JP2005022104A - Thermal head and thermal printer using it - Google Patents

Thermal head and thermal printer using it Download PDF

Info

Publication number
JP2005022104A
JP2005022104A JP2003187084A JP2003187084A JP2005022104A JP 2005022104 A JP2005022104 A JP 2005022104A JP 2003187084 A JP2003187084 A JP 2003187084A JP 2003187084 A JP2003187084 A JP 2003187084A JP 2005022104 A JP2005022104 A JP 2005022104A
Authority
JP
Japan
Prior art keywords
heat
substrate
adhesive
double
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003187084A
Other languages
Japanese (ja)
Inventor
Yoichi Moto
洋一 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003187084A priority Critical patent/JP2005022104A/en
Publication of JP2005022104A publication Critical patent/JP2005022104A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal head capable of firmly fixing a substrate to a heat radiation plate, and to provide a thermal printer. <P>SOLUTION: In a thermal head, the substrate 1 with heating elements is placed on the heat radiation plate 3, and double-faced tapes 6a and 6b are interposed at a region where a heat radiant adhesive 5 is not present while the heat radiant adhesive 5 is interposed at a region immediately below the heating elements among a region between the heat radiation plate 3 and the substrate 1. A surface roughness on the heat radiation plate 3 is made smaller at the interposition region of the double-faced tapes 6a and 6b than at the interposition region of the heat radiant adhesive 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はワードプロセッサやファクシミリ等のプリンタ機構として組み込まれるサーマルヘッド及びそれを用いたサーマルプリンタに関するものである。
【0002】
【従来の技術】
従来、ワードプロセッサ等のプリンタ機構として組み込まれるサーマルヘッドは、図3に示す如く、発熱素子列12を有する長方形状の基板11を、アルミニウム等の金属から成る放熱板13上に載置させた構造を有しており、発熱素子列12を構成する多数の発熱素子を外部からの画像データに基づいて個々に選択的にジュール発熱させるとともに、該発熱した熱を感熱紙等の記録媒体に伝導させ、記録媒体に所定の印画を形成することによってサーマルヘッドとして機能する。
【0003】
前記放熱板13は基板11中の熱を吸収して、これを大気中に放散することにより基板11の温度が過度に高温となるのを防止するためのものであり、その上面全体が略均一な表面粗さに設定され、上面に細かな窪みが多数形成されている。
【0004】
また前記放熱板13の上面には一対の溝14a,14b が形成されており、該放熱板13上に基板11を発熱素子列12の直下領域が一対の溝間14a−14b に位置するようにして載置させている。
【0005】
そして上記放熱板13と基板11との間には、一対の溝間14a−14b の領域には放熱性接着材15が、一方の溝14a と放熱板13の端部間の領域に両面テープ16が介在されており、前記放熱性接着材15によって基板11中の熱を放熱板13側に良好に伝導させ、また前記両面テープ16によって基板11と放熱板13とを接着するようにしていた。
【0006】
尚、前記放熱性接着材15は、例えばシリコーン樹脂やアクリル樹脂等からなり、かかる樹脂材料の前駆体を放熱板13の上面所定領域に塗布し、これを70℃〜120℃の温度で熱硬化させることによって放熱板13上に形成される。また両面テープ16は、放熱板13の上面所定領域に貼着させることによって放熱板13上に被着される。
【0007】
【特許文献1】
特開2001−96780号公報
【0008】
【発明が解決しようとする課題】
ところで、上述したサーマルヘッドを構成する放熱板13においては、その上面全体が略均一の表面粗さに設定されているのが一般的である。
【0009】
一方、基板と放熱板との間の介在物のうち、放熱性接着材15は、前駆体の粘度が比較的小さいため、放熱板の上面に存在する深い窪みにも良好に充填されるものの、両面テープ16は放熱性接着材15に比べて流動性が非常に小さいため、放熱板上の窪みに入り込みにくい。
【0010】
このため、両面テープ16と放熱板13との間に多くの気泡が混入し、かかる密着強度が不十分となりやすく、プラテンローラからのサーマルヘッドに対する押圧力を特に大きくした場合等に長時間サーマルヘッドを使用すると、両面テープ16が放熱板13より剥がれ易くなり、基板11の固定位置が不安定となりやすい問題があった。
【0011】
また上記気泡が混入した部分で基板11に蓄積した熱が放熱板13に伝わりにくくなり、基板11に熱がこもりやすくなる問題も誘発する。
【0012】
本発明は上記問題点に鑑みて案出されたものであり、その目的は、基板を放熱板に対して強固に固定しておくことが可能なサーマルヘッド、並びにサーマルプリンタを提供することにある。
【0013】
【課題を解決するための手段】
本発明のサーマルヘッドは発熱素子を有する基板を放熱板上に載置させるとともに、該放熱板と基板との間の領域のうち、発熱素子の直下領域に放熱性接着材を介在させ、該放熱性接着材の存在しない領域に両面テープを介在させてなるサーマルヘッドにおいて、前記放熱板上の表面粗さは、放熱性接着材の介在領域よりも両面テープの介在領域で小さくなっていることを特徴とする。
【0014】
また本発明のサーマルプリンタは、上述のサーマルヘッドと、前記発熱素子上に記録媒体を搬送する搬送手段と、前記サーマルヘッドを駆動する駆動手段と、を備えたことを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。図1は本発明の一形態に係るサーマルヘッドの断面図であり、1 は基板、2 は発熱素子列、3 は放熱板、4a,4a は一対の溝、5 は放熱性接着材、6a,6bは両面テープである。
【0016】
前記基板1 は、アルミナセラミックスやガラス等の電気絶縁性材料、表面に酸化膜が形成された単結晶シリコン等の半導体材料など、種々の材料により形成されており、例えばアルミナセラミックスから成る場合、アルミナ、シリカ、マグネシア等のセラミックス原料粉末に適当な有機溶剤、溶媒を添加・混合して泥漿状に成すとともに、これを従来周知のドクターブレード法やカレンダーロール法等を採用することによってセラミックグリーンシートを形成し、しかる後、前記セラミックグリーンシートを長方形状に打ち抜いた上、高温で焼成することによって製作される。
【0017】
また前記基板1 の上面にはガラス等から成るグレーズ層を介して発熱素子列2が配設される。
【0018】
前記発熱素子列2 は多数の発熱素子を例えば300dpiのドット密度で直線状に配列して成り、これら発熱素子は窒化タンタル等の電気抵抗材料から成っているため、図示しない回路導体やドライバーICを介して所定の電力が印加されると感熱紙等の記録媒体に印画を形成するのに必要な所定の温度となる。
【0019】
尚、前記発熱素子列2 は、従来周知の薄膜手法、具体的にはスパッタリングやフォトリソグラフィー技術,エッチング技術等を採用することによってグレーズ層を有する基板1 の上面に所定パターンに被着・形成される。
【0020】
また上記基板1 は、上面に一対の溝4a,4b を有する放熱板3 上に、発熱素子列2 の直下領域が一対の溝間4a−4b に位置するようにして載置され、該放熱板上面と基板下面の間には、一対の溝間4a−4b に放熱性接着材5 が、また溝の一方(4a)と放熱板上面の端部の間及び発熱素子列2 の列方向の両側に両面テープ6a,6bが介在されている。
【0021】
前記放熱板3 はアルミニウムやSUS等の金属によって長方形状をなすように形成されており、放熱性接着材5の介在領域と両面テープ6a,6bの介在領域とで表面粗さを異ならせている。
【0022】
すなわち、放熱性接着材5の介在領域より両面テープ6a,6bの介在領域の方が放熱板3の表面粗さが小さくなっている。例えば、放熱性接着材5の介在領域における放熱板3の表面粗さは算術平均粗さRaで0.4μm〜0.5μmの場合、両面テープ6a,6bの介在領域における表面粗さは算術平均粗さRaで0.24μm〜0.4μmに設定されている。ただし、双方の算術平均粗さRaが0.4μmである場合は当然除かれる。
【0023】
このような放熱板3 は、その上面で基板1 を支持するとともに、基板1中の熱を後述する放熱性接着材5 を介して吸収し、これを大気中に放散することで基板1 が過度に高温となるのを防止する作用を為す。
【0024】
また前記放熱板上面の一対の溝4a,4b は、放熱板3 の長手方向に沿って略平行に形成されており、この2つの溝4a,4b はサーマルヘッドの組み立て工程において基板1 を放熱性接着材5 を介して放熱板3 上に載置する際、その内部で放熱性接着材5 の余剰分を収容し、基板1 −放熱板3 間に介在される放熱性接着材5 の幅を略一定とする作用を為す。
【0025】
この放熱性接着材5 は、例えばシリコーン樹脂やアクリル樹脂から成っているもの、あるいは、これらの樹脂中にAlやSi等の良熱伝導性(Alの熱伝導率:約7.2×10−3cal/mm・sec・℃)の無機物粒子(粒径:3μm〜30μm)を20重量%〜80重量%の割合で添加・混合して成るものが好適に使用される。
【0026】
かかる放熱性接着材5 は、前駆体状態で粘度が非常に低い(20〜70Pa・s)ため、放熱性接着材5の形成にあたり、その前駆体を放熱板3上に塗布すると、前駆体が放熱板上に形成される多数の窪みの内部に良好に入り込み、放熱性接着材5 が窪みに十分に充填される。それ故、放熱性接着材5と放熱板3とを強固に接着することができる。
【0027】
一方、前記放熱性接着材5 と共に基板1 及び放熱板3 間に介在される両面テープ6a,6bは、アクリル樹脂系のものが好適に使用され、基板1 を放熱板3 に対して接着する作用を為し、これら全ての両面テープ6a,6bは基板下面と放熱板上面とを略平行に位置させるべく略等しい厚み(50μm〜125μm)を有している。
【0028】
これらの両面テープ6a,6bは放熱性接着材5 等に比べ変形しにくいものの、両面テープ6a,6bの介在領域において放熱板3上の表面粗さが小さく、かかる表面の窪みの深さが浅くなっていることから、両面テープ6a,6bを前記窪みの内部に良好に入り込ませることができる。従って、両面テープ6a,6bと放熱板3とを、放熱性接着材5及び放熱板3と同様に強固に接着することができる。従って、サーマルヘッドに対して記録媒体を長時間にわたり繰返し摺接させたとしても、基板1の位置が大きくずれることはなく、歪みの少ない良好な印画を形成することが可能となる。
【0029】
ここで、上述した放熱板3の表面粗さは、両面テープ6a,6bの介在領域で0.24μm〜0.4μmに、好ましくは、0.26μm〜0.30μmに設定すればよく、一方、放熱性接着材5の介在領域では、0.4μm〜0.5μmに、好ましくは0.46μm〜0.50μmに設定すればよい。
【0030】
また、記録動作時、サーマルヘッドの温度分布は発熱素子2の両端域よりも中央域で高くなり、該中央域におけるサーマルヘッドと記録媒体との摩擦力が大きくなる傾向にあるが、両面テープ6a,6bの介在領域及び/または放熱性接着材5の介在領域のうち、発熱素子列2の中央域で放熱板3の表面粗さが大きくなるように設定するようにすれば、上記中央域での基板1と放熱板3との接着力をより効果的に高めることができ、基板1がずれることを防止できる。
【0031】
しかも、両面テープ6と放熱板3とを良好に密着させることができるため、両者間に介在される気泡の数が少なくなったり、あるいは、気泡の大きさが小さくなり、基板1から放熱板3に放出される熱量を増加させることができる。
【0032】
また、放熱性接着材5の介在領域の方が放熱板3の表面粗さが大きいため、放熱性接着材5と放熱板3との接着面積が大きくなり、発熱素子の熱を効率的に放熱板3へ放出することができる。
【0033】
尚、前記上面に溝4a,4b を有した放熱板3 は、アルミニウム等から成るインゴット(塊)を従来周知の金属加工法を採用し、所定形状と成すことによって製作され、かかる放熱板3 の上面所定領域に両面テープ6a,6bを貼着するとともに、一対の溝4a,4b 間の領域にディスペンサ等を用いて放熱性接着材5 を塗布し、その上に基板1 を、発熱素子列2 の直下領域が一対の溝4a,4b 間に位置するようにして載置させることで基板1 が放熱板3 上に接着・固定される。
【0034】
かくして本発明のサーマルヘッドは、発熱素子列2 を構成する多数の発熱素子を外部からの画像データに基づいて個々に選択的にジュール発熱させるとともに、該発熱した熱を感熱紙等の記録媒体に伝導させ、記録媒体に所定の印画を形成することによってサーマルヘッドとして機能する。
【0035】
そして、上述のようなサーマルヘッドが組み込まれるサーマルプリンタには、図2に示す如く、サーマルヘッドTを駆動する駆動手段Cと、記録媒体をサーマルヘッドTの発熱素子列2上に搬送する搬送手段としてのプラテンローラ10や搬送ローラ11a、11b、11c、11d等が配設される。
【0036】
前記駆動手段Cは、シフトレジスタやラッチ、スイッチングトランジスタ等を高密度に集積したドライバーICや該ドライバーICにストローブ信号やラッチ信号等の制御信号を供給する制御回路等を備えており、制御回路からの制御信号に基づいてドライバーIC内のスイッチングトランジスタのオン・オフを切り換えることにより、発熱素子列2の発熱を制御するようにしている。
【0037】
一方、搬送手段としてのプラテンローラ10は、SUS等の金属から成る軸芯の外周にブタジエンゴム等を3mm〜15mm程度の厚みに巻きつけた円柱状の部材であり、サーマルヘッドTの発熱素子列2上に回転可能に支持され、記録媒体を発熱素子列2に対して押圧しつつ記録媒体を発熱素子列2の配列と直交する方向(図中の矢印方向)に搬送する。
【0038】
また前記搬送ローラ11a,11b,11c,11dは、その外周部が金属やゴム等によって形成されており、サーマルヘッドTに対し記録媒体の搬送方向上流側と下流側に分かれて配設され、これらの搬送ローラ11a,11b,11c,11dと前述のプラテンローラ10とで記録媒体の走行を支持している。
【0039】
そして、これと同時に多数の発熱素子列2を駆動手段Cの駆動に伴い選択的にジュール発熱させ、これらの熱を記録媒体に伝導させることによって所定の印画が形成される。
【0040】
尚、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
【0041】
【実験例】
次に本発明の作用効果を実験例に基づき説明する。
この実験は、放熱板上面の表面粗さを両面テープの介在領域、放熱性接着材の介在領域で異ならせたサーマルヘッドサンプルを複数個形成し、これらサーマルヘッドの基板に、副走査方向の外力を少しずつ大きくなるように印加していき、基板が放熱板より剥がれた荷重を測定することで放熱板と基板との密着強度を調べるというものであり、その実験結果は表1の通りである。なお、サンプルNo.A−1〜A−4では、両面テープがポリエチレン系、放熱性接着材がシリコーン樹脂系のものを使用し、一方、サンプルNo.B−1〜B−4では、両面テープがアクリル樹脂系、放熱性接着材がシリコーン樹脂系のものを使用した。
【0042】
【表1】

Figure 2005022104
【0043】
この表1によれば、放熱性接着材の介在領域と両面テープの介在領域とで放熱板の表面粗さが同じ、もしくは、両面テープの介在領域の方が表面粗さが大きいサンプルNo.A−1,A−2,B−1,B−2では、比較的小さな外力で基板が剥がれている。一方、両面テープの介在領域の表面粗さが比較的小さなサンプルNo.A−3,A−4,B−3,B−4では、大きな外力まで耐えることができ、優れた接着力を有していることがわかる。特に両面テープの介在領域と放熱性接着材の介在領域との間で表面粗さの差が0.2μm以上あるサンプルNo.A−4,B−4では特に大きな外力まで耐えることができ、格段に優れた接着力を有していることがわかる。
【0044】
【発明の効果】
本発明によれば、発熱素子を有する基板を放熱板上に載置させるとともに、該放熱板と基板との間の領域のうち、発熱素子の直下領域に放熱性接着材を介在させ、該放熱性接着材の存在しない領域に両面テープを介在させ、更に、放熱板上の表面粗さを、放熱性接着材の介在領域よりも両面テープの介在領域の方で大きく設定したことから、放熱性接着材、両面テープ共に放熱板に対して強固に固着することができる。従って、サーマルプリンタを長期にわたり長時間使用した場合に、サーマルヘッドに対して記録媒体が繰返し摺接されたとしても、基板の固定位置が放熱板に対して大きくずれるといった不具合を有効に防止することができる。それ故、信頼性の高いサーマルプリンタが実現される。
【0045】
しかも、両面テープと放熱板とを良好に密着させることができるため、両者間に介在される気泡の数が少なくなったり、あるいは、気泡の大きさが小さくなり、基板から放熱板に放出される熱量を増加させることができる。
【0046】
また、放熱性接着材の介在領域の方が放熱板の表面粗さが大きいため、放熱性接着材と放熱板との接着面積が大きくなり、発熱素子の熱を効率的に放熱板へ放出することができる。
【図面の簡単な説明】
【図1】本発明の一形態に係るサーマルヘッドの断面図である。
【図2】図1のサーマルヘッドを組み込んで構成したサーマルプリンタの概略側面図である。
【図3】従来のサーマルヘッドの断面図である。
【符号の説明】
1 ・・・基板
2 ・・・発熱素子列
3 ・・・放熱板
4a,4a ・・・一対の溝
5 ・・・放熱性接着材
6a,6b ・・・両面テープ
10・・・プラテンローラ
11a,11b,11c,11d・・・搬送ローラ
T・・・サーマルヘッド
C・・・駆動手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal head incorporated as a printer mechanism such as a word processor or a facsimile, and a thermal printer using the thermal head.
[0002]
[Prior art]
Conventionally, a thermal head incorporated as a printer mechanism such as a word processor has a structure in which a rectangular substrate 11 having a heating element array 12 is placed on a heat radiating plate 13 made of metal such as aluminum as shown in FIG. A plurality of heating elements constituting the heating element array 12 are selectively Joule-heated individually based on image data from the outside, and the generated heat is conducted to a recording medium such as thermal paper, It functions as a thermal head by forming a predetermined print on a recording medium.
[0003]
The heat radiating plate 13 absorbs the heat in the substrate 11 and dissipates it into the atmosphere to prevent the temperature of the substrate 11 from becoming excessively high. The entire upper surface of the heat radiating plate 13 is substantially uniform. A large surface roughness is set, and many fine depressions are formed on the upper surface.
[0004]
A pair of grooves 14a and 14b are formed on the upper surface of the heat radiating plate 13, and the substrate 11 is positioned on the heat radiating plate 13 so that the region immediately below the heating element array 12 is located between the pair of grooves 14a-14b. Is placed.
[0005]
And between the said heat sink 13 and the board | substrate 11, the heat dissipation adhesive 15 is in the area | region of a pair of groove | channel 14a-14b, and the double-sided tape 16 is in the area | region between one groove | channel 14a and the edge part of the heat sink 13. The heat dissipating adhesive 15 allows the heat in the substrate 11 to be conducted well to the heat dissipating plate 13 side, and the double-sided tape 16 adheres the substrate 11 and the heat dissipating plate 13 to each other.
[0006]
The heat-dissipating adhesive 15 is made of, for example, a silicone resin or an acrylic resin, and a precursor of the resin material is applied to a predetermined area on the upper surface of the heat-radiating plate 13 and is thermoset at a temperature of 70 ° C. to 120 ° C. Is formed on the heat sink 13. The double-sided tape 16 is attached to the heat sink 13 by being attached to a predetermined area on the upper surface of the heat sink 13.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-96780
[Problems to be solved by the invention]
By the way, in the heat sink 13 which comprises the thermal head mentioned above, it is common that the whole upper surface is set to the substantially uniform surface roughness.
[0009]
On the other hand, among the inclusions between the substrate and the heat radiating plate, the heat radiating adhesive 15 has a relatively low viscosity of the precursor, so that it can be satisfactorily filled into deep depressions existing on the upper surface of the heat radiating plate, Since the double-sided tape 16 has very little fluidity compared to the heat-dissipating adhesive material 15, it is difficult to enter the recess on the heat-radiating plate.
[0010]
For this reason, many bubbles are mixed between the double-sided tape 16 and the heat radiating plate 13, and the adhesion strength tends to be insufficient. For example, when the pressing force against the thermal head from the platen roller is particularly increased, the thermal head is used for a long time. , The double-sided tape 16 is easily peeled off from the heat dissipation plate 13, and the fixing position of the substrate 11 tends to become unstable.
[0011]
In addition, the heat accumulated in the substrate 11 at the portion where the bubbles are mixed becomes difficult to be transmitted to the heat radiating plate 13, and the problem that the heat tends to be accumulated in the substrate 11 is also induced.
[0012]
The present invention has been devised in view of the above problems, and an object thereof is to provide a thermal head and a thermal printer capable of firmly fixing a substrate to a heat sink. .
[0013]
[Means for Solving the Problems]
In the thermal head of the present invention, a substrate having a heat generating element is placed on a heat radiating plate, and a heat dissipating adhesive is interposed in a region directly below the heat generating element in a region between the heat radiating plate and the substrate. In the thermal head in which the double-sided tape is interposed in the area where the heat-resistant adhesive does not exist, the surface roughness on the heat sink is smaller in the intermediate area of the double-sided tape than the intermediate area of the heat-dissipative adhesive. Features.
[0014]
A thermal printer according to the present invention includes the above-described thermal head, a transport unit that transports a recording medium onto the heating element, and a drive unit that drives the thermal head.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a thermal head according to an embodiment of the present invention, in which 1 is a substrate, 2 is a heating element array, 3 is a heat radiating plate, 4a and 4a are a pair of grooves, 5 is a heat radiating adhesive, 6a, 6b is a double-sided tape.
[0016]
The substrate 1 is formed of various materials such as an electrically insulating material such as alumina ceramics or glass, or a semiconductor material such as single crystal silicon having an oxide film formed on the surface. A ceramic green sheet is made by adding and mixing an appropriate organic solvent and solvent to a ceramic raw material powder such as silica and magnesia to form a slurry, and adopting a conventionally known doctor blade method, calendar roll method, etc. After the formation, the ceramic green sheet is punched into a rectangular shape and then fired at a high temperature.
[0017]
A heating element array 2 is disposed on the upper surface of the substrate 1 via a glaze layer made of glass or the like.
[0018]
The heating element array 2 is formed by arranging a large number of heating elements in a straight line with a dot density of, for example, 300 dpi, and these heating elements are made of an electric resistance material such as tantalum nitride. When a predetermined power is applied, the temperature reaches a predetermined temperature necessary for forming a print on a recording medium such as thermal paper.
[0019]
The heating element array 2 is deposited and formed in a predetermined pattern on the upper surface of the substrate 1 having the glaze layer by employing a conventionally known thin film technique, specifically, sputtering, photolithography technique, etching technique or the like. The
[0020]
The substrate 1 is placed on a heat sink 3 having a pair of grooves 4a and 4b on the upper surface so that the region immediately below the heating element array 2 is located between the pair of grooves 4a-4b. Between the upper surface and the lower surface of the substrate, a heat-dissipating adhesive 5 is provided between the pair of grooves 4a-4b, and between one end (4a) of the groove and the end of the upper surface of the heat sink and on both sides of the heating element array 2 in the column direction. Double-sided tape 6a, 6b is interposed between the two.
[0021]
The heat radiating plate 3 is formed in a rectangular shape with a metal such as aluminum or SUS, and the surface roughness is different between the intervening region of the heat dissipating adhesive 5 and the intervening region of the double-sided tapes 6a and 6b. .
[0022]
That is, the surface roughness of the heat radiating plate 3 is smaller in the intervening region of the double-sided tapes 6 a and 6 b than in the intervening region of the heat dissipating adhesive 5. For example, when the surface roughness of the heat dissipation plate 3 in the intervening region of the heat-dissipating adhesive 5 is 0.4 μm to 0.5 μm in terms of arithmetic average roughness Ra, the surface roughness in the intervening region of the double-sided tapes 6a and 6b is the arithmetic average. The roughness Ra is set to 0.24 μm to 0.4 μm. However, the case where the arithmetic average roughness Ra of both is 0.4 μm is naturally excluded.
[0023]
Such a heat radiating plate 3 supports the substrate 1 on its upper surface, absorbs heat in the substrate 1 through a heat-dissipating adhesive 5 described later, and dissipates this into the atmosphere, thereby causing the substrate 1 to be excessive. It works to prevent high temperatures.
[0024]
The pair of grooves 4a and 4b on the upper surface of the heat radiating plate are formed substantially in parallel along the longitudinal direction of the heat radiating plate 3, and these two grooves 4a and 4b make the substrate 1 heat radiating in the assembly process of the thermal head. When mounting on the heat sink 3 via the adhesive 5, the excess of the heat dissipative adhesive 5 is accommodated therein, and the width of the heat dissipative adhesive 5 interposed between the substrate 1 and the heat sink 3 is reduced. It works to make it almost constant.
[0025]
The heat dissipating adhesive 5 is made of, for example, a silicone resin or an acrylic resin, or has good thermal conductivity such as Al 2 O 3 or Si in these resins (the thermal conductivity of Al 2 O 3 : about 7.2 × 10 −3 cal / mm · sec · ° C.) inorganic particles (particle size: 3 μm to 30 μm) added and mixed at a ratio of 20% by weight to 80% by weight are preferably used. .
[0026]
Since the heat dissipating adhesive 5 has a very low viscosity (20 to 70 Pa · s) in the precursor state, when the precursor is applied on the heat dissipating plate 3 in forming the heat dissipating adhesive 5, the precursor is The inside of the many depressions formed on the heat sink is satisfactorily filled, and the heat radiation adhesive 5 is sufficiently filled in the depressions. Therefore, the heat radiation adhesive 5 and the heat radiation plate 3 can be firmly bonded.
[0027]
On the other hand, the double-sided tape 6a, 6b interposed between the substrate 1 and the radiator plate 3 together with the heat-dissipating adhesive 5 is preferably an acrylic resin-based adhesive, and acts to adhere the substrate 1 to the radiator plate 3. Therefore, all these double-sided tapes 6a and 6b have substantially the same thickness (50 μm to 125 μm) so that the lower surface of the substrate and the upper surface of the heat sink are positioned substantially in parallel.
[0028]
Although these double-faced tapes 6a and 6b are less likely to be deformed than the heat-dissipating adhesive 5 or the like, the surface roughness on the heat sink 3 is small in the intervening region of the double-faced tapes 6a and 6b, and the depth of the dents on the surface is shallow. Therefore, the double-sided tapes 6a and 6b can be satisfactorily inserted into the recesses. Therefore, the double-sided tapes 6 a and 6 b and the heat radiating plate 3 can be firmly bonded in the same manner as the heat radiating adhesive 5 and the heat radiating plate 3. Therefore, even if the recording medium is repeatedly brought into sliding contact with the thermal head for a long time, the position of the substrate 1 is not greatly displaced, and a good print with little distortion can be formed.
[0029]
Here, the surface roughness of the heat radiating plate 3 described above may be set to 0.24 μm to 0.4 μm, preferably 0.26 μm to 0.30 μm in the intervening region of the double-sided tapes 6 a and 6 b, What is necessary is just to set to 0.4 micrometer-0.5 micrometer in the intervening area | region of the heat dissipation adhesive material 5, Preferably it sets to 0.46 micrometer-0.50 micrometer.
[0030]
Further, during the recording operation, the temperature distribution of the thermal head is higher in the central region than both end regions of the heating element 2, and the frictional force between the thermal head and the recording medium in the central region tends to increase, but the double-sided tape 6a. , 6b and / or the heat dissipation adhesive 5, the heat dissipation element array 2 is set so that the surface roughness of the heat dissipation plate 3 is increased in the central region. The adhesive force between the substrate 1 and the heat sink 3 can be increased more effectively, and the substrate 1 can be prevented from shifting.
[0031]
Moreover, since the double-sided tape 6 and the heat radiating plate 3 can be satisfactorily adhered to each other, the number of air bubbles interposed between them is reduced or the size of the air bubbles is reduced. The amount of heat released to the can be increased.
[0032]
Further, since the surface area of the heat radiating plate 3 is larger in the intervening region of the heat radiating adhesive material 5, the bonding area between the heat radiating adhesive material 5 and the heat radiating plate 3 becomes larger, and the heat of the heating element is efficiently radiated. It can be discharged to the plate 3.
[0033]
The heat radiating plate 3 having the grooves 4a and 4b on the upper surface is manufactured by adopting a conventionally known metal processing method to form an ingot made of aluminum or the like into a predetermined shape. Double-sided tape 6a, 6b is attached to a predetermined area on the upper surface, and a heat-dissipating adhesive 5 is applied to the area between the pair of grooves 4a, 4b using a dispenser or the like, and the substrate 1 is placed on the heating element array 2 The substrate 1 is bonded and fixed onto the heat radiating plate 3 by placing it so that the region immediately below is located between the pair of grooves 4a and 4b.
[0034]
Thus, the thermal head of the present invention selectively causes Joule heating of a large number of heating elements constituting the heating element array 2 individually based on image data from the outside, and the generated heat is applied to a recording medium such as thermal paper. It conducts and functions as a thermal head by forming a predetermined print on the recording medium.
[0035]
In the thermal printer in which the thermal head as described above is incorporated, as shown in FIG. 2, a driving means C for driving the thermal head T and a conveying means for conveying the recording medium onto the heating element array 2 of the thermal head T. The platen roller 10 and the transport rollers 11a, 11b, 11c, 11d and the like are disposed.
[0036]
The driving means C includes a driver IC in which shift registers, latches, switching transistors and the like are integrated at a high density, a control circuit for supplying a control signal such as a strobe signal and a latch signal to the driver IC, and the like. Based on the control signal, the switching transistor in the driver IC is switched on and off to control the heat generation of the heating element array 2.
[0037]
On the other hand, the platen roller 10 as a conveying means is a columnar member in which butadiene rubber or the like is wound around the outer periphery of a shaft core made of a metal such as SUS to a thickness of about 3 mm to 15 mm. The recording medium is conveyed in a direction (arrow direction in the figure) orthogonal to the arrangement of the heating element rows 2 while being rotatably supported on 2 and pressing the recording medium against the heating element rows 2.
[0038]
The transport rollers 11a, 11b, 11c, and 11d have outer peripheral portions formed of metal, rubber, or the like, and are disposed separately from the thermal head T on the upstream side and the downstream side in the recording medium transport direction. The transport rollers 11a, 11b, 11c, and 11d and the platen roller 10 described above support the traveling of the recording medium.
[0039]
At the same time, a large number of heating element arrays 2 are selectively Joule-heated as the driving means C is driven, and a predetermined print is formed by conducting these heats to the recording medium.
[0040]
In addition, this invention is not limited to the above-mentioned embodiment, A various change, improvement, etc. are possible in the range which does not deviate from the summary of this invention.
[0041]
[Experimental example]
Next, the function and effect of the present invention will be described based on experimental examples.
In this experiment, a plurality of thermal head samples with different surface roughness on the upper surface of the heat sink plate were formed in the intervening area of the double-sided tape and the intervening area of the heat-dissipating adhesive. Is applied gradually, and the adhesion strength between the heat sink and the substrate is examined by measuring the load that the substrate peels off from the heat sink. The experimental results are shown in Table 1. . Sample No. In A-1 to A-4, the double-sided tape uses polyethylene and the heat-dissipating adhesive uses silicone resin. In B-1 to B-4, the double-sided tape used was an acrylic resin type and the heat-dissipating adhesive was a silicone resin type.
[0042]
[Table 1]
Figure 2005022104
[0043]
According to Table 1, the surface roughness of the heat radiating plate is the same in the intervening region of the heat-dissipating adhesive and the intervening region of the double-sided tape, or the sample region of Sample No. In A-1, A-2, B-1, and B-2, the substrate is peeled off with a relatively small external force. On the other hand, sample no. It can be seen that A-3, A-4, B-3, and B-4 can withstand a large external force and have an excellent adhesive force. In particular, Sample No. with a surface roughness difference of 0.2 μm or more between the intervening region of the double-sided tape and the intervening region of the heat-dissipating adhesive. It can be seen that A-4 and B-4 can withstand a particularly large external force and have a particularly excellent adhesive force.
[0044]
【The invention's effect】
According to the present invention, the substrate having the heat generating element is placed on the heat radiating plate, and the heat radiating adhesive is interposed in the region directly below the heat generating element in the region between the heat radiating plate and the substrate. Since the double-sided tape is interposed in the area where no heat-resistant adhesive exists, and the surface roughness on the heat sink is set larger in the area where the double-sided tape is interposed than in the area where the heat-dissipating adhesive is present, heat dissipation Both the adhesive and the double-sided tape can be firmly fixed to the heat sink. Therefore, when the thermal printer is used for a long time for a long time, even if the recording medium is repeatedly slidably contacted with the thermal head, it is possible to effectively prevent the problem that the fixing position of the substrate is largely displaced with respect to the heat sink. Can do. Therefore, a highly reliable thermal printer is realized.
[0045]
Moreover, since the double-sided tape and the heat sink can be satisfactorily adhered to each other, the number of bubbles interposed between them is reduced, or the size of the bubbles is reduced and discharged from the substrate to the heat sink. The amount of heat can be increased.
[0046]
Moreover, since the surface area of the heat sink is larger in the area where the heat-dissipating adhesive is interposed, the bonding area between the heat-dissipating adhesive and the heat dissipating plate becomes larger, and the heat of the heating element is efficiently released to the heat dissipating plate. be able to.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a thermal head according to an embodiment of the present invention.
FIG. 2 is a schematic side view of a thermal printer configured by incorporating the thermal head of FIG.
FIG. 3 is a cross-sectional view of a conventional thermal head.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Heating element row | line | column 3 ... Heat sink 4a, 4a ... A pair of groove | channel 5 ... Heat radiation adhesive 6a, 6b ... Double-sided tape 10 ... Platen roller 11a , 11b, 11c, 11d... Transport roller T... Thermal head C.

Claims (2)

発熱素子を有する基板を放熱板上に載置させるとともに、該放熱板と基板との間の領域のうち、発熱素子の直下領域に放熱性接着材を介在させ、該放熱性接着材の存在しない領域に両面テープを介在させてなるサーマルヘッドにおいて、
前記放熱板上の表面粗さは、放熱性接着材の介在領域よりも両面テープの介在領域で小さくなっていることを特徴とするサーマルヘッド。
A substrate having a heat generating element is placed on the heat radiating plate, and a heat dissipating adhesive is interposed in a region directly below the heat generating element in a region between the heat dissipating plate and the substrate so that the heat dissipating adhesive does not exist. In thermal heads with double-sided tape in the area,
The thermal head is characterized in that the surface roughness on the heat radiating plate is smaller in the intervening region of the double-sided tape than the intervening region of the heat-dissipating adhesive.
請求項1に記載のサーマルヘッドと、前記発熱素子上に記録媒体を搬送する搬送手段と、前記サーマルヘッドを駆動する駆動手段と、を備えたことを特徴とするサーマルプリンタ。A thermal printer comprising: the thermal head according to claim 1; a transport unit that transports a recording medium onto the heating element; and a drive unit that drives the thermal head.
JP2003187084A 2003-06-30 2003-06-30 Thermal head and thermal printer using it Pending JP2005022104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187084A JP2005022104A (en) 2003-06-30 2003-06-30 Thermal head and thermal printer using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187084A JP2005022104A (en) 2003-06-30 2003-06-30 Thermal head and thermal printer using it

Publications (1)

Publication Number Publication Date
JP2005022104A true JP2005022104A (en) 2005-01-27

Family

ID=34186043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187084A Pending JP2005022104A (en) 2003-06-30 2003-06-30 Thermal head and thermal printer using it

Country Status (1)

Country Link
JP (1) JP2005022104A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071365A (en) * 2011-09-28 2013-04-22 Toshiba Hokuto Electronics Corp Thermal print head
JP2013180502A (en) * 2012-03-02 2013-09-12 Toshiba Hokuto Electronics Corp Thermal print head and method of manufacturing the same
JP2014008683A (en) * 2012-06-29 2014-01-20 Kyocera Corp Thermal head and thermal printer
JP2015085535A (en) * 2013-10-28 2015-05-07 京セラ株式会社 Thermal head and thermal printer including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071365A (en) * 2011-09-28 2013-04-22 Toshiba Hokuto Electronics Corp Thermal print head
JP2013180502A (en) * 2012-03-02 2013-09-12 Toshiba Hokuto Electronics Corp Thermal print head and method of manufacturing the same
JP2014008683A (en) * 2012-06-29 2014-01-20 Kyocera Corp Thermal head and thermal printer
JP2015085535A (en) * 2013-10-28 2015-05-07 京セラ株式会社 Thermal head and thermal printer including the same

Similar Documents

Publication Publication Date Title
KR20070094512A (en) Thermal head and printing device
KR20070094515A (en) Thermal head and printing device
JP2009184272A (en) Thermal head, thermal printer and manufacturing method of thermal head
JP2005022104A (en) Thermal head and thermal printer using it
JP4467273B2 (en) Thermal head, manufacturing method thereof, and thermal printer
JP4360605B2 (en) Thermal head and thermal printer using the same
JP2005067160A (en) Thermal head and thermal printer using the same
JP2001096780A (en) Thermal head
JP4544729B2 (en) Thermal head and thermal printer using the same
JP4309699B2 (en) Thermal head and thermal printer using the same
JPH0966620A (en) Manufacture of thermal head
JP2004224034A (en) Thermal head and thermal printer using the same
JP4493174B2 (en) Thermal head
JP2001038938A (en) Thermal head
JP2002356000A (en) Thermal head
JP2002137428A (en) Thermal head
JP4153816B2 (en) Thermal head, manufacturing method thereof, and thermal printer
JP2005131884A (en) Thermal head, its manufacturing method and thermal printer
JP2004230582A (en) Thermal head and thermal printer employing it, and process for manufacturing thermal head
JP2000103107A (en) Thermal head
JP2001010097A (en) Thermal head
JP4458878B2 (en) Thermal head and thermal printer using the same
JP5340094B2 (en) Recording head and recording apparatus
JP3439961B2 (en) Thermal head
JP2004175049A (en) Thermal head, thermal printer using the same, and manufacturing method for the thermal head