane, γ-methacryloxypropyltrimethoxysilane, N- β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, octadecyldimethyl [ 3- (trimethoxysilyl) propyl] ammonium chloride, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchloro Or the like can be given a run.
[0065]
The method for applying the ground treatment layer is not particularly limited, and generally known coating methods such as roll coating, air spray, airless spray, and immersion can be applied. The drying and baking after coating may be performed by a known method such as a hot air furnace, an induction heating furnace, a near infrared furnace, or a combination of these in consideration of the polymerization reaction and curing reaction of the resin. Further, depending on the type of aqueous resin to be used, it can be cured by ultraviolet rays or electron beams. Alternatively, it may be naturally dried without using forced drying, or a Zn-Mg-Al-Ti alloy-plated steel sheet or a Zn-Mg-Al-Si-Ti alloy-plated steel sheet is heated in advance, You may apply | coat on it and dry naturally.
[0066]
The amount of adhesion of the ground treatment layer after drying is 10 to 3000 mg / m.2Is preferred. 10 mg / m2If it is less than 1, the adhesion is inferior and the corrosion resistance of the processed part is insufficient. On the other hand, 3000mg / m2Exceeding this is not only economical, but also deteriorates workability and deteriorates corrosion resistance.
[0067]
The coated steel sheet of the present invention is characterized by having an organic coating layer on a Zn-Mg-Al-Ti alloy-plated steel sheet or a Zn-Mg-Al-Si-Ti alloy-plated steel sheet that has been subjected to a base treatment. Examples of the organic coating include polyolefin resin, acrylic resin, urethane resin, epoxy resin, polyester resin, vinyl chloride resin, fluorine resin, butyral resin, polycarbonate resin, and phenol resin. Mixtures and copolymers of these can also be used. Moreover, an isocyanate resin, an amino resin, a silane coupling agent, a titanium coupling agent, or the like can be used in combination as an auxiliary component. Since the precoated steel sheet according to the present invention is often used as it is without being repaired after processing, in applications where severe processing is performed, a resin system in which a polyester resin is crosslinked with melamine, a polyester resin is a urethane resin (isocyanate, isocyanate) Resin), vinyl chloride resin, and fluororesin (solvent soluble type, dispersion mixed type with acrylic resin) are desirable.
[0068]
Next, examples of the organic coating on the upper layer of the coated steel sheet include polyester resins, amino resins, epoxy resins, acrylic resins, urethane resins, fluororesins, etc., and are not particularly limited. When used in a thermosetting resin coating, the thermosetting resin coating is most preferable. Examples of the thermosetting resin coating include polyester-based paints such as epoxy polyester paints, polyester paints, melamine polyester paints, urethane polyester paints, and acrylic paints.
[0069]
Combined with alkyd resins in which part of the acid component of the polyester resin is replaced with fatty acids, and oil-free alkyd resins that are not modified with oil, polyester-based paints combined with melamine resins or polyisocyanate resins as curing agents, and various crosslinking agents This is because the acrylic paint has better processability than other paints, so that the coating film does not crack after severe processing.
[0070]
The appropriate film thickness is 0.2 to 100 μm. The reason why the film thickness is 0.2 μm or more is that the corrosion resistance cannot be secured if the film thickness is less than 0.2 μm. The reason why the film thickness is 100 μm or less is that when the film thickness exceeds 100 μm, it is disadvantageous in terms of cost. Desirably, it is 50 μm or less. The organic coating layer may be a single layer or multiple layers.
[0071]
In addition, additives, such as a plasticizer, antioxidant, a heat stabilizer, an inorganic particle, a pigment, organic lubrication, are mix | blended with the organic film used for the method of this invention as needed.
[0072]
The organic coating layer is coated on the base treatment layer by a known method. For example, roll coater, curtain coater, electrostatic coating, spray coating, dip coating, and the like. Thereafter, it is dried and cured by heating with hot air, induction heating, near infrared, far infrared, or the like. If the resin of the organic coating layer is hardened by electron beam or ultraviolet light, it is hardened by these irradiations. These combinations may be used.
[0073]
  Between the chemical conversion treatment layer and the colored organic layer of the coated steel sheet of the present invention, a coating layer to which a rust preventive pigment is added as necessary can be provided as an undercoat layer. This subbing layer is mainly intended to improve corrosion resistance, but is also designed in consideration of molding processability and chemical resistance. As the resin constituting the undercoat layer, generally known resins, for example, polyester resins, urethane resins, acrylic resins, epoxy resins, melamine resins and the like can be used as they are or in combination. As the anti-rust pigment, generally known ones, for example,(1)Phosphate anticorrosive pigments such as zinc phosphate, iron phosphate, aluminum phosphate, zinc phosphite,(2)Molybdate antirust pigments such as calcium molybdate, aluminum molybdate, barium molybdate,(3)Vanadium rust preventive pigments such as vanadium oxide,(4)Silicate pigments such as calcium silicate,(5)Fine silica such as water-dispersed silica and fumed silica can be used.These rust preventive pigments release phosphate ions, molybdate ions, vanadate ions, and silicate ions, respectively.
[0074]
The addition amount of the rust preventive pigment is preferably 1 to 40% by mass based on the solid content of the film. If the amount is less than 1% by mass, the corrosion resistance is not sufficiently improved. If the amount exceeds 40% by mass, the workability is lowered, the organic coating layer is dropped during processing, and the corrosion resistance is deteriorated.
[0075]
In general, the undercoat layer containing the rust preventive pigment can be applied by a known method. For example, roll coating, curtain coating, air spray, airless spray, dipping, brush coating, bar coating, and the like. Thereafter, it is dried and cured by heating with hot air, induction heating, near infrared, far infrared, or the like. If the resin of the organic coating layer is hardened by an electron beam or ultraviolet rays, it is cured by these irradiations. These combinations may be used.
[0076]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0077]
Example 1
First, a cold rolled steel sheet having a thickness of 0.85 mm was prepared, and this was subjected to hot dip plating for 3 seconds in a plating bath in which the amount of additive elements in the bath was changed at 400 to 600 ° C., and N2Wiping reduces plating adhesion on one side 140g / m2And cooled at a cooling rate of 10 ° C./s or less. Table 1 shows the plating composition of the obtained plated steel sheet. Moreover, the result of having observed the plated steel plate from the cross section by SEM and observing the metal structure of a plating layer is similarly shown in Table 1. Ti-Al intermetallic compounds are obtained by polishing a plated steel sheet with a 10 degree inclination and then observing with EPMA, [Al phase], [Zn2Those present in [Mg phase] and [Zn phase] were observed.
[0078]
The size of the [Al phase] dendrites in the plating layer was determined by mapping the surface of the plated steel plate with CMA and measuring the major axis of the resinous crystals using the resulting Al mapping. The measurement was performed in a range of 5 × 5 cm, the major diameters of five resinous crystals were measured in order from the largest, and the average value was used as the size of the [Al phase] dendrites.
[0079]
Next, FC-364S manufactured by Nihon Parkerizing Co., Ltd. was used as a degreasing agent, soaked at 2% by mass, 60 ° C. for 10 seconds, and then degreased in water washing and drying steps. Next, a base treatment material containing 2.5 parts by mass of tannic acid and 30 parts by mass of silica is applied to 100 parts by mass of the acrylic olefin resin, and dried in a hot air drying furnace to deposit 200 mg / m.2It was. The ultimate plate temperature during drying was 150 ° C. As the tannic acid, “tannic acid AL” manufactured by Fuji Chemical Industry Co., Ltd. was used. As the silica, “Snowtex N” (manufactured by Nissan Chemical Industries) was used.
[0080]
Furthermore, as an undercoat, the antirust pigments of P641 primer paint (polyester resin system) made by Nippon Paint are listed in Table 1. Antirust pigments (zinc phosphite, calcium silicate, vanadic acid / phosphoric acid mixed system, molybdic acid) What was changed to the system) was applied with a bar coater, and baked in a hot air drying furnace under the condition that the maximum plate temperature reached 220 ° C., and the film thickness was adjusted to 5 μm. On the undercoat, as a topcoat, FL100HQ (polyester resin system) manufactured by Nippon Paint was applied with a bar coater, and baked in a hot air drying furnace under the condition that the ultimate plate temperature was 220 ° C., and the film thickness was adjusted to 15 μm.
[0081]
The coated steel plate produced as described above was subjected to 3T bending (180 ° bending with three original plates sandwiched), and a coating film adhesion test and a corrosion resistance test were performed on the processed part. The coating film adhesion test was evaluated based on the state of adhesion of the coating film to the adhesive tape when a pressure-sensitive adhesive tape was applied to the processed part and peeled off vigorously. The score is based on the ratio of the length of the coated film to the length tested, 0% to less than 2%, 5 to 2% to less than 5%, 4 to 5% to 30%, 3 to 30%. % Or more and less than 80% was 2, 2, 80% or more was 1, and a score of 4 or more was considered acceptable. On the other hand, the corrosion resistance test is a cyclic corrosion test consisting of salt spray (5% NaCl, 35 ° C., 2 hr) → dry (60 ° C., 30% RH, 4 hr) → wet (50 ° C., 95% RH, 2 hr). The cycle was performed, and after the cycle corrosion test, the red rust generation area ratio of the processed part was visually observed. The score is 5 for red rust less than 5%, 4 for red rust 5% to less than 10%, 3 for red rust 10% to less than 20%, 2 for 20% to less than 30%, and 1 for 30% or more. Passed.
[0082]
The sharpness was determined by measuring the sharpness measurement value (Gd value) with a portable sharpness gloss meter (PGD meter). As for the sharpness, a Gd value of 0.6 or more was accepted, and a Gd value of less than 0.6 was rejected.
[0083]
The evaluation results are shown in Table 1. No. 18 did not contain a Ti—Al intermetallic compound, so the Al phase grew and the sharpness was rejected. In No. 19, since the Ti content was too large, the Ti—Al intermetallic compound was concentrated on the surface, and the sharpness was not acceptable. In No. 20, since Mg, Al, Si, and Ti were outside the scope of the present invention, the corrosion resistance was rejected. Except for these, all showed good coating film adhesion, sharpness, and corrosion resistance.
[0084]
[Table 1]
Figure 0004002534
[0085]
(Example 2)
First, a cold rolled steel sheet having a thickness of 0.85 mm was prepared, and this was subjected to hot dip plating for 3 seconds in a plating bath in which the amount of additive elements in the bath was changed at 400 to 600 ° C., and N2Wiping reduces plating adhesion on one side 140g / m2And cooled at a cooling rate of 10 ° C./s or less. Table 2 shows the plating composition of the obtained plated steel sheet. Moreover, the result of having observed the plated steel plate by SEM from the cross section and observing the metal structure of a plating layer is similarly shown in Table 2.
[0086]
Ti-Al intermetallic compounds are obtained by polishing a plated steel sheet with a 10 degree inclination and then observing with EPMA, [Al phase], [Zn2Those present in [Mg phase] and [Zn phase] were observed.
[0087]
The size of the [Al phase] dendrites in the plating layer was determined by mapping the surface of the plated steel plate with CMA and measuring the major axis of the resinous crystals using the resulting Al mapping. The measurement was performed in a range of 5 × 5 cm, the major diameters of five resinous crystals were measured in order from the largest, and the average value was used as the size of the [Al phase] dendrites.
[0088]
Next, FC-364S manufactured by Nihon Parkerizing Co., Ltd. was used as a degreasing agent, soaked at 2% by mass, 60 ° C. for 10 seconds, and then degreased in water washing and drying steps. Next, a base treatment material containing 2.5 parts by mass of tannic acid and 30 parts by mass of silica is applied to 100 parts by mass of the acrylic olefin resin, and dried in a hot air drying furnace to deposit 200 mg / m.2It was. The ultimate plate temperature during drying was 150 ° C. As the tannic acid, “tannic acid AL” manufactured by Fuji Chemical Industry Co., Ltd. was used. As the silica, “Snowtex N” (manufactured by Nissan Chemical Industries) was used.
[0089]
For coating, epoxy polyester paint, polyester paint, melamine polyester paint, urethane polyester paint, and acrylic paint were each coated with a bar coater, baked in a hot air drying furnace, and adjusted to the film thickness shown in Table 2.
[0090]
The sharpness was determined by measuring the sharpness measurement value (Gd value) with a portable sharpness gloss meter (PGD meter). As for the sharpness, a Gd value of 0.6 or more was accepted, and a Gd value of less than 0.6 was rejected.
[0091]
The adhesiveness of the coating film was determined by visual observation of the appearance of the extruded part when an adhesive tape was applied to a processed part extruded 7 mm using an Erichsen tester according to JIS B-7729 and peeled off vigorously. When it was difficult to evaluate visually, it was dyed with a 3% acetone solution of methyl violet, and the adhesion was evaluated on the assumption that a film was present in the stained part and no film was present in the unstained part. The score is 5 when the peeled area is less than 2%, 4 when 2 or more but less than 20%, 3 when 20% or more but 50%, 2 when 50% or more but less than 80%, and 1 when 80% or more. did.
[0092]
Corrosion resistance was tested for 72 hours in a salt spray test according to JIS Z-2371 using a Erichsen tester according to JIS B-7729, which was extruded 7 mm. What was generated was rejected.
[0093]
The evaluation results are shown in Table 2. In No. 29, the coating thickness was out of the range of the present invention, so that the corrosion resistance was unacceptable. Except for these, all showed good coating film adhesion, sharpness, and corrosion resistance.
[0094]
[Table 2]
Figure 0004002534
[0095]
(Example 3)
First, a cold rolled steel sheet having a thickness of 0.85 mm was prepared, and this was hot-plated for 3 seconds in a 450 ° C. Zn—Mg—Al—Si—Ti plating bath, and N2Wiping reduces plating adhesion on one side 140g / m2And cooled at a cooling rate of 10 ° C./s or less. The composition in the plated layer of the obtained plated steel sheet was Mg 3%, Al 11%, Si 0.2%, Ti 0.009%.
[0096]
The plated steel sheet used FC-364S manufactured by Nippon Parkerizing Co., Ltd. as a degreasing agent, was immersed in 2% by mass at 60 ° C. for 10 seconds, and then degreased in the steps of washing with water and drying. Next, a base treatment material having the composition shown in Table 3 was applied and dried in a hot air drying furnace. The ultimate plate temperature during drying was 150 ° C. As the tannic acid, “tannic acid AL” manufactured by Fuji Chemical Industry Co., Ltd., “BREWTAN” (manufactured by Omnichem), and TANAL1 (manufactured by Omnichem) were used. As the silica, “Snowtex N, described as ST-N in the table” (manufactured by Nissan Chemical Industries) was used.
[0097]
The comparative steel plate was immersed in a coating type chromate treatment solution and chromated. The amount of chromate film deposited is 50 mg / m in terms of Cr.2It was.
[0098]
Next, P641 primer paint made by Nippon Paint (polyester resin system, resin type in the table is polyester), P108 primer made by Nippon Paint (epoxy resin system, resin type in the table is epoxy), Japan Rust preventive pigments (zinc phosphite, calcium silicate, vanadic acid / phosphoric acid mixed system, molybdenum) listed in Table 2 as anticorrosive pigments for paint P304 primer (urethane resin type, resin type in the table is urethane) What was changed to (acid type) was applied with a bar coater, and baked in a hot air drying furnace under the condition that the maximum temperature reached 220 ° C., and the film thickness was adjusted to 5 μm. On the undercoat, as a topcoat, FL100HQ (polyester resin system) manufactured by Nippon Paint was applied with a bar coater, and baked in a hot air drying furnace under the condition that the ultimate plate temperature was 220 ° C., and the film thickness was adjusted to 15 μm.
[0099]
The coated steel plate produced as described above was subjected to 3T bending (180 ° bending with three original plates sandwiched), and a coating film adhesion test and a corrosion resistance test were performed on the processed part. The coating film adhesion test was evaluated based on the state of adhesion of the coating film to the adhesive tape when a pressure-sensitive adhesive tape was applied to the processed part and peeled off vigorously. The score is based on the ratio of the length of the coated film to the length tested, 0% to less than 2%, 5 to 2% to less than 5%, 4 to 5% to 30%, 3 to 30%. % Or more and less than 80% was 2, 2, 80% or more was 1, and a score of 4 or more was considered acceptable. On the other hand, the corrosion resistance test is a cyclic corrosion test consisting of salt spray (5% NaCl, 35 ° C., 2 hr) → dry (60 ° C., 30% RH, 4 hr) → wet (50 ° C., 95% RH, 2 hr). Cycled. After the cycle corrosion test, the red rust generation area ratio of the processed part was visually observed. The score is 5 for red rust less than 5%, 4 for red rust 5% to less than 10%, 3 for red rust 10% to less than 20%, 2 for 20% to less than 30%, and 1 for 30% or more. Passed.
[0100]
The sharpness was determined by measuring the sharpness measurement value (Gd value) with a portable sharpness gloss meter (PGD meter). As for the sharpness, a Gd value of 0.6 or more was accepted, and a Gd value of less than 0.6 was rejected.
[0101]
The evaluation results are shown in Table 3. In Nos. 15 and 17, since the content of tannic acid was outside the range of the present invention, the corrosion resistance of the processed part was rejected. In Nos. 16 and 18, since the adhesion amount of the ground treatment layer was outside the range of the present invention, the corrosion resistance of the processed part was rejected. In Nos. 27 and 28, since the chromate treatment was used for the base treatment layer, the environmental load was greatly rejected. Except for these, all showed good coating film adhesion, sharpness, and corrosion resistance.
[0102]
[Table 3]
Figure 0004002534
[0103]
Example 4
First, a cold rolled steel sheet having a thickness of 0.85 mm was prepared, and this was subjected to hot dipping for 3 seconds in a plating bath in which the amount of additive elements in the bath was changed at 520 ° C., and N2Wiping reduces plating adhesion on one side 140g / m2And cooled at a cooling rate of 10 ° C./s or less. Table 4 shows the plating composition of the obtained plated steel sheet. Moreover, the result of having observed the plated steel plate by SEM from the cross section and observing the metal structure of a plating layer is similarly shown in Table 4.
[0104]
Ti-Al intermetallic compounds are obtained by polishing a plated steel sheet with a 10 degree inclination and then observing with EPMA, [Al phase], [Zn2  Those present in [Mg phase] and [Zn phase] were observed. Moreover, about the Ti-Al type intermetallic compound which exists in [Al phase], it observed by EPMA and the presence or absence in the Zn phase which precipitated by the eutectoid reaction of Zn-Al was observed. Further, EPMA observation of the Ti—Al intermetallic compound was performed, and the presence or absence of Si contained in the Ti—Al intermetallic compound was observed.
[0105]
Next, FC-364S manufactured by Nihon Parkerizing Co., Ltd. was used as a degreasing agent, soaked at 2% by mass, 60 ° C. for 10 seconds, and then degreased in water washing and drying steps. Next, a base treatment material containing 2.5 parts by mass of tannic acid and 30 parts by mass of silica is applied to 100 parts by mass of the acrylic olefin resin, and dried in a hot air drying furnace to deposit 200 mg / m.2It was. The ultimate plate temperature during drying was 150 ° C. As the tannic acid, “tannic acid AL” manufactured by Fuji Chemical Industry Co., Ltd. was used. As the silica, “Snowtex N” (manufactured by Nissan Chemical Industries) was used.
[0106]
On top of that, an epoxy polyester paint was applied as a primer with a bar coater and baked in a hot air drying furnace to adjust the film thickness to 5 μm. The top coat was coated with a polyester paint with a bar coater and baked in a hot air drying furnace to adjust the film thickness to 20 μm.
[0107]
Adhesion is a case where the adhesive tape is applied to the coated plated steel sheet after the DuPont impact test, and then peeled off. The case where the plating and the coating film are not peeled off, the case where the plating or the coating film peeling is less than 10%, The case where plating or a coating film peeled 10% or more was set as x. The DuPont test was conducted by using a shooting type having a 1/2 inch roundness at the tip and dropping a 1 kg weight from a height of 1 m.
[0108]
Corrosion resistance after processing was evaluated by the following rating of the occurrence of red rust on the bent part of the sample that had been subjected to 3T bending processing (180 ° bending processing with three original sheets sandwiched). . For CCT, one cycle was SST2hr → dry 4hr → wet 2hr. A score of 3 or more was accepted.
5: Less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
The evaluation results are shown in Table 4. In No. 2, since the addition amount of Al and Si was outside the range of the present invention, the adhesion was rejected. Other than these, good adhesion and post-processing corrosion resistance were obtained. In particular, the plated steel sheet to which Si was added exhibited good adhesion and post-processing corrosion resistance.
[0109]
[Table 4]
Figure 0004002534
[0110]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a coated steel sheet that has excellent sharpness even in the case of high Al concentration and does not contain chromium with a large environmental load, and has excellent corrosion resistance of the processed part. , Industrially excellent effects can be achieved.
[Brief description of the drawings]
FIG. 1A is a drawing-substituting photomicrograph (magnification 1000 times) of a plated layer of a plated steel material of the present invention, and FIG. 1B is a diagram showing a distribution state of each structure in the photograph.
2A is a drawing-substituting micrograph (magnification of 3500 times) in which the “Al ″ phase” of FIG. 1 is enlarged, and FIG. 2B is a diagram showing a distribution state of each tissue in the photograph.

Claims (15)

鋼板の片面又は両面に、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有することを特徴とする鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。On one side or both sides of the steel sheet, there is a zinc-based plating layer containing Al: 4 to 10% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, with the balance being zinc and inevitable impurities. And a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer, and an organic coating layer having a thickness of 0.2 to 100 μm as an upper layer. A highly corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact. 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有することを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。On one or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and inevitable impurities And a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer. A highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness, having a 2 to 100 μm-thick organic coating layer, and having a low environmental impact. 鋼板の片面又は両面に、Al:4〜10質量%、Mg:1〜5質量%、Ti:0.1質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Al相〕、〔Zn2Mg相〕及び〔Zn相〕の1種又は2種以上が混在した金属組織を有し、且つ、〔Al相〕、〔Zn2Mg相〕及び〔Zn相〕の1種又は2種以上の中にTi−Al系金属間化合物を含有することを特徴とする鮮映性の優れた高耐食性塗装鋼板。On one side or both sides of the steel sheet, there is a zinc-based plating layer containing Al: 4 to 10% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, with the balance being zinc and inevitable impurities. And a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer, and an organic coating layer having a thickness of 0.2 to 100 μm as an upper layer. 1 or 2 types of [Al phase], [Zn 2 Mg phase] and [Zn phase] in the base of [Al / Zn / Zn 2 Mg ternary eutectic structure] with the zinc-based plating layer of the coated steel plate having The above has a mixed metal structure and contains a Ti—Al intermetallic compound in one or more of [Al phase], [Zn 2 Mg phase] and [Zn phase]. A highly corrosion-resistant coated steel sheet with excellent image clarity. 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕、〔Al相〕及び〔Zn2Mg相〕が混在した金属組織を有し、且つ、〔Al相〕と〔Zn2Mg相〕の1種又は2種の中にTi−Al系金属間化合物を含有することを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。On one or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and inevitable impurities And a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer. A zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 2 to 100 μm is in a [Al / Zn / Zn 2 Mg ternary eutectic structure] substrate [Mg 2 Si phase], [Al phase] and [ has a metal structure Zn 2 Mg phase] are mixed, and a feature in that it contains Ti-Al system intermetallic compound in one or the [Al phase] [Zn 2 Mg phase] High corrosion-resistant coated steel sheet with excellent coating film adhesion and sharpness and low environmental impact. 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕、〔Al相〕、〔Zn2Mg相〕及び〔Zn相〕が混在した金属組織を有し、且つ、〔Al相〕、〔Zn2Mg相〕及び〔Zn相〕の中にTi−Al系金属間化合物を含有することを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。On one or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and inevitable impurities And a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer. A zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 2 to 100 μm is in a [Al / Zn / Zn 2 Mg ternary eutectic structure] substrate [Mg 2 Si phase], [Al phase], [ [Zn 2 Mg phase] and [Zn phase] have a mixed metal structure, and [Al phase], [Zn 2 Mg phase] and [Zn phase] contain a Ti-Al intermetallic compound. High corrosion resistance coating with excellent coating adhesion and sharpness and low environmental impact Plate. 鋼板の片面又は両面に、Al:4〜22質量%、Mg:1〜5質量%、Ti:0.1質量%以下、Si:0.5質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、その上に固形分として水性樹脂100質量部、タンニン又はタンニン酸0.2〜50質量部を含有する皮膜層を下地処理層として有し、上層として0.2〜100μm厚の有機被膜層を有する塗装鋼板の亜鉛系めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕、〔Al相〕及び〔Zn相〕が混在した金属組織を有し、且つ、〔Al相〕と〔Zn相〕の1種又は2種の中にTi−Al系金属間化合物を含有することを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。On one or both sides of the steel sheet, Al: 4 to 22% by mass, Mg: 1 to 5% by mass, Ti: 0.1% by mass or less, Si: 0.5% by mass or less, with the balance being zinc and inevitable impurities And a coating layer containing 100 parts by weight of an aqueous resin as a solid content and 0.2 to 50 parts by weight of tannin or tannic acid as a base treatment layer. A zinc-based plating layer of a coated steel sheet having an organic coating layer having a thickness of 2 to 100 μm is in a [Al / Zn / Zn 2 Mg ternary eutectic structure] substrate [Mg 2 Si phase], [Al phase] and [ A coating structure characterized by having a metal structure mixed with [Zn phase] and containing a Ti-Al intermetallic compound in one or two of [Al phase] and [Zn phase] Highly corrosion-resistant coated steel plate with excellent environmental properties and sharpness and low environmental impact. 請求項3乃至6のいずれかに記載のTi−Al系金属間化合物が、TiAl3であることを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。A highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness, having a low environmental load, wherein the Ti—Al intermetallic compound according to claim 3 is TiAl 3 . 請求項3乃至6のいずれかに記載のTi−Al系金属間化合物が、Ti(Al1-XSiX3(但し、X=0〜0.5である)であることを特徴とする塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The Ti—Al-based intermetallic compound according to claim 3 is Ti (Al 1-X Si x ) 3 (where X = 0 to 0.5). High corrosion-resistant coated steel sheet with excellent coating adhesion and sharpness, and low environmental impact. めっき層中の〔Al相〕の中に含有されるTi−Al系金属間化合物が、Zn−Alの共析反応によって析出したZn相中に存在することを特徴とする請求項3乃至8のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。9. The Ti—Al-based intermetallic compound contained in the [Al phase] in the plating layer is present in a Zn phase precipitated by a Zn—Al eutectoid reaction. A highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness as described in any one and having a low environmental impact. めっき層中の〔Al相〕の樹枝状晶の大きさが500μm以下であることを特徴とする請求項1乃至9のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。  The size of the [Al phase] dendrites in the plating layer is 500 μm or less, and has excellent coating film adhesion and sharpness and low environmental impact. High corrosion resistance coated steel sheet. 下地処理層の皮膜層に固形分として、微粒シリカ10〜500質量部を更に含有することを特徴とする、請求項1乃至10のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The coating layer according to any one of claims 1 to 10, wherein the coating layer of the ground treatment layer further contains 10 to 500 parts by mass of fine silica as a solid content. High corrosion resistance coated steel sheet with low load. 有機被膜が、熱硬化型の樹脂塗膜であることを特徴とする請求項1乃至11のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。12. The highly corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness and low environmental impact, according to claim 1, wherein the organic coating is a thermosetting resin coating. 有機皮膜層が防錆顔料を含む下塗り層と着色された上塗り層からなる請求項1乃至12のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The high corrosion-resistant coated steel sheet having excellent coating film adhesion and sharpness and low environmental load, according to any one of claims 1 to 12, wherein the organic coating layer comprises an undercoat layer containing a rust preventive pigment and a colored overcoat layer. 防錆顔料がケイ酸イオン、リン酸イオン、バナジン酸イオン、モリブデン酸イオンのうち一種類以上を放出するものであることを特徴とする請求項13に記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。Anticorrosive pigments silicate ions, phosphate ions, vanadate ions, the coating adhesion and sharpness according to claim 13, characterized in that to release one or more of the molybdate ion High corrosion-resistant coated steel sheet with excellent environmental impact. 下地処理層の乾燥後の付着量が10〜3000mg/m2であることを特徴とする請求項1乃至14のいずれかに記載の塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板。The adhesion amount after drying of the ground treatment layer is 10 to 3000 mg / m 2. High corrosion resistance with excellent coating film adhesion and sharpness and low environmental impact according to any one of claims 1 to 14. Painted steel sheet.
JP2003121688A 2003-02-03 2003-04-25 High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact Expired - Fee Related JP4002534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121688A JP4002534B2 (en) 2003-02-03 2003-04-25 High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003026211 2003-02-03
JP2003121688A JP4002534B2 (en) 2003-02-03 2003-04-25 High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact

Publications (2)

Publication Number Publication Date
JP2004292943A JP2004292943A (en) 2004-10-21
JP4002534B2 true JP4002534B2 (en) 2007-11-07

Family

ID=33421292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121688A Expired - Fee Related JP4002534B2 (en) 2003-02-03 2003-04-25 High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact

Country Status (1)

Country Link
JP (1) JP4002534B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464774B2 (en) * 2005-08-05 2014-04-09 太陽化学株式会社 Metal rust inhibitor and metal treated with rust inhibitor
JP2008185502A (en) * 2007-01-31 2008-08-14 Sekisui House Ltd Combined degradation test method for painting steel plate
JP6165529B2 (en) * 2013-07-12 2017-07-19 日新製鋼株式会社 Method and apparatus for producing chemical conversion steel sheet
CN116406430B (en) * 2020-10-20 2024-03-26 日本制铁株式会社 Zn-based plated steel sheet
TWI792932B (en) * 2021-03-04 2023-02-11 日商日本製鐵股份有限公司 surface treatment steel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754126B2 (en) * 1992-11-26 1998-05-20 新日本製鐵株式会社 Hot-dip Zn-Al plated steel sheet with excellent appearance, blackening resistance over time and corrosion resistance
JP3163986B2 (en) * 1996-07-30 2001-05-08 住友金属工業株式会社 Galvannealed steel sheet
JPH11279732A (en) * 1998-03-30 1999-10-12 Nisshin Steel Co Ltd Galvanized banded steel plate excellent in resistances to flawing, wearing and corrosion
JP3179446B2 (en) * 1998-07-02 2001-06-25 新日本製鐵株式会社 Coated steel sheet and coated steel sheet excellent in corrosion resistance and method for producing the same
JP3090207B1 (en) * 1999-06-22 2000-09-18 新日本製鐵株式会社 Painted steel sheet with excellent corrosion resistance and low environmental load
JP3124266B2 (en) * 1999-06-22 2001-01-15 新日本製鐵株式会社 Painted steel plate with excellent coating film adhesion and corrosion resistance of the processed part and low environmental load
JP2001295015A (en) * 2000-02-09 2001-10-26 Nisshin Steel Co Ltd HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP2001355055A (en) * 2000-04-11 2001-12-25 Nippon Steel Corp HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART
JP3737987B2 (en) * 2001-04-09 2006-01-25 新日本製鐵株式会社 Hot-dip galvanized steel wire with high corrosion resistance and excellent workability

Also Published As

Publication number Publication date
JP2004292943A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
KR100509626B1 (en) Plated steel product, plated steel sheet and precoated steel sheet having excellent resistance to corrosion
JP3547414B2 (en) Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load
JP5663486B2 (en) Composition for forming an adhesive layer for use in a multilayer surface-treated steel sheet
JP2000104154A (en) Plated steel sheet and coated steel sheet excellent in corrosion resistance and production of the same
JP4747625B2 (en) Surface-treated steel sheet excellent in corrosion resistance and scratch resistance and method for producing the same
JP2001089868A (en) Substrate treating agent for precoated metallic sheet, coated substrate treated metallic sheet coated with the same and precoated metallic sheet excellent in working adhesion of coating film using the same
JP5085439B2 (en) Metal (water) oxide coated metal material
JP4157491B2 (en) Non-delaminating lubricated plated steel plate with excellent workability
JP4002534B2 (en) High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact
JP4374289B2 (en) Surface treated steel plate with excellent corrosion resistance
JP2003138385A (en) Non-lubricating film removal type plated steel sheet having excellent adhesion of coating film, corrosion resistance in worked zone and reduced environmental load
JP3924261B2 (en) High corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact
JP3793522B2 (en) High corrosion-resistant coated steel sheet with excellent sharpness
JP2010247347A (en) Precoated cold-rolled steel sheet and method for manufacturing the same
JP4050978B2 (en) High corrosion-resistant coated steel sheet with excellent sharpness
JP3124266B2 (en) Painted steel plate with excellent coating film adhesion and corrosion resistance of the processed part and low environmental load
JP3090207B1 (en) Painted steel sheet with excellent corrosion resistance and low environmental load
JP4125950B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
JP6772943B2 (en) Painted steel plate
JP3909016B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
JP2000167482A (en) Precoated metal sheet having excellent adhesion property with coating film
JPH0254779A (en) Manufacture of organic composite-plated steel sheet excellent in press formability and adhesive strength after coating
JP2023019125A (en) Fluorine resin-coated steel plate
JP2004197164A (en) Method for manufacturing chromium-free surface-treated galvanized steel sheet
JP2004197179A (en) Method for manufacturing chromium-free surface-treated galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4002534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees