JP2004292906A - Method for producing fine crystal grain structure steel - Google Patents

Method for producing fine crystal grain structure steel Download PDF

Info

Publication number
JP2004292906A
JP2004292906A JP2003087994A JP2003087994A JP2004292906A JP 2004292906 A JP2004292906 A JP 2004292906A JP 2003087994 A JP2003087994 A JP 2003087994A JP 2003087994 A JP2003087994 A JP 2003087994A JP 2004292906 A JP2004292906 A JP 2004292906A
Authority
JP
Japan
Prior art keywords
forging
temperature
steel
producing
recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087994A
Other languages
Japanese (ja)
Other versions
JP3972848B2 (en
Inventor
Osamu Nakano
修 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003087994A priority Critical patent/JP3972848B2/en
Publication of JP2004292906A publication Critical patent/JP2004292906A/en
Application granted granted Critical
Publication of JP3972848B2 publication Critical patent/JP3972848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fine crystal grain structure steel with which at least at near the surface layer, the crystal grain is fully fined and the steel occupied with few μm level fine crystal grain structure can be produced. <P>SOLUTION: After quenching the objective steel material from the temperature not lower than A<SB>3</SB>transformation point, the forging-works from the temperature before forging not higher than the recrystallization temperature, reaching to the temperature after forging not lower than the recrystallization temperature, are repeatedly performed. In this case, the later forging work is, the higher the temperature before forging is, and the lower the temperature after forging is. In this way, the recrystallization is repeatedly developed and on the other hand, the growth of the crystal grain is not developed. Therefore, the steel containing no coarse grain and satisfactorily occupied with the structure of fine crystal grains can be produced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,結晶粒を微細化させることにより高い強度,靱性を鋼に付与する微細結晶粒組織鋼の製造方法に関する。さらに詳細には,結晶粒径を概ね10μm以下にまで微細化させる微細結晶粒組織鋼の製造方法に関するものである。
【0002】
【従来の技術】
従来の微細結晶粒組織鋼の製造方法としては,特許文献1に記載されている方法が挙げられる。この文献に記載されている方法は基本的に,熱間加工の終段に,フェライト・オーステナイト2相状態で所定の歪み条件での加工を行い,その後空冷する方法である。この方法における対象鋼材の表面温度の履歴は,図3の(a)の部分のように表される。特許文献1では,これにより,3μm以下の微細結晶粒組織を有する鋼を製造できるとされている。そしてさらに,V,Nb,Ti等の炭素固定元素を添加して炭化物を微細分散させることにより,結晶粒の成長をよりよく抑制できるとされている。
【0003】
【特許文献1】
特開2000−96137号公報
【0004】
【発明が解決しようとする課題】
しかしながら,前記した従来の技術には,次のような問題点があった。すなわち,平均的には確かに微細な結晶粒組織が得られるものの,局所的には粗大粒の生成を防止できないのである。その原因は,鍛造加工を,フェライト・オーステナイト2相域の温度で行っていることにあると考えられる。これは通常,再結晶温度より相当に高い温度であり,加工直後にはA 変態点を超えて安定オーステナイト域に達していると考えられる。このために粗大粒が生成してしまうのである。炭化物を微細分散させてもこれを完全には防止できない。特に,加工後に図3の(b)の部分に示すような後処理を行うと,全体焼き入れのための高温保持の際に粗大粒が生成する傾向がある。
【0005】
本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,少なくとも表層付近では結晶粒が完全に微細化され,数μmオーダーの微細結晶粒組織で占められた鋼を製造できる微細結晶粒組織鋼の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
この課題の解決を目的としてなされた本発明の微細結晶粒組織鋼の製造方法では,鋼を加工して微細結晶粒組織鋼を製造するに際し,鋼をその再結晶温度より低い鍛造前温度からその再結晶温度より高い鍛造後温度に至るまで鍛造加工する鍛造加工工程を複数回反復する。このようにすることにより,加工対象である鋼は,鍛造加工されながら再結晶温度を何度も超えることになる。このため再結晶が繰り返され,結晶粒の個数が非常に多い状態となる。また,加工開始以後,安定オーステナイト域に達することはない。このため,結晶粒が顕著に成長してしまうことがない。これにより,粗大粒を含まず微細結晶粒組織のみで占められた鋼が製造される。
【0007】
また,本発明の微細結晶粒組織鋼の製造方法においては,鍛造加工工程の鍛造前温度を後の回ほど高くしていき,鍛造加工工程の鍛造後温度を後の回ほど低くしていくことが望ましい。特に鍛造後温度については,後の回ほど高いと,結晶粒の成長速度が速くなってしまう傾向がある。よって,鍛造加工工程の鍛造後温度を後の回ほど低くすることが,粗大粒の生成を防止する上で有用なのである。また,鍛造加工を反復する場合,最終形状に近づくほど,すなわち後の回の加工ほど,加工の度合を低くしていくことが一般的に好ましい。このため,各鍛造加工工程における加工発熱量は後の回ほど少ないのである。このため,鍛造前温度を後の回ほど高くしないと,再結晶温度を超えられないことも起こりうるのである。
【0008】
また,本発明の微細結晶粒組織鋼の製造方法においては,鍛造加工工程の鍛造前温度と再結晶温度との最大差,および,再結晶温度と鍛造後温度との最大差が,ともに70K以内であることが望ましい。すなわち,鍛造前温度と鍛造後温度との最大差が140K以内であることが望ましい。鍛造加工工程の鍛造前温度と鍛造後温度との差があまりに大きいと,鍛造後温度が高いことを意味する。これにより結晶粒の成長速度が速くなってしまうおそれがある。このような事態を防止するためには,鍛造前温度と鍛造後温度との最大差を規定しておき,その範囲内で加工することが有用なのである。一般的には,鍛造加工の加工発熱だけで鍛造前後の温度差が140Kを超えてしまうことはまずない。よって,鍛造加工を型加熱なく行うこととすればよい。
【0009】
また,本発明の微細結晶粒組織鋼の製造方法においては,鋼をその安定オーステナイト域の温度から急冷する第1の焼き入れを行い,その後に鍛造加工工程を複数回反復するとともに,最後の鍛造加工工程の鍛造加工後に第2の焼き入れを行い,その後に再結晶温度より低い温度で焼き戻しを行うことが望ましい。すなわち,鍛造加工工程の反復の前に,安定オーステナイト域の温度から焼き入れするのである(第1の焼き入れ)。これにより,全体を均一な組織とすることができる。そして,鍛造加工後には,最後の鍛造加工工程の鍛造後温度から焼き入れを行う(第2の焼き入れ)。そしてその後に焼き戻しを行うのである。これにより,加工後の鋼に靱性が付与される。
【0010】
【発明の実施の形態】
以下,本発明の最良の条件を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本発明に係る微細結晶粒組織鋼の製造方法は,炭素鋼,合金鋼その他の構造用鋼材一般を対象鋼材とすることができる。V,Nb,Ti等の炭素固定元素を添加した鋼種を用いる必要はない。ただし,それらの元素を添加した鋼種を用いることを妨げない。
【0011】
本実施の形態では,熱処理および鍛造加工により,図1に示すような温度履歴を対象鋼材に付与する。まず,図1中に「前処理」と表示するように,対象鋼材をA 変態点以上の温度まで加熱する。そして,水または油等の冷却媒体により急冷して全体焼き入れを行う。これが第1の焼き入れである。この前処理により,対象鋼材から前履歴の影響を取り除き,その全体を均一な組織とすることができる。
【0012】
次に,鍛造加工を繰り返し行う。図1中に「鍛造加工」と表示する部分である。ここで,第n回目の鍛造加工の鍛造前温度をFsn,鍛造後温度をFfnで表し,対象鋼材のその時点での再結晶温度をRnで表すと,次の各関係が成り立つようにする。
Fsn < Rn < Ffn (1)
Fs1 < Fs2 < Fs3 < …… (2)
Ff1 > Ff2 > Ff3 > …… (3)
【0013】
(1)式はむろん,すべてのnについて成り立つ必要がある。この式は,各回の鍛造加工において,再結晶温度より低い鍛造前温度から鍛造加工を開始して,再結晶温度より高い鍛造後温度まで鍛造加工を行う,ということを意味している。すなわち,鍛造加工の繰り返し回数分,対象鋼材は再結晶温度を超えるのである。したがってその都度,再結晶による結晶核の生成が起こる。このことが結晶粒の微細化に寄与する。(2)式は,後の回の鍛造加工ほど,高い鍛造前温度から鍛造加工を開始する,ということを意味している。(3)式は,後の回の鍛造加工ほど,低い鍛造後温度で鍛造加工を終了する,ということを意味している。特に後の回の鍛造加工において高い鍛造後温度まで加工してしまうと,粗大粒が生成してしまうおそれがある。これではそれまでの鍛造加工が無駄になってしまうので,これを防止するためである。ただし(1)式の要請により,その時点での再結晶温度を超える必要がある。
【0014】
なお再結晶温度は,対象鋼材の成分はもちろん加工歴にも影響される。一般には,鍛造加工を受けていない状態での再結晶温度は,絶対温度でその鋼種の融点Tmの約1/2である。鍛造加工が加わると,加工度が大きくなるほど再結晶温度は低下する傾向がある。よって,各回の鍛造前温度Fsnおよび鍛造後温度Ffnは,対象鋼材の成分や各回の鍛造加工の加工度を考慮して決定すべきである。また,鍛造前温度Fsnと鍛造後温度Ffnとの最大差,すなわち第1回の鍛造前温度Fs1と鍛造後温度Ff1との差は,鍛造後温度Ff1が高すぎることとならないように決定すべきである。鍛造後温度Ff1が高すぎると,粗大粒が生成してしまうおそれがあるからである。一般的な鋼種では,この温度差が140K以内であればほぼ問題ない。
【0015】
上記のような鍛造加工を行うためには,前処理で焼き入れされた対象鋼材を,まず第1回の鍛造加工の鍛造前温度Fs1まで加熱する必要がある。その加熱は,高周波誘導加熱炉等,一般的な加熱炉を用いればよい。また,対象鋼材の少なくとも表面が鍛造前温度Fs1に達したら,第1回の鍛造加工を開始してよい。加工の型を予熱しておく必要はないが,予熱しておいてもよい。対象鋼材の温度は,鍛造加工中の加工発熱により上昇していく。よって,加工中に型を加熱する必要はない。ただし,前述のように定めた鍛造後温度Ffnを超えない範囲内であれば,加工中に型を加熱してもよい。前段の鍛造後温度Ff(n−1)から次段の鍛造前温度Fsnまでの冷却は,空冷でよい。ただし,最終の鍛造加工が終了したら,その時点での鍛造後温度から水または油等の冷却媒体により急冷する。これにより,表層に再焼き入れが施される。よって,その後にさらに焼き入れを行う必要はない。すなわち,従来技術の図3の(b)中の全体焼き入れに相当する処理を行う必要はない。なお,図1では鍛造加工の回数は5回であるが,むろん5回に限定されるものではない。
【0016】
その後,図1中に「後処理」と表示するように,対象鋼材に焼き戻しを施す。その際の加熱温度はその時点での再結晶温度以下でなければならない。その後の冷却は空冷でよい。これにより対象鋼材に靱性が付与される。
【0017】
以上詳細に説明したように本実施の形態では,A 変態点以上の温度からの全体焼き入れの後に,再結晶温度を下から上へ超える鍛造加工を反復して行うようにしている。その際,鍛造後温度が後の回ほど低くなるようにしている。そして,最終の鍛造後温度から表層再焼き入れを行うようにしている。このため,再結晶温度での結晶核の生成が何度も行われる。これにより,非常に多数の結晶粒が存在する状態となる。その一方で,最初の鍛造加工の開始後には,結晶粒が粗大化するような温度履歴を経ることがない。そのため個々の結晶粒は非常に微細化する。したがってこのようにして製造された鋼材の少なくとも表層は,粗大粒を含まず,10μm未満の微細結晶粒組織で占められている。かくして,炭素固定元素に頼らない微細結晶粒組織鋼の製造方法が実現されている。なお,炭素固定元素を添加した鋼種を用いた場合には,より少ない鍛造加工工程の繰り返し回数で同じ効果が得られる。
【0018】
【実施例】
以下に実施例および比較例を示す。本実施例および比較例では,市販のSCM440H(JIS)の丸棒を出発材として,本発明に係る微細結晶粒組織鋼の製造方法を用いて鍛造加工を行った。使用した出発材の化学分析値(wt%)は,表1の通りであった。この鋼材の再結晶温度は,無加工状態で約730℃で,加工度が進んでいくと約710℃程度まで低下する。また,この鋼材のA 変態点は,790℃である。
【0019】
【表1】

Figure 2004292906
【0020】
本実施例および比較例では,出発材の丸棒から,500mm角の正方形断面の角材を切り出して供試材とした。この供試材を,880℃から油冷にて全体焼き入れし,全体を均一なマルテンサイト組織とした。そして反復鍛造加工に供した。具体的には,図2に示すように,上型と下型とで供試材をプレスして小径化する鍛造加工を,供試材を45°ずつ回転させながら繰り返した。型の予熱および加工中加熱は,いずれもしなかった。そして最終の鍛造加工後に油冷にて供試材に表層再焼き入れを施した。さらに,供試材を530℃まで加熱してその後空冷する焼き戻しを行った。
【0021】
本実施例および比較例における鍛造加工の鍛造前温度Fsnおよび鍛造後温度Ffnは,表2の通り(すべて℃)とした。表2において,実施例1〜実施例5は,本発明の最良の条件に属する実施例である。比較例1〜比較例4は,本発明の範囲に属しない鍛造条件による例である。なぜなら,鍛造前温度Fsnおよび鍛造後温度Ffnが全体に高く,鍛造前において既に供試材が再結晶温度より高温となっている鍛造加工工程を含んでいるからである。このために,再結晶による結晶粒の微細化があまり期待できない。特に比較例4は,鍛造加工工程を1回しか行っておらず,「反復」に該当しない。さらに,その鍛造加工をA 変態点以上の温度で行っている点でも本発明の趣旨と合致しない。
【0022】
【表2】
Figure 2004292906
【0023】
表2に示した各実施例および各比較例の条件で鍛造加工した各供試材について,旧オーステナイト結晶粒径測定を行った。この測定は,軸方向に垂直な断面の組織を光学顕微鏡で観察することにより行った。すなわち,切断面を鏡面研磨し,さらにピクリン酸でエッチングした面を観察に供した。そして,表層部分の平均粒径を測定値とした。また,各供試材からそれぞれ,JISZ2274に準拠する回転曲げ疲労試験片(平行部の直径10mm)を切り出した。その各々を疲労試験に供した。その結果として得られた旧オーステナイト結晶の平均粒径(μm)および疲労限度(MPa)を表3に示す。
【0024】
【表3】
Figure 2004292906
【0025】
表3によれば,実施例1〜実施例5による供試材ではいずれも,平均粒径が10μmを下回っている。また,700MPaを超える疲労限度が得られている。結晶粒の微細化が十分に行われているため,高い強度が得られているのである。
【0026】
これに対し比較例1〜比較例4による供試材では,平均粒径が数十μmオーダーと大きい。特に比較例4の供試材では,100μmを超えている。このように粒径が大きいのは,高い温度で鍛造加工を行っていることに原因があると考えられる。すなわち,鍛造加工時の温度が高すぎるために,再結晶による結晶核の生成が不十分であるとともに,既存の結晶粒の成長速度が速いのである。そして,疲労限度も高々600MPa程度で,実施例1〜実施例5のものより低い。結晶粒の微細化が不十分であるために,狙いとする強度を達成できていないのである。
【0027】
なお,本実施例は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば鋼種については,前述のようなCr,Moといった合金元素を含むものに限らず,特段の合金元素を添加しない炭素鋼でもよい。その一方,V,Nb,Ti等の炭素固定元素を添加した鋼種であってもよい。Ni等のオーステナイト安定化元素については,A 変態点を大きく低下させない範囲内であれば添加してもよい。
【0028】
【発明の効果】
以上の説明から明らかなように本発明によれば,少なくとも表層付近では結晶粒が完全に微細化され,数μmオーダーの微細結晶粒組織で占められた鋼を製造できる微細結晶粒組織鋼の製造方法が提供されている。
【図面の簡単な説明】
【図1】実施の形態に係る微細結晶粒組織鋼の製造方法における対象鋼材の温度履歴を示すグラフである。
【図2】実施例として行った反復鍛造加工の概要を示す図である。
【図3】従来の微細結晶粒組織鋼の製造方法における対象鋼材の温度履歴を示すグラフである。
【符号の説明】
Fs1 第1回の鍛造加工の鍛造前温度
Fs2 第2回の鍛造加工の鍛造前温度
Fs3 第3回の鍛造加工の鍛造前温度
Ff1 第1回の鍛造加工の鍛造後温度
Ff2 第2回の鍛造加工の鍛造後温度
Ff3 第3回の鍛造加工の鍛造後温度[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a fine grain structure steel that imparts high strength and toughness to steel by making crystal grains fine. More specifically, the present invention relates to a method for producing a fine grain structure steel in which the crystal grain size is reduced to about 10 μm or less.
[0002]
[Prior art]
As a conventional method for producing a fine-grained-structure steel, a method described in Patent Document 1 can be mentioned. The method described in this document is basically a method in which, at the final stage of hot working, working is performed under predetermined strain conditions in a ferrite-austenite two-phase state, and then air cooling is performed. The history of the surface temperature of the target steel material in this method is represented as shown in FIG. Patent Document 1 states that this makes it possible to manufacture steel having a fine grain structure of 3 μm or less. Further, it is described that by adding a carbon fixing element such as V, Nb, and Ti to finely disperse the carbide, the growth of crystal grains can be more effectively suppressed.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-96137
[Problems to be solved by the invention]
However, the conventional technique described above has the following problems. In other words, although a fine grain structure can be obtained on average, formation of coarse grains cannot be prevented locally. The cause is considered to be that the forging is performed at a temperature in the ferrite-austenite two-phase region. This is usually a temperature considerably higher than the recrystallization temperature, it is believed to have reached a stable austenite region beyond the A 3 transformation point immediately after processing. For this reason, coarse grains are generated. Even if the carbide is finely dispersed, this cannot be completely prevented. In particular, when the post-processing as shown in FIG. 3B is performed after the processing, coarse grains tend to be generated during the high-temperature holding for the whole quenching.
[0005]
The present invention has been made in order to solve the problems of the above-described conventional technology. That is, it is an object of the present invention to provide a method for producing a fine grain structure steel capable of producing a steel in which crystal grains are completely refined at least in the vicinity of a surface layer and occupied by a fine grain structure on the order of several μm. is there.
[0006]
[Means for Solving the Problems]
In the method for producing a fine-grained structure steel according to the present invention, which has been made to solve this problem, in producing a fine-grained structure steel by working the steel, the steel is heated from a pre-forging temperature lower than its recrystallization temperature. The forging process of forging to a post-forging temperature higher than the recrystallization temperature is repeated a plurality of times. By doing so, the steel to be worked exceeds the recrystallization temperature many times while being forged. Therefore, recrystallization is repeated, and the number of crystal grains becomes very large. After the start of processing, the temperature does not reach the stable austenite range. Therefore, crystal grains do not grow remarkably. This produces a steel that does not contain coarse grains but is occupied solely by the fine grain structure.
[0007]
Further, in the method for producing a fine grain structure steel of the present invention, the temperature before forging in the forging process is increased later, and the temperature after forging in the forging process is decreased later. Is desirable. In particular, if the temperature after forging is higher in later times, the growth rate of crystal grains tends to increase. Therefore, lowering the post-forging temperature in the forging step later is useful for preventing the formation of coarse grains. In addition, when forging is repeated, it is generally preferable that the degree of processing be reduced as the shape approaches the final shape, that is, as the subsequent processing is performed. For this reason, the calorific value of processing in each forging process is smaller in later times. For this reason, unless the temperature before forging is increased as much as after, the recrystallization temperature may not be exceeded.
[0008]
In the method for producing a fine grain structure steel according to the present invention, the maximum difference between the pre-forging temperature and the recrystallization temperature in the forging process and the maximum difference between the recrystallization temperature and the post-forging temperature are both within 70K. It is desirable that That is, it is desirable that the maximum difference between the temperature before forging and the temperature after forging be within 140K. If the difference between the temperature before forging and the temperature after forging in the forging process is too large, it means that the temperature after forging is high. This may increase the growth rate of the crystal grains. In order to prevent such a situation, it is useful to define the maximum difference between the pre-forging temperature and the post-forging temperature and work within the range. Generally, the temperature difference between before and after forging rarely exceeds 140 K due to only the heat generated during forging. Therefore, the forging may be performed without heating the mold.
[0009]
In the method for producing a fine grain structure steel according to the present invention, first quenching is performed to rapidly quench the steel from the temperature in the stable austenite region, and then the forging process is repeated a plurality of times, and the final forging is performed. It is preferable that the second quenching be performed after the forging in the processing step, and then the tempering be performed at a temperature lower than the recrystallization temperature. That is, before the forging process is repeated, quenching is performed from the temperature in the stable austenite region (first quenching). Thereby, the whole can be made a uniform structure. After the forging, quenching is performed from the post-forging temperature in the last forging process (second quenching). After that, tempering is performed. This imparts toughness to the steel after processing.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments embodying the best conditions of the present invention will be described in detail with reference to the accompanying drawings. In the method for producing a fine grain structure steel according to the present invention, carbon steel, alloy steel, and other general structural steel materials can be used as target steel materials. It is not necessary to use a steel type to which a carbon fixing element such as V, Nb or Ti is added. However, it does not prevent the use of steel types to which these elements are added.
[0011]
In the present embodiment, a temperature history as shown in FIG. 1 is given to the target steel material by heat treatment and forging. First, as indicated as "pre-processing" in FIG. 1, to heat the target steel to a temperature of at least A 3 transformation point. Then, the whole is quenched by rapid cooling with a cooling medium such as water or oil. This is the first quenching. By this pre-treatment, the influence of the pre-history can be removed from the target steel material, and the entire structure can be made a uniform structure.
[0012]
Next, forging is repeatedly performed. This is a portion indicated as "forging" in FIG. Here, if the pre-forging temperature of the n-th forging process is represented by Fsn, the post-forging temperature is represented by Ffn, and the recrystallization temperature of the target steel at that time is represented by Rn, the following relationships are established.
Fsn <Rn <Ffn (1)
Fs1 <Fs2 <Fs3 <... (2)
Ff1>Ff2>Ff3> ... (3)
[0013]
Equation (1) must, of course, hold for all n. This equation means that in each forging process, the forging process is started from a pre-forging temperature lower than the recrystallization temperature, and the forging is performed to a post-forging temperature higher than the recrystallization temperature. In other words, the target steel exceeds the recrystallization temperature by the number of times of forging. Therefore, each time a crystal nucleus is generated by recrystallization. This contributes to the refinement of the crystal grains. Equation (2) means that the later the forging process, the more the forging process starts from a higher pre-forging temperature. Equation (3) means that the later the forging process, the more the forging process ends at a lower post-forging temperature. In particular, if processing is performed to a high post-forging temperature in a subsequent forging process, coarse particles may be generated. In this case, the forging process up to that point is wasted, so that this is prevented. However, it is necessary to exceed the recrystallization temperature at that time according to the request of the expression (1).
[0014]
The recrystallization temperature is affected by the processing history as well as the composition of the target steel. Generally, the recrystallization temperature in a state where the steel has not been forged is about 1/2 of the melting point Tm of the steel type in absolute temperature. When forging is added, the recrystallization temperature tends to decrease as the degree of working increases. Therefore, the pre-forging temperature Fsn and the post-forging temperature Ffn should be determined in consideration of the composition of the target steel material and the working degree of each forging process. The maximum difference between the pre-forging temperature Fsn and the post-forging temperature Ffn, that is, the difference between the first pre-forging temperature Fs1 and the post-forging temperature Ff1, should be determined so that the post-forging temperature Ff1 is not too high. It is. If the post-forging temperature Ff1 is too high, coarse particles may be generated. For general steel grades, there is almost no problem if this temperature difference is within 140K.
[0015]
In order to perform the forging as described above, it is necessary to first heat the target steel material quenched in the pretreatment to the pre-forging temperature Fs1 of the first forging. For the heating, a general heating furnace such as a high-frequency induction heating furnace may be used. Further, when at least the surface of the target steel material reaches the pre-forging temperature Fs1, the first forging process may be started. It is not necessary to preheat the working mold, but it may be preheated. The temperature of the target steel material rises due to the heat generated during forging. Thus, there is no need to heat the mold during processing. However, the mold may be heated during processing as long as it does not exceed the post-forging temperature Ffn determined as described above. The cooling from the post-forging temperature Ff (n-1) in the previous stage to the pre-forging temperature Fsn in the next stage may be air cooling. However, when the final forging process is completed, it is rapidly cooled with a cooling medium such as water or oil from the post-forging temperature at that time. Thereby, the surface layer is re-quenched. Therefore, it is not necessary to perform further hardening thereafter. That is, it is not necessary to perform the processing corresponding to the entire quenching in FIG. In FIG. 1, the number of times of forging is five, but is not limited to five.
[0016]
Thereafter, the target steel material is tempered so as to indicate “post-treatment” in FIG. The heating temperature at that time must be lower than the recrystallization temperature at that time. Subsequent cooling may be air cooling. This imparts toughness to the target steel.
[0017]
In this embodiment, as described above in detail, after the entire quenching from A 3 transformation point or above the temperature, and to perform repeatedly the forging exceeding onto the recrystallization temperature from below. At that time, the temperature after forging is set to be lower in later times. Then, the surface layer is re-quenched from the final forging temperature. Therefore, crystal nuclei are generated many times at the recrystallization temperature. This results in a state in which a very large number of crystal grains are present. On the other hand, after the first forging process is started, there is no temperature history in which the crystal grains become coarse. Therefore, individual crystal grains are very fine. Therefore, at least the surface layer of the steel material manufactured in this manner does not include coarse grains and is occupied by a fine grain structure of less than 10 μm. Thus, a method for producing a fine grain structure steel that does not rely on carbon fixing elements has been realized. In the case where a steel type to which a carbon fixing element is added is used, the same effect can be obtained with a smaller number of repetitions of the forging process.
[0018]
【Example】
Examples and comparative examples are shown below. In this example and the comparative example, forging was performed using a commercially available SCM440H (JIS) round bar as a starting material by using the method for manufacturing a fine grain structure steel according to the present invention. Table 1 shows the chemical analysis values (wt%) of the used starting materials. The recrystallization temperature of this steel material is about 730 ° C. in a non-processed state, and decreases to about 710 ° C. as the degree of work progresses. Also, A 3 transformation point of the steel material is 790 ° C..
[0019]
[Table 1]
Figure 2004292906
[0020]
In this example and the comparative example, a square bar having a square cross section of 500 mm square was cut out from a round bar as a starting material to obtain a test material. This test material was entirely quenched from 880 ° C. by oil cooling to obtain a uniform martensite structure. Then, it was subjected to repeated forging. Specifically, as shown in FIG. 2, the forging process of pressing the test material with the upper die and the lower die to reduce the diameter was repeated while rotating the test material by 45 °. Neither preheating of the mold nor heating during processing was performed. After the final forging, the test material was re-quenched by oil cooling. Further, the test material was heated to 530 ° C. and then tempered by air cooling.
[0021]
The pre-forging temperature Fsn and the post-forging temperature Ffn of the forging in the present example and the comparative example were set as shown in Table 2 (all in ° C.). In Table 2, Examples 1 to 5 are examples belonging to the best conditions of the present invention. Comparative Examples 1 to 4 are examples under forging conditions that do not fall within the scope of the present invention. This is because the temperature before forging Fsn and the temperature after forging Ffn are generally high and include a forging process in which the test material is already at a temperature higher than the recrystallization temperature before forging. For this reason, refining of crystal grains by recrystallization cannot be expected very much. In particular, in Comparative Example 4, the forging process was performed only once, which does not correspond to “repetition”. Furthermore, inconsistent with the spirit of the present invention in the point that is performing the forging at A 3 transformation point or above the temperature.
[0022]
[Table 2]
Figure 2004292906
[0023]
The austenitic crystal grain size was measured for each test material forged under the conditions of each example and each comparative example shown in Table 2. This measurement was performed by observing the structure of a cross section perpendicular to the axial direction with an optical microscope. That is, the cut surface was mirror-polished and the surface etched with picric acid was used for observation. Then, the average particle size of the surface layer was used as the measured value. Rotating bending fatigue test pieces (parallel part diameter: 10 mm) in accordance with JISZ2274 were cut out from each test material. Each of them was subjected to a fatigue test. Table 3 shows the average grain size (μm) and fatigue limit (MPa) of the austenite crystals obtained as a result.
[0024]
[Table 3]
Figure 2004292906
[0025]
According to Table 3, all of the test materials according to Examples 1 to 5 have an average particle diameter of less than 10 μm. Further, a fatigue limit exceeding 700 MPa has been obtained. Since the crystal grains are sufficiently refined, high strength is obtained.
[0026]
On the other hand, in the test materials according to Comparative Examples 1 to 4, the average particle size is as large as several tens μm. In particular, in the test material of Comparative Example 4, it exceeds 100 μm. It is considered that such a large grain size is caused by forging at a high temperature. That is, since the temperature at the time of forging is too high, the generation of crystal nuclei by recrystallization is insufficient, and the growth rate of existing crystal grains is high. The fatigue limit is at most about 600 MPa, which is lower than those of Examples 1 to 5. Because of the insufficient refinement of the crystal grains, the desired strength has not been achieved.
[0027]
Note that this embodiment is merely an example and does not limit the present invention in any way. Therefore, naturally, the present invention can be variously modified and modified without departing from the gist thereof. For example, the steel type is not limited to one containing alloy elements such as Cr and Mo as described above, and may be carbon steel to which no special alloy element is added. On the other hand, a steel type to which a carbon fixing element such as V, Nb, or Ti is added may be used. The austenite stabilizing elements such as Ni, it may be added as long as it is within a range that does not greatly reduce the A 3 transformation point.
[0028]
【The invention's effect】
As is apparent from the above description, according to the present invention, at least in the vicinity of the surface layer, the crystal grains are completely refined, and the production of a steel with a fine grain structure capable of producing a steel occupied by a fine grain structure on the order of several μm is produced. A method is provided.
[Brief description of the drawings]
FIG. 1 is a graph showing a temperature history of a target steel material in a method for producing a fine-grained-structure steel according to an embodiment.
FIG. 2 is a diagram showing an outline of a repetitive forging process performed as an example.
FIG. 3 is a graph showing a temperature history of a target steel material in a conventional method for producing a fine grain structure steel.
[Explanation of symbols]
Fs1 Temperature before forging of first forging Fs2 Temperature before forging of second forging Fs3 Temperature before forging of third forging Ff1 Temperature forging after first forging Ff2 Second forging Post-forging temperature of processing Ff3 Post-forging temperature of 3rd forging

Claims (4)

鋼を加工して微細結晶粒組織鋼を製造する方法において,
鋼をその再結晶温度より低い鍛造前温度からその再結晶温度より高い鍛造後温度に至るまで鍛造加工する鍛造加工工程を複数回反復することを特徴とする微細結晶粒組織鋼の製造方法。
In a method for producing a fine grain structure steel by processing steel,
A method for producing a fine-grained structure steel, comprising repeating a forging process for forging a steel from a pre-forging temperature lower than its recrystallization temperature to a post-forging temperature higher than its recrystallization temperature a plurality of times.
請求項1に記載する微細結晶粒組織鋼の製造方法において,
前記鍛造加工工程の鍛造前温度を後の回ほど高くしていき,
前記鍛造加工工程の鍛造後温度を後の回ほど低くしていくことを特徴とする微細結晶粒組織鋼の製造方法。
The method for producing a fine grain structure steel according to claim 1,
The temperature before forging in the forging process is increased later in the forging process,
A method for producing a fine-grained structure steel, wherein the temperature after forging in the forging process is lowered as the temperature increases.
請求項1または請求項2に記載する微細結晶粒組織鋼の製造方法において,
前記鍛造加工工程の鍛造前温度と鍛造後温度との最大差が,140K以内であることを特徴とする微細結晶粒組織鋼の製造方法。
The method for producing a fine-grained-structure steel according to claim 1 or 2,
A method for producing a fine grain structure steel, wherein a maximum difference between a temperature before forging and a temperature after forging in the forging process is within 140K.
請求項1から請求項3までのいずれか1つに記載する微細結晶粒組織鋼の製造方法において,
鋼をその安定オーステナイト域の温度から急冷する第1の焼き入れを行い,
その後に前記鍛造加工工程を複数回反復するとともに,最後の鍛造加工工程の鍛造加工後に第2の焼き入れを行い,
その後に再結晶温度より低い温度で焼き戻しを行うことを特徴とする微細結晶粒組織鋼の製造方法。
The method for producing a fine-grained-structure steel according to any one of claims 1 to 3,
Performing a first quenching to quench the steel from its stable austenite temperature,
Thereafter, the forging process is repeated a plurality of times, and a second quenching is performed after forging in the final forging process.
After that, tempering is performed at a temperature lower than the recrystallization temperature.
JP2003087994A 2003-03-27 2003-03-27 Manufacturing method of fine grain structure steel Expired - Fee Related JP3972848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087994A JP3972848B2 (en) 2003-03-27 2003-03-27 Manufacturing method of fine grain structure steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087994A JP3972848B2 (en) 2003-03-27 2003-03-27 Manufacturing method of fine grain structure steel

Publications (2)

Publication Number Publication Date
JP2004292906A true JP2004292906A (en) 2004-10-21
JP3972848B2 JP3972848B2 (en) 2007-09-05

Family

ID=33402242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087994A Expired - Fee Related JP3972848B2 (en) 2003-03-27 2003-03-27 Manufacturing method of fine grain structure steel

Country Status (1)

Country Link
JP (1) JP3972848B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414425A (en) * 2015-11-04 2016-03-23 武汉重工铸锻有限责任公司 Forging method capable of eliminating coarse grains in forge piece and obtaining uniform and fine grain structure
JP6470818B1 (en) * 2017-10-31 2019-02-13 基宏 蘇 Method for manufacturing a forged club head
US10512828B2 (en) 2017-10-13 2019-12-24 Chi-Hung Su Manufacture method for partial structure refinement of a forged iron golf club head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414425A (en) * 2015-11-04 2016-03-23 武汉重工铸锻有限责任公司 Forging method capable of eliminating coarse grains in forge piece and obtaining uniform and fine grain structure
US10512828B2 (en) 2017-10-13 2019-12-24 Chi-Hung Su Manufacture method for partial structure refinement of a forged iron golf club head
JP6470818B1 (en) * 2017-10-31 2019-02-13 基宏 蘇 Method for manufacturing a forged club head

Also Published As

Publication number Publication date
JP3972848B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP5338169B2 (en) High nitrogen martensitic stainless steel
JP4339248B2 (en) Quenching and tempering heat treated steel wire and method for producing the same
JP5093118B2 (en) Tool steel manufacturing method
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
JP2011256456A (en) Method for manufacturing steel for cold forging
JP4423608B2 (en) Hardened tool steel material
KR100917482B1 (en) Precipitation-strengthened nickel-iron-chromium alloy and process therefor
CN111621695A (en) HC166 high-alloy die steel forging and manufacturing method thereof
JP4835972B2 (en) Method for producing tool steel intermediate material and method for producing tool steel
JP5359582B2 (en) Hardened tool steel material
JP5904409B2 (en) Manufacturing method of steel materials for molds with excellent toughness
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JP3972848B2 (en) Manufacturing method of fine grain structure steel
JP6484086B2 (en) Method for producing tool steel castings
JP5014257B2 (en) High strength and high toughness martensitic steel
TWI806526B (en) Steel wire for mechanical structural parts and manufacturing method thereof
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP2019010668A (en) Method for manufacturing steam turbine material
WO2022210125A1 (en) Steel wire for mechanical structural component and manufacturing method therefor
JP6795112B1 (en) Manufacturing method of tool steel for molds
CN117062932A (en) Steel wire for machine structural parts and method for manufacturing same
JP3750835B2 (en) High hardness corrosion resistant powder die steel excellent in mirror finish and method for producing the same
CN117062933A (en) Steel wire for machine structural parts and method for manufacturing same
WO2022210124A1 (en) Steel wire for machine structural component and manufacturing method therefor
JP2001131631A (en) Method of spheroidizing-annealing steel material in short time and steel material using this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees