JP2004291512A - Thermal head and manufacturing method therefor, and thermal printer - Google Patents

Thermal head and manufacturing method therefor, and thermal printer Download PDF

Info

Publication number
JP2004291512A
JP2004291512A JP2003089399A JP2003089399A JP2004291512A JP 2004291512 A JP2004291512 A JP 2004291512A JP 2003089399 A JP2003089399 A JP 2003089399A JP 2003089399 A JP2003089399 A JP 2003089399A JP 2004291512 A JP2004291512 A JP 2004291512A
Authority
JP
Japan
Prior art keywords
head substrate
liquid precursor
resin material
surface roughness
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003089399A
Other languages
Japanese (ja)
Other versions
JP4153816B2 (en
Inventor
Yoichi Moto
洋一 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003089399A priority Critical patent/JP4153816B2/en
Publication of JP2004291512A publication Critical patent/JP2004291512A/en
Application granted granted Critical
Publication of JP4153816B2 publication Critical patent/JP4153816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost thermal head with high productivity, which reduces unevenness in printing density and which can be applied to high-speed printing, a manufacturing method therefor, and a thermal printer. <P>SOLUTION: In this thermal head, a head substrate 1 with a heating element 4 is placed on a radiator plate 7; a resin material 8 is interposed directly below the heating element 4 in areas between the radiator plate 7 and the head substrate 1; a double-faced adhesive tape 9 is interposed between other areas; surface roughness on the radiator plate 7, which is brought into contact at least with the resin material 8, is set to be an arithmetic mean roughness Ra of 0.24-0.5 μm; and the surface roughness of a head substrate surface, which is brought into contact with the resin material 8, is set lower than the surface roughness on the radiator plate 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ファクシミリやビデオプリンタ等の記録デバイスとして用いられるサーマルヘッド、その製造方法、並びにサーマルプリンタに関するものである。
【0002】
【従来の技術】
従来より、ファクシミリやビデオプリンタ等の記録デバイスとしてサーマルヘッドが用いられている。
【0003】
かかる従来のサーマルヘッドは、例えば図4に示す如く、上面に直線状に配列された複数の発熱素子24を有するヘッド基板21を、アルミニウム等の金属から成る放熱板27上に樹脂材28や両面テープ29を介して載置させた構造を有しており、サーマルヘッド上に配設されるプラテンローラを用いて感熱紙やインクリボン、記録紙等の記録媒体を発熱素子24上に搬送しながら、該発熱素子24を外部からの印画信号に基づいて個々に選択的に発熱させるとともに、該発熱した熱を発熱素子24上の記録媒体に伝導させ、該伝導させた熱によって感熱紙や記録紙に所定の印画が形成される。
【0004】
尚、前記ヘッド基板21と放熱板27との間に介在される樹脂材28は、前記発熱素子24の直下領域に沿って帯状に配されており、シリコーン樹脂等、比較的熱伝導性が良い樹脂により形成され、発熱素子24の発する熱をヘッド基板21より放熱板27へ良好に伝導させる作用を為す。
【0005】
ところで、上述した従来のサーマルヘッドの製作するには、通常、まず放熱板27の上面所定領域に、両面テープ29を貼着するとともにシリコーン樹脂等の液状前駆体を帯状に塗布し、しかる後、前記ヘッド基板21を、発熱素子24の直下に液状前駆体の塗布領域が位置するように放熱板27上に載置させた上、前記液状前駆体を熱硬化させて樹脂材28を形成することが行われる(図5参照)。
【0006】
【特許文献1】
特開平14−137428号公報
【0007】
【発明が解決しようとする課題】
ここで、放熱板27上に塗布される液状前駆体の内部に気泡が混入すると、熱硬化後の樹脂材28にも気泡が残り、該気泡によって発熱素子24の熱が放熱板27上に伝導しにくくなり、気泡の存在する領域と、それ以外の領域とでヘッド基板21の温度状態が異なって印画の濃度ムラの原因となることから、液状前駆体の内部に気泡が混入しないように、液状前駆体の粘度を70Pa・S以下に低下させ、液状前駆体内の気泡を外に逃がすことが提案されている。
【0008】
しかしながら、上述した従来のサーマルヘッドにおいては、放熱板27の上面が極めて平滑に形成されており(算術平均粗さRaで0.1μm〜0.18μm)、かかる放熱板27上に粘度の低いシリコーン樹脂等の液状前駆体を塗布すると、図5(b)に示す如く、液状前駆体が外側に広がるため、その断面形状が上下方向につぶれた横長の楕円状になり、ヘッド基板21−放熱板27間に介在される両面テープ29の厚みよりも高さが低くなってしまう。
【0009】
それ故、ヘッド基板21を放熱板27上に載置させ、液状前駆体を熱硬化して樹脂材28を形成した場合、ヘッド基板21の下面と樹脂材の表面との間に隙間が形成され、該隙間によってヘッド基板21の熱が放熱板27に伝導しにくくなる(図5(c)参照)。その結果、発熱素子24を長時間繰返し発熱させると、ヘッド基板21が過度に高温となり、発熱素子24を所望する温度で発熱させることが困難となる課題を誘発する。
【0010】
さりとて、液状前駆体の高さを両面テープよりも高くすべく、液状前駆体を多量に放熱板上に塗布すると、サーマルヘッドの生産性が低下するとともに、サーマルヘッドのコストが大幅に高くなるという課題を誘発する。
【0011】
本発明は、上記課題に鑑み案出されたものであり、その目的は、印画の濃度ムラを少なくし、且つ、高速印画に対応可能な高生産性、低コストのサーマルヘッド、その製造方法、並びにサーマルプリンタを提供することにある。
【0012】
【課題を解決するための手段】
本発明のサーマルヘッドは、発熱素子を有するヘッド基板を放熱板上に載置させるとともに、放熱板−ヘッド基板間の領域のうち、発熱素子の直下に樹脂材を、その他の領域に両面テープを介在させたサーマルヘッドにおいて、少なくとも前記樹脂材と接する放熱板上の表面粗さを算術平均粗さRaで0.24μm〜0.5μmに設定するとともに、前記樹脂材に接するヘッド基板表面の表面粗さを、前記放熱板上の表面粗さよりも小さくしたことを特徴とするものである。
【0013】
また本発明のサーマルヘッドは、前記樹脂材に接するヘッド基板表面の表面粗さを算術平均粗さRaで0.23μm以下に設定したことを特徴とするものである。
【0014】
更に本発明のサーマルヘッドの製造方法は、上面の表面粗さが算術平均粗さRaで0.24μm〜0.5μmに設定された放熱板と、上面に発熱素子を有し、下面の表面粗さが放熱板上の表面粗さよりも小さく設定されたヘッド基板とを準備する工程1と、前記放熱板上に樹脂材料を構成する液状前駆体を塗布し、且つ放熱板上もしくはヘッド基板の下面に両面テープを貼着する工程2と、前記ヘッド基板を、発熱素子の直下に液状前駆体の塗布領域が位置するように放熱板上に載置する工程3と、前記液状前駆体を熱硬化させて樹脂材を形成する工程4と、を備えたことを特徴とするものである。
【0015】
そして本発明のサーマルプリンタは、上述のサーマルヘッドと、該サーマルヘッド上に記録媒体を搬送する搬送手段と、を備えたことを特徴とするものである。
【0016】
本発明によれば、放熱板上の表面粗さを算術平均粗さRaで0.24μm〜0.5μmに設定したことから、樹脂材を形成する際、樹脂の液状前駆体の粘度を低くしたとしても、放熱板上に塗布される樹脂材料の液状前駆体が外側に流出しにくくなり、前記液状前駆体の接触角を大きくすることができ、比較的少量の液状前駆体の使用によって液状前駆体の高さを両面テープの厚みと同等もしくはそれ以上の高さとすることが可能となる。
【0017】
しかも、樹脂材に接するヘッド基板の表面を放熱板上の表面粗さよりも小さく設定したことから、液状前駆体のヘッド基板表面に対する濡れ性が良好となり、ヘッド基板を放熱板上に載置させて液状前駆体をヘッド基板に接触させた場合、液状前駆体がヘッド基板表面に形成される細かな窪みに良好に入りこむようになる。
【0018】
従って、液状前駆体の粘度を低く、使用量を少なくした場合であっても、ヘッド基板を放熱板上に載置させた際、ヘッド基板−液状前駆体間に隙間が生じることを有効に防止でき、ヘッド基板の熱が良好に樹脂材に伝導するようになる。その結果、発熱素子を短いパルス周期で繰返し発熱させたとしても、ヘッド基板が過度に高温となることを有効に防止でき、高速印画に対応可能なサーマルヘッドが実現される。
【0019】
また、上記液状前駆体の粘度を低く出来ることから、樹脂材の内部に発生する気泡を少なくすることができ、樹脂内部での放熱特性の違いを小さく抑え、印画の濃度ムラを少なくすることが可能となる。
【0020】
更に、液状前駆体の使用量を少なくしても、上述の効果が得られるため、サーマルヘッドの生産性向上や低コスト化に供することもできる。
【0021】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。
【0022】
図1は本発明の一形態に係るサーマルヘッドの断面図であり、同図に示すサーマルヘッドは、大略的に、ヘッド基板1を樹脂材8、両面テープ9を介して放熱板7上に載置させた構造を有している。
【0023】
前記ヘッド基板1は、アルミナセラミックスや単結晶シリコン、Fe−Ni合金等の種々の材料により長方形状を成すように形成されたベースプレート2の上面に、部分グレーズ層3や発熱素子4、電極パターン5等を被着させた構成となっている。
【0024】
前記ベースプレート2は、その下面の表面粗さが放熱板7の上面の表面粗さよりも小さく設定されており、かかる表面粗さを小さく成すことにより、樹脂材8との間に多数の隙間が形成されるのを有効に防止する作用を為す。
【0025】
また前記ベースプレート2は、その上面で部分グレーズ層3や多数の発熱素子4、電極パターン5等を支持する支持母材として機能するものであり、かかるベースプレート2がアルミナセラミックスから成る場合、例えばアルミナ、シリカ、マグネシア等のセラミックス原料粉末に適当な有機溶剤・溶媒を添加・混合して泥漿状になすとともに、これを従来周知のドクターブレード法やカレンダーロール法等を採用することによってセラミックグリーンシートを得、しかる後、このセラミックグリーンシートを四角形状に打ち抜いた上、高温で焼成することによって製作され、また表面粗さの調整は、表面を研磨によって行われる。
【0026】
また、前記ベースプレート2の上面には、ガラス製の部分グレーズ層3がベースプレート2の長辺に沿って帯状に被着され、その頂部付近には複数の発熱素子4が設けられる。
【0027】
前記部分グレーズ層3は、例えば曲率半径1mm〜4mmの断面円弧状を成すように形成されており、その頂部の厚みは20μm〜80μmに設定される。
【0028】
この部分グレーズ層3は、例えば、熱伝導率が0.7W/m・K〜1.0W/m・Kのガラスにより形成されているため、その内部で発熱素子4の熱の一部を蓄積してサーマルヘッドの熱応答性を良好に維持する作用、具体的には、発熱素子4の温度を短時間で印画に必要な所定の温度まで上昇させる蓄熱層としての作用を為す。
【0029】
尚、前記部分グレーズ層3は、ガラス粉末に適当な有機溶剤を添加・混合して得た所定のガラスペーストを従来周知のスクリーン印刷等によってベースプレート2の上面に帯状に印刷・塗布し、これを高温で焼き付けることによって形成される。
【0030】
更に、前記部分グレーズ層3の頂部付近に設けられる複数の発熱素子4は、例えば600dpi(dot per inch)の密度で直線状に配列されており、各々がTaSiO系、TiSiO系、TiCSiO系等の電気抵抗材料から成っているため、その両端に接続される電極パターン5を介して外部からの電力が供給されるとジュール発熱を起こし、感熱紙に印画を形成するのに必要な温度、例えば150℃〜400℃の温度に発熱する。
【0031】
また、前記各発熱素子4の両端に接続される電極パターン5は、アルミニウム(Al)や銅(Cu)等の金属材料により所定パターンに形成されており、発熱素子4に所定の電力を供給する給電配線として機能する。
【0032】
尚、前記発熱素子4及び電極パターン5は、従来周知の薄膜形成技術、具体的には、スパッタリング、フォトリソグラフィー技術、エッチング技術等を採用することにより所定パターンを成すようにベースプレート2の上面に被着・形成される。
【0033】
一方、前記発熱素子4及び電極パターン5の上面には保護膜6が被着されており、該保護膜6によって発熱素子4や電極パターン5が共通に被覆されている。
【0034】
前記保護膜6は、窒化珪素(Si)や酸化珪素(SiO)、サイアロン(Si−Al−O−N)等の耐磨耗性に優れた無機質材料から成り、発熱素子4や電極パターン5等を記録媒体の摺接による磨耗や大気中に含まれている水分等の接触による腐食から保護する作用を為す。
【0035】
尚、上述した保護膜6は、従来周知の薄膜形成技術、例えばCVD(Chemical Vapor Deposition)法やスパッタリング等を採用し、窒化珪素(Si)や酸化珪素(SiO)、サイアロン(Si−Al−O−N)等の無機質材料を発熱素子4や電極パターン5等の上面に5μm〜10μmの厚みに被着させることにより形成される。
【0036】
一方、前記ヘッド基板1はアルミニウムやSUS等の良熱伝導性の金属から成る放熱板7上に載置されている。
【0037】
前記放熱板7は、その上面に所定の間隔を空けて略平行に配される一対の溝7aが設けらており、ヘッド基板1−放熱板7間のうち、一対の溝7a間には発熱素子4の直下に配される帯状の樹脂材8が、一対の溝7aよりも外側の領域(樹脂材8の短手方向両側)には両面テープ9が介在されている。
【0038】
このような放熱板7は、その上面でヘッド基板1を支持するとともに、ヘッド基板1の熱の一部を前記樹脂材8を介して吸収し、これを外部に放出することによってヘッド基板1中の温度が過度に高温となるのを有効に防止する作用を為す。
【0039】
また放熱板7は、その上面の表面粗さが算術平均粗さRaで0.25μm〜0.5μmに設定されており、このように表面粗さを比較的粗く設定することにより、後述する樹脂材8を形成する際、放熱板7上に塗布された樹脂材8の基となる液状前駆体が外側に広がるのを有効に防止するとともに、樹脂材8や両面テープ9をアンカー効果によって強固に固定する作用を為す。
【0040】
一方、前記ヘッド基板1−放熱板7間に介在される樹脂材8は、シリコーン樹脂やエポキシ樹脂、アクリル樹脂等の比較的熱伝導率が高い熱硬化性樹脂から成り、発熱素子4の熱をヘッド基板1より放熱板7に対して良好に伝導させるとともに、両面テープと共にヘッド基板1と放熱板7とを強固に固定する作用を為す。
【0041】
また前記樹脂材8の両側に配される両面テープ9は、例えばアクリル樹脂等、比較的変形しにくい材料から成り、ヘッド基板1と放熱板7とを略平行に配置すべく帯状の樹脂材の両側に設けられており、その厚みは(25μm〜200μm)に設定されている。
【0042】
尚、前記放熱板7は、アルミニウムから成る場合、例えば、アルミニウムのインゴット(塊)を従来周知の金属加工法等によって所定形状に成形して板体を得、しかる後、該板体の表面にエンドミル等を用いてフライス加工することによって、上述した範囲の表面粗さに設定することによって製作される。
【0043】
そして、上述のようなサーマルヘッドが組み込まれるサーマルプリンタには、図2に示す如く、記録媒体をサーマルヘッドTの発熱素子4上に搬送する搬送手段として、プラテンローラ10や搬送ローラ11a,11b,11c,11d等が配設される。
【0044】
前記プラテンローラ10は、SUS等の金属から成る軸芯の外周にブタジエンゴム等を3mm〜15mm程度の厚みに巻きつけた円柱状の部材であり、サーマルヘッドTの発熱素子4上に回転可能に支持され、記録媒体を発熱素子4に対して押圧しつつ記録媒体を発熱素子4の配列と直交する方向(図中の矢印方向)に搬送する。
【0045】
また前記搬送ローラ11a,11b,11c,11dは、その外周部が金属やゴム等によって形成されており、サーマルヘッドTに対し記録媒体の搬送方向上流側と下流側に分かれて配設され、これらの搬送ローラ11a,11b,11c,11dと前述のプラテンローラ10とで記録媒体の走行を支持している。
【0046】
そして、これと同時に多数の発熱素子4を図示しないドライバーICの駆動に伴い選択的にジュール発熱させ、これらの熱を記録媒体に伝導させることによって所定の印画が形成される。
【0047】
次に上述したサーマルヘッドの製造方法について図3を用いて説明する。
【0048】
(1)まず上面に部分グレーズ層3や発熱素子4、電極パターン5、保護膜6等を被着させたヘッド基板1と、放熱板7とを準備する。
【0049】
(2)次に、放熱板7の上面を先に述べた方法によって算術表面粗さRaで0.24μm〜0.5μmに設定するとともに、ヘッド基板下面の表面粗さを放熱板7上の表面粗さよりも小さく設定する。
【0050】
(3)続いて、放熱板7の上面所定領域に両面テープ9を貼着するとともに、樹脂材8を構成するシリコーン樹脂等の液状前駆体を帯状に塗布する。
【0051】
この場合、放熱板7上の表面粗さを算術平均粗さRaで0.24μm〜0.5μmに設定したことから、樹脂材8を形成する際、樹脂材8の内部に気泡が発生することを有効に防止すべく、液状前駆体の粘度を、例えば70Pa・S以下まで低くしても、放熱板7上に塗布される樹脂材料の液状前駆体が外側に流出しにくくなり、前記液状前駆体の接触角を大きくすることができる。その結果、液状前駆体の使用量を少なくしても、液状前駆体の高さを両面テープ9の厚みと同等(同等とは液状前駆体の高さと両面テープの厚みとの差が±5μmのことをいう)もしくはそれ以上となすことができ、サーマルヘッドの生産性を高めるとともに、コスト削減にも供することができる。
【0052】
また、上記液状前駆体の粘度を低く出来ることから、樹脂材8の内部に発生する気泡を少なくすることができ、樹脂材内部での放熱特性の違いを小さく抑え、印画の濃度ムラを少なくすることが可能となる。
【0053】
尚、前記液状前駆体の粘度調整は、液状前駆体内のフィラー含有量を調整することによって行われ、フィラー含有量を少なくすると液状前駆体の粘度が小さくなる。一方、液状前駆体の塗布は、ディスペンサーを用いることによって行われる。
【0054】
(4)次に、前記ヘッド基板1を、発熱素子4の直下に前記液状前駆体の塗布領域が位置するように放熱板7上に載置させる。
【0055】
このとき、先に述べたように、液状前駆体の高さは両面テープ9の厚みと同等もしくはそれ以上となっており、ヘッド基板1を放熱板7上に載置させた際、ヘッド基板1の下面と液状前駆体の表面とを接触させることができる上に、ヘッド基板1(ベースプレート2)下面の表面粗さが放熱板7上の表面粗さよりも小さくされているため、ヘッド基板1に接触した液状前駆体のヘッド基板表面に対する濡れ性が良好となり、ヘッド基板1の下面に形成される多数の細かな窪みに液状前駆体が入り込みやすくなる。
【0056】
従って、ヘッド基板1−液状前駆体間に隙間が生じることを有効に防止でき、ヘッド基板1の熱を良好に樹脂材8に伝導させ、ヘッド基板1が過度に高温となることを有効に防止できる。
【0057】
尚、前記放熱板7の表面粗さは、上限値を算術平均粗さRaで0.5μm以下に、下限値を算術平均粗さRaで0.24μm以上に設定することが重要であり、上限値が算術平均粗さRaで0.5μmよりも大きいと、放熱板7の厚みのバラツキが大きくなり、領域毎に放熱特性が相違して印画の濃度ムラの原因となり、一方、下限値が算術平均粗さRaで0.24μmよりも小さいと、放熱板7の上面が平滑になりすぎて、液状前駆体の粘度が例えば70Pa・S以下と低い場合、液状前駆体を放熱板7上に塗布した際、前記液状前駆体の接触角が小さくなり、断面形状が横方向に長い楕円形状となる。その結果、液状前駆体の使用量を多くしないと、液状前駆体の高さが両面テープの厚みよりも小さくなり、サーマルヘッドの生産性が低下するとともに、そのコストが高くなる不具合を誘発する。
【0058】
またヘッド基板1の表面粗さは、上限値を放熱板7上の表面粗さよりも小さくすることが重要であり、特に算術平均粗さRaで0.23μm以下に設定すると、ヘッド基板1の液状前駆体に対する濡れ性が特に良好となり、好ましい。ここで、ヘッド基板1の算術平均粗さRaが放熱板7上の表面粗さよりも大きいと、液状前駆体がヘッド基板1の下面に形成された細かな窪みに充填されにくくなり、ヘッド基板1−液状前駆体間に細かな隙間が多数形成されてヘッド基板1の熱が樹脂材8に伝わりにくくなる。なお、ヘッド基板1の表面粗さの下限値を0.20μmよりも小さくしようとすると、ヘッド基板1の表面加工に手間がかかり、サーマルヘッドの生産性低下を招くおそれがあることから、ヘッド基板下面の表面粗さの下限値は算術平均粗さRaで0.20μm以上に設定しておくことが好ましい。
【0059】
以上のことから、印画の濃度ムラを少なくするとともに、サーマルヘッドの生産性を高く維持し、コストを低く抑えるには、放熱板上面の表面粗さを算術平均粗さRaで0.24μm〜0.5μmに設定するとともに、ヘッド基板下面の表面粗さを放熱板上面よりも小さく設定することが重要であることがわかる。
【0060】
(5)最後に、ヘッド基板1−放熱板7間に介在された液状前駆体を熱硬化させることによって樹脂材8を形成し、サーマルヘッドが完成する。
【0061】
前記液状前駆体の熱硬化は、液状前駆体を90℃〜120℃で50分〜90分間加熱することによって行われる。
【0062】
尚、本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更・改良が可能である。
【0063】
例えば、上述の実施形態においては、放熱板7の上面に一対の溝7aを形成するようにしたが、かかる一対の溝7aが無い場合でも本発明を適用可能である。
【0064】
また上述の実施形態においては、放熱板7の上面全体を算術平均粗さRaで0.24μm〜0.5μmに、ヘッド基板下面全体の表面粗さを放熱板上面の表面粗さよりも小さくするようにしたが、これらの数値範囲は少なくとも樹脂材8と接する領域において満足していれば良い。
【0065】
【実験例】
次に本発明の作用効果を実験例に基づき説明する。
【0066】
(第1実験)
第1実験は、放熱板7の上面の表面粗さを少しずつ異ならせたものを準備し、放熱板7上にシリコーン樹脂の液状前駆体を塗布し、液状前駆体の接触角、高さを測定するというものである。
【0067】
以上の実験結果を表1に示す。
【0068】
【表1】

Figure 2004291512
【0069】
この表1によれば、第1実験にて放熱板7の表面粗さを算術平均粗さRaで0.24μm以上に設定してあるサンプルNo.3〜7では、液状前駆体の接触角が十分に大きくなっており、特にNo.6,7では液状前駆体の接触角が大きくなっており、液状前駆体が十分な高さを有していることが判る。
【0070】
一方、放熱板7の表面粗さが算術平均粗さRaで0.24μmよりも小さくなっているサンプルNo.1,2では、液状前駆体の接触角が小さく、その高さが他のサンプルに比べ格段に小さくなっている。
【0071】
従って、上述した実験結果によれば、粘度が70Pa・Sと比較的低い液状前駆体を放熱板7上に塗布した場合、液状前駆体の接触角を大きくするには、放熱板7の表面粗さを算術平均粗さRaで0.24μm以上に設定すれば良いことが判る。
【0072】
なお、本第1実験は液状前駆体の粘度が50Pa・S、60Pa・Sについても同様に行い、ほぼ同じような結果が得られたことを確認した。
【0073】
(第2実験)
続いてヘッド基板1、放熱板7の表面粗さと印画品質との関係を確認するため、ヘッド基板1の下面と放熱板7の上面の表面粗さを少しずつ変化させたものを準備し、かかるヘッド基板1を樹脂材8並びに両面テープ9を介して放熱板7上に載置させて形成したサーマルヘッドにつき、パルス周期20μsecで1分間連続的に印画を行い、濃度ムラの有無を測定する第2実験を行った。
【0074】
尚、第2実験に用いられるサーマルヘッドは、両面テープ9の厚み、液状前駆体の高さが略等しいものを採用し、また樹脂材8の材料としてはシリコーン樹脂を用いた。以上の第2実験の結果を表2に示す。
【0075】
【表2】
Figure 2004291512
【0076】
表2によれば、ヘッド基板下面の表面粗さが放熱板7の表面粗さよりも大きなサンプルNo.1〜No.4,7,8,14,19〜21では印画の濃度ムラが多く、良好な画像が得られていない。これは液状前駆体がヘッド基板下面に出来た窪みに浸透せず、ヘッド基板1と樹脂材8との間に細かな隙間が形成されてしまい、かかる隙間の個数が領域毎に異なるために、印画の濃度ムラが発生しているものと考えられる。
【0077】
一方、ヘッド基板下面の表面粗さが放熱板7の表面粗さよりも小さいサンプルNo.5,6,9〜13,15〜18では、印画の濃度ムラが比較的少なく、良好な画像が得られている。印画の濃度ムラの有無がヘッド基板下面の表面粗さと放熱板上面の表面粗さとの相関関係により決定されるのは、液状前駆体がヘッド基板下面の窪みに良好に充填されるか否かは、ヘッド基板下面に形成される窪みの大小のみならず、液状前駆体の断面形状にも関係することが原因として考えられる。例えば、放熱板7の表面粗さが大きいと液状前駆体の断面形状が縦長となるため、ヘッド基板下面の表面粗さが粗くても、ヘッド基板下面の窪みに良好に浸透し、印画の濃度ムラが少なくなっているものと推測される。
【0078】
また、ヘッド基板下面の表面粗さが算術平均粗さRaで0.23μm以下に設定されているサンプルNo.5,6,11〜13,17,18では、印画の濃度ムラが極めて少なく、顕著に優れた画像が得られていることがわかる。これは液状前駆体に対するヘッド基板1の濡れ性が良好であるため、液状前駆体がヘッド基板下面に形成された多数の窪みに良好に充填され、ヘッド基板1−樹脂材8間にできる隙間の数が少ないためであると推測される。
【0079】
以上の第1実験、第2実験により、ヘッド基板1と樹脂材8との間の隙間をできるだけ少なくし、濃度ムラの少ない印画を得るには、放熱板7の表面粗さを0.24μm〜0.5μmに設定し、且つ、ヘッド基板下面の表面粗さを放熱板7よりも小さくすることが重要であり、より好ましくは、ヘッド基板下面の表面粗さを0.23μm以下に設定することが好ましいことが確認できた。
【0080】
【発明の効果】
本発明によれば、樹脂材を形成する際、樹脂の液状前駆体の粘度を低くしたとしても、放熱板上に塗布される樹脂材料の液状前駆体が外側に流出しにくくなり、前記液状前駆体の接触角を大きくすることができる。従って、液状前駆体の使用量が比較的少ない場合であっても、液状前駆体の高さを両面テープの厚みと同等もしくはそれ以上の高さとすることが可能となる。
【0081】
しかも、本発明によれば、液状前駆体のヘッド基板表面に対する濡れ性が良好となり、ヘッド基板を放熱板上に載置させて液状前駆体をヘッド基板に接触させた場合、液状前駆体がヘッド基板表面に形成される細かな窪みに良好に充填されるようになる。
【0082】
従って、液状前駆体の粘度を低く、使用量を少なくした場合であっても、ヘッド基板を放熱板上に載置させた際、ヘッド基板−液状前駆体間に隙間が生じることを有効に防止でき、ヘッド基板の熱が良好に樹脂材に伝導するようになる。その結果、発熱素子を短いパルス周期で繰返し発熱させたとしても、ヘッド基板が過度に高温となることを有効に防止でき、高速印画に対応可能なサーマルヘッドが実現される。
【0083】
また本発明によれば、上記液状前駆体の粘度を低く出来ることから、樹脂材の内部に発生する気泡を少なくすることができ、樹脂内部での放熱特性の違いを小さく抑え、印画の濃度ムラを少なくすることが可能となる。
【0084】
更に、液状前駆体の使用量を少なくしても、上述の効果が得られるため、サーマルヘッドの生産性向上や低コスト化に供することもできる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかるサーマルヘッドの断面図である。
【図2】図1のサーマルヘッドを搭載したサーマルプリンタの概略側面図である。
【図3】(a)〜(c)は図1のサーマルヘッドの製造方法を説明するための各工程の断面図である。
【図4】従来のサーマルヘッドの断面図である。
【図5】(a)〜(c)は図4のサーマルヘッドの製造方法を説明するための各工程の断面図である。
【符号の説明】
1・・・ヘッド基板
2・・・ベースプレート
3・・・部分グレーズ層
4・・・発熱素子
5・・・電極パターン
6・・・保護膜
7・・・放熱板
7a・・・溝
8・・・樹脂材
9・・・両面テープ
10・・・プラテンローラ
11a,11b,11c,11d・・・搬送ローラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal head used as a recording device such as a facsimile or a video printer, a method for manufacturing the same, and a thermal printer.
[0002]
[Prior art]
Conventionally, a thermal head has been used as a recording device such as a facsimile or a video printer.
[0003]
As shown in FIG. 4, for example, such a conventional thermal head is configured such that a head substrate 21 having a plurality of heating elements 24 linearly arranged on an upper surface is formed by disposing a resin material 28 or both surfaces on a heat radiation plate 27 made of metal such as aluminum. It has a structure in which the recording medium is placed via a tape 29, and a recording medium such as a thermal paper, an ink ribbon, or a recording paper is transported onto the heating element 24 using a platen roller disposed on a thermal head. The heating elements 24 are individually and selectively heated based on an external printing signal, and the generated heat is conducted to a recording medium on the heating element 24. A predetermined print is formed on the image.
[0004]
The resin material 28 interposed between the head substrate 21 and the heat radiating plate 27 is arranged in a band along the area immediately below the heating element 24, and has relatively good thermal conductivity such as silicone resin. It is formed of resin, and has an effect of satisfactorily conducting the heat generated by the heating element 24 from the head substrate 21 to the radiator plate 27.
[0005]
By the way, in order to manufacture the above-mentioned conventional thermal head, usually, first, a double-sided tape 29 is attached to a predetermined region of the upper surface of the heat sink 27, and a liquid precursor such as a silicone resin is applied in a strip shape. After the head substrate 21 is placed on the heat radiating plate 27 so that the application region of the liquid precursor is located immediately below the heating element 24, the liquid precursor is thermally cured to form the resin material 28. (See FIG. 5).
[0006]
[Patent Document 1]
JP-A-14-137428
[0007]
[Problems to be solved by the invention]
Here, when air bubbles are mixed into the liquid precursor applied on the heat radiating plate 27, air bubbles remain in the resin material 28 after thermosetting, and the heat of the heating element 24 is conducted to the heat radiating plate 27 by the air bubbles. Since the temperature state of the head substrate 21 is different between the region where bubbles are present and the other region, which causes density unevenness in printing, so that bubbles are not mixed into the liquid precursor, It has been proposed to lower the viscosity of the liquid precursor to 70 Pa · S or less, and to allow bubbles in the liquid precursor to escape.
[0008]
However, in the above-described conventional thermal head, the upper surface of the heat radiating plate 27 is formed to be extremely smooth (0.1 μm to 0.18 μm in arithmetic average roughness Ra). When a liquid precursor such as a resin is applied, the liquid precursor spreads outward as shown in FIG. 5 (b), so that its cross-sectional shape becomes a horizontally long elliptical shape which is crushed in the vertical direction. The height becomes lower than the thickness of the double-sided tape 29 interposed between 27.
[0009]
Therefore, when the head substrate 21 is placed on the heat radiating plate 27 and the liquid precursor is thermally cured to form the resin material 28, a gap is formed between the lower surface of the head substrate 21 and the surface of the resin material. The gap makes it difficult for the heat of the head substrate 21 to be conducted to the heat radiating plate 27 (see FIG. 5C). As a result, if the heating element 24 is repeatedly heated for a long time, the temperature of the head substrate 21 becomes excessively high, which causes a problem that it is difficult to heat the heating element 24 at a desired temperature.
[0010]
In addition, if a large amount of the liquid precursor is applied on the heat sink to increase the height of the liquid precursor to be higher than that of the double-sided tape, the productivity of the thermal head is reduced and the cost of the thermal head is significantly increased. Induce the task.
[0011]
The present invention has been devised in view of the above problems, and has as its object to reduce the density unevenness of a print, and to provide a high-productivity, low-cost thermal head capable of responding to high-speed printing, a method of manufacturing the same, Another object of the present invention is to provide a thermal printer.
[0012]
[Means for Solving the Problems]
In the thermal head of the present invention, a head substrate having a heating element is placed on a heat radiating plate, and a resin material is provided immediately below the heating element in a region between the heat radiating plate and the head substrate, and a double-sided tape is applied to other regions. In the interposed thermal head, at least the surface roughness on the heat sink in contact with the resin material is set to 0.24 μm to 0.5 μm in arithmetic average roughness Ra, and the surface roughness of the head substrate surface in contact with the resin material is adjusted. The surface roughness is smaller than the surface roughness on the heat sink.
[0013]
The thermal head of the present invention is characterized in that the surface roughness of the surface of the head substrate in contact with the resin material is set to an arithmetic average roughness Ra of 0.23 μm or less.
[0014]
Further, the method for manufacturing a thermal head according to the present invention further comprises a heat sink having an upper surface having an arithmetic average roughness Ra of 0.24 μm to 0.5 μm, a heating element on the upper surface, and a lower surface roughness. Preparing a head substrate whose surface roughness is set to be smaller than the surface roughness on the heat radiating plate, applying a liquid precursor constituting a resin material on the heat radiating plate, and forming the liquid precursor on the heat radiating plate or the lower surface of the head substrate Step 2 of attaching a double-sided tape to the substrate, Step 3 of placing the head substrate on a heat sink so that the application region of the liquid precursor is located immediately below the heating element, and Thermosetting the liquid precursor And forming a resin material.
[0015]
A thermal printer according to the present invention includes the thermal head described above, and a transport unit that transports a recording medium on the thermal head.
[0016]
According to the present invention, since the surface roughness on the heat sink is set to 0.24 μm to 0.5 μm in arithmetic average roughness Ra, when forming the resin material, the viscosity of the liquid precursor of the resin is reduced. Also, it is difficult for the liquid precursor of the resin material applied on the heat sink to flow out, and the contact angle of the liquid precursor can be increased. The height of the body can be equal to or greater than the thickness of the double-sided tape.
[0017]
Moreover, since the surface of the head substrate in contact with the resin material is set to be smaller than the surface roughness on the heat sink, the wettability of the liquid precursor to the head substrate surface becomes good, and the head substrate is placed on the heat sink. When the liquid precursor is brought into contact with the head substrate, the liquid precursor can well penetrate into fine depressions formed on the surface of the head substrate.
[0018]
Therefore, even when the viscosity of the liquid precursor is low and the amount of the liquid precursor is reduced, it is possible to effectively prevent a gap from being generated between the head substrate and the liquid precursor when the head substrate is placed on the heat sink. As a result, the heat of the head substrate is favorably conducted to the resin material. As a result, even if the heating element is repeatedly heated with a short pulse cycle, the temperature of the head substrate can be effectively prevented from becoming excessively high, and a thermal head capable of coping with high-speed printing is realized.
[0019]
Further, since the viscosity of the liquid precursor can be reduced, bubbles generated inside the resin material can be reduced, the difference in heat radiation characteristics inside the resin can be reduced, and the density unevenness of the print can be reduced. It becomes possible.
[0020]
Further, even if the amount of the liquid precursor used is reduced, the above-mentioned effects can be obtained, so that the thermal head can be provided with improved productivity and reduced cost.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[0022]
FIG. 1 is a cross-sectional view of a thermal head according to one embodiment of the present invention. In the thermal head shown in FIG. 1, a head substrate 1 is generally mounted on a heat radiating plate 7 via a resin material 8 and a double-sided tape 9. It has a structure in which it is placed.
[0023]
The head substrate 1 includes a partial glaze layer 3, a heating element 4, and an electrode pattern 5 on an upper surface of a base plate 2 formed into a rectangular shape by using various materials such as alumina ceramics, single crystal silicon, and Fe—Ni alloy. And so on.
[0024]
The surface roughness of the lower surface of the base plate 2 is set smaller than the surface roughness of the upper surface of the heat radiating plate 7, and a large number of gaps are formed between the base plate 2 and the resin material 8 by reducing the surface roughness. It acts to effectively prevent that.
[0025]
The base plate 2 functions as a supporting base material that supports the partial glaze layer 3, a large number of heating elements 4, the electrode patterns 5, and the like on its upper surface. When the base plate 2 is made of alumina ceramics, for example, alumina, A ceramic green sheet is obtained by adding and mixing an appropriate organic solvent and solvent to ceramic raw material powders such as silica and magnesia to form a slurry, and employing a conventionally known doctor blade method, calendar roll method, or the like. Thereafter, the ceramic green sheet is punched out in a square shape, and then fired at a high temperature, and the surface roughness is adjusted by polishing the surface.
[0026]
On the upper surface of the base plate 2, a partial glaze layer 3 made of glass is attached in a strip shape along the long side of the base plate 2, and a plurality of heating elements 4 are provided near the top.
[0027]
The partial glaze layer 3 is formed, for example, so as to form an arc-shaped cross section with a radius of curvature of 1 mm to 4 mm, and the thickness of the top is set to 20 μm to 80 μm.
[0028]
Since the partial glaze layer 3 is formed of, for example, glass having a thermal conductivity of 0.7 W / m · K to 1.0 W / m · K, a part of the heat of the heating element 4 is stored inside the partial glaze layer 3. As a result, the thermal head has a function of maintaining good thermal responsiveness, specifically, a function as a heat storage layer for raising the temperature of the heating element 4 to a predetermined temperature required for printing in a short time.
[0029]
The partial glaze layer 3 is formed by printing and applying a predetermined glass paste obtained by adding and mixing an appropriate organic solvent to glass powder on the upper surface of the base plate 2 by conventionally well-known screen printing or the like. It is formed by baking at high temperatures.
[0030]
Further, the plurality of heating elements 4 provided near the top of the partial glaze layer 3 are linearly arranged at a density of, for example, 600 dpi (dot per inch), each of which is made of TaSiO, TiSiO, TiCSiO, or the like. Since it is made of an electric resistance material, Joule heat is generated when electric power is supplied from the outside through the electrode patterns 5 connected to both ends thereof, and the temperature required for forming a print on the thermal paper, for example, 150 ° C. Heat is generated to a temperature of from 400C to 400C.
[0031]
The electrode patterns 5 connected to both ends of each of the heating elements 4 are formed in a predetermined pattern from a metal material such as aluminum (Al) or copper (Cu), and supply predetermined power to the heating elements 4. Functions as a power supply wiring.
[0032]
The heating element 4 and the electrode pattern 5 are coated on the upper surface of the base plate 2 so as to form a predetermined pattern by employing a conventionally known thin film forming technique, specifically, sputtering, photolithography, etching, or the like. Weared and formed.
[0033]
On the other hand, a protective film 6 is provided on the upper surfaces of the heating element 4 and the electrode pattern 5, and the heating element 4 and the electrode pattern 5 are commonly covered with the protective film 6.
[0034]
The protective film 6 is made of silicon nitride (Si 3 N 4 ) Or silicon oxide (SiO) 2 ), Sialon (Si-Al-O-N) or the like, which is made of an inorganic material having excellent wear resistance. The heating element 4 and the electrode pattern 5 are included in the wear due to the sliding contact of the recording medium and in the air. It acts to protect against corrosion caused by contact with moisture and the like.
[0035]
The protective film 6 is made of silicon nitride (Si) by using a conventionally known thin film forming technique, for example, a CVD (Chemical Vapor Deposition) method or sputtering. 3 N 4 ) Or silicon oxide (SiO) 2 ), An inorganic material such as sialon (Si-Al-ON) is formed on the upper surface of the heating element 4 or the electrode pattern 5 in a thickness of 5 μm to 10 μm.
[0036]
On the other hand, the head substrate 1 is mounted on a heat radiating plate 7 made of a metal having good heat conductivity such as aluminum or SUS.
[0037]
The radiator plate 7 is provided with a pair of grooves 7a arranged substantially in parallel at a predetermined interval on the upper surface thereof, and heat is generated between the pair of grooves 7a between the head substrate 1 and the radiator plate 7. A double-sided tape 9 is interposed in a region outside the pair of grooves 7a (on both sides in the short direction of the resin material 8) of the band-shaped resin material 8 disposed immediately below the element 4.
[0038]
Such a heat radiating plate 7 supports the head substrate 1 on the upper surface thereof, absorbs a part of the heat of the head substrate 1 through the resin material 8 and discharges the heat to the outside, so that the heat radiating plate 7 The effect of effectively preventing the temperature of the substrate from becoming excessively high is provided.
[0039]
The surface roughness of the heat sink 7 is set to 0.25 μm to 0.5 μm in arithmetic mean roughness Ra, and by setting the surface roughness to be relatively coarse in this manner, the resin When the material 8 is formed, the liquid precursor serving as the base of the resin material 8 applied on the heat sink 7 is effectively prevented from spreading outward, and the resin material 8 and the double-sided tape 9 are firmly fixed by the anchor effect. It acts to fix.
[0040]
On the other hand, the resin material 8 interposed between the head substrate 1 and the heat radiating plate 7 is made of a thermosetting resin having a relatively high thermal conductivity such as a silicone resin, an epoxy resin, or an acrylic resin. In addition to conducting the heat from the head substrate 1 to the heat radiating plate 7 well, the head substrate 1 and the heat radiating plate 7 are firmly fixed together with the double-sided tape.
[0041]
The double-sided tape 9 disposed on both sides of the resin material 8 is made of a material that is relatively hard to deform, such as an acrylic resin, and is formed of a band-shaped resin material so that the head substrate 1 and the heat sink 7 are arranged substantially in parallel. It is provided on both sides, and its thickness is set to (25 μm to 200 μm).
[0042]
When the heat radiating plate 7 is made of aluminum, for example, an aluminum ingot (lumps) is formed into a predetermined shape by a conventionally known metal working method or the like to obtain a plate body. It is manufactured by milling using an end mill or the like to set the surface roughness in the above-described range.
[0043]
As shown in FIG. 2, the thermal printer in which the above-described thermal head is incorporated includes a platen roller 10, transport rollers 11a, 11b, and 11 as transport means for transporting the recording medium onto the heating element 4 of the thermal head T. 11c, 11d and the like are provided.
[0044]
The platen roller 10 is a cylindrical member in which butadiene rubber or the like is wound around a shaft core made of metal such as SUS to a thickness of about 3 mm to 15 mm, and is rotatable on the heating element 4 of the thermal head T. The recording medium is conveyed in a direction orthogonal to the arrangement of the heating elements 4 (the direction of the arrow in the figure) while pressing the recording medium against the heating elements 4 while being supported.
[0045]
The transport rollers 11a, 11b, 11c, and 11d have their outer peripheral portions formed of metal, rubber, or the like, and are disposed separately from the thermal head T on the upstream and downstream sides in the recording medium transport direction. The transport of the recording medium is supported by the transport rollers 11a, 11b, 11c, and 11d and the platen roller 10 described above.
[0046]
At the same time, a large number of heating elements 4 are selectively heated by driving a driver IC (not shown) to generate Joule heat, and the heat is transmitted to a recording medium, thereby forming a predetermined print.
[0047]
Next, a method for manufacturing the above-described thermal head will be described with reference to FIG.
[0048]
(1) First, a head substrate 1 having a partial glaze layer 3, a heating element 4, an electrode pattern 5, a protective film 6, and the like adhered to an upper surface, and a heat radiating plate 7 are prepared.
[0049]
(2) Next, the upper surface of the radiator plate 7 is set to an arithmetic surface roughness Ra of 0.24 μm to 0.5 μm by the method described above, and the surface roughness of the lower surface of the head substrate is set to the surface on the radiator plate 7. Set smaller than the roughness.
[0050]
(3) Subsequently, a double-sided tape 9 is adhered to a predetermined region of the upper surface of the heat sink 7 and a liquid precursor such as a silicone resin constituting the resin material 8 is applied in a strip shape.
[0051]
In this case, since the surface roughness on the heat radiating plate 7 is set to 0.24 μm to 0.5 μm in arithmetic average roughness Ra, when the resin material 8 is formed, bubbles are generated inside the resin material 8. Even if the viscosity of the liquid precursor is reduced to, for example, 70 Pa · S or less in order to effectively prevent the liquid precursor, the liquid precursor of the resin material applied on the heat radiating plate 7 hardly flows out, The contact angle of the body can be increased. As a result, even if the amount of the liquid precursor used is reduced, the height of the liquid precursor is equal to the thickness of the double-sided tape 9 (the equivalent is a difference of ± 5 μm between the height of the liquid precursor and the thickness of the double-sided tape). ) Or more, so that the productivity of the thermal head can be increased and the cost can be reduced.
[0052]
In addition, since the viscosity of the liquid precursor can be reduced, bubbles generated inside the resin material 8 can be reduced, the difference in heat radiation characteristics inside the resin material can be reduced, and the density unevenness of the print can be reduced. It becomes possible.
[0053]
The viscosity of the liquid precursor is adjusted by adjusting the content of the filler in the liquid precursor. When the content of the filler is reduced, the viscosity of the liquid precursor decreases. On the other hand, the application of the liquid precursor is performed by using a dispenser.
[0054]
(4) Next, the head substrate 1 is placed on the heat radiating plate 7 so that the application region of the liquid precursor is located immediately below the heating element 4.
[0055]
At this time, as described above, the height of the liquid precursor is equal to or greater than the thickness of the double-sided tape 9, and when the head substrate 1 is mounted on the heat sink 7, Can be brought into contact with the surface of the liquid precursor, and the surface roughness of the lower surface of the head substrate 1 (base plate 2) is smaller than the surface roughness on the heat radiating plate 7; The wettability of the contacted liquid precursor to the surface of the head substrate is improved, so that the liquid precursor easily enters many small depressions formed on the lower surface of the head substrate 1.
[0056]
Therefore, it is possible to effectively prevent the formation of a gap between the head substrate 1 and the liquid precursor, to effectively conduct the heat of the head substrate 1 to the resin material 8, and to effectively prevent the head substrate 1 from being excessively heated. it can.
[0057]
It is important to set the upper limit of the surface roughness of the radiator plate 7 to 0.5 μm or less in arithmetic average roughness Ra and the lower limit to 0.24 μm or more in arithmetic average roughness Ra. If the value is greater than 0.5 μm in arithmetic average roughness Ra, the thickness of the heat radiating plate 7 will vary greatly, and the heat radiation characteristics will differ from region to region, causing density unevenness in printing. When the average roughness Ra is smaller than 0.24 μm, the upper surface of the heat radiating plate 7 becomes too smooth, and when the viscosity of the liquid precursor is as low as 70 Pa · S or less, for example, the liquid precursor is coated on the heat radiating plate 7. Then, the contact angle of the liquid precursor becomes small, and the cross-sectional shape becomes an elliptical shape that is long in the lateral direction. As a result, if the used amount of the liquid precursor is not increased, the height of the liquid precursor becomes smaller than the thickness of the double-sided tape, so that the productivity of the thermal head is reduced and the cost is increased.
[0058]
It is important that the upper limit of the surface roughness of the head substrate 1 is smaller than the surface roughness of the heat sink 7. Particularly, when the arithmetic mean roughness Ra is set to 0.23 μm or less, the liquid The wettability with respect to the precursor becomes particularly good, which is preferable. Here, if the arithmetic average roughness Ra of the head substrate 1 is larger than the surface roughness on the heat radiating plate 7, it becomes difficult for the liquid precursor to fill the fine recesses formed on the lower surface of the head substrate 1, and -Many small gaps are formed between the liquid precursors, so that the heat of the head substrate 1 is not easily transmitted to the resin material 8. If the lower limit of the surface roughness of the head substrate 1 is set to be smaller than 0.20 μm, it takes time and effort to process the surface of the head substrate 1, which may reduce the productivity of the thermal head. It is preferable that the lower limit of the surface roughness of the lower surface be set to 0.20 μm or more in terms of arithmetic average roughness Ra.
[0059]
From the above, in order to reduce the density unevenness of the print, maintain the productivity of the thermal head at a high level, and keep the cost low, the surface roughness of the upper surface of the heat radiating plate should be 0.24 μm to 0 in arithmetic mean roughness Ra. It is understood that it is important to set the thickness to 0.5 μm and to set the surface roughness of the lower surface of the head substrate smaller than that of the upper surface of the heat sink.
[0060]
(5) Finally, the liquid precursor interposed between the head substrate 1 and the heat radiating plate 7 is thermoset to form the resin material 8, thereby completing the thermal head.
[0061]
The thermosetting of the liquid precursor is performed by heating the liquid precursor at 90 ° C. to 120 ° C. for 50 minutes to 90 minutes.
[0062]
Note that the present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the gist of the present invention.
[0063]
For example, in the above-described embodiment, the pair of grooves 7a is formed on the upper surface of the heat radiating plate 7, but the present invention can be applied even when there is no such pair of grooves 7a.
[0064]
In the above-described embodiment, the entire upper surface of the heat radiating plate 7 is made to have an arithmetic average roughness Ra of 0.24 μm to 0.5 μm, and the surface roughness of the entire lower surface of the head substrate is made smaller than the surface roughness of the upper surface of the heat radiating plate. However, these numerical ranges only need to be satisfied at least in a region in contact with the resin material 8.
[0065]
[Experimental example]
Next, the operation and effect of the present invention will be described based on experimental examples.
[0066]
(First experiment)
In the first experiment, the surface of the upper surface of the radiator plate 7 was prepared by slightly varying the surface roughness, a liquid precursor of silicone resin was applied on the radiator plate 7, and the contact angle and height of the liquid precursor were measured. It is to measure.
[0067]
Table 1 shows the results of the above experiments.
[0068]
[Table 1]
Figure 2004291512
[0069]
According to Table 1, the sample No. 1 in which the surface roughness of the radiator plate 7 was set to 0.24 μm or more in the first experiment by arithmetic average roughness Ra. In Nos. 3 to 7, the contact angle of the liquid precursor was sufficiently large. In Nos. 6 and 7, the contact angle of the liquid precursor was large, indicating that the liquid precursor had a sufficient height.
[0070]
On the other hand, in Sample No. 1 in which the surface roughness of the heat sink 7 was smaller than 0.24 μm in arithmetic mean roughness Ra. In Examples 1 and 2, the contact angle of the liquid precursor was small, and the height was much smaller than that of the other samples.
[0071]
Therefore, according to the above-described experimental results, when a liquid precursor having a relatively low viscosity of 70 Pa · S is applied on the heat radiating plate 7, the contact angle of the liquid precursor is increased to increase the surface roughness of the heat radiating plate 7. It can be seen that the arithmetic mean roughness Ra should be set to 0.24 μm or more.
[0072]
The first experiment was carried out in the same manner when the viscosity of the liquid precursor was 50 Pa · S and 60 Pa · S, and it was confirmed that substantially the same results were obtained.
[0073]
(Second experiment)
Subsequently, in order to confirm the relationship between the surface roughness of the head substrate 1 and the heat radiating plate 7 and the printing quality, a substrate in which the surface roughness of the lower surface of the head substrate 1 and the surface roughness of the upper surface of the heat radiating plate 7 are gradually changed is prepared. With respect to the thermal head formed by mounting the head substrate 1 on the heat radiating plate 7 via the resin material 8 and the double-sided tape 9, printing is continuously performed for 1 minute at a pulse cycle of 20 μsec to measure the presence or absence of density unevenness. Two experiments were performed.
[0074]
As the thermal head used in the second experiment, a thermal head having a thickness of the double-sided tape 9 and a height of the liquid precursor substantially equal to each other was used, and a silicone resin was used as a material of the resin material 8. Table 2 shows the results of the second experiment.
[0075]
[Table 2]
Figure 2004291512
[0076]
According to Table 2, the sample No. in which the surface roughness of the lower surface of the head substrate is larger than the surface roughness of the heat sink 7 is shown. 1 to No. In 4, 7, 8, 14, and 19 to 21, the density unevenness of the print was large, and a good image was not obtained. This is because the liquid precursor does not penetrate into the dent formed on the lower surface of the head substrate, and a fine gap is formed between the head substrate 1 and the resin material 8, and the number of such gaps differs for each region. It is considered that density unevenness of the print has occurred.
[0077]
On the other hand, in Sample No. 1 in which the surface roughness of the lower surface of the head substrate was smaller than the surface roughness of the heat sink 7. 5, 6, 9 to 13, and 15 to 18, print density unevenness was relatively small, and a good image was obtained. The presence or absence of the density unevenness of the print is determined by the correlation between the surface roughness of the lower surface of the head substrate and the surface roughness of the upper surface of the heat radiating plate. It is considered that the cause is not only the size of the depression formed on the lower surface of the head substrate but also the cross-sectional shape of the liquid precursor. For example, if the surface roughness of the heat radiating plate 7 is large, the cross-sectional shape of the liquid precursor becomes vertically long, so that even if the surface roughness of the lower surface of the head substrate is rough, it penetrates well into the depressions on the lower surface of the head substrate, and It is presumed that unevenness is reduced.
[0078]
Sample No. 1 in which the surface roughness of the lower surface of the head substrate was set to an arithmetic average roughness Ra of 0.23 μm or less. 5, 6, 11 to 13, 17, and 18, the density unevenness of the print was extremely small, and it was found that a remarkably excellent image was obtained. This is because the head precursor 1 has good wettability with respect to the liquid precursor, so that the liquid precursor is favorably filled in a large number of depressions formed on the lower surface of the head substrate, and the gap formed between the head substrate 1 and the resin material 8 is reduced. It is presumed that this is due to the small number.
[0079]
According to the first and second experiments described above, in order to minimize the gap between the head substrate 1 and the resin material 8 and obtain a print with less density unevenness, the surface roughness of the heat sink 7 should be 0.24 μm or less. It is important to set the surface roughness to 0.5 μm and to make the surface roughness of the lower surface of the head substrate smaller than that of the heat sink 7, and more preferably to set the surface roughness of the lower surface of the head substrate to 0.23 μm or less. Was confirmed to be preferable.
[0080]
【The invention's effect】
According to the present invention, when the resin material is formed, even if the viscosity of the liquid precursor of the resin is reduced, the liquid precursor of the resin material applied on the heat sink is less likely to flow out, and The contact angle of the body can be increased. Therefore, even when the amount of the liquid precursor used is relatively small, the height of the liquid precursor can be equal to or greater than the thickness of the double-sided tape.
[0081]
Moreover, according to the present invention, the wettability of the liquid precursor on the surface of the head substrate is improved, and when the liquid precursor is brought into contact with the head substrate by placing the head substrate on a heat sink, the liquid precursor Fine depressions formed on the surface of the substrate are favorably filled.
[0082]
Therefore, even when the viscosity of the liquid precursor is low and the amount of the liquid precursor is reduced, it is possible to effectively prevent a gap from being generated between the head substrate and the liquid precursor when the head substrate is placed on the heat sink. As a result, the heat of the head substrate is favorably conducted to the resin material. As a result, even if the heating element is repeatedly heated with a short pulse cycle, the temperature of the head substrate can be effectively prevented from becoming excessively high, and a thermal head capable of coping with high-speed printing is realized.
[0083]
Further, according to the present invention, since the viscosity of the liquid precursor can be reduced, bubbles generated inside the resin material can be reduced, the difference in heat radiation characteristics inside the resin can be reduced, and the density unevenness of the print can be reduced. Can be reduced.
[0084]
Further, even if the amount of the liquid precursor used is reduced, the above-mentioned effects can be obtained, so that the thermal head can be provided with improved productivity and reduced cost.
[Brief description of the drawings]
FIG. 1 is a sectional view of a thermal head according to an embodiment of the present invention.
FIG. 2 is a schematic side view of a thermal printer equipped with the thermal head of FIG.
3 (a) to 3 (c) are cross-sectional views of respective steps for explaining a method of manufacturing the thermal head of FIG.
FIG. 4 is a sectional view of a conventional thermal head.
5 (a) to 5 (c) are cross-sectional views of respective steps for explaining a method of manufacturing the thermal head of FIG.
[Explanation of symbols]
1 ... Head substrate
2 ... Base plate
3 Partial glaze layer
4 ... heating element
5 ... Electrode pattern
6 ... Protective film
7 ... heat sink
7a ... groove
8 ・ ・ ・ Resin material
9 Double-sided tape
10 ・ ・ ・ Platen roller
11a, 11b, 11c, 11d: conveying roller

Claims (4)

発熱素子を有するヘッド基板を放熱板上に載置させるとともに、放熱板−ヘッド基板間の領域のうち、発熱素子の直下に樹脂材を、その他の領域に両面テープを介在させたサーマルヘッドにおいて、
少なくとも前記樹脂材と接する放熱板上の表面粗さを算術平均粗さRaで0.24μm〜0.5μmに設定するとともに、前記樹脂材に接するヘッド基板表面の表面粗さを、前記放熱板上の表面粗さよりも小さくしたことを特徴とするサーマルヘッド。
In a thermal head in which a head substrate having a heating element is placed on a heat sink, a resin material is provided immediately below the heating element in a region between the heat sink and the head substrate, and a double-sided tape is interposed in other regions.
At least the surface roughness on the heat sink in contact with the resin material is set to 0.24 μm to 0.5 μm in arithmetic average roughness Ra, and the surface roughness of the head substrate surface in contact with the resin material is reduced on the heat sink. A thermal head characterized by having a surface roughness smaller than that of the thermal head.
前記樹脂材に接するヘッド基板表面の表面粗さを算術平均粗さRaで0.23μm以下に設定したことを特徴とするサーマルヘッド。A thermal head, wherein the surface roughness of the head substrate surface in contact with the resin material is set to an arithmetic average roughness Ra of 0.23 μm or less. 上面の表面粗さが算術平均粗さRaで0.24μm〜0.5μmに設定された放熱板と、上面に発熱素子を有し、下面の表面粗さが放熱板上の表面粗さよりも小さく設定されたヘッド基板とを準備する工程1と、
前記放熱板上に樹脂材料を構成する液状前駆体を塗布し、且つ放熱板上もしくはヘッド基板の下面に両面テープを貼着する工程2と、
前記ヘッド基板を、発熱素子の直下に液状前駆体の塗布領域が位置するように放熱板上に載置する工程3と、
前記液状前駆体を熱硬化させて樹脂材を形成する工程4と、を備えたことを特徴とするサーマルヘッドの製造方法。
A heat sink having an upper surface with an arithmetic mean roughness Ra of 0.24 μm to 0.5 μm, a heating element on the upper surface, and a lower surface roughness smaller than the surface roughness on the heat sink. Step 1 of preparing a set head substrate;
Step 2 of applying a liquid precursor constituting a resin material on the heat sink, and applying a double-sided tape on the heat sink or on the lower surface of the head substrate;
A step 3 of mounting the head substrate on a heat sink such that an application region of the liquid precursor is located immediately below the heating element;
A step 4 of thermally curing the liquid precursor to form a resin material.
請求項1または請求項2に記載のサーマルヘッドと、該サーマルヘッド上に記録媒体を搬送する搬送手段と、を備えたことを特徴とするサーマルプリンタ。3. A thermal printer, comprising: the thermal head according to claim 1; and conveying means for conveying a recording medium onto the thermal head.
JP2003089399A 2003-03-27 2003-03-27 Thermal head, manufacturing method thereof, and thermal printer Expired - Fee Related JP4153816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089399A JP4153816B2 (en) 2003-03-27 2003-03-27 Thermal head, manufacturing method thereof, and thermal printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089399A JP4153816B2 (en) 2003-03-27 2003-03-27 Thermal head, manufacturing method thereof, and thermal printer

Publications (2)

Publication Number Publication Date
JP2004291512A true JP2004291512A (en) 2004-10-21
JP4153816B2 JP4153816B2 (en) 2008-09-24

Family

ID=33403252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089399A Expired - Fee Related JP4153816B2 (en) 2003-03-27 2003-03-27 Thermal head, manufacturing method thereof, and thermal printer

Country Status (1)

Country Link
JP (1) JP4153816B2 (en)

Also Published As

Publication number Publication date
JP4153816B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
US8031215B2 (en) Thermal head, thermal printer and manufacturing method of thermal head
JP4153816B2 (en) Thermal head, manufacturing method thereof, and thermal printer
JP2010000599A (en) Thermal print head
JP4360605B2 (en) Thermal head and thermal printer using the same
JP4163969B2 (en) Thermal head, thermal printer using the same, and thermal head manufacturing method
JP2005096274A (en) Thermal head, its manufacturing method, and thermal printer
JP2005047060A (en) Thermal head, its manufacturing method, and thermal printer
JP4544729B2 (en) Thermal head and thermal printer using the same
JP2001096780A (en) Thermal head
JP4309699B2 (en) Thermal head and thermal printer using the same
JP2005067160A (en) Thermal head and thermal printer using the same
JP2004224034A (en) Thermal head and thermal printer using the same
JP4557677B2 (en) Thermal head and thermal printer using the same
JP2005022104A (en) Thermal head and thermal printer using it
JP2003094705A (en) Thermal head
JP2004195947A (en) Thermal head and thermal printer using it
JP4458878B2 (en) Thermal head and thermal printer using the same
JP4051262B2 (en) Thermal head and thermal printer using the same
JP4206244B2 (en) Manufacturing method of thermal head
JP4283943B2 (en) Thermal head
JP2002356000A (en) Thermal head
JP2002137428A (en) Thermal head
JP4360602B2 (en) Thermal head, manufacturing method thereof, and thermal printer
JP2004230584A (en) Thermal printer
JP2003191511A (en) Thermal head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R150 Certificate of patent or registration of utility model

Ref document number: 4153816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees