JP3547414B2 - Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load - Google Patents

Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load Download PDF

Info

Publication number
JP3547414B2
JP3547414B2 JP2001247882A JP2001247882A JP3547414B2 JP 3547414 B2 JP3547414 B2 JP 3547414B2 JP 2001247882 A JP2001247882 A JP 2001247882A JP 2001247882 A JP2001247882 A JP 2001247882A JP 3547414 B2 JP3547414 B2 JP 3547414B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
phase
corrosion resistance
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001247882A
Other languages
Japanese (ja)
Other versions
JP2003055776A (en
Inventor
和彦 本田
高橋  彰
義広 末宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001247882A priority Critical patent/JP3547414B2/en
Publication of JP2003055776A publication Critical patent/JP2003055776A/en
Application granted granted Critical
Publication of JP3547414B2 publication Critical patent/JP3547414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Description

【0001】
【発明の属する技術分野】
本発明はプレス加工後、潤滑被膜を除去することなく使用する家電、建材、自動車等の部品に利用する表面処理鋼板に関するものである。
【0002】
【従来の技術】
従来の部品はプレス油を塗布し、プレス成形後、油を除去して製造する工程であった。しかし、脱脂溶剤の使用規制や、コスト低減に伴い、プレス油を省略できる潤滑性能、及びプレス後の被膜が優れた表面特性(外観、耐食性、塗料密着性等)を有する表面処理鋼板のニーズが強くなっている。特に強加工を行う部材では、有機被膜やめっき被膜が損傷しやすく、この被膜損傷を原因とする加工後の耐食性劣化が起こりやすいため、良好な潤滑性能と加工後耐食性を併せ持つ表面処理鋼板のニーズが強い。
【0003】
こうした問題を解決する公開技術の1つとして、特開平3−16726号公報「成形性の優れた潤滑樹脂処理鋼板」がある。この鋼板は亜鉛系あるいはアルミニウム系の合金めっき鋼板の表面にCr付着量200mg/m2以下のクロメート被膜、その上に0.3〜3.0g/m2の樹脂被膜を有するもので樹脂被膜は水酸基及び/またはカルボキシル基を有する樹脂100重量部、シリカ10〜80重量部、平均粒径1〜7μmのポリオレフィンワックス20重量部以下であると述べられている。この潤滑鋼板は幅広い樹脂の種類の適用が可能であると記載されている。
【0004】
しかし、実際の高速連続クランクプレス加工性や、加工後の被膜劣化が少ない観点では満足するものではなく不十分であり、樹脂、シリカ及び潤滑剤で構成される被膜を最適化することによってはじめて安定操業可能な潤滑鋼板が得られる。特に非脱膜型の潤滑鋼板では加工後の外観と性能が重要であり、潤滑被膜の膜厚の均一性や延び、圧縮、摺動摩耗性を考慮しなければならない。
【0005】
このため、特開平6−173037号公報「プレス油省略可能非脱膜型潤滑めっき鋼板」では、めっき鋼板表面に化成処理を行い、エーテル・エステル型ウレタン樹脂とエポキシ樹脂、ポリオレフィンワックス、シリカを最適化した塗料を被覆することにより、優れた潤滑性を有するプレス油省略可能非脱膜型潤滑めっき鋼板を提供している。
【0006】
【発明が解決しようとする課題】
しかしながら、上記及びその他これまで開示された潤滑めっき鋼板では、厳しいプレス加工後の加工部の耐食性が十分に確保されていない。
【0007】
そこで、本発明は、上記問題点を解決して、加工部の耐食性に優れたプレス油省略可能非脱膜型潤滑めっき鋼板を提供するものである。
【0008】
また、最近ではクロムフリーの下地処理に対する要望が高まっている。そこで、本発明では、このような要望に答え、加工部の耐食性に優れるクロムフリーで環境負荷の小さいプレコート鋼板を提供する事も課題の一つである。
【0009】
【課題を解決するための手段】
本発明者らは、特開2000−104154号公報において耐食性が通常の溶融亜鉛めっき鋼板よりも大幅に優れたZn−Mg−Alめっき鋼板を提案している。
【0010】
さらに本発明者らは、低コストで加工後の耐食性に優れるめっき鋼板の開発について鋭意研究を重ねた結果、鋼板の表面にZn−Mg−Al合金めっきまたはZn−Mg−Al−Si合金めっきを施し、その上に下地処理としてシランカップリング系処理を施し、さらにその上にエーテル・エステル型ウレタン樹脂とエポキシ樹脂、ポリオレフィンワックス、シリカを最適化した塗料を被覆することにより、優れた潤滑性と加工部の耐食性を有するプレス油省略可能非脱膜型潤滑めっき鋼板を製造しうることを見いだして本発明に至った。
【0011】
すなわち、本発明の趣旨とするところは、以下のとおりである。
【0012】
(1) 鋼板の表面に下層として、
Mg:1〜10質量%、
Al:2〜19質量%
を含有し、かつ、MgとAlが下式、
Mg(%)+Al(%)≦20%
を満たし、残部がZn及び不可避的不純物よりなるZn合金めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、さらにその上にビスフェノール型骨格、エステル骨格及びカルボキシル基を有するエーテル・エステル型ウレタン樹脂(a)とエポキシ樹脂(b)の総和(a+b)が全固形分に対して50〜85質量%、ポリオレフィンワックス(c)を3〜30質量%、粒径3〜30nmのシリカ(d)を10〜40質量%含有する水性潤滑塗料を塗布・焼き付けて得られる膜厚0.2〜5μmの被膜を設けたことを特徴とする加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0013】
(2) 鋼板の表面に下層として、
Mg:2〜10質量%、
Al:4〜18質量%、
Si:0.01〜2質量%
を含有し、かつ、MgとAlが下式、
Mg(%)+Al(%)≦20%
を満たし、残部がZn及び不可避的不純物よりなるZn合金めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、さらにその上にビスフェノール型骨格、エステル骨格及びカルボキシル基を有するエーテル・エステル型ウレタン樹脂(a)とエポキシ樹脂(b)の総和(a+b)が全固形分に対して50〜85質量%、ポリオレフィンワックス(c)を3〜30質量%、粒径3〜30nmのシリカ(d)を10〜40質量%含有する水性潤滑塗料を塗布・焼き付けて得られる膜厚0.2〜5μmの被膜を設けたことを特徴とする加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0014】
(3) 下地処理層の皮膜層に固形分として、微粒シリカ1〜2000質量部、エッチング性フッ化物0.1〜1000質量部のうちいずれか1種以上をさらに含有することを特徴とする、上記(1)または(2)記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0015】
(4) エーテル・エステル型ウレタン樹脂(a)のポリエステル骨格に対するポリエーテル骨格の質量比率が10:90〜70:30であり、かつ前記ウレタン樹脂の酸価が10〜50であることを特徴とする上記(1)〜(3)のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0016】
(5) エポキシ樹脂(b)がグリコール骨格またはビスフェノール型骨格を有するタイプであって、(a)のカルボキシル基の20〜100質量%と反応する比率で(b)が配合されることを特徴とする上記(1)〜(4)のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0017】
(6) ポリオレフィンワックス(c)の融点が70〜160℃、粒径0.1〜7μmであることを特徴とする上記(1)〜(5)のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0018】
(7) ポリオレフィンワックス(c)のケン化価が30以下または0であり、且つ分岐を有する構造であることを特徴とする上記(1)〜(6)のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0019】
(8) めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕と〔Zn2Mg相〕及び〔Zn相〕が混在した金属組織を有することを特徴とする請求項(2)〜(7)のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0020】
(9) めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕と〔Zn2Mg相〕及び〔Al相〕が混在した金属組織を有することを特徴とする上記(2)〜(7)のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0021】
(10) めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕と〔Zn2Mg相〕及び〔Zn相〕、〔Al相〕が混在した金属組織を有することを特徴とする上記(2)〜(7)のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0022】
(11) めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕と〔Zn相〕及び〔Al相〕が混在した金属組織を有することを特徴とする上記(2)〜(7)のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
【0023】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0024】
本発明の塗装鋼板は鋼板上にZn−Mg−Al合金めっき、Zn−Mg−Al−Si合金めっきを施し、その上に下地処理としてシランカップリング系処理を施し、さらにその上にエーテル・エステル型ウレタン樹脂とエポキシ樹脂、ポリオレフィンワックス、シリカを最適化した塗料を順次付与したものである。
【0025】
本発明の下地鋼板としては、Alキルド鋼板、Ti、Nbなどを添加した極低炭素鋼板、及びこれらにP、Si、Mnなどの強化元素を添加した高強度鋼等種々のものが適用できる。
【0026】
Zn−Mg−Alめっき層は、Mg1〜10質量%、Al2〜19質量%、かつMgとAlが式、Mg(%)+Al(%)≦20、残部がZn及び不可避的不純物よりなるZn合金めっき層である。
【0027】
Mgの含有量を1〜10質量%に限定した理由は、1質量%未満では加工性、加工後耐食性を向上させる効果が不十分であるためであり、10質量%を超えるとめっき層が脆くなって密着性が低下するためである。Alの含有量を2〜19質量%に限定した理由は、2質量%未満では加工後耐食性を向上させる効果が不十分であるためであり、19質量%を超えると加工後耐食性を向上させる効果が飽和するためである。
【0028】
MgとAlの含有量を式、Mg(%)+Al(%)≦20に限定した理由は、めっき中のZn含有量が小さいと犠牲防食効果が小さくなり耐食性が低下するためである。
【0029】
本発明において、さらに耐食性のよいめっき鋼板を得るためには、さらにSiを添加すると共にAl、Mgの添加量を多くして、めっき層の凝固組織中に〔MgSi相〕が混在した金属組織を有することが望ましい。Si添加の目的の1つは、めっき密着性の向上、及び加工後の耐食性向上である。Siの含有量を0.01〜2質量%に限定した理由は、0.01質量%未満では密着性を向上させる効果が不十分であるためであり、2質量%を超えると密着性を向上させる効果が飽和するためである。望ましくは、Al含有量の3%以上添加する。
【0030】
また、Al、Mg、Siの添加量を多くし、めっき層の凝固組織中に〔Mg2Si相〕が混在した金属組織を作製することにより、さらに加工後耐食性を向上させることが可能となる。そのためにはMgの含有量を2質量%以上、Alの含有量を4質量%以上とすることが好ましい。
【0031】
本めっき組成はZn−Mg−Al−Siの四元系合金であるがAl、Mgの量が比較的少量である場合、凝固初期はZn−Siの二元系合金に類似した挙動を示しSi系の初晶が晶出する。その後、今度は残ったZn−Mg−Alの三元系合金に類似した凝固挙動を示す。すなわち、初晶として〔Si相〕が晶出した後、〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Zn相〕、〔Al相〕、〔Zn2Mg相〕の1つ以上を含む金属組織ができる。
【0032】
また、Al、Mgの量がある程度増加すると、凝固初期はAl−Mg−Siの三元系合金に類似した挙動を示し、Mg2Si系の初晶が晶出し、その後、今度は残ったZn−Mg−Alの三元系合金に類似した凝固挙動を示す。即ち、初晶として〔Mg2Si相〕が晶出した後、〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Zn相〕、〔Al相〕、〔Zn2Mg相〕の1つ以上を含む金属組織ができる。
【0033】
ここで、〔Si相〕とは、めっき層の凝固組織中に明瞭な境界をもって島状に見える相であり、例えばZn−Siの二元系平衡状態図における初晶Siに相当する相である。実際には少量のAl固溶していることもあり、状態図で見る限りZn、Mgは固溶していないか、固溶していても極微量であると考えられる。この〔Si相〕はめっき中では顕微鏡観察において明瞭に区別できる。
【0034】
また、〔Mg2Si相〕とは、めっき層の凝固組織中に明瞭な境界をもって島状に見える相であり、例えばAl−Mg−Siの三元系平衡状態図における初晶Mg2Siに相当する相である。状態図で見る限りZn、Alは固溶していないか、固溶していても極微量であると考えられる。この〔Mg2Si相〕はめっき中では顕微鏡観察において明瞭に区別できる。
【0035】
また、〔Al/Zn/Zn2Mgの三元共晶組織〕とは、Al相と、Zn相と、金属間化合物Zn2Mg相との三元共晶組織であり、この三元共晶組織を形成しているAl相は例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al”相」(Znを固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl”相は常温では通常は微細なAl相と微細なZn相に分離して現れる。また、該三元共晶組織中のZn相は少量のAlを固溶し、場合によってはさらに少量のMgを固溶したZn固溶体である。該三元共晶組織中のZn2Mg相は、Zn−Mgの二元系平衡状態図のZn:約84質量%の付近に存在する金属間化合物相である。状態図で見る限りそれぞれの相にはSiが固溶しているかいないか、固溶していても極微量であると考えられるがその量は通常の分析では明確に区別できないため、この3つの相からなる三元共晶組織を本明細書では〔Al/Zn/Zn2Mgの三元共晶組織〕と表す。
【0036】
また、〔Al相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、これは例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al”相」(Znを固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl”相はめっき浴のAlやMg濃度応じて固溶するZn量やMg量が相違する。この高温でのAl”相は常温では通常は微細なAl相と微細なZn相に分離するが、常温で見られる島状の形状は高温でのAl”相の形骸を留めたものであると見てよい。状態図で見る限りこの相にはSiが固溶しているかいないか、固溶していても極微量であると考えられるが通常の分析では明確に区別できないため、この高温でのAl”相(Al初晶と呼ばれる)に由来し且つ形状的にはAl”相の形骸を留めている相を本明細書では〔Al相〕と呼ぶ。この〔Al相〕は前記の三元共晶組織を形成しているAl相とは顕微鏡観察において明瞭に区別できる。
【0037】
また、〔Zn相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlさらには少量のMgを固溶していることもある。状態図で見る限りこの相にはSiが固溶しているかいないか、固溶していても極微量であると考えられる。この〔Zn相〕は前記の三元共晶組織を形成しているZn相とは顕微鏡観察において明瞭に区別できる。
【0038】
また、〔Zn2Mg相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlを固溶していることもある。状態図で見る限りこの相にはSiが固溶しているかいないか、固溶していても極微量であると考えられる。この〔Zn2Mg相〕は前記の三元共晶組織を形成しているZn2Mg相とは顕微鏡観察において明瞭に区別できる。
【0039】
本発明において〔Si相〕の晶出は耐食性向上に特に影響を与えないが、〔初晶Mg2Si相〕の晶出は耐食性向上に明確に寄与する。これはMg2Siが非常に活性であることに由来し、腐食環境で水と反応して分解し、〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Zn相〕、〔Al相〕、〔Zn2Mg相〕の1つ以上を含む金属組織を犠牲防食すると共に、できたMgの水酸化物が保護性の皮膜を形成し、それ以上の腐食の進行を抑制するためであると考えられる。特に加工部においてこの効果が有効である。
【0040】
めっき層中には、これ以外にFe、Sb、Pbを単独あるいは複合で0.5質量%以内含有してもよい。また、これらを主成分とするめっきにCa、Be、Ti、Cu、Ni、Co、Cr、Mn、P、B、Sn、REMを合計で1%以下含有しても本発明の効果を損なわず、その量によってはさらに耐食性が改善される等好ましい場合もある。Zn−Mg−Al−Siめっきの付着量については特に制約は設けないが、耐食性の観点から10g/m2以上、加工性の観点から350g/m2以下であることが望ましい。
【0041】
本発明において、めっき鋼板の製造方法については特に限定するところはなく、通常の無酸化炉方式の溶融めっき法が適用できる。下層としてNiプレめっきを施す場合も通常行われているプレめっき方法を適用すればよく、プレNiめっきを施した後、無酸化あるいは還元雰囲気中で急速低温加熱を行い、そののちに溶融めっきを行う方法等が好ましい。
【0042】
本発明に用いる下地処理層は、水性樹脂をベースとしてシランカップリング剤を含むことを特徴としている。この下地処理層とZn−Mg−Al合金めっき層、Zn−Mg−Al−Si合金めっき層を組み合わせることにより相乗的に加工部の耐食性が向上する。下地処理層の水性樹脂としては、水溶性樹脂のほか、本来水不溶性でありながらエマルジョンやサスペンジョンのように水中に微分散された状態になりうる樹脂を含めて言う。このような水性樹脂として使用できるものは、例えば、ポリオレフィン系樹脂、アクリルオレフィン系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエステル系樹脂、アルキド系樹脂、フェノール系樹脂、その他の熱硬化型樹脂が挙げられ、架橋可能な樹脂が望ましい。特に好ましい樹脂は、アクリルオレフィン系樹脂、ポリウレタン系樹脂、及び両者の混合樹脂である。これらの水性樹脂の2種類以上を混合あるいは重合して使用しても良い。
【0043】
シランカップリング剤は、水性樹脂の存在下で、Zn−Mg−Al合金めっき、Zn−Mg−Al−Si合金めっきと塗膜の両者と強固に結合し、塗膜の密着性を飛躍的に向上させ、ひいては加工部の耐食性を向上させる。シランカップリング剤としては、例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、アミノシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシルジメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド、γ−クロロプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシランなどを挙げることができる。
【0044】
シランカップリング剤の含有量は固形分換算で、水性樹脂100質量部に対して、0.1〜3000質量部であることが望ましい。0.1質量部未満ではシランカップリング剤の量が不十分であるため、加工時に十分な密着性が得られず耐食性が劣る。3000質量部を超えると密着性向上効果が飽和するため不経済である。
【0045】
さらに微粒シリカを添加すると耐擦り傷性、塗膜密着性、耐食性が向上する。本発明において微粒シリカとは、微細な粒径をもつために水中に分散させた場合に安定に水分散状態を維持でき、半永久的に沈降が認められないような特色を有するシリカを総称して言うものである。このような微粒シリカとしては、ナトリウムなどの不純物が少なく、弱アルカリ系のものであれば、特に限定されない。例えば、「スノーテックスN」(日産化学工業社製)、「アデライトAT−20N」(旭電化工業社製)などの市販のシリカなどを用いることができる。
【0046】
微粒シリカの含有量は固形分換算で、水性樹脂100質量部に対して1〜2000質量部、さらに好ましくは10〜400質量部である。1質量部未満では添加した効果が少なく、2000質量部を超えると耐食性向上の効果が飽和して不経済である。また、エッチング性フッ化物を添加すると塗膜密着性が向上される。ここでエッチング性フッ化物としては、フッ化亜鉛四水和物、ヘキサフルオロケイ酸亜鉛六水和物などを使用することができる.エッチング性フッ化物の含有量は固形分換算で、水性樹脂100質量部に対して1〜1000質量部であることが好ましい.1質量部未満では添加の効果が少なく、1000質量部を超えるとエッチングの効果が飽和して塗膜密着性が改善されないので不経済である。
【0047】
また、必要に応じて界面活性剤、防錆抑制剤、発泡剤などを添加しても良い。下地処理層の乾燥後の付着量は10〜3000mg/m2が好適である。10mg/m2未満では密着性が劣り加工部の耐食性が不十分である。一方、3000mg/m2を超えると不経済であるばかりか加工性も低下して耐食性も劣るようになる。
【0048】
下地処理層の塗布方法は特別限定するものではなく、一般に公知の塗装方法、例えば、ロールコート、エアースプレー、エアーレススプレー、浸漬などが適用できる。塗布後の乾燥・焼き付けは熱風炉、誘導加熱炉、近赤外線炉、等公知の方法あるいはこれらを組み合わせた方法で行えばよい。また、使用する水性樹脂の種類によっては紫外線や電子線などによって硬化させることもできる。あるいは強制乾燥を用いずに自然乾燥してもよいし、Zn−Mg−Al合金めっき鋼板、Zn−Mg−Al−Si合金めっき鋼板を予め加熱しておいて、その上に塗布して自然乾燥してもよい。
【0049】
次に、本発明の潤滑被膜について以下説明する。本発明の第一の特徴は、ベース樹脂として適切な種類の樹脂を一定質量比で配合させることにある。樹脂としては、密着性、伸び、せん断強度、耐食性、耐摩耗性、耐薬品性のバランスの取れた成分にする必要がある。これらの性能を満足するためには、本発明の樹脂の組合せ使用が好ましいのである。本発明者らは、既にウレタン樹脂とエポキシ樹脂を配合しかつ特定のポリオレフィンワックスを配合することにより強度の加工性と耐食性を得ることを達成していたが、さらに鋭意研究の結果、ウレタン樹脂の構造を特定することにより、特に優れた性能を発揮することを見いだした。
【0050】
高加工性と高耐食性を達成するためには、塗膜が均一でありかつ密着性が優れていることが前提であり、かつ強度と伸びのバランスが取れていることが重要である。分子量の大きいウレタン樹脂と、エポキシ樹脂とを併用することで、低分子量同士の樹脂の架橋によってできた膜より基本的な物性を制御しやすく、かつ塗膜量で0.3〜6g/m2の薄膜でも、均一物性が得られ易いことを見いだした。尚、低分子量のウレタン樹脂とは、各種イソシアネート系の架橋剤を含む種類の物である。樹脂として、分子量3000以上の耐摩耗性に優れたウレタン樹脂と密着性または膜強度の向上に優れたエポキシ樹脂を配合した樹脂系の組合せが特に高加工性と耐食性等の諸特性を発揮するのに適したベース樹脂である。
【0051】
本発明のウレタン樹脂は、分子量が3000以上でビスフェノール型骨格とエステル骨格を有しかつカルボキシル基を有する水分散性のエーテル・エステル型ウレタン樹脂(a)で、エポキシ樹脂(b)は、グリコール骨格またはビスフェノール骨格を有するタイプであって、(a)のカルボキシル基の20〜100%を反応させる比率で配合されたものである。本発明の高分子ウレタン樹脂を使用することで薄膜での均一な成膜性が得られ本発明の目的は達成されるが、より好ましくは塗膜の伸びが100%以上でかつ抗張力が100kg/cm2以上になる樹脂を適用すれば、最高の高加工性が得られる。
【0052】
一般的にウレタン樹脂の物性の制御は、ハードセグメントとソフトセグメントのバランス及び架橋密度によって行われているため、構成される骨格及びイソシアネートの種類によって、広範な特性が制御できる。本発明に使用されるウレタン樹脂の伸びと抗張力の調整は、可とう性を示すエステル骨格と強靭性を示すエーテル骨格及びウレタン結合部の含有量で制御され、後者の含有量が増えれば、伸びは小さいが抗張力の高い強靭な特性が得られる。特に優れた潤滑特性を発揮させるためには、本発明の樹脂物性と同程度の数値を有するポリエステル骨格単独のウレタン樹脂より、ポリエステル骨格とエーテル成分がビスフェノール骨格を有するものが特に優れた性能を示す。同程度の樹脂物性でビスフェノール骨格を有するものが潤滑特性に優れることは、樹脂の伸び及び強度だけでなく素地との密着性が潤滑性の大きな要因であることから容易に推察される。ポリエーテル骨格とポリエステル骨格の質量比率が、10:90〜70:30の範囲が好ましい。ポリエーテルの比率が上記範囲より多い場合、強靭である伸びの小さいため高度の成形加工性に劣る。
【0053】
エーテル及びエステルのポリオールをイソシアネートで分子量3000以上に高分子化させたウレタン樹脂系は、加熱により自己成膜するが、塗膜性能としてさらに加工性、耐薬品性及び耐食性を向上させる方法として、反応性の官能基(水酸基、エポキシ基など)を有するエポキシ樹脂を配合して加熱架橋させて機能性を向上させる方法がある。この方法が、ウレタン樹脂のエポキシ変性を行った変性物単独の成膜方法より加工性、耐食性、耐薬品性の大幅な向上が図れることを新たに見いだした。この架橋反応は組み合わされた樹脂系だけでも進行するが、必要によって硬化剤と呼ばれるイソシアネート化合物またはアミノ化合物などを配合しても構わない。
【0054】
本発明に使用するウレタン樹脂骨格のポリエーテルポリオールとしては、エチレングリコール、プロピレングリコール、ビスフェノールAなどの低分子グリコール類にエチレンオキサイドやプロピレンオキサイドなどを付加したポリオール、ポリオキシテトラメチレングリコールなどが挙げられるが、特にビスフェノールA骨格を有するポリエーテルポリオールが好適である。ポリエステルポリオールとしては、低分子グリコール類と2塩基酸との脱水縮合反応によって得られるポリエステル類及びε−カプロラクタムなどのラクタム類を低分子グリコールの存在下で開環重合したラクタムポリオール類が挙げられる。
【0055】
ウレタン樹脂のエステル骨格とエーテル骨格を結合させるイソシアネート基としては、トリレジイソシアネート、ジフェニルメタジイソシアネート、キシリレンジイソシアネートなどの芳香族ジイソシアネートの単量体、2量体、3量体、及び、それらとポリエーテルポリオールやポリエステルポリオールなどとの反応物、及びそれらの水素添加誘導体である脂環族イソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートなどの脂環族、及び脂肪族イソシアネートの単量体、2量体、3量体とポリエーテルポリオールやポリエステルポリオールなどとの反応物、及びそれらの混合物も使用できる。配合量は、使用するポリエステルポリオール、ポリエーテルポリオール及び後述するカルボキシル基導入成分の分子量と比率によるが、NCO換算でウレタン樹脂の5〜20質量%が、樹脂物性として最適の加工特性を得られる。
【0056】
カルボキシル基は、自己乳化するための官能基であると共に金属表面との密着性に大きな寄与を発揮する。カルボキシル基の導入成分としては、2個以上のヒドロキシル基、またはアミノ基と1個以上のカルボキシル基を含む化合物であり、2、2−ジメチロールプロピオン酢酸、2、2−ジメチロールプロピオン酸、2、2−ジメチロール酪酸、2、2−ジメチロールペンタン酸などのジヒドロキシカルボン酸やリジン、アルギニンなどのジアミノカルボン酸類が挙げられる。これらから選ばれるカルボキシル基化合物は、前記ポリエステルポリオール及びポリエーテルポリオールとの組合せでイソシアネート化合物で高分子化される。この方法により、本発明で使用する分子量が3000以上のカルボキシル基を有するエーテル・エステル型ウレタン樹脂ができる。
【0057】
前記のウレタン樹脂を水に分散する方法としては、カルボキシル基をアンモニア、トリメチルアミン等のアルカリで中和して自己乳化する方法、または乳化剤を用いてエマルジョン分散する方法が挙げられる。作業環境対策としては、水系化以前のウレタン製造工程中に含有する溶剤を回収して、最終的に無溶剤タイプの水分散体を得ることが最も好ましい。カルボキシル基の量は、ウレタン固形分当りの酸価で10〜50であることが適切である。10未満の場合、密着性が不十分で加工性及び耐食性が劣る。50を超える場合、耐水性、耐アルカリ性が劣るため耐食性が低下する。
【0058】
反応性の官能基(水酸基、エポキシ基など)を有するエポキシ樹脂の配合量としては、好ましくはウレタン樹脂のカルボキシル基の20〜100%が反応する比率で配合するのが適切である。20%未満では配合効果が乏しく、100%を超える量ではエポキシ樹脂が可塑剤的役割となるため高度の加工性が低下する。
【0059】
尚、エポキシ樹脂は、耐薬品性、耐食性向上効果が大きい。エポキシ樹脂にビスフェノールA型骨格を有する構造物を用いると、密着性及び耐食性向上効果が特に大きい。環境対策として無溶剤タイプ及び塗膜性能低下を防ぐため無乳化剤タイプが必要であるときは、グリコール骨格で親水性を付与することにより水溶性エポキシ樹脂を得ることができる。
【0060】
ウレタン樹脂の酸価に応じてエポキシ樹脂の配合量を決定する必要があり、その計算方法は、次の通りである。ウレタン樹脂のカルボキシル基とエポキシ樹脂のエポキシ基が当量で反応するとして、所定の酸価(AV)を有するウレタン樹脂に対し、100%の反応をするためのエポキシ樹脂の必要量を求めた式が式1である。
エポキシ固形分質量(g)=ウレタン樹脂のAV値×(1/56)/1000×エポキシ当量×ウレタン樹脂配合質量(g) ・ ・ ・(式1)
【0061】
本発明で配合されるエポキシ基はカルボキシル基と架橋するため、密着性に寄与するカルボキシル基は反応相当分なくなるが、エポキシ基の開環によりOH基が生ずるため密着性は確保される。また、エポキシ樹脂の配合により、耐食性も大きく向上する。分子量が3000未満のウレタン樹脂と上記エポキシ樹脂の組合せでは、安定して高加工性が達成されない。また、分子量3000以上のウレタン樹脂単独の成膜では、高度の加工性及び耐食性が得られない。
【0062】
本発明の水系潤滑塗料組成物のウレタン樹脂(a)とエポキシ樹脂(b)の合計質量は、全固形分に対する固形分比で50〜85%が適切である。50%未満の場合及び85%を超える場合、耐食性と加工性が不十分である。しかし、これらの樹脂系被膜のみでは目的の加工性を達成することはできないため、潤滑添加物の併用が必要となる。
【0063】
潤滑添加物としては、公知のフッ素系、炭化水素系、脂肪酸アミド系、エステル系、アルコール系、金属石鹸系及び無機系等の滑剤が挙げられる。加工性向上のための潤滑添加物の選択基準としては、添加した滑剤が成膜した樹脂膜に分散して存在するよりも樹脂膜表面に存在するような物質を選択するのが、成型加工物の表面と金型の摩擦を低減させ潤滑効果を最大限発揮させる点から必要である。即ち、滑剤が成膜した樹脂膜に分散して存在する場合、表面摩擦係数が高く樹脂膜が破壊されやすく粉状物質が剥離堆積してパウダリング現象と言われる外観不良及び加工性低下を生じる。樹脂膜表面に存在するような物質としては、樹脂に相溶せずかつ表面エネルギーの小さいものが選ばれる。
【0064】
本発明者らが検討した結果、ポリオレフィンワックスを使用すると、加工性が大きく向上し加工後の耐食性及び耐薬品性等の性能も良好にすることが判った。このワックスとしては、パラフィン、マイクロクリスタリンまたはポリエチレン等の炭化水素系のワックスが上げられる。加工時には、素材の変形熱と摩擦熱によって被膜温度が上昇するため、ワックスの融点は70〜160℃が適切であり、70℃未満では加工時に軟化溶融して固体潤滑添加物としての優れた特性が発揮されない。また、160℃を超える融点のものは、硬い粒子が表面に存在することとなり摩擦特性を低下させるので高度の成形加工性は得られない。
【0065】
好ましくは、ポリオレフィンワックスのケン化価としては、30以下または0であり、かつ分岐構造を有するものを使用することが好ましい。ケン化価が30を超えるものは、極性が大きく樹脂に相溶しやすいため、成膜時に樹脂表面に存在しにくくなるため、高度な加工性能レベルが必要な場合には適切とは言えない。特に好ましいのは、樹脂との相溶性のより小さいエステル結合を持たないケン化価が0のワックスである。
【0066】
これらのワックスの粒径は、0.1〜7.0μmが適切である。7.0μmを超えるものは、固体化したワックスの分布が不均一となるため好ましくない。又、0.1μm未満の場合は、加工性が不十分である。潤滑添加物の量は、潤滑性塗料の全固形分質量に対して固形分比で3〜30%を添加する。3%未満の場合、加工性向上効果が小さく、30%を超える量では、加工性及び耐食性が低下する。
【0067】
その他の添加物として、耐食性の向上のためSiOを全固形分に対して10〜40%を添加する。SiOの添加により、耐食性の大幅な向上及び加工性の向上効果がある。10%未満の場合、耐食性及び加工性の向上効果が小さく、40%を超える量では、樹脂のバインダー効果が小さくなり、耐食性が低下すると共に樹脂の伸びと強度が低下するため加工性が低下する。SiOの粒径については、3〜30μmが適切である。30μmを超える場合及び3μm未満の場合、より高度の加工性及び耐食性が得られない。シリカの種類としては、液相コロイダルシリカ及び気相シリカがあるが、本発明では特に限定するものではない。また、溶接性の向上のために導電性物または意匠性向上のため着色顔料物を添加することもある。また、沈降防止剤、レベリング剤、増粘剤等の各種添加剤を添加しても本発明の効果は損なわない。
【0068】
本発明は水系の塗料であるため、溶剤系に比較して表面張力が高く表面濡れ性が劣り、被塗面に所定量塗布を行う場合均一な塗布性が得られないことがある。しかし、高度の加工性及び耐食性等の性能を確保するためには、被塗表面に均一な塗布が行われることが不可欠である。このため、濡れ剤または増粘剤を配合添加することが公知である。濡れ剤としては、表面張力を低下させるフッ素系、シリコン系等の公知の表面張力を低下させる界面活性剤が挙げられる。特にこれらの化合物の中で付加エチレンオキサイドのモル数が0〜20のアセチレングリコール・アルコール型界面活性剤を、水系潤滑塗料組成物に対し0.05〜0.5%含有すると好ましい。尚、アセチレングリコール・アルコール型界面活性剤は、濡れ速度が大きくかつ消泡効果を同時に有する事が特徴である。一方、フッ素系及びシリコン系の界面活性剤は、表面張力低下能力は優れているが、濡れ速度は小さく、消泡性に劣りかつ上塗り塗装密着性も劣るため適切でない。
【0069】
又、増粘剤は、被塗面のはじき箇所に対して濡れ剤だけでは十分な表面被覆性が確保できない場合またはロールコーターに代表される塗布方法で塗膜厚が確保されない場合の対策として添加することがある。本発明の塗料は、通常、高速で被塗物に塗装されるため、セルロース系に代表されるチクソタイプの増粘剤では、高速ずり応力を受ける塗工条件では効果が小さい。この様な塗工条件では、ニュートニアタイプの増粘剤が適切であることは公知である。本発明に使用する増粘剤としては、分子量が1000〜20000のエーテル・ウレタン骨格を有する増粘剤が特に好ましい。
【0070】
この増粘剤は、本発明塗料のベース樹脂であるウレタン樹脂骨格と相溶性があるため会合性のニュートニア増粘挙動を示し、少量の添加量で有効な効果を示す。通常、塗料に添加剤を配合する場合、本来の性能を低下させることが多いが、この増粘剤は加水分解が起こりにくい骨格のため塗膜中に残存した場合の影響が非常に小さいことが特徴である。添加量は、水系潤滑性塗料組成物の樹脂固形分に対し0.01〜0.2%であり、通常、塗工条件により決定される。0.01%未満では増粘効果が小さく、0.2%を超える量では粘度が大きくなりすぎるため、塗工性に支障が生じること及び高度の加工性と優れた耐食性が低下するため好ましくない。
【0071】
以上述べた化合物で構成される本発明の塗料は用途、塗装条件によって異なるが一般的には不揮発分濃度15〜30%、粘度10〜50cps、表面張力を80dyne/cm以下に調整することが望ましい。その理由は狙い膜厚を制御しやすく、外観むらや塗料はじきのない均一な膜厚を得るためである。塗布の方法はロールコート法、浸漬法、エアーナイフしぼり、グルーブロール法、カーテン塗布法等の既存の方法を採用できるが、膜厚制御及び膜厚精度、むらのない外観が得られやすいリバースロールコート塗布が最も望ましい。塗布量は乾燥膜厚として0.2〜5μm塗布後ただちに熱風、遠赤外線炉、電気炉、燃焼炉、誘導加熱で板温80〜200℃好ましくは120〜160℃に焼き付けたのち水冷等の方法により強制冷却し乾燥して成膜させる。
【0072】
膜厚0.2〜5μmの範囲を限定した理由は0.2μm未満では本発明が目的とする潤滑性、加工性、耐食性が不十分である。5μm超では溶接ができず、ブロッキング等の問題が生じ易くなる。焼付板温の限定理由は80℃未満では樹脂のリフローと架橋反応が不十分のため粗面の欠陥の多い被膜となり、200℃超では樹脂、潤滑剤のポリオレフィンが熱分解、加熱酸化を受け性能が劣化する。最も望ましい樹脂の融解と架橋による均一で平滑な無欠陥被膜及び潤滑剤の適度な表面濃化と被膜中分散は120〜160℃の範囲で得られる。
【0073】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0074】
(実施例1)
まず、厚さ0.8mmの冷延鋼板を準備し、これに浴温400〜600℃で、それぞれMg量、Al量を変化させたZn−Mg−Alめっき浴、Mg量、Al量、Si量を変化させたZn−Mg−Al−Siめっき浴を使用し3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成を表1に示す。
【0075】
次にこのめっき鋼板を脱脂した後、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0076】
この下地処理の上に、分子量5000のエーテルエステルウレタン樹脂(ビスフェノールAエーテル:酸価18、エーテル/エステル比30/70、イソシアネート含有率8)とプロピレングリコールエポキシ樹脂(エポキシ当量220)に平均粒径8nmのシリカゾルを21%、粒径0.6μmのポリエチレンワックス(比重0.93、軟化点120℃)13%を配合した潤滑塗料を塗布し板温130℃に焼き付けて膜厚3μmの潤滑鋼板を作製した。
【0077】
加工後耐食性の評価は、60mm深さの角筒高速クランクプレスを行ったサンプルのコーナー側面部について、CCT60サイクル後の白錆発生状況を以下に示す評点づけで判定した。CCTは、SST2hr→乾燥4hr→湿潤2hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
評価結果を表1に示す。番号23はMg、Al含有量が本発明の範囲外であるため耐食性が不合格となった。番号24、28はMg含有量が本発明の範囲外であるため耐食性が不合格となった。番号25はAl含有量が本発明の範囲外であるため耐食性が不合格となった。番号26はMg+Al含有量が本発明の範囲外であるため耐食性が不合格となった。番号27はMg含有量が本発明の範囲外であるため、めっき密着性が劣化し耐食性が不合格となった。これら以外はいずれも、加工後耐食性が良好な結果となった。
【0078】
【表1】

Figure 0003547414
【0079】
(実施例2)
まず、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Alめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al5%であった。
【0080】
また、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al10%、Si0.15%であった。
【0081】
次にこれらのめっき鋼板を脱脂した後、表2に示す組成の下地処理材を塗布し熱風乾燥炉で乾燥した。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、メチルトリクロロシランを使用した。シリカとしては「スノーテックスN、表中ではST−Nと記載」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0082】
【表2】
Figure 0003547414
【0083】
この下地処理の上に、分子量5000のエーテルエステルウレタン樹脂(ビスフェノールAエーテル:酸価18、エーテル/エステル比30/70、イソシアネート含有率8)とプロピレングリコールエポキシ樹脂(エポキシ当量220)に平均粒径8nmのシリカゾルを21%、粒径0.6μmのポリエチレンワックス(比重0.93、軟化点120℃)13%を配合した潤滑塗料を塗布し板温130℃に焼き付けて膜厚3μmの潤滑鋼板を作製した。
【0084】
密着性の評価は、エリクセン試験機で9mm絞り、凸部をテープ剥離し、剥離しなかったものを合格、剥離したものを不合格とした。
【0085】
加工後耐食性の評価は、60mm深さの角筒高速クランクプレスを行ったサンプルのコーナー側面部について、CCT60サイクル後の白錆発生状況を以下に示す評点づけで判定した。CCTは、SST2hr→乾燥4hr→湿潤2hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
評価結果を表2に示す。
【0086】
番号10、28は下地処理層のシランカップリング剤含有量が本発明の範囲外であるため密着性、加工後耐食性が不合格となった。番号11、12、29、30は下地処理層の付着量が含有量が本発明の範囲外であるため密着性、加工後耐食性が不合格となった。番号15、33は微粒シリカ、エッチング性フッ化物が含有量が本発明の範囲外であるため密着性、加工後耐食性が不合格となった。番号18、36は密着性、加工後耐食性に優れるが環境負荷の大きなクロムを使用しているため不適である。
【0087】
これら以外はいずれも、密着性、加工後耐食性が良好な結果となった。
【0088】
(実施例3)
まず、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Alめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al5%であった。
【0089】
また、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al10%、Si0.15%であった。
【0090】
次にこのめっき鋼板を脱脂した後、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0091】
この下地処理の上に、分子量5000のエーテルエステルウレタン樹脂(ビスフェノールAエーテル:酸価18、エーテル/エステル比30/70、イソシアネート含有率8)、プロピレングリコールエポキシ樹脂(エポキシ当量220)、平均粒径8nmのシリカゾル、粒径0.6μmのポリエチレンワックス(比重0.93、軟化点120℃)を表3に示す配合比で作製した潤滑塗料を塗布し板温130℃に焼き付けて膜厚3μmの潤滑鋼板を作製した。
【0092】
加工性の評価は、60mm深さの角筒高速クランクプレスを行い、サンプルとダイスの金属接触によるかじりの発生状況を以下に示す評点づけで判定した。
3:かじり発生無し
2:僅かにかじりが認められるが許容されるレベル
1:かじりの激しいもの
【0093】
加工後耐食性の評価は、60mm深さの角筒高速クランクプレスを行ったサンプルのコーナー側面部について、CCT60サイクル後の白錆発生状況を以下に示す評点づけで判定した。CCTは、SST2hr→乾燥4hr→湿潤2hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
【0094】
評価結果を表3に示す。番号1、6、15、20はワックス添加量が本発明の範囲外であるため加工性、耐食性が不合格となった。番号7、12、21、26はシリカゾル添加量が本発明の範囲外であるため加工性、耐食性が不合格となった。番号13、14、27、28は全塗料質量に対するウレタン樹脂とエポキシ樹脂合計質量の割合が本発明の範囲外であるため加工性、耐食性が不合格となった。これら以外はいずれも、加工性、耐食性が良好な結果となった。
【0095】
【表3】
Figure 0003547414
【0096】
(実施例4)
まず、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Alめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al5%であった。
【0097】
また、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al10%、Si0.15%であった。
【0098】
次にこのめっき鋼板を脱脂した後、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
この下地処理の上に、分子量5000のエーテルエステルウレタン樹脂(ビスフェノールAエーテル:酸価18、エーテル/エステル比30/70、イソシアネート含有率8)とプロピレングリコールエポキシ樹脂(エポキシ当量220)に平均粒径3〜8nmのシリカゾルを21%、粒径0.6μmのポリエチレンワックス(比重0.93、軟化点120℃)13%を配合した潤滑塗料を塗布し板温130℃に焼き付けて表4に示す膜厚の潤滑鋼板を作製した。
【0099】
加工性の評価は、60mm深さの角筒高速クランクプレスを行い、サンプルとダイスの金属接触によるかじりの発生状況を以下に示す評点づけで判定した。
3:かじり発生無し
2:僅かにかじりが認められるが許容されるレベル
1:かじりの激しいもの
【0100】
加工後耐食性の評価は、60mm深さの角筒高速クランクプレスを行ったサンプルのコーナー側面部について、CCT60サイクル後の白錆発生状況を以下に示す評点づけで判定した。CCTは、SST2hr→乾燥4hr→湿潤2hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
【0101】
溶接性の評価は、下記のスポット溶接条件で行った。
加圧力:200kgf
電極:Cu−Cr系合金、CF型、先端径6mmφ
通電時間:10サイクル
連続溶接条件:ナゲット形成電流I0(板厚をtとした時、ナゲット径が4√t以上になる。
最小電流値)の1.4倍の電流値(Ia)、1打点/3秒の速度、20打点毎に30秒休止の条件で連続溶接。
連続溶接終了:100打点毎にナゲット径測定用のサンプルを0.85×Iaの電流値で溶接し、ナゲット径が4√tより小さくなった時点を終了と判定。
【0102】
評価は、溶接点数500点以上を合格とした。
【0103】
評価結果を表4に示す。番号1、6は膜厚が本発明の範囲外であるため加工性、耐食性が不合格となった。番号5、10は膜厚が本発明の範囲外であるため溶接性が不合格となった。これら以外はいずれも、加工性、耐食性、溶接性が良好な結果となった。
【0104】
【表4】
Figure 0003547414
【0105】
(実施例5)
まず、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Alめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al5%であった。
【0106】
また、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al10%、Si0.15%であった。
【0107】
次にこのめっき鋼板を脱脂した後、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0108】
この下地処理の上に、表5(ウレタン樹脂a)、表6(エポキシ樹脂b)に示すエーテルエステルウレタン樹脂とエポキシ樹脂に平均粒径8nmのシリカゾル、粒径0.6μmのポリエチレンワックス(比重0.93、軟化点120℃)を配合した潤滑塗料を表7に示す組成で塗布し板温130℃に焼き付けて膜厚3μmの潤滑鋼板を作製した。
【0109】
加工性の評価は、60mm深さの角筒高速クランクプレスを行い、サンプルとダイスの金属接触によるかじりの発生状況を以下に示す評点づけで判定した。
3:かじり発生無し
2:僅かにかじりが認められるが許容されるレベル
1:かじりの激しいもの
【0110】
加工後耐食性の評価は、60mm深さの角筒高速クランクプレスを行ったサンプルのコーナー側面部について、CCT40サイクル後の白錆発生状況を以下に示す評点づけで判定した。CCTは、SST6hr→乾燥4hr→湿潤4hr→冷凍4hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
【0111】
【表5】
Figure 0003547414
【0112】
【表6】
Figure 0003547414
【0113】
評価結果を表7に示す。番号8、18はウレタン樹脂の分子量が小さいため加工性、耐食性が不合格となった。これら以外はいずれも、加工性、耐食性が良好な結果となった。特にエーテル・エステル型ウレタン樹脂のポリエステル骨格に対するポリエーテル骨格の質量比率が10:90〜70:30であり、かつ前記ウレタン樹脂の酸価が10〜50である塗料、エポキシ樹脂がグリコール骨格またはビスフェノール型骨格を有するタイプであって、ウレタン樹脂のカルボキシル基の20〜100質量%と反応する比率でエポキシ樹脂が配合された塗料は良好な加工性、耐食性を示した。
【0114】
【表7】
Figure 0003547414
【0115】
(実施例6)
まず、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Alめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al5%であった。
【0116】
また、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al10%、Si0.15%であった。
【0117】
次にこのめっき鋼板を脱脂した後、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0118】
この下地処理の上に、分子量5000のエーテルエステルウレタン樹脂(ビスフェノールAエーテル:酸価18、エーテル/エステル比30/70、イソシアネート含有率8)とプロピレングリコールエポキシ樹脂(エポキシ当量220)に平均粒径8nmのシリカゾルを21%、表8に示すワックス13%を配合した潤滑塗料を塗布し板温130℃に焼き付けて膜厚3μmの潤滑鋼板を作製した。
【0119】
加工性の評価は、60mm深さの角筒高速クランクプレスを行い、サンプルとダイスの金属接触によるかじりの発生状況を以下に示す評点づけで判定した。
3:かじり発生無し
2:僅かにかじりが認められるが許容されるレベル
1:かじりの激しいもの
【0120】
加工後耐食性の評価は、60mm深さの角筒高速クランクプレスを行ったサンプルのコーナー側面部について、CCT40サイクル後の白錆発生状況を以下に示す評点づけで判定した。CCTは、SST6hr→乾燥4hr→湿潤4hr→冷凍4hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
【0121】
評価結果を表8に示す。いずれも良好な加工性、耐食性を示した。特にケン化価が30以下または0であるワックス、粒径が0.1〜7.0μmのワックスは良好な加工性、耐食性を示した。
【0122】
【表8】
Figure 0003547414
【0123】
(実施例7)
まず、厚さ0.8mmの冷延鋼板を準備し、これに400〜600℃の浴中のMg量、Al量、Si量を変化させたZn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成を表9に示す。また、めっき鋼板を断面からSEMで観察しめっき層の金属組織を観察した結果を同じく表9に示す。
【0124】
次にこのめっき鋼板を脱脂した後、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0125】
この下地処理の上に、分子量5000のエーテルエステルウレタン樹脂(ビスフェノールAエーテル:酸価18、エーテル/エステル比30/70、イソシアネート含有率8)とプロピレングリコールエポキシ樹脂(エポキシ当量220)に平均粒径8nmのシリカゾルを21%、粒径0.6μmのポリエチレンワックス(比重0.93、軟化点120℃)13%を配合した潤滑塗料を塗布し板温130℃に焼き付けて膜厚3μmの潤滑鋼板を作製した。
【0126】
耐食性の評価は、60mm深さの角筒高速クランクプレスを行ったサンプルのコーナー側面部について、CCT40サイクル後の白錆発生状況を以下に示す評点づけで判定した。CCTは、SST6hr→乾燥4hr→湿潤4hr→冷凍4hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
【0127】
評価結果は表9に示す通りであり、本発明材はいずれも良い耐食性を示した。特にめっき層中にMgSi相が観察されためっき鋼板は良好な耐食性を示した。
【0128】
【表9】
Figure 0003547414
【0129】
(実施例8)
まず、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Alめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al5%であった。
【0130】
また、厚さ0.8mmの冷延鋼板を準備し、これに450℃のZn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を60g/m2に調整した。得られためっき鋼板のめっき層中組成は、Mg3%、Al10%、Si0.15%であった。
【0131】
次にこのめっき鋼板を脱脂した後、アクリルオレフィン樹脂100質量部に対しシランカップリング剤10質量部、シリカ30質量部、エッチング性フッ化物10質量部含有させた下地処理材を塗布し、熱風乾燥炉で乾燥して付着量200mg/m2とした。乾燥時の到達板温は150℃とした。シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシランを、シリカとしては「スノーテックスN」(日産化学工業製)を、エッチング性フッ化物としてはヘキサフルオロケイ酸亜鉛六水和物を使用した。
【0132】
この下地処理の上に、分子量5000のエーテルエステルウレタン樹脂(ビスフェノールAエーテル:酸価18、エーテル/エステル比30/70、イソシアネート含有率8)とプロピレングリコールエポキシ樹脂(エポキシ当量220)に表9に示す平均粒径のシリカゾルを21%、粒径0.6μmのポリエチレンワックス(比重0.93、軟化点120℃)13%を配合した潤滑塗料を塗布し板温130℃に焼き付けて膜厚3μmの潤滑鋼板を作製した。
【0133】
加工性の評価は、60mm深さの角筒高速クランクプレスを行い、サンプルとダイスの金属接触によるかじりの発生状況を以下に示す評点づけで判定した。
3:かじり発生無し
2:僅かにかじりが認められるが許容されるレベル
1:かじりの激しいもの
【0134】
加工後耐食性の評価は、60mm深さの角筒高速クランクプレスを行ったサンプルのコーナー側面部について、CCT40サイクル後の白錆発生状況を以下に示す評点づけで判定した。CCTは、SST6hr→乾燥4hr→湿潤4hr→冷凍4hrを1サイクルとした。評点は3以上を合格とした。
5:5%未満
4:5%以上10%未満
3:10%以上20%未満
2:20%以上30%未満
1:30%以上
【0135】
評価結果を表10に示す。番号1、4、5、8はシリカゾルの平均粒径が本発明の範囲外であるため耐食性が不合格となった。これら以外はいずれも、密着性、耐食性が良好な結果となった。
【0136】
【表10】
Figure 0003547414
【0137】
【発明の効果】
以上述べてきたように、本発明により、環境負荷の大きなクロムを含有することなく厳しいプレス加工が可能で、加工部の耐食性も十分に確保された潤滑めっき鋼板を製造することが可能となり、工業上極めて優れた効果を奏することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface-treated steel sheet used for parts of household appliances, building materials, automobiles and the like which are used without removing a lubricating film after pressing.
[0002]
[Prior art]
Conventional parts are a process in which press oil is applied, press-molded, and then oil is removed. However, with the use of degreasing solvents and the cost reduction, there is a need for lubricating performance that can omit press oil, and the need for surface-treated steel sheets with excellent surface properties (appearance, corrosion resistance, paint adhesion, etc.) after pressing. It is getting stronger. Particularly, in the case of members subjected to heavy working, the organic film and plating film are easily damaged, and the corrosion resistance after processing is likely to be deteriorated due to the damage of the film. Therefore, the need for a surface-treated steel sheet that has both good lubrication performance and corrosion resistance after processing Is strong.
[0003]
As one of the disclosed techniques for solving such a problem, there is JP-A-3-16726 "Lubricated resin-treated steel sheet having excellent formability". This steel sheet has a Cr adhesion amount of 200 mg / m on the surface of a zinc-based or aluminum-based alloy-coated steel sheet. Two The following chromate films, on which 0.3-3.0 g / m Two It is stated that the resin coating is 100 parts by weight of a resin having a hydroxyl group and / or a carboxyl group, 10 to 80 parts by weight of silica, and 20 parts by weight or less of a polyolefin wax having an average particle size of 1 to 7 μm. . It is described that this lubricated steel sheet can be applied to a wide variety of resin types.
[0004]
However, in view of the actual high-speed continuous crank press workability and little deterioration of the coating after processing, it is not satisfactory and not sufficient, and is only stable by optimizing the coating composed of resin, silica and lubricant. An operable lubricated steel sheet is obtained. In particular, the appearance and performance after processing are important for a non-delaminated lubricating steel sheet, and it is necessary to consider the uniformity and extension of the thickness of the lubricating film, compression, and sliding wear.
[0005]
For this reason, in Japanese Unexamined Patent Publication No. Hei 6-173037, "Non-demolding type lubricated plated steel sheet which can omit press oil", the surface of the plated steel sheet is subjected to a chemical conversion treatment, and an ether / ester type urethane resin, an epoxy resin, a polyolefin wax and silica are optimally used. The present invention provides a non-delamination type lubricated plated steel sheet having excellent lubricity and capable of omitting press oil by coating with a modified paint.
[0006]
[Problems to be solved by the invention]
However, in the lubricated plated steel sheets described above and others described above, the corrosion resistance of the processed portion after severe press working is not sufficiently ensured.
[0007]
Accordingly, the present invention is to solve the above-mentioned problems and to provide a non-delamination type lubricated plated steel sheet which is excellent in corrosion resistance of a processed portion and can be omitted from press oil.
[0008]
Further, recently, a demand for a chrome-free base treatment has been increasing. Therefore, one of the objects of the present invention is to provide a chromium-free pre-coated steel sheet which has excellent corrosion resistance in a processed portion and has a low environmental load in response to such a demand.
[0009]
[Means for Solving the Problems]
The present inventors have proposed in JP-A-2000-104154 a Zn-Mg-Al-coated steel sheet whose corrosion resistance is much better than a normal hot-dip galvanized steel sheet.
[0010]
Furthermore, the present inventors have conducted intensive studies on the development of a plated steel sheet having excellent corrosion resistance after processing at a low cost, and as a result, Zn-Mg-Al alloy plating or Zn-Mg-Al-Si alloy plating has been applied to the surface of the steel sheet. Silane-coupling treatment as a base treatment on top of it, and further coating with an ether-ester type urethane resin and epoxy resin, polyolefin wax, and a paint optimized for silica. The present invention has been found that a non-delaminated lubricated plated steel sheet having a corrosion resistance of a processed portion and capable of eliminating a press oil can be manufactured.
[0011]
That is, the gist of the present invention is as follows.
[0012]
(1) As a lower layer on the surface of the steel sheet,
Mg: 1 to 10% by mass,
Al: 2 to 19% by mass
And Mg and Al are represented by the following formula:
Mg (%) + Al (%) ≦ 20%
And a Zn alloy plating layer whose balance is composed of Zn and unavoidable impurities, and a coating layer containing 100 parts by mass of an aqueous resin and 0.1 to 3000 parts by mass of a silane coupling agent as a solid content is provided thereon. The total (a + b) of the ether / ester type urethane resin (a) and the epoxy resin (b) having a bisphenol type skeleton, an ester skeleton and a carboxyl group on the processing layer, and having a bisphenol type skeleton, an ester skeleton and a carboxyl group, is 50 to 50% of the total solid content. A film obtained by applying and baking a water-based lubricating paint containing 85% by mass, 3 to 30% by mass of a polyolefin wax (c), and 10 to 40% by mass of silica (d) having a particle size of 3 to 30 nm 0.2 to 0.2% A non-delamination type lubricated plated steel sheet which is provided with a coating of 5 μm and has excellent corrosion resistance in a processed portion and a small environmental load.
[0013]
(2) As a lower layer on the surface of the steel sheet,
Mg: 2 to 10% by mass,
Al: 4 to 18% by mass,
Si: 0.01 to 2% by mass
And Mg and Al are represented by the following formula:
Mg (%) + Al (%) ≦ 20%
And a Zn alloy plating layer whose balance is composed of Zn and unavoidable impurities, and a coating layer containing 100 parts by mass of an aqueous resin and 0.1 to 3000 parts by mass of a silane coupling agent as a solid content is provided thereon. The total (a + b) of the ether / ester type urethane resin (a) and the epoxy resin (b) having a bisphenol type skeleton, an ester skeleton and a carboxyl group on the processing layer, and having a bisphenol type skeleton, an ester skeleton and a carboxyl group, is 50 to 50% of the total solid content. A film obtained by applying and baking a water-based lubricating paint containing 85% by mass, 3 to 30% by mass of a polyolefin wax (c), and 10 to 40% by mass of silica (d) having a particle size of 3 to 30 nm 0.2 to 0.2% A non-delamination type lubricated plated steel sheet which is provided with a coating of 5 μm and has excellent corrosion resistance in a processed portion and a small environmental load.
[0014]
(3) The coating layer of the undercoat layer further contains, as solids, at least one of 1 to 2000 parts by mass of fine silica and 0.1 to 1000 parts by mass of etchable fluoride. A non-delamination type lubricated plated steel sheet having excellent corrosion resistance and a low environmental load in the processed part according to the above (1) or (2).
[0015]
(4) The mass ratio of the polyether skeleton to the polyester skeleton of the ether / ester type urethane resin (a) is 10:90 to 70:30, and the acid value of the urethane resin is 10 to 50. A non-delaminated lubricated plated steel sheet having excellent corrosion resistance and low environmental load in the processed part according to any one of the above (1) to (3).
[0016]
(5) The epoxy resin (b) is a type having a glycol skeleton or a bisphenol type skeleton, and (b) is blended in a ratio that reacts with 20 to 100% by mass of the carboxyl group of (a). The non-delaminated lubricated plated steel sheet according to any one of the above (1) to (4), which has excellent corrosion resistance and low environmental load.
[0017]
(6) The processed part according to any one of (1) to (5) above, wherein the polyolefin wax (c) has a melting point of 70 to 160 ° C. and a particle size of 0.1 to 7 μm. Non-delamination type lubricated plated steel sheet with low environmental load.
[0018]
(7) The corrosion resistance of the processed part according to any one of the above (1) to (6), wherein the polyolefin wax (c) has a saponification value of 30 or less or 0 and has a branched structure. A non-delaminated lubricated plated steel sheet that excels in environmental impact and is small.
[0019]
(8) The plating layer is [Al / Zn / Zn Two Mg ternary eutectic structure] Two Si phase] and [Zn Two The non-film-deposited lubricating material according to any one of claims 2 to 7, wherein the lubricating material has a metal structure in which [Mg phase] and [Zn phase] are mixed. Plated steel sheet.
[0020]
(9) The plating layer is [Al / Zn / Zn Two Mg ternary eutectic structure] Two Si phase] and [Zn Two Non-film-deposited lubricating plating according to any one of (2) to (7) above, which has a metal structure in which [Mg phase] and [Al phase] are mixed. steel sheet.
[0021]
(10) The plating layer is [Al / Zn / Zn Two Mg ternary eutectic structure] Two Si phase] and [Zn Two The processed part according to any one of the above (2) to (7), which has a metal structure in which [Mg phase], [Zn phase], and [Al phase] are mixed, and has excellent corrosion resistance and low environmental load. Stripped lubricated plated steel sheet.
[0022]
(11) The plating layer is [Al / Zn / Zn Two Mg ternary eutectic structure] Two The processed part according to any one of the above (2) to (7), which has a metal structure in which [Si phase], [Zn phase] and [Al phase] are mixed, and has excellent corrosion resistance and low environmental load. Stripped lubricated plated steel sheet.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0024]
The coated steel sheet of the present invention is obtained by applying a Zn-Mg-Al alloy plating and a Zn-Mg-Al-Si alloy plating on a steel sheet, performing a silane coupling treatment as a base treatment thereon, and further applying an ether ester The coating material is obtained by sequentially optimizing a type urethane resin, an epoxy resin, a polyolefin wax and silica.
[0025]
As the base steel sheet of the present invention, various kinds such as an Al-killed steel sheet, an ultra-low carbon steel sheet added with Ti, Nb, and the like, and a high-strength steel added with a reinforcing element such as P, Si, and Mn can be applied.
[0026]
The Zn—Mg—Al plating layer is composed of 1 to 10% by mass of Mg, 2 to 19% by mass of Al, Mg and Al of the formula, Mg (%) + Al (%) ≦ 20, and the balance being Zn and a Zn alloy consisting of unavoidable impurities. It is a plating layer.
[0027]
The reason why the content of Mg is limited to 1 to 10% by mass is that if it is less than 1% by mass, the effect of improving workability and post-working corrosion resistance is insufficient, and if it exceeds 10% by mass, the plating layer becomes brittle. This is because the adhesion decreases. The reason for limiting the Al content to 2 to 19% by mass is that if it is less than 2% by mass, the effect of improving corrosion resistance after processing is insufficient, and if it exceeds 19% by mass, the effect of improving corrosion resistance after processing is increased. Is to be saturated.
[0028]
The reason why the contents of Mg and Al are limited to the formula, Mg (%) + Al (%) ≦ 20, is that if the Zn content in the plating is small, the sacrificial anticorrosion effect is reduced and the corrosion resistance is reduced.
[0029]
In the present invention, in order to obtain a more corrosion-resistant plated steel sheet, Si is further added, and the addition amount of Al and Mg is increased, so that [Mg 2 Si phase] is desirable. One of the purposes of adding Si is to improve plating adhesion and corrosion resistance after processing. The reason why the content of Si is limited to 0.01 to 2% by mass is that if the content is less than 0.01% by mass, the effect of improving the adhesion is insufficient, and if it exceeds 2% by mass, the adhesion is improved. This is because the effect of the saturation is saturated. Desirably, 3% or more of the Al content is added.
[0030]
Further, the addition amount of Al, Mg and Si is increased, and [Mg Two By producing a metal structure in which [Si phase] is mixed, it is possible to further improve the corrosion resistance after processing. For this purpose, it is preferable that the content of Mg be 2% by mass or more and the content of Al be 4% by mass or more.
[0031]
This plating composition is a quaternary alloy of Zn-Mg-Al-Si, but when the amounts of Al and Mg are relatively small, the initial solidification shows a behavior similar to that of a binary alloy of Zn-Si. Primary crystals of the system crystallize out. Thereafter, it shows a solidification behavior similar to the remaining Zn-Mg-Al ternary alloy. That is, after the [Si phase] is crystallized as the primary crystal, [Al / Zn / Zn] Two [Ternary eutectic structure of Mg] in the matrix [Zn phase], [Al phase], [Zn Two Mg phase].
[0032]
Further, when the amounts of Al and Mg increase to some extent, the initial solidification shows a behavior similar to that of a ternary alloy of Al-Mg-Si, Two An Si-based primary crystal is crystallized, and then exhibits a solidification behavior similar to the remaining Zn-Mg-Al ternary alloy. That is, [Mg Two After the [Si phase] is crystallized, [Al / Zn / Zn Two [Ternary eutectic structure of Mg] in the matrix [Zn phase], [Al phase], [Zn Two Mg phase].
[0033]
Here, the [Si phase] is a phase that looks like an island with a clear boundary in the solidification structure of the plating layer, and is, for example, a phase corresponding to primary crystal Si in a binary equilibrium diagram of Zn-Si. . Actually, a small amount of Al may form a solid solution, and it is considered from the state diagram that Zn and Mg do not form a solid solution, or even if a solid solution forms, a very small amount. This [Si phase] can be clearly distinguished by microscopic observation during plating.
[0034]
Also, [Mg Two Si phase] is a phase that looks like an island with a clear boundary in the solidification structure of the plating layer. For example, primary crystal Mg in the ternary equilibrium diagram of Al—Mg—Si Two This is a phase corresponding to Si. It is considered from the state diagram that Zn and Al do not form a solid solution, or even if they do form a solid solution, they are in an extremely small amount. This [Mg Two Si phase] can be clearly distinguished by microscopic observation during plating.
[0035]
Also, [Al / Zn / Zn Two Mg ternary eutectic structure] means an Al phase, a Zn phase, an intermetallic compound Zn Two The Al phase forming the ternary eutectic structure with the Mg phase is, for example, an “Al” phase ”(Zn) at a high temperature in a ternary equilibrium diagram of Al—Zn—Mg. (Al solid solution containing a small amount of Mg). The Al "phase at a high temperature usually appears at room temperature as being separated into a fine Al phase and a fine Zn phase. In addition, the Zn phase in the ternary eutectic structure dissolves a small amount of Al to form a solid solution. Is a Zn solid solution in which a small amount of Mg is further dissolved.Zn in the ternary eutectic structure Two The Mg phase is an intermetallic compound phase existing near Zn: about 84% by mass in a binary equilibrium diagram of Zn—Mg. According to the phase diagram, it is considered that Si is solid-dissolved in each phase, or even if it is dissolved, it is considered to be extremely small. However, since the amount cannot be clearly distinguished by ordinary analysis, these three The ternary eutectic structure composed of phases is referred to herein as [Al / Zn / Zn Two Mg ternary eutectic structure].
[0036]
Further, the [Al phase] is a phase that looks like an island with a clear boundary in the matrix of the ternary eutectic structure. This is, for example, a high temperature in the ternary system diagram of Al-Zn-Mg. (Al solid solution containing Zn as a solid solution and containing a small amount of Mg). The Al "phase at this high temperature differs in the amount of Zn and Mg dissolved in solid solution depending on the Al and Mg concentrations in the plating bath. The Al" phase at this high temperature is usually a fine Al phase and a fine Zn phase at room temperature. However, the island-like shape seen at room temperature may be regarded as retaining the form of the Al "phase at high temperature. Si is not dissolved in this phase according to the phase diagram. Or, even if it is dissolved, it is considered to be extremely small, but it cannot be clearly distinguished by ordinary analysis. Therefore, it is derived from the Al ″ phase (referred to as an Al primary crystal) at this high temperature and has a shape of Al ″. In the present specification, the phase retaining the shape of the phase is referred to as [Al phase], which can be clearly distinguished from the Al phase forming the ternary eutectic structure by microscopic observation.
[0037]
The [Zn phase] is a phase that looks like an island with a clear boundary in the matrix of the above ternary eutectic structure, and actually has a small amount of Al and a small amount of Mg dissolved therein. There is also. From the phase diagram, it is considered that Si is solid-dissolved in this phase, or even if it is solid-dissolved, it is considered to be extremely small. This [Zn phase] can be clearly distinguished from the Zn phase forming the ternary eutectic structure by microscopic observation.
[0038]
Also, [Zn Two Mg phase] is a phase that looks like an island with a clear boundary in the matrix of the ternary eutectic structure, and may actually dissolve a small amount of Al. From the phase diagram, it is considered that Si is solid-dissolved in this phase, or even if it is solid-dissolved, it is considered to be extremely small. This [Zn Two Mg phase] is Zn which forms the above-mentioned ternary eutectic structure. Two The Mg phase can be clearly distinguished by microscopic observation.
[0039]
In the present invention, the crystallization of [Si phase] does not particularly affect the improvement of corrosion resistance. Two The crystallization of [Si phase] clearly contributes to the improvement of corrosion resistance. This is Mg Two Derived from the fact that Si is very active, it reacts and decomposes with water in a corrosive environment to form [Al / Zn / Zn Two [Ternary eutectic structure of Mg] in the matrix [Zn phase], [Al phase], [Zn Two It is considered that the metal structure containing at least one of the [Mg phase] is sacrificed to prevent corrosion, and at the same time, the formed hydroxide of Mg forms a protective film and suppresses further progress of corrosion. This effect is particularly effective in the processed part.
[0040]
The plating layer may further contain Fe, Sb, or Pb alone or in a combination of 0.5% by mass or less. Further, even if the plating containing these as main components contains Ca, Be, Ti, Cu, Ni, Co, Cr, Mn, P, B, Sn, and REM in a total amount of 1% or less, the effect of the present invention is not impaired. Depending on the amount, the corrosion resistance may be further improved. There is no particular limitation on the amount of Zn-Mg-Al-Si plating applied, but from the viewpoint of corrosion resistance, 10 g / m Two As described above, from the viewpoint of workability, 350 g / m Two It is desirable that:
[0041]
In the present invention, the method for producing the plated steel sheet is not particularly limited, and a normal hot-dip galvanizing method can be applied. In the case of applying Ni pre-plating as the lower layer, the usual pre-plating method may be applied.After pre-Ni plating, rapid low-temperature heating is performed in a non-oxidizing or reducing atmosphere, and then hot-dip plating is performed. It is preferable that the method be performed.
[0042]
The undercoating layer used in the present invention is characterized by containing a silane coupling agent based on an aqueous resin. By combining this underlayer treatment layer, a Zn-Mg-Al alloy plating layer, and a Zn-Mg-Al-Si alloy plating layer, the corrosion resistance of the processed portion is synergistically improved. The term “aqueous resin” used in the undercoating layer includes, in addition to a water-soluble resin, a resin that is inherently insoluble in water but can be finely dispersed in water, such as an emulsion or a suspension. Those usable as such aqueous resins include, for example, polyolefin resins, acrylic olefin resins, polyurethane resins, polycarbonate resins, epoxy resins, polyester resins, alkyd resins, phenol resins, and other thermosetting resins. And a crosslinkable resin. Particularly preferred resins are acrylic olefin-based resins, polyurethane-based resins, and mixed resins of both. Two or more of these aqueous resins may be mixed or polymerized for use.
[0043]
The silane coupling agent is strongly bonded to both the Zn-Mg-Al alloy plating and the Zn-Mg-Al-Si alloy plating and the coating film in the presence of the aqueous resin, and dramatically improves the adhesion of the coating film. To improve the corrosion resistance of the processed part. Examples of the silane coupling agent include γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, aminosilane, γ-methacryloxypropyltrimethoxysilane, N- β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, octadecyldimethyl [ 3- (trimethoxysilyl) propyl] ammonium chloride, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchloro Or the like can be given a run.
[0044]
The content of the silane coupling agent is desirably 0.1 to 3000 parts by mass based on 100 parts by mass of the aqueous resin in terms of solid content. If the amount is less than 0.1 part by mass, the amount of the silane coupling agent is insufficient, so that sufficient adhesion cannot be obtained during processing and the corrosion resistance is poor. If it exceeds 3,000 parts by mass, the effect of improving the adhesion is saturated, which is uneconomical.
[0045]
Further, the addition of fine silica improves scratch resistance, coating film adhesion, and corrosion resistance. In the present invention, finely divided silica is a generic term for silica having a characteristic that can maintain a stable water dispersion state when dispersed in water because of having a fine particle size, and that semi-permanent sedimentation is not recognized. That's what it says. Such fine silica is not particularly limited as long as it has few impurities such as sodium and is weakly alkaline. For example, commercially available silica such as "Snowtex N" (manufactured by Nissan Chemical Industries, Ltd.) and "Adelite AT-20N" (manufactured by Asahi Denka Kogyo) can be used.
[0046]
The content of the fine silica is 1 to 2,000 parts by mass, more preferably 10 to 400 parts by mass, based on 100 parts by mass of the aqueous resin in terms of solid content. If the amount is less than 1 part by mass, the effect of addition is small, and if it exceeds 2,000 parts by mass, the effect of improving corrosion resistance is saturated, which is uneconomical. Addition of an etching fluoride improves the adhesion of the coating film. Here, as the etching fluoride, zinc fluoride tetrahydrate, zinc hexafluorosilicate hexahydrate and the like can be used. The content of the etchable fluoride is preferably from 1 to 1000 parts by mass in terms of solid content based on 100 parts by mass of the aqueous resin. If the amount is less than 1 part by mass, the effect of addition is small, and if it exceeds 1000 parts by mass, the effect of etching is saturated and the adhesion of the coating film is not improved, which is uneconomical.
[0047]
Further, a surfactant, a rust inhibitor, a foaming agent, and the like may be added as necessary. The adhesion amount of the undercoat layer after drying is 10 to 3000 mg / m. Two Is preferred. 10mg / m Two If it is less than the above, the adhesion is poor and the corrosion resistance of the processed portion is insufficient. On the other hand, 3000 mg / m Two When it exceeds, not only is it uneconomical, but also the workability is lowered and the corrosion resistance becomes poor.
[0048]
The method of applying the undercoat layer is not particularly limited, and a generally known coating method, for example, roll coating, air spray, airless spray, immersion, or the like can be applied. Drying and baking after the application may be performed by a known method such as a hot air oven, an induction heating oven, a near infrared oven, or a combination thereof. Further, depending on the type of the aqueous resin used, the resin can be cured by ultraviolet rays or electron beams. Alternatively, natural drying may be performed without using forced drying, or a Zn-Mg-Al alloy-plated steel sheet or a Zn-Mg-Al-Si alloy-plated steel sheet may be heated in advance and applied thereon to air dry. May be.
[0049]
Next, the lubricating coating of the present invention will be described below. A first feature of the present invention resides in that an appropriate type of resin is blended at a constant mass ratio as a base resin. As the resin, it is necessary to use a component having a good balance of adhesion, elongation, shear strength, corrosion resistance, abrasion resistance, and chemical resistance. In order to satisfy these performances, it is preferable to use the resin of the present invention in combination. The present inventors have already obtained a strong workability and corrosion resistance by blending a urethane resin and an epoxy resin and blending a specific polyolefin wax, but as a result of further intensive research, the urethane resin By specifying the structure, it was found that particularly excellent performance was exhibited.
[0050]
In order to achieve high workability and high corrosion resistance, it is premised that the coating film is uniform and has excellent adhesion, and it is important that the strength and the elongation are balanced. By using a urethane resin having a large molecular weight and an epoxy resin in combination, it is easier to control the basic physical properties than a film formed by cross-linking resins having a low molecular weight, and the coating amount is 0.3 to 6 g / m2. Two It has been found that even with a thin film, uniform physical properties can be easily obtained. The low-molecular-weight urethane resin is of a type containing various isocyanate-based crosslinking agents. As a resin, a combination of a urethane resin with a molecular weight of 3,000 or more and excellent abrasion resistance and an epoxy resin with an excellent adhesion or film strength is particularly effective in exhibiting various properties such as high workability and corrosion resistance. Base resin suitable for
[0051]
The urethane resin of the present invention is a water-dispersible ether / ester type urethane resin (a) having a molecular weight of 3,000 or more and having a bisphenol type skeleton and an ester skeleton and having a carboxyl group, and the epoxy resin (b) is a glycol skeleton. Alternatively, it is a type having a bisphenol skeleton, and is blended at a ratio that causes 20 to 100% of the carboxyl groups in (a) to react. By using the polymer urethane resin of the present invention, uniform film formability in a thin film can be obtained and the object of the present invention can be achieved, but more preferably, the elongation of the coating film is 100% or more and the tensile strength is 100 kg / cm Two If the above resin is applied, the highest workability can be obtained.
[0052]
Generally, the physical properties of the urethane resin are controlled by the balance between the hard segment and the soft segment and the crosslinking density, so that a wide range of characteristics can be controlled by the type of the skeleton and the isocyanate. Adjustment of the elongation and tensile strength of the urethane resin used in the present invention is controlled by the contents of an ester skeleton exhibiting flexibility, an ether skeleton exhibiting toughness, and a urethane bond. Is small, but tough properties with high tensile strength can be obtained. In order to exhibit particularly excellent lubricating properties, a polyester skeleton and an ether component having a bisphenol skeleton exhibit particularly excellent performance from a urethane resin having a polyester skeleton alone having a numerical value equivalent to the resin physical properties of the present invention. . It is easily guessed that a resin having a bisphenol skeleton having the same degree of physical properties and excellent in lubricating properties is because not only the elongation and strength of the resin but also the adhesion to the substrate are the major factors of lubricity. The mass ratio of the polyether skeleton to the polyester skeleton is preferably in the range of 10:90 to 70:30. When the ratio of the polyether is larger than the above range, the moldability is high and the moldability is low.
[0053]
A urethane resin system in which a polyol of ether and ester is polymerized to a molecular weight of 3,000 or more with isocyanate forms a film by heating, but as a method of improving processability, chemical resistance and corrosion resistance as a coating film performance, a reaction is carried out. There is a method in which an epoxy resin having a functional group (such as a hydroxyl group or an epoxy group) is blended and crosslinked by heating to improve the functionality. It has been newly found that this method can significantly improve workability, corrosion resistance, and chemical resistance compared to a film forming method of a modified product obtained by epoxy modification of a urethane resin alone. This crosslinking reaction proceeds with only the combined resin system, but if necessary, an isocyanate compound or an amino compound called a curing agent may be blended.
[0054]
Examples of the polyether polyol having a urethane resin skeleton used in the present invention include ethylene glycol, propylene glycol, polyols obtained by adding ethylene oxide or propylene oxide to low molecular weight glycols such as bisphenol A, and polyoxytetramethylene glycol. However, a polyether polyol having a bisphenol A skeleton is particularly preferred. Examples of the polyester polyol include a polyester obtained by a dehydration condensation reaction of a low molecular glycol and a dibasic acid, and a lactam polyol obtained by ring-opening polymerization of a lactam such as ε-caprolactam in the presence of a low molecular glycol.
[0055]
Examples of the isocyanate group for bonding the ester skeleton and the ether skeleton of the urethane resin include monomers, dimers, and trimers of aromatic diisocyanates such as tolylene diisocyanate, diphenyl metadiisocyanate, and xylylene diisocyanate, and polyethers thereof. Reaction products with polyols and polyester polyols, and their hydrogenated derivatives, alicyclic isocyanates, isophorone diisocyanate, hexamethylene diisocyanate and other alicyclic and aliphatic isocyanate monomers, dimers and trimers A reaction product of the product with a polyether polyol or polyester polyol, or a mixture thereof can also be used. The blending amount depends on the molecular weights and ratios of the polyester polyol, polyether polyol and the carboxyl group-introducing component to be used, but 5 to 20% by mass of the urethane resin in terms of NCO can obtain optimum processing characteristics as resin properties.
[0056]
The carboxyl group is a functional group for self-emulsification and exerts a great contribution to the adhesion to the metal surface. The carboxyl group-introducing component is a compound containing two or more hydroxyl groups or an amino group and one or more carboxyl groups, such as 2,2-dimethylolpropionic acetic acid, 2,2-dimethylolpropionic acid, , 2-dimethylolbutyric acid, 2,2-dimethylolpentanoic acid and the like, and diaminocarboxylic acids such as lysine and arginine. A carboxyl group compound selected from these is polymerized with an isocyanate compound in combination with the polyester polyol and the polyether polyol. By this method, an ether / ester type urethane resin having a carboxyl group having a molecular weight of 3000 or more used in the present invention can be obtained.
[0057]
Examples of the method of dispersing the urethane resin in water include a method of neutralizing a carboxyl group with an alkali such as ammonia or trimethylamine to self-emulsify, or a method of emulsifying and dispersing using an emulsifier. As a work environment measure, it is most preferable to recover the solvent contained in the urethane production step before the aqueous system is used and finally obtain a solvent-free type aqueous dispersion. The amount of the carboxyl group is suitably from 10 to 50 in terms of acid value per urethane solid. If it is less than 10, the adhesion is insufficient and the workability and corrosion resistance are poor. If it exceeds 50, the water resistance and alkali resistance are inferior, so that the corrosion resistance decreases.
[0058]
The amount of the epoxy resin having a reactive functional group (such as a hydroxyl group or an epoxy group) to be blended is preferably such that 20 to 100% of the carboxyl groups of the urethane resin react. If the amount is less than 20%, the compounding effect is poor. If the amount exceeds 100%, the epoxy resin plays a role of a plasticizer, so that a high degree of processability is reduced.
[0059]
In addition, the epoxy resin has a large effect of improving chemical resistance and corrosion resistance. When a structure having a bisphenol A-type skeleton is used for the epoxy resin, the effect of improving adhesion and corrosion resistance is particularly large. When a solvent-free type or an emulsifier-free type is required as an environmental measure to prevent a decrease in coating film performance, a water-soluble epoxy resin can be obtained by imparting hydrophilicity with a glycol skeleton.
[0060]
It is necessary to determine the compounding amount of the epoxy resin according to the acid value of the urethane resin, and the calculation method is as follows. Assuming that the carboxyl group of the urethane resin reacts with the epoxy group of the epoxy resin in an equivalent amount, the equation for calculating the required amount of the epoxy resin to react 100% with the urethane resin having a predetermined acid value (AV) is as follows. Equation 1
Epoxy solid mass (g) = AV value of urethane resin x (1/56) / 1000 x epoxy equivalent x urethane resin blended mass (g)
[0061]
Since the epoxy group compounded in the present invention crosslinks with the carboxyl group, the carboxyl group contributing to the adhesion is considerably reduced, but the adhesion is ensured because the OH group is generated by ring opening of the epoxy group. In addition, the corrosion resistance is greatly improved by blending the epoxy resin. A combination of a urethane resin having a molecular weight of less than 3000 and the above-mentioned epoxy resin does not stably achieve high workability. In addition, high workability and high corrosion resistance cannot be obtained by film formation of a urethane resin having a molecular weight of 3000 or more alone.
[0062]
The total mass of the urethane resin (a) and the epoxy resin (b) in the water-based lubricating coating composition of the present invention is suitably from 50 to 85% in terms of a solid content ratio based on the total solid content. If it is less than 50% or more than 85%, the corrosion resistance and workability are insufficient. However, the desired workability cannot be achieved only by using these resin-based coatings, and therefore, a combination of lubricating additives is required.
[0063]
Examples of the lubricating additive include known fluorine-based, hydrocarbon-based, fatty acid amide-based, ester-based, alcohol-based, metal soap-based, and inorganic lubricants. As a criterion for selecting a lubricating additive for improving processability, it is necessary to select a substance in which the added lubricant is present on the surface of the resin film rather than being dispersed in the formed resin film. This is necessary in order to reduce the friction between the surface of the mold and the mold and maximize the lubrication effect. That is, when the lubricant is dispersed in the formed resin film, the surface friction coefficient is high and the resin film is easily broken, and the powdery substance is peeled off and deposited, resulting in poor appearance and reduced workability called a powdering phenomenon. . As the substance existing on the surface of the resin film, a substance which is not compatible with the resin and has a small surface energy is selected.
[0064]
As a result of investigations by the present inventors, it has been found that the use of polyolefin wax greatly improves workability and also improves performance such as corrosion resistance and chemical resistance after processing. Examples of the wax include hydrocarbon waxes such as paraffin, microcrystalline or polyethylene. During processing, the coating temperature rises due to the heat of deformation and frictional heat of the material. Therefore, the melting point of wax is suitably 70 to 160 ° C. If it is lower than 70 ° C, it softens and melts during processing and has excellent properties as a solid lubricant additive. Is not exhibited. On the other hand, if the melting point exceeds 160 ° C., hard particles are present on the surface and the friction characteristics are reduced, so that a high degree of moldability cannot be obtained.
[0065]
Preferably, the polyolefin wax has a saponification value of 30 or less or 0 and has a branched structure. Those having a saponification value of more than 30 are not suitable when a high level of processing performance is required, since they have a large polarity and are easily compatible with the resin, so that they do not easily exist on the resin surface during film formation. Particularly preferred is a wax having a saponification value of 0 and having no ester bond having a lower compatibility with the resin.
[0066]
The appropriate particle size of these waxes is 0.1 to 7.0 μm. If it exceeds 7.0 μm, the distribution of the solidified wax becomes uneven, which is not preferable. If it is less than 0.1 μm, workability is insufficient. The amount of the lubricating additive is 3 to 30% as a solid content ratio based on the total solid content mass of the lubricating paint. If it is less than 3%, the effect of improving workability is small, and if it exceeds 30%, workability and corrosion resistance are reduced.
[0067]
Other additives include SiO for improving corrosion resistance. 2 Is added to the total solids in an amount of 10 to 40%. SiO 2 The effect of the addition is that the corrosion resistance is significantly improved and the workability is improved. If it is less than 10%, the effect of improving the corrosion resistance and processability is small, and if it exceeds 40%, the binder effect of the resin is reduced, and the corrosion resistance is reduced, and the elongation and strength of the resin are reduced, so that the processability is reduced. . SiO 2 The particle size of 3 to 30 μm is appropriate. If it exceeds 30 μm or less than 3 μm, higher workability and corrosion resistance cannot be obtained. Examples of the type of silica include liquid-phase colloidal silica and gas-phase silica, but are not particularly limited in the present invention. In addition, a conductive material for improving the weldability or a coloring pigment for improving the design may be added. The effects of the present invention are not impaired even when various additives such as an antisettling agent, a leveling agent, and a thickener are added.
[0068]
Since the present invention is a water-based paint, the surface tension is high and the surface wettability is inferior to that of a solvent-based paint, and when a predetermined amount is applied to a surface to be coated, uniform coatability may not be obtained. However, in order to ensure high performance such as workability and corrosion resistance, it is essential that uniform application is performed on the surface to be coated. For this reason, it is known to add a wetting agent or a thickening agent. Examples of the wetting agent include known surfactants for lowering surface tension, such as fluorine-based and silicon-based surfactants for lowering surface tension. In particular, among these compounds, it is preferable that the acetylene glycol-alcohol surfactant having a mole number of added ethylene oxide of 0 to 20 is contained in an amount of 0.05 to 0.5% based on the aqueous lubricating coating composition. The acetylene glycol-alcohol surfactant is characterized in that it has a high wetting rate and simultaneously has an antifoaming effect. On the other hand, fluorine-based and silicon-based surfactants are not suitable because they have excellent surface tension lowering ability, but have a low wetting rate, poor defoaming properties, and poor adhesion to top coats.
[0069]
Thickeners are added as a countermeasure in cases where sufficient surface coverage cannot be ensured with a wetting agent alone at the repelled part of the surface to be coated or when the film thickness cannot be ensured by a coating method represented by a roll coater. Sometimes. Since the coating material of the present invention is usually applied to an object to be coated at a high speed, a thixo-type thickener represented by a cellulosic agent has little effect under coating conditions under high-speed shear stress. It is known that a Newtonia type thickener is suitable under such coating conditions. As the thickener used in the present invention, a thickener having an ether / urethane skeleton having a molecular weight of 1,000 to 20,000 is particularly preferred.
[0070]
Since this thickener is compatible with the urethane resin skeleton which is the base resin of the paint of the present invention, it exhibits associative Newtonia thickening behavior, and exhibits an effective effect with a small amount of addition. Normally, when an additive is added to a paint, the original performance is often reduced.However, since this thickener has a skeleton that does not easily undergo hydrolysis, the effect when remaining in the coating film is very small. It is a feature. The amount of addition is 0.01 to 0.2% based on the resin solid content of the water-based lubricating coating composition, and is usually determined by the coating conditions. When the amount is less than 0.01%, the thickening effect is small, and when the amount exceeds 0.2%, the viscosity becomes too large, so that the coating property is hindered and the high workability and excellent corrosion resistance are unpreferably reduced. .
[0071]
The coating composition of the present invention composed of the compounds described above varies depending on the application and coating conditions, but it is generally desirable to adjust the non-volatile content to 15 to 30%, the viscosity to 10 to 50 cps, and the surface tension to 80 dyne / cm or less. . The reason is to easily control the target film thickness and to obtain a uniform film thickness without uneven appearance and paint repellency. The coating method can be an existing method such as a roll coating method, a dipping method, an air knife squeezing method, a groove roll method, a curtain coating method, etc., but a reverse roll in which a film thickness control, a film thickness accuracy, and a uniform appearance can be easily obtained. Coating is most desirable. Immediately after applying 0.2 to 5 µm as a dry film thickness, hot air, far infrared furnace, electric furnace, combustion furnace, induction heating and baking to a plate temperature of 80 to 200 ° C, preferably 120 to 160 ° C, followed by water cooling Forcibly cooling and drying to form a film.
[0072]
The reason for limiting the range of the film thickness from 0.2 to 5 μm is that if it is less than 0.2 μm, the lubricity, workability and corrosion resistance aimed at by the present invention are insufficient. If it exceeds 5 μm, welding cannot be performed, and problems such as blocking are likely to occur. The reason for limiting the baked plate temperature is that if the temperature is lower than 80 ° C, the reflow and cross-linking reaction of the resin are insufficient, resulting in a film with many defects on the rough surface. Deteriorates. The most desirable uniform and smooth defect-free coating due to melting and crosslinking of the resin and moderate surface concentration of the lubricant and dispersion in the coating are obtained in the range of 120 to 160 ° C.
[0073]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
[0074]
(Example 1)
First, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and a Zn-Mg-Al plating bath in which a Mg amount and an Al amount were respectively changed at a bath temperature of 400 to 600 ° C, a Mg amount, an Al amount, and a Si amount. Using a Zn-Mg-Al-Si plating bath of varying amount, hot-dip plating was performed for 3 seconds, Two 60 g / m plating weight by wiping Two Was adjusted to Table 1 shows the composition in the plating layer of the obtained plated steel sheet.
[0075]
Next, after the plated steel sheet is degreased, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride is applied to 100 parts by mass of an acrylic olefin resin, and dried with hot air. Dry in a furnace and deposit 200mg / m Two And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries, Ltd.) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0076]
On this undercoat treatment, an ether ester urethane resin having a molecular weight of 5,000 (bisphenol A ether: acid value 18, ether / ester ratio 30/70, isocyanate content 8) and propylene glycol epoxy resin (epoxy equivalent 220) were used. A lubricating paint containing 21% of 8 nm silica sol and 13% of polyethylene wax having a particle size of 0.6 μm (specific gravity 0.93, softening point 120 ° C.) 13% is applied and baked at a sheet temperature of 130 ° C. to produce a lubricating steel sheet having a thickness of 3 μm. Produced.
[0077]
The evaluation of the corrosion resistance after processing was based on the following evaluation of the white rust occurrence state after 60 cycles of CCT for the side surface of the corner of a sample subjected to a 60 mm deep rectangular cylinder high-speed crank press. In the CCT, one cycle was defined as SST 2 hr → dry 4 hr → wet 2 hr. A score of 3 or more was accepted.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
Table 1 shows the evaluation results. In No. 23, the corrosion resistance was rejected because the Mg and Al contents were outside the range of the present invention. In Nos. 24 and 28, the corrosion resistance was rejected because the Mg content was outside the range of the present invention. In No. 25, the corrosion resistance was rejected because the Al content was outside the range of the present invention. In No. 26, the corrosion resistance was rejected because the content of Mg + Al was out of the range of the present invention. In No. 27, since the Mg content was outside the range of the present invention, the plating adhesion was deteriorated and the corrosion resistance was rejected. Except for these, all had good corrosion resistance after processing.
[0078]
[Table 1]
Figure 0003547414
[0079]
(Example 2)
First, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dipped in a Zn-Mg-Al plating bath at 450 ° C for 3 seconds. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3% and Al 5%.
[0080]
Further, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dip plating was performed on the cold-rolled steel sheet at 450 ° C. for 3 seconds in a Zn—Mg—Al—Si plating bath. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3%, Al 10%, and Si 0.15%.
[0081]
Next, after degreased these plated steel sheets, a base material having the composition shown in Table 2 was applied and dried in a hot-air drying oven. The reached plate temperature during drying was 150 ° C. As the silane coupling agent, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and methyltrichlorosilane were used. "Snowtex N, described as ST-N in the table" (manufactured by Nissan Chemical Industries, Ltd.) was used as the silica, and zinc hexafluorosilicate hexahydrate was used as the etching fluoride.
[0082]
[Table 2]
Figure 0003547414
[0083]
On this undercoat treatment, an ether ester urethane resin having a molecular weight of 5,000 (bisphenol A ether: acid value 18, ether / ester ratio 30/70, isocyanate content 8) and propylene glycol epoxy resin (epoxy equivalent 220) were used. A lubricating paint containing 21% of 8 nm silica sol and 13% of polyethylene wax having a particle size of 0.6 μm (specific gravity 0.93, softening point 120 ° C.) 13% is applied and baked at a sheet temperature of 130 ° C. to produce a lubricating steel sheet having a thickness of 3 μm. Produced.
[0084]
The adhesion was evaluated by squeezing 9 mm with an Erichsen tester, peeling the convex portion with a tape, passing the sample without peeling, and rejecting the sample with peeling.
[0085]
The evaluation of the corrosion resistance after processing was based on the following evaluation of the white rust occurrence state after 60 cycles of CCT for the side surface of the corner of a sample subjected to a 60 mm deep rectangular cylinder high-speed crank press. In the CCT, one cycle was defined as SST 2 hr → dry 4 hr → wet 2 hr. A score of 3 or more was accepted.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
Table 2 shows the evaluation results.
[0086]
In Nos. 10 and 28, the adhesion and the post-processing corrosion resistance were rejected because the silane coupling agent content of the undercoat layer was outside the range of the present invention. In Nos. 11, 12, 29, and 30, the adhesion amount and the post-processing corrosion resistance were rejected because the amount of adhesion of the base treatment layer was out of the range of the present invention. In Nos. 15 and 33, the adhesion and the corrosion resistance after processing were rejected because the contents of the fine silica and the etching fluoride were out of the range of the present invention. Nos. 18 and 36 are excellent in adhesion and corrosion resistance after processing, but are unsuitable because they use chromium which has a large environmental load.
[0087]
In all cases other than these, good results were obtained in adhesion and post-processing corrosion resistance.
[0088]
(Example 3)
First, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dipped in a Zn-Mg-Al plating bath at 450 ° C for 3 seconds. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3% and Al 5%.
[0089]
Further, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dip plating was performed on the cold-rolled steel sheet at 450 ° C. for 3 seconds in a Zn—Mg—Al—Si plating bath. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3%, Al 10%, and Si 0.15%.
[0090]
Next, after the plated steel sheet is degreased, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride is applied to 100 parts by mass of an acrylic olefin resin, and dried with hot air. Dry in a furnace and deposit 200mg / m Two And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries, Ltd.) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0091]
An ether ester urethane resin having a molecular weight of 5,000 (bisphenol A ether: acid value 18, ether / ester ratio 30/70, isocyanate content 8), a propylene glycol epoxy resin (epoxy equivalent 220), and an average particle diameter of 5000 8 nm silica sol, polyethylene wax having a particle size of 0.6 μm (specific gravity 0.93, softening point 120 ° C.) was coated with a lubricating paint prepared at the compounding ratio shown in Table 3, and baked to a plate temperature of 130 ° C. to lubricate a film thickness of 3 μm. A steel plate was produced.
[0092]
The workability was evaluated by performing a rectangular cylinder high-speed crank press having a depth of 60 mm, and determining the occurrence of galling due to metal contact between the sample and the die by the following scoring.
3: No galling occurs
2: Slight galling is observed but acceptable level
1: Intense biting
[0093]
The evaluation of the corrosion resistance after processing was based on the following evaluation of the white rust occurrence state after 60 cycles of CCT for the side surface of the corner of a sample subjected to a 60 mm deep rectangular cylinder high-speed crank press. In the CCT, one cycle was defined as SST 2 hr → dry 4 hr → wet 2 hr. A score of 3 or more was accepted.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
[0094]
Table 3 shows the evaluation results. In Nos. 1, 6, 15, and 20, the workability and the corrosion resistance were rejected because the added amount of the wax was out of the range of the present invention. In Nos. 7, 12, 21, and 26, the workability and corrosion resistance were rejected because the added amount of silica sol was out of the range of the present invention. In Nos. 13, 14, 27 and 28, the workability and corrosion resistance were rejected because the ratio of the total mass of the urethane resin and the epoxy resin to the total paint mass was out of the range of the present invention. Except for these, all resulted in good workability and corrosion resistance.
[0095]
[Table 3]
Figure 0003547414
[0096]
(Example 4)
First, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dipped in a Zn-Mg-Al plating bath at 450 ° C for 3 seconds. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3% and Al 5%.
[0097]
Further, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dip plating was performed on the cold-rolled steel sheet at 450 ° C. for 3 seconds in a Zn—Mg—Al—Si plating bath. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3%, Al 10%, and Si 0.15%.
[0098]
Next, after the plated steel sheet is degreased, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride is applied to 100 parts by mass of an acrylic olefin resin, and dried with hot air. Dry in a furnace and deposit 200mg / m Two And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
On this base treatment, an ether ester urethane resin having a molecular weight of 5,000 (bisphenol A ether: acid value 18, ether / ester ratio 30/70, isocyanate content 8) and a propylene glycol epoxy resin (epoxy equivalent 220) were used. A lubricating paint containing 21% of silica sol of 3 to 8 nm and 13% of polyethylene wax having a particle diameter of 0.6 μm (specific gravity 0.93, softening point 120 ° C.) was applied and baked at a plate temperature of 130 ° C. to obtain a film shown in Table 4. A thick lubricated steel plate was produced.
[0099]
The workability was evaluated by performing a rectangular cylinder high-speed crank press having a depth of 60 mm, and determining the occurrence of galling due to metal contact between the sample and the die by the following scoring.
3: No galling occurs
2: Slight galling is observed but acceptable level
1: Intense biting
[0100]
The evaluation of the corrosion resistance after processing was based on the following evaluation of the white rust occurrence state after 60 cycles of CCT for the side surface of the corner of a sample subjected to a 60 mm deep rectangular cylinder high-speed crank press. In the CCT, one cycle was defined as SST 2 hr → dry 4 hr → wet 2 hr. A score of 3 or more was accepted.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
[0101]
The weldability was evaluated under the following spot welding conditions.
Pressure: 200kgf
Electrode: Cu-Cr alloy, CF type, tip diameter 6mmφ
Energizing time: 10 cycles
Continuous welding conditions: Nugget forming current I 0 (When the thickness is t, the nugget diameter becomes 4√t or more.
A current value (I) that is 1.4 times the minimum current value) a ) Continuous welding at a speed of 1 spot / 3 seconds and a pause of 30 seconds every 20 spots.
End of continuous welding: 0.85 × I sample for nugget diameter measurement every 100 shots a When the nugget diameter becomes smaller than 4√t, it is determined that the welding is completed.
[0102]
In the evaluation, 500 or more welding points were accepted.
[0103]
Table 4 shows the evaluation results. In Nos. 1 and 6, workability and corrosion resistance were rejected because the film thickness was out of the range of the present invention. In Nos. 5 and 10, the weldability was rejected because the film thickness was outside the range of the present invention. In all cases other than these, good workability, corrosion resistance and weldability were obtained.
[0104]
[Table 4]
Figure 0003547414
[0105]
(Example 5)
First, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dipped in a Zn-Mg-Al plating bath at 450 ° C for 3 seconds. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3% and Al 5%.
[0106]
Further, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dip plating was performed on the cold-rolled steel sheet at 450 ° C. for 3 seconds in a Zn—Mg—Al—Si plating bath. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3%, Al 10%, and Si 0.15%.
[0107]
Next, after the plated steel sheet is degreased, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride is applied to 100 parts by mass of an acrylic olefin resin, and dried with hot air. Dry in a furnace and deposit 200mg / m Two And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries, Ltd.) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0108]
On this base treatment, a silica sol having an average particle size of 8 nm and a polyethylene wax having a particle size of 0.6 μm (specific gravity 0) were added to the ether ester urethane resin and the epoxy resin shown in Table 5 (urethane resin a) and table 6 (epoxy resin b). .93, softening point of 120 ° C.) was applied in the composition shown in Table 7 and baked at a sheet temperature of 130 ° C. to produce a lubricated steel sheet having a thickness of 3 μm.
[0109]
The workability was evaluated by performing a rectangular cylinder high-speed crank press having a depth of 60 mm, and determining the occurrence of galling due to metal contact between the sample and the die by the following scoring.
3: No galling occurs
2: Slight galling is observed but acceptable level
1: Intense biting
[0110]
The evaluation of corrosion resistance after processing was based on the following evaluation of white rust after 40 cycles of CCT for the corner side surface of a sample subjected to a 60 mm deep rectangular cylinder high-speed crank press. The CCT was performed in one cycle of SST 6 hr → dry 4 hr → wet 4 hr → freezing 4 hr. A score of 3 or more was accepted.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
[0111]
[Table 5]
Figure 0003547414
[0112]
[Table 6]
Figure 0003547414
[0113]
Table 7 shows the evaluation results. In Nos. 8 and 18, the workability and corrosion resistance were rejected because the molecular weight of the urethane resin was small. Except for these, all resulted in good workability and corrosion resistance. In particular, a coating composition in which the mass ratio of the polyether skeleton to the polyester skeleton of the ether / ester type urethane resin is 10:90 to 70:30 and the acid value of the urethane resin is 10 to 50, and the epoxy resin is a glycol skeleton or bisphenol The paint having the mold skeleton and containing the epoxy resin in a ratio that reacts with 20 to 100% by mass of the carboxyl group of the urethane resin showed good workability and corrosion resistance.
[0114]
[Table 7]
Figure 0003547414
[0115]
(Example 6)
First, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dipped in a Zn-Mg-Al plating bath at 450 ° C for 3 seconds. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3% and Al 5%.
[0116]
Further, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dip plating was performed on the cold-rolled steel sheet at 450 ° C. for 3 seconds in a Zn—Mg—Al—Si plating bath. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3%, Al 10%, and Si 0.15%.
[0117]
Next, after the plated steel sheet is degreased, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride is applied to 100 parts by mass of an acrylic olefin resin, and dried with hot air. Dry in a furnace and deposit 200mg / m Two And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries, Ltd.) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0118]
On this undercoat treatment, an ether ester urethane resin having a molecular weight of 5,000 (bisphenol A ether: acid value 18, ether / ester ratio 30/70, isocyanate content 8) and propylene glycol epoxy resin (epoxy equivalent 220) were used. A lubricating paint containing 21% of 8 nm silica sol and 13% of wax shown in Table 8 was applied and baked at a sheet temperature of 130 ° C. to produce a 3 μm-thick lubricated steel sheet.
[0119]
The workability was evaluated by performing a rectangular cylinder high-speed crank press having a depth of 60 mm, and determining the occurrence of galling due to metal contact between the sample and the die by the following scoring.
3: No galling occurs
2: Slight galling is observed but acceptable level
1: Intense biting
[0120]
The evaluation of corrosion resistance after processing was based on the following evaluation of white rust after 40 cycles of CCT for the corner side surface of a sample subjected to a 60 mm deep rectangular cylinder high-speed crank press. The CCT was performed in one cycle of SST 6 hr → dry 4 hr → wet 4 hr → freezing 4 hr. A score of 3 or more was accepted.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
[0121]
Table 8 shows the evaluation results. All exhibited good workability and corrosion resistance. In particular, waxes having a saponification value of 30 or less or 0, and waxes having a particle size of 0.1 to 7.0 μm exhibited good workability and corrosion resistance.
[0122]
[Table 8]
Figure 0003547414
[0123]
(Example 7)
First, a cold-rolled steel sheet having a thickness of 0.8 mm is prepared and melted for 3 seconds in a Zn-Mg-Al-Si plating bath in which the amounts of Mg, Al, and Si in a bath at 400 to 600 ° C are changed. Perform plating and N Two 60 g / m plating weight by wiping Two Was adjusted to Table 9 shows the composition of the obtained plated steel sheet in the plating layer. Table 9 also shows the results of observing the plated steel sheet by SEM from the cross section and observing the metal structure of the plated layer.
[0124]
Next, after the plated steel sheet is degreased, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride is applied to 100 parts by mass of an acrylic olefin resin, and dried with hot air. Dry in a furnace and deposit 200mg / m Two And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries, Ltd.) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0125]
On this undercoat treatment, an ether ester urethane resin having a molecular weight of 5,000 (bisphenol A ether: acid value 18, ether / ester ratio 30/70, isocyanate content 8) and propylene glycol epoxy resin (epoxy equivalent 220) were used. A lubricating paint containing 21% of 8 nm silica sol and 13% of polyethylene wax having a particle size of 0.6 μm (specific gravity 0.93, softening point 120 ° C.) 13% is applied and baked at a sheet temperature of 130 ° C. to produce a lubricating steel sheet having a thickness of 3 μm. Produced.
[0126]
For the evaluation of corrosion resistance, the occurrence of white rust after 40 cycles of CCT was evaluated for the corner side surface of a sample subjected to a 60 mm deep rectangular cylinder high-speed crank press according to the following rating. The CCT was performed in one cycle of SST 6 hr → dry 4 hr → wet 4 hr → freezing 4 hr. A score of 3 or more was accepted.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
[0127]
The evaluation results are as shown in Table 9, and all the materials of the present invention showed good corrosion resistance. In particular, Mg in the plating layer 2 The plated steel sheet in which the Si phase was observed showed good corrosion resistance.
[0128]
[Table 9]
Figure 0003547414
[0129]
(Example 8)
First, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dipped in a Zn-Mg-Al plating bath at 450 ° C for 3 seconds. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3% and Al 5%.
[0130]
Further, a cold-rolled steel sheet having a thickness of 0.8 mm was prepared, and hot-dip plating was performed on the cold-rolled steel sheet at 450 ° C. for 3 seconds in a Zn—Mg—Al—Si plating bath. Two 60 g / m plating weight by wiping Two Was adjusted to The composition in the plating layer of the obtained plated steel sheet was Mg 3%, Al 10%, and Si 0.15%.
[0131]
Next, after the plated steel sheet is degreased, a base treatment material containing 10 parts by mass of a silane coupling agent, 30 parts by mass of silica, and 10 parts by mass of an etchable fluoride is applied to 100 parts by mass of an acrylic olefin resin, and dried with hot air. Dry in a furnace and deposit 200mg / m Two And The reached plate temperature during drying was 150 ° C. Γ- (2-aminoethyl) aminopropyltrimethoxysilane as a silane coupling agent, “Snowtex N” (manufactured by Nissan Chemical Industries, Ltd.) as silica, and zinc hexafluorosilicate hexahydrate as an etchable fluoride Japanese products were used.
[0132]
On this base treatment, Table 9 shows an ether ester urethane resin having a molecular weight of 5,000 (bisphenol A ether: acid value 18, ether / ester ratio 30/70, isocyanate content 8) and a propylene glycol epoxy resin (epoxy equivalent 220). A lubricating paint containing 21% of silica sol having an average particle diameter shown and 13% of polyethylene wax having a particle diameter of 0.6 μm (specific gravity: 0.93, softening point: 120 ° C.) was applied and baked at a sheet temperature of 130 ° C. to give a film having a thickness of 3 μm. Lubricated steel sheets were produced.
[0133]
The workability was evaluated by performing a rectangular cylinder high-speed crank press having a depth of 60 mm, and determining the occurrence of galling due to metal contact between the sample and the die by the following scoring.
3: No galling occurs
2: Slight galling is observed but acceptable level
1: Intense biting
[0134]
The evaluation of corrosion resistance after processing was based on the following evaluation of white rust after 40 cycles of CCT for the corner side surface of a sample subjected to a 60 mm deep rectangular cylinder high-speed crank press. The CCT was performed in one cycle of SST 6 hr → dry 4 hr → wet 4 hr → freezing 4 hr. A score of 3 or more was accepted.
5: less than 5%
4: 5% or more and less than 10%
3: 10% or more and less than 20%
2: 20% or more and less than 30%
1: 30% or more
[0135]
Table 10 shows the evaluation results. In Nos. 1, 4, 5, and 8, the corrosion resistance was rejected because the average particle size of the silica sol was out of the range of the present invention. In all cases other than these, good results were obtained in adhesion and corrosion resistance.
[0136]
[Table 10]
Figure 0003547414
[0137]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a lubricated plated steel sheet that can be subjected to severe press working without containing chromium having a large environmental load and that the corrosion resistance of the processed portion is sufficiently ensured. In addition, an extremely excellent effect can be obtained.

Claims (11)

鋼板の表面に下層として、
Mg:1〜10質量%、
Al:2〜19質量%
を含有し、かつ、MgとAlが下式、
Mg(%)+Al(%)≦20%
を満たし、残部がZn及び不可避的不純物よりなるZn合金めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、さらにその上にビスフェノール型骨格、エステル骨格及びカルボキシル基を有するエーテル・エステル型ウレタン樹脂(a)とエポキシ樹脂(b)の総和(a+b)が全固形分に対して50〜85質量%、ポリオレフィンワックス(c)を3〜30質量%、粒径3〜30nmのシリカ(d)を10〜40質量%含有する水性潤滑塗料を塗布・焼き付けて得られる膜厚0.2〜5μmの被膜を設けたことを特徴とする加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
As a lower layer on the surface of the steel sheet,
Mg: 1 to 10% by mass,
Al: 2 to 19% by mass
And Mg and Al are represented by the following formula:
Mg (%) + Al (%) ≦ 20%
And a Zn alloy plating layer whose balance is composed of Zn and unavoidable impurities, and a coating layer containing 100 parts by mass of an aqueous resin and 0.1 to 3000 parts by mass of a silane coupling agent as a solid content is provided thereon. The total (a + b) of the ether / ester type urethane resin (a) and the epoxy resin (b) having a bisphenol type skeleton, an ester skeleton and a carboxyl group on the processing layer, and having a bisphenol type skeleton, an ester skeleton and a carboxyl group, is 50 to 50% of the total solid content. A film obtained by applying and baking a water-based lubricating paint containing 85% by mass, 3 to 30% by mass of a polyolefin wax (c), and 10 to 40% by mass of silica (d) having a particle size of 3 to 30 nm 0.2 to 0.2% A non-delamination type lubricated plated steel sheet which is provided with a coating of 5 μm and has excellent corrosion resistance in a processed portion and a small environmental load.
鋼板の表面に下層として、
Mg:2〜10質量%、
Al:4〜18質量%、
Si:0.01〜2質量%
を含有し、かつ、MgとAlが下式、
Mg(%)+Al(%)≦20%
を満たし、残部がZn及び不可避的不純物よりなるZn合金めっき層を有し、その上に固形分として水性樹脂100質量部、シランカップリング剤0.1〜3000質量部を含有する皮膜層を下地処理層として有し、さらにその上にビスフェノール型骨格、エステル骨格及びカルボキシル基を有するエーテル・エステル型ウレタン樹脂(a)とエポキシ樹脂(b)の総和(a+b)が全固形分に対して50〜85質量%、ポリオレフィンワックス(c)を3〜30質量%、粒径3〜30nmのシリカ(d)を10〜40質量%含有する水性潤滑塗料を塗布・焼き付けて得られる膜厚0.2〜5μmの被膜を設けたことを特徴とする加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。
As a lower layer on the surface of the steel sheet,
Mg: 2 to 10% by mass,
Al: 4 to 18% by mass,
Si: 0.01 to 2% by mass
And Mg and Al are represented by the following formula:
Mg (%) + Al (%) ≦ 20%
And a Zn alloy plating layer whose balance is composed of Zn and unavoidable impurities, and a coating layer containing 100 parts by mass of an aqueous resin and 0.1 to 3000 parts by mass of a silane coupling agent as a solid content is provided thereon. The total (a + b) of the ether / ester type urethane resin (a) and the epoxy resin (b) having a bisphenol type skeleton, an ester skeleton and a carboxyl group on the processing layer, and having a bisphenol type skeleton, an ester skeleton and a carboxyl group, is 50 to 50% of the total solid content. A film obtained by applying and baking a water-based lubricating paint containing 85% by mass, 3 to 30% by mass of a polyolefin wax (c), and 10 to 40% by mass of silica (d) having a particle size of 3 to 30 nm 0.2 to 0.2% A non-delamination type lubricated plated steel sheet which is provided with a coating of 5 μm and has excellent corrosion resistance in a processed portion and a small environmental load.
下地処理層の皮膜層に固形分として、微粒シリカ1〜2000質量部、エッチング性フッ化物0.1〜1000質量部のうちいずれか1種以上をさらに含有することを特徴とする、請求項1または2記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。The coating layer of the undercoating layer further contains, as solids, at least one of 1 to 2000 parts by mass of fine silica and 0.1 to 1000 parts by mass of an etchable fluoride. Or a non-delaminated lubricated plated steel sheet having excellent corrosion resistance of the processed part and low environmental load according to 2. エーテル・エステル型ウレタン樹脂(a)のポリエステル骨格に対するポリエーテル骨格の質量比率が10:90〜70:30であり、かつ前記ウレタン樹脂の酸価が10〜50であることを特徴とする請求項1〜3のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。The mass ratio of the polyether skeleton to the polyester skeleton of the ether / ester type urethane resin (a) is 10:90 to 70:30, and the acid value of the urethane resin is 10 to 50. A non-delaminated lubricated plated steel sheet having excellent corrosion resistance and a low environmental load in the processed portion according to any one of 1 to 3. エポキシ樹脂(b)がグリコール骨格またはビスフェノール型骨格を有するタイプであって、(a)のカルボキシル基の20〜100質量%と反応する比率で(b)が配合されることを特徴とする請求項1〜4のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。The epoxy resin (b) is of a type having a glycol skeleton or a bisphenol type skeleton, and (b) is blended in a ratio that reacts with 20 to 100% by mass of the carboxyl group of (a). A non-delaminated lubricated plated steel sheet having excellent corrosion resistance and a low environmental load in the processed part according to any one of claims 1 to 4. ポリオレフィンワックス(c)の融点が70〜160℃、粒径0.1〜7μmであることを特徴とする請求項1〜5のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。6. The non-demolding material according to claim 1, wherein the melting point of the polyolefin wax (c) is 70 to 160 [deg.] C. and the particle size is 0.1 to 7 [mu] m. Film type lubricated plated steel sheet. ポリオレフィンワックス(c)のケン化価が30以下または0であり、且つ分岐を有する構造であることを特徴とする請求項1〜6のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。7. The processed part according to claim 1, wherein the polyolefin wax (c) has a saponification value of 30 or less or 0, and has a branched structure. Non-coating type lubricated plated steel sheet. めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕と〔Zn2Mg相〕及び〔Zn相〕が混在した金属組織を有することを特徴とする請求項2〜7のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。The plating layer has a metal structure in which [Mg 2 Si phase], [Zn 2 Mg phase] and [Zn phase] are mixed in a base material of [Al / Zn / Zn 2 Mg ternary eutectic structure]. A non-delamination type lubricated plated steel sheet having excellent corrosion resistance and a low environmental load in a processed part according to any one of claims 2 to 7. めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕と〔Zn2Mg相〕及び〔Al相〕が混在した金属組織を有することを特徴とする請求項2〜7のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。The plating layer has a metal structure in which [Mg 2 Si phase], [Zn 2 Mg phase] and [Al phase] are mixed in a base material of [Al / Zn / Zn 2 Mg ternary eutectic]. A non-delamination type lubricated plated steel sheet having excellent corrosion resistance and a low environmental load in a processed part according to any one of claims 2 to 7. めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕と〔Zn2Mg相〕及び〔Zn相〕、〔Al相〕が混在した金属組織を有することを特徴とする請求項2〜7のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。Metal structure in which [Mg 2 Si phase], [Zn 2 Mg phase], [Zn phase], and [Al phase] are mixed in a base material whose plating layer is [Al / Zn / Zn 2 Mg ternary eutectic structure] The non-delamination type lubricated plated steel sheet according to any one of claims 2 to 7, which has excellent corrosion resistance and low environmental load. めっき層が〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔Mg2Si相〕と〔Zn相〕及び〔Al相〕が混在した金属組織を有することを特徴とする請求項2〜7のいずれかに記載の加工部の耐食性に優れ環境負荷の小さい非脱膜型潤滑めっき鋼板。The plating layer has a metal structure in which [Mg 2 Si phase], [Zn phase], and [Al phase] are mixed in a substrate of [Al / Zn / Zn 2 Mg ternary eutectic structure]. A non-delaminated lubricated plated steel sheet having excellent corrosion resistance and low environmental load in the processed part according to any one of claims 2 to 7.
JP2001247882A 2001-08-17 2001-08-17 Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load Expired - Fee Related JP3547414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247882A JP3547414B2 (en) 2001-08-17 2001-08-17 Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247882A JP3547414B2 (en) 2001-08-17 2001-08-17 Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load

Publications (2)

Publication Number Publication Date
JP2003055776A JP2003055776A (en) 2003-02-26
JP3547414B2 true JP3547414B2 (en) 2004-07-28

Family

ID=19077128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247882A Expired - Fee Related JP3547414B2 (en) 2001-08-17 2001-08-17 Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load

Country Status (1)

Country Link
JP (1) JP3547414B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320765A1 (en) * 2003-05-09 2004-11-25 Degussa Ag Means for coating metals to protect against corrosion
JP2005015834A (en) * 2003-06-25 2005-01-20 Nippon Steel Corp Highly corrosion-resistant coated steel sheet capable of being welded superior in corrosion resistance
JP4671609B2 (en) * 2004-01-26 2011-04-20 日本パーカライジング株式会社 Lubricating water-based polyurethane resin composition, surface lubrication treatment method for galvanized steel sheet using the same, and surface-treated steel sheet thereof
JP4546884B2 (en) * 2004-07-07 2010-09-22 新日本製鐵株式会社 Surface treated galvanized steel sheet with excellent corrosion resistance
JP4374289B2 (en) * 2004-07-07 2009-12-02 新日本製鐵株式会社 Surface treated steel plate with excellent corrosion resistance
KR100742909B1 (en) 2005-12-23 2007-07-25 주식회사 포스코 Surface Treatment Agent Of Steel Sheet For Auto Body Having Excellent Corrosion Resistance, Formability And Paintability, Steel Sheet Using The Surface Treatment Agent And Method for Surface Treatment
JP4774442B2 (en) * 2005-12-27 2011-09-14 ポスコ Chromium-free surface-treated steel sheet for fuel tank and manufacturing method thereof
ES2629109T3 (en) * 2006-05-15 2017-08-07 Thyssenkrupp Steel Europe Ag Procedure for the manufacture of a flat steel product coated with a corrosion protection system
JP2008063471A (en) 2006-09-08 2008-03-21 Nisshin Chem Ind Co Ltd Coating material for metal and metal material provided with coating film of the coating material for metal
JP5586007B2 (en) * 2007-02-23 2014-09-10 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Cold rolled and continuously annealed high strength steel strip and method for producing the steel
JP5617309B2 (en) * 2009-03-30 2014-11-05 新日鐵住金株式会社 Multilayer-coated metal sheet and method for producing the same
JP4938054B2 (en) * 2009-07-02 2012-05-23 新日本製鐵株式会社 Organic coated molten Sn-Zn plated steel sheet
WO2013160566A1 (en) * 2012-04-25 2013-10-31 Arcelormittal Investigacion Y Desarrollo, S.L. Method for producing a metal sheet having oiled zn-al-mg coatings, and corresponding metal sheet
CN103589310B (en) * 2012-08-13 2015-08-12 中国石油天然气集团公司 A kind of long-acting polyurethane finish of resistance to atmospheric marine environment and manufacture method
JP6082333B2 (en) 2012-10-16 2017-02-15 株式会社神戸製鋼所 Water-based resin coating laminated metal sheet
JP5758040B1 (en) * 2014-10-27 2015-08-05 第一工業製薬株式会社 Aqueous dispersion of polyurethane resin and coating agent for plastic film using the same
JP5758039B1 (en) * 2014-10-27 2015-08-05 第一工業製薬株式会社 Aqueous dispersion of polyurethane resin and coating agent for plastic film using the same
KR102523915B1 (en) * 2016-05-16 2023-04-19 블루스코프 스틸 리미티드 Coating process
KR102276742B1 (en) * 2018-11-28 2021-07-13 주식회사 포스코 Galvanized steel sheet excellent coating adhesion and corrosion resistance properties and method for manufacturing thereof
CN112575276A (en) * 2020-12-03 2021-03-30 攀钢集团研究院有限公司 Hot-dip zinc-aluminum-magnesium alloy coated steel plate for ultra-deep drawing and preparation method thereof

Also Published As

Publication number Publication date
JP2003055776A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP3547414B2 (en) Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load
KR100509626B1 (en) Plated steel product, plated steel sheet and precoated steel sheet having excellent resistance to corrosion
KR101070966B1 (en) Surface-treated metal material and metal surface treating agent
US5061575A (en) Lubricating resin coated steel strips having improved formability and corrosion resistance
JP3145441B2 (en) Lubricant paint
JP2743237B2 (en) Non-delamination type lubricated steel sheet which can be omitted press oil
JP3869577B2 (en) Water-based surface treatment agent for metal material and surface-treated metal plate
JP5782198B2 (en) Steel sheet having alkali-soluble lubricating film, method for producing the same, and composition
JP4157491B2 (en) Non-delaminating lubricated plated steel plate with excellent workability
JP2719571B2 (en) Water-based lubricating coating composition
JP3702193B2 (en) Non-delaminating lubricated galvanized steel sheet with excellent corrosion resistance after machining
JP2003138385A (en) Non-lubricating film removal type plated steel sheet having excellent adhesion of coating film, corrosion resistance in worked zone and reduced environmental load
JP4374289B2 (en) Surface treated steel plate with excellent corrosion resistance
JPH10237478A (en) Water-based metal-surface-treating composition excellent in corrosion inhibition of injured part
JPH05255587A (en) Film-forming composition for lubricated steel sheet excellent in press moldability and lubricated steel sheet prepared therefrom
JP4002534B2 (en) High corrosion-resistant coated steel sheet with excellent paint film adhesion and sharpness and low environmental impact
JP3174504B2 (en) Method for producing surface-treated steel sheet with excellent press workability
JPH0999517A (en) Lurication treated steel panel and film forming composition used therein
JP3174503B2 (en) Method for producing surface-treated steel sheet with excellent press workability
JP3135815B2 (en) Method for producing surface-treated steel sheet with excellent press workability
JP3924261B2 (en) High corrosion-resistant coated steel sheet with excellent image clarity and low environmental impact
JP2696461B2 (en) Hard lubricated plated steel sheet with excellent pressability and sliding wear resistance
JPH0565667A (en) Production of high-performance lubricative plated steel sheet
JP3059675B2 (en) Colored lubricated steel sheet and its manufacturing method
JP3113171B2 (en) Method for producing surface-treated steel sheet with excellent press workability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R151 Written notification of patent or utility model registration

Ref document number: 3547414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees