JP2004291017A - Salt core for casting light-alloy casting, method for manufacturing salt core, and method for producing light-alloy casting - Google Patents

Salt core for casting light-alloy casting, method for manufacturing salt core, and method for producing light-alloy casting Download PDF

Info

Publication number
JP2004291017A
JP2004291017A JP2003086367A JP2003086367A JP2004291017A JP 2004291017 A JP2004291017 A JP 2004291017A JP 2003086367 A JP2003086367 A JP 2003086367A JP 2003086367 A JP2003086367 A JP 2003086367A JP 2004291017 A JP2004291017 A JP 2004291017A
Authority
JP
Japan
Prior art keywords
casting
nitrate
alloy casting
salt
salt core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086367A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Kato
龍彦 加藤
Tadashi Makiguchi
直史 牧口
Takuya Nitta
拓也 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2003086367A priority Critical patent/JP2004291017A/en
Publication of JP2004291017A publication Critical patent/JP2004291017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a salt core for casting a light-alloy casting which is easily removed from a casting and necessitates no post-treatment such as shot blast, sand blast, or spraying of high-pressure water, to provide a method for manufacturing the salt core, and to provide a method for producing a light-alloy casting which is cast by using the salt core. <P>SOLUTION: The salt core is a fused salt core, which is used for casting a light-alloy casting such as an aluminum-alloy casting or a magnesium-alloy casting, and which uses a nitrate having a melting point within a prescribed range. There are disclosed the method for manufacturing the salt core and the method for producing the light-alloy casting which is cast by using the salt core. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アルミ合金鋳物やマグネシウム合金鋳物その他の軽合金鋳物の鋳造に適した塩中子及びその塩中子の製造方法並びに塩中子を使用して鋳造する軽合金鋳物の製造方法に関する。
【0002】
【従来の技術】
従来、アルミ合金鋳物などの軽合金鋳物の鋳造方法として、砂型、金型を用いた重力鋳造、低圧鋳造および高圧のダイカスト、スクイーズダイカストなどがある。これらの鋳造方法において中子を用いる場合に、中子の主な材質として砂が慣用されている(例えば、特許文献1参照。)。これらのアルミ合金鋳物などの鋳造後に砂中子を除去する場合に、中子は、ショットブラスト、サンドブラスト、高圧水などを吹き付け落されている。
【0003】
【特許文献1】
特開平03−23035号公報(第1〜3頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、砂中子が細い溝や袋部等に用いる場合では、砂が焼き付いたりして完全に砂落しができない。そこで、CCDスコープ等を用いて砂残りの有無の検査をしたり、手作業での砂落しをしている。
【0005】
本発明は、上記の問題を解決するためになされたもので、軽合金鋳物を鋳造した後、中子を鋳物から容易に除去でき、ショットブラスト、サンドブラスト、高圧水等の吹き付け等の後処理を省略できる軽合金鋳物鋳造用塩中子及びその製造方法並びに軽合金鋳物の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明における軽合金鋳物鋳造用塩中子は、アルミ合金鋳物又はマグネシウム合金鋳物等の軽合金鋳物の鋳造に用いる溶融塩中子であって、該溶融塩は融点が500℃より高く580℃以下の範囲内の硝酸塩を使用したものであり、また前記硝酸塩は、成分として硝酸ナトリウム、硝酸カリウム、亜硝酸ナトリウム、硝酸バリウム、硝酸ストロンチウムのうち、少なくとも硝酸バリウムと硝酸ストロンチウムのどちらかを含むことを特徴とする。
また、本発明における軽合金鋳物鋳造用塩中子は、アルミ合金鋳物又はマグネシウム合金鋳物その他の軽合金鋳物の鋳造に用いる溶融塩中子で、該溶融塩は融点が290℃より高く580℃以下の範囲内であって、50%重量以上の硝酸塩と、炭酸カリウムもしくは炭酸ナトリウムの少なくとも一方を1%重量より多く5%重量以下の量で使用したことを特徴とする。
また、本発明における軽合金鋳物鋳造用塩中子は、アルミ合金鋳物又はマグネシウム合金鋳物その他の軽合金鋳物の鋳造に用いる溶融塩中子であって、該溶融塩は融点が290℃より高く580℃以下の範囲内の硝酸塩と、誘電損失の大きい物質を10−55体積%混入したことを特徴とする。
【0007】
さらに、本発明における軽合金鋳物鋳造用塩中子の製造方法は、所定の融点の硝酸塩の溶融塩状態のものを、金型に注入し、凝固固化後に、金型から離型することを特徴とする。加えて、軽合金鋳物の製造において温水浴もしくは水蒸気を用いて塩を洗浄した温水もしくは水蒸気を、硝酸塩濃縮法により塩濃度をあげ、その高濃度塩水を塩浴にもどし、さらに、金型に注入し、凝固固化後に、金型から離型することを特徴とする。
【0008】
また、本発明における軽合金鋳物の製造方法は、所定の融点の溶融塩中子を用いて軽合金鋳物を鋳造し、その塩中子を温水浴もしくは水蒸気を用いて除去して軽合金鋳物を生産することを特徴とする。加えて所定の融点の溶融塩中子を用いて軽合金鋳物を鋳造し、該軽合金鋳物を、その塩中子を溶融する塩浴内に浸漬して溶解し、取り出した後、温水浴もしくは水蒸気を用いて鋳物に付着する塩を除去して軽合金鋳物を生産することを特徴とする。
そして、本発明における別の軽合金鋳物の製造方法は、融点が290℃より高く580℃以下の範囲内の溶融塩中子を用いて軽合金鋳物を鋳造し、その溶融塩中子をマイクロ波で塩中子だけを誘電加熱溶解し、その後温水浴もしくは水蒸気を用いて除去して軽合金鋳物を生産することを特徴とする。
【0009】
ここで溶融塩は融点が580℃以下の範囲内としたのは、溶融塩の融点が580℃より高いと、溶融塩の塩浴内の浸漬中に軽合金鋳物自体が変形しやすくなるため好ましくないためである。なお、水浴もしくは水蒸気を用いて鋳物に付着する塩を除去する場合には、溶融塩の融点と、温水浴もしくは水蒸気の温度とは、あまり関係ないことがわかった。
【0010】
【発明の実施の形態】
本発明において融点とは固相線温度をいう。また、本発明において注入とは、重力により注ぎ込むこと、インジェクション、低圧鋳造など、液体状態にした溶融塩を金型に入れて凝固させる意味である。ここでインジェクションを用いた場合には、複雑な形状の金型まで溶融塩の充填が容易であるという利点がある。また、重力を用いた場合には設備が簡単であるという利点がある。さらに、低圧鋳造では、設備が簡単で精密な中子ができるという利点がある。
また、本発明の軽合金鋳物鋳造用塩中子に混入する誘電損失の大きい物質は、例えば、ジルコンサンド、ジルコニア粉、チタン酸バリウムなどをいう。誘電損失とは、交流電場を加えたときにエネルギが熱となり損失する量をいう。なお、本発明の塩中子では、塗型は必須ではない。
【0011】
【基礎実験】
まず、基礎試験として、本発明の塩中子を用いてアルミ合金鋳物を鋳造する鋳造テストを実施した。ここで、塩中子の材料として硝酸塩(硝酸ナトリウム、硝酸バリウム、硝酸ストロンチウム、硝酸カリウム、亜硝酸ナトリウムを主成分とした混合塩)で、融点(ここで融点とは固相線温度をいう。)が300℃、380℃、455℃、495℃、510℃、580℃、のものを用いた。また、塩中子は、上記各々の混合塩の温度を上げ、液体状態にしたのち、中子注入用の金型に重力で流し込み、凝固させて塩中子を製造した。また、アルミ合金鋳物の材料はJIS規格AC4B(Al−Cu−Si系)とした。アルミニウム合金鋳物を鋳込む金型として片側鋳物肉厚を5mm、10mm、15mmを用いた。
鋳造テストは、上記アルミニウム合金鋳物を上記アルミニウム鋳造用の金型に前記塩中子をセットし、アルミニウム鋳造用の金型温度を400℃、アルミニウム合金の注湯温度を740℃で鋳造した。したがって、塩中子の溶融温度よりも金型温度が高く、中子を用いた鋳造にはかなり厳しい条件で鋳造テストをおこなった。その結果を表1に示す。
【0012】
【表1】

Figure 2004291017
【0013】
以上の結果から、軽合金鋳物の鋳造用中子に用いる塩の融点はある程度高いことが必要であることが判る。具体的には、融点が290℃より高く580℃以下の範囲内である。なお、実験に使用した各硝酸塩の混合割合は、例えば、表2の通りである。また、本基礎実験ではアルミニウム合金を鋳造したが、マグネシウム合金その他の軽合金の鋳造にも本発明の塩中子は使用できる。さらに、本基礎実験では、溶融塩は融点が500℃より高く580℃以下の範囲内の硝酸塩として、番号5において硝酸ストロンチウムを使用したが、硝酸ストロンチウムの代わりに硝酸バリウムを少なくとも一部に用いても良い。なおまた、本基礎実験では、塩中子は、上記各々の混合塩の温度を上げ、液体状態にしたのち、中子注入用の金型に重力で流し込み、凝固させて塩中子を製造したが、射出成形、低圧鋳造を用いても良い。
【0014】
【表2】
Figure 2004291017
【0015】
次に、上記の硝酸塩中子を用いて鋳造したアルミ合金鋳物を同一成分の塩浴中に漬け、塩中子を溶解後、60〜80℃の温水に漬けて洗浄した。ここで、塩浴温度は、各硝酸塩中子の融点より50〜70℃程度高い温度に設定してある。
そして、前記洗浄水は硝酸塩濃縮装置(新東ブレーター製「排水濃縮装置 型式0040」)にて硝酸塩濃度を高め、その高めた塩水を塩浴(溶融状態)に戻した。このようにして、硝酸塩がシステム外に出ないクローズドシステムとした。
なお、本発明において、鋳造後は塩浴中にて塩中子を溶解している。しかし、塩中子の融点が高温であり、塩浴槽の温度がアルミ合金鋳物に変形を生ずるような高温となる場合にあっては、鋳造後、直ちに温水もしくは水蒸気にて洗浄することが好ましい。
【0016】
【実施例】
次に、実施例として、本発明の別の組成の塩中子を用いてアルミ合金鋳物を鋳造する鋳造テストを実施した。ここで、塩中子の材料として硝酸塩(硝酸ナトリウム、硝酸バリウム、硝酸ストロンチウム、硝酸カリウム、亜硝酸ナトリウムを45体積%から90体積%とした混合塩)で、融点(ここで融点とは固相線温度をいう。)が290℃より高く580℃以下のものを用い、さらに、溶融塩残部を、ジルコンサンドを用いて混合したものを用いた。この混合塩およびジルコンサンドの混合物の温度を上げ、液体状態にしたのち、中子注入用の金型に圧入し、凝固させて塩中子を製造した。
鋳造テストは、塩中子以外は基礎実験と同様の条件のアルミニウム鋳造用の金型に塩中子をセットし、アルミニウム合金の鋳造をした。このとき鋳物の形状等に問題はなかった。
次いで、上記の硝酸塩中子を用いて鋳造したアルミ合金鋳物の中の溶融塩中子をマイクロ波で塩中子だけを誘電加熱溶解し、その後、60〜80℃の温水に漬けて洗浄した。
なお、実施例では誘電損失の大きい物質としてジルコンサンドを用いたが、その他、ジルコニア粉、チタン酸バリウム粉など誘電損失が常温で0.01以上の物質であれば使用が可能である。
【0017】
【発明の効果】
上記の説明から明らかなように、本発明は、アルミ合金鋳物又はマグネシウム合金鋳物等の軽合金鋳物の鋳造に用いる溶融塩中子であって、該溶融塩の融点が所定温度の範囲内の硝酸塩等を使用したことを特徴とする軽合金鋳物鋳造用塩中子及びこの軽合金鋳物鋳造用塩中子の製造方法並びにその塩中子を使用する軽合金鋳物の製造方法であるから、大掛かりな砂落し等の必要がない。また、装置、処理が容易になる。また塩を鋳造方法のシステム外に出さないようにすることにより、環境に対しても配慮したシステムとなる等優れた効果がある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a salt core suitable for casting an aluminum alloy casting, a magnesium alloy casting, and other light alloy castings, a method of manufacturing the salt core, and a method of manufacturing a light alloy casting cast using the salt core.
[0002]
[Prior art]
Conventionally, as a casting method of a light alloy casting such as an aluminum alloy casting, there are a gravity casting, a low pressure casting, a high pressure die casting, a squeeze die casting and the like using a sand mold and a mold. When a core is used in these casting methods, sand is commonly used as a main material of the core (for example, see Patent Document 1). When the sand core is removed after casting such an aluminum alloy casting, the core is blown down with shot blast, sand blast, high-pressure water, or the like.
[0003]
[Patent Document 1]
JP-A-03-23035 (pages 1-3, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, when the sand core is used in a narrow groove or a bag portion, the sand is baked or cannot be completely removed. Therefore, the presence of sand residue is inspected using a CCD scope or the like, and sand removal is performed manually.
[0005]
The present invention has been made in order to solve the above problems, and after casting a light alloy casting, the core can be easily removed from the casting, and shot blasting, sand blasting, and post-processing such as spraying with high-pressure water. It is an object of the present invention to provide a salt core for casting a light alloy casting which can be omitted, a method for manufacturing the same, and a method for manufacturing a light alloy casting.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a salt core for casting a light alloy casting in the present invention is a molten salt core used for casting a light alloy casting such as an aluminum alloy casting or a magnesium alloy casting, wherein the molten salt is A nitrate having a melting point of higher than 500 ° C. and not higher than 580 ° C. is used, and the nitrate comprises at least barium nitrate and nitrate among sodium nitrate, potassium nitrate, sodium nitrite, barium nitrate, and strontium nitrate as components. It is characterized by containing either strontium.
Further, the salt core for casting a light alloy casting in the present invention is a molten salt core used for casting an aluminum alloy casting, a magnesium alloy casting, and other light alloy castings, and the melting salt has a melting point higher than 290 ° C and 580 ° C or less. Wherein at least 50% by weight of nitrate and at least one of potassium carbonate and sodium carbonate are used in an amount of more than 1% by weight and 5% by weight or less.
Further, the salt core for casting a light alloy casting in the present invention is a molten salt core used for casting an aluminum alloy casting, a magnesium alloy casting or other light alloy castings, and the molten salt has a melting point higher than 290 ° C. and 580 ° C. It is characterized in that a nitrate within a temperature range of not more than ℃ and a substance having a large dielectric loss are mixed in an amount of 10 to 55% by volume.
[0007]
Further, the method of manufacturing a salt core for casting a light alloy casting according to the present invention is characterized in that a molten salt state of nitrate having a predetermined melting point is poured into a mold, solidified and solidified, and then released from the mold. And In addition, in the production of light alloy castings, the salt concentration of hot water or steam whose salt has been washed using a hot water bath or steam is increased by a nitrate concentration method, the high-concentration salt water is returned to the salt bath, and further injected into a mold. Then, after solidification and solidification, the mold is released from the mold.
[0008]
Further, the method for producing a light alloy casting according to the present invention comprises casting a light alloy casting using a molten salt core having a predetermined melting point, and removing the salt core using a hot water bath or steam to remove the light alloy casting. It is characterized by producing. In addition, a light alloy casting is cast using a molten salt core having a predetermined melting point, the light alloy casting is immersed and dissolved in a salt bath in which the salt core is melted, and is taken out. The method is characterized in that light alloy castings are produced by removing salts attached to the castings using steam.
Further, another method of manufacturing a light alloy casting according to the present invention is to cast a light alloy casting using a molten salt core having a melting point in a range of higher than 290 ° C. and not higher than 580 ° C. In this method, only the salt core is melted by dielectric heating and then removed using a hot water bath or steam to produce a light alloy casting.
[0009]
Here, it is preferable that the melting point of the molten salt be within the range of 580 ° C. or less because if the melting point of the molten salt is higher than 580 ° C., the light alloy casting itself is easily deformed during immersion of the molten salt in the salt bath. Because there is no. In addition, when removing the salt which adheres to a casting using a water bath or steam, it turned out that the melting point of a molten salt and the temperature of a hot water bath or steam have little relation.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the melting point refers to a solidus temperature. In the present invention, the term “injection” refers to pouring by gravity, injection, low-pressure casting, or the like, which means that a molten salt in a liquid state is put into a mold and solidified. Here, when the injection is used, there is an advantage that a molten salt can be easily filled up to a mold having a complicated shape. Further, when gravity is used, there is an advantage that the equipment is simple. Furthermore, low-pressure casting has the advantage that the equipment is simple and a precise core can be produced.
The substance having a large dielectric loss mixed into the salt core for casting a light alloy casting of the present invention includes, for example, zircon sand, zirconia powder, and barium titanate. The dielectric loss refers to the amount of energy that is lost when the AC electric field is applied. In the salt core of the present invention, coating is not essential.
[0011]
[Basic experiment]
First, as a basic test, a casting test for casting an aluminum alloy casting using the salt core of the present invention was performed. Here, nitrate (a mixed salt mainly composed of sodium nitrate, barium nitrate, strontium nitrate, potassium nitrate, and sodium nitrite) is used as the material of the salt core, and has a melting point (here, the melting point refers to a solidus temperature). However, 300 ° C, 380 ° C, 455 ° C, 495 ° C, 510 ° C, and 580 ° C were used. Further, the salt core was prepared by raising the temperature of each of the mixed salts described above, bringing the mixed salt into a liquid state, then pouring the mixture into a mold for core injection by gravity, and solidifying the salt core. The material of the aluminum alloy casting was JIS standard AC4B (Al-Cu-Si system). The thickness of one-side casting was 5 mm, 10 mm, and 15 mm as a mold for casting an aluminum alloy casting.
In the casting test, the aluminum alloy casting was set in the aluminum casting mold with the salt core set, and the aluminum casting mold temperature was 400 ° C and the aluminum alloy pouring temperature was 740 ° C. Therefore, the casting temperature was higher than the melting temperature of the salt core, and the casting test was performed under considerably severe conditions for casting using the core. Table 1 shows the results.
[0012]
[Table 1]
Figure 2004291017
[0013]
From the above results, it is understood that the melting point of the salt used for the casting core of the light alloy casting needs to be high to some extent. Specifically, the melting point is higher than 290 ° C and not higher than 580 ° C. The mixing ratio of each nitrate used in the experiment is, for example, as shown in Table 2. In the present basic experiment, an aluminum alloy was cast, but the salt core of the present invention can be used for casting a magnesium alloy and other light alloys. Further, in this basic experiment, strontium nitrate was used as the molten salt in the No. 5 as a nitrate having a melting point higher than 500 ° C. and lower than 580 ° C., but barium nitrate was used at least partially instead of strontium nitrate. Is also good. In addition, in this basic experiment, the salt core was manufactured by raising the temperature of each of the mixed salts described above, bringing the mixed salt into a liquid state, then pouring the mixture into a mold for core injection by gravity, and solidifying the salt core. However, injection molding and low pressure casting may be used.
[0014]
[Table 2]
Figure 2004291017
[0015]
Next, the aluminum alloy casting cast using the above-mentioned nitrate core was immersed in a salt bath of the same component, and after dissolving the salt core, it was immersed in hot water at 60 to 80 ° C and washed. Here, the salt bath temperature is set to a temperature higher by about 50 to 70 ° C. than the melting point of each nitrate core.
Then, the washing water was increased in nitrate concentration by a nitrate concentrator ("Drainage Concentrator Model 0040" manufactured by SHINTO BRATOR), and the increased salt water was returned to a salt bath (molten state). In this way, a closed system in which nitrate did not go out of the system was obtained.
In the present invention, the salt core is dissolved in a salt bath after casting. However, in the case where the melting point of the salt core is high and the temperature of the salt bath becomes high enough to cause deformation of the aluminum alloy casting, it is preferable to immediately wash with hot water or steam after casting.
[0016]
【Example】
Next, as an example, a casting test of casting an aluminum alloy casting using a salt core having another composition of the present invention was performed. Here, as a material of the salt core, a nitrate (a mixed salt of sodium nitrate, barium nitrate, strontium nitrate, potassium nitrate, and sodium nitrite in which the volume is 45% by volume to 90% by volume) has a melting point (here, the melting point is a solid line). The temperature was higher than 290 ° C. and not higher than 580 ° C., and the remainder obtained by mixing the remaining molten salt with zircon sand was used. The temperature of the mixture of the mixed salt and the zircon sand was raised to a liquid state, and then pressed into a mold for core injection and solidified to produce a salt core.
In the casting test, a salt core was set in a mold for aluminum casting under the same conditions as in the basic experiment except for the salt core, and an aluminum alloy was cast. At this time, there was no problem in the shape and the like of the casting.
Next, the molten salt core in the aluminum alloy casting cast using the above-mentioned nitrate core was melted by heating only the salt core by microwave and then washed by immersing in hot water at 60 to 80 ° C.
In the embodiment, zircon sand is used as the substance having a large dielectric loss, but other substances such as zirconia powder and barium titanate powder can be used as long as the substance has a dielectric loss of 0.01 or more at room temperature.
[0017]
【The invention's effect】
As is apparent from the above description, the present invention relates to a molten salt core used for casting a light alloy casting such as an aluminum alloy casting or a magnesium alloy casting, wherein the melting salt of the molten salt has a melting point within a predetermined temperature range. It is a method of manufacturing a salt core for casting a light alloy casting and a method of manufacturing a salt core for casting the light alloy casting, and a method of manufacturing a light alloy casting using the salt core, characterized by using There is no need to remove sand. Further, the apparatus and the processing become easy. Also, by preventing the salt from being discharged out of the casting method system, there is an excellent effect such as a system that considers the environment.

Claims (11)

アルミ合金鋳物又はマグネシウム合金鋳物その他の軽合金鋳物の鋳造に用いる溶融塩中子であって、該溶融塩は融点が500℃より高く580℃以下の範囲内の硝酸塩を使用したことを特徴とする軽合金鋳物鋳造用塩中子。A molten salt core used for casting an aluminum alloy casting or a magnesium alloy casting or other light alloy casting, wherein the molten salt is a nitrate having a melting point of higher than 500 ° C and lower than 580 ° C. Salt core for casting light alloy castings. 前記硝酸塩は、成分として硝酸ナトリウム、硝酸カリウム、亜硝酸ナトリウム、硝酸バリウム、硝酸ストロンチウムのうち、少なくとも硝酸バリウムと硝酸ストロンチウムのどちらかを含むことを特徴とする請求項1に記載の軽合金鋳物鋳造用塩中子。The light nitrate casting according to claim 1, wherein the nitrate contains at least one of barium nitrate and strontium nitrate as a component among sodium nitrate, potassium nitrate, sodium nitrite, barium nitrate, and strontium nitrate. Salt core. 融点が500℃より高く580℃以下の範囲内の硝酸塩の溶融塩状態のものを、金型に注入し、凝固固化後に、金型から離型することを特徴とする軽合金鋳物鋳造用塩中子の製造方法。In a salt for casting a light alloy casting, a molten salt state of nitrate having a melting point higher than 500 ° C. and not higher than 580 ° C. is poured into a mold, solidified and solidified, and then released from the mold. Child manufacturing method. 融点が500℃より高く580℃以下の範囲内の溶融塩中子を用いて軽合金鋳物を鋳造し、その塩中子を温水浴もしくは水蒸気を用いて除去して軽合金鋳物を生産することを特徴とする軽合金鋳物の製造方法。Casting a light alloy casting using a molten salt core having a melting point higher than 500 ° C and not higher than 580 ° C, and removing the salt core using a hot water bath or steam to produce a light alloy casting. Characteristic light alloy casting manufacturing method. 融点が500℃より高く580℃以下の範囲内の溶融塩中子を用いて軽合金鋳物を鋳造し、該軽合金鋳物を、その塩中子を溶融する塩浴内に浸漬して溶解し、取り出した後、温水浴もしくは水蒸気を用いて鋳物に付着している塩を除去して軽合金鋳物を生産することを特徴とする軽合金鋳物の製造方法。A light alloy casting is cast using a molten salt core having a melting point higher than 500 ° C. and not higher than 580 ° C., and the light alloy casting is immersed and dissolved in a salt bath for melting the salt core, A method for producing a light alloy casting, comprising removing a salt adhering to the casting using a hot water bath or steam after taking out the light alloy casting to produce a light alloy casting. 請求項4又は5に記載の軽合金鋳物の製造方法において、温水浴もしくは水蒸気を用いて塩を洗浄した温水もしくは水蒸気を、硝酸塩濃縮法により塩濃度をあげ、その高濃度塩水を塩浴に戻し、さらに金型に注入し、凝固固化後に、金型から離型することを特徴とする軽合金鋳物鋳造用塩中子の製造方法。The method for producing a light alloy casting according to claim 4 or 5, wherein the salt concentration of hot water or steam whose salt has been washed using a hot water bath or steam is increased by a nitrate concentration method, and the high-concentration salt water is returned to the salt bath. A method for producing a salt core for light alloy casting casting, further comprising injecting the mixture into a mold, solidifying and solidifying, and then releasing the mold from the mold. アルミ合金鋳物又はマグネシウム合金鋳物その他の軽合金鋳物の鋳造に用いる溶融塩中子で、該溶融塩は融点が290℃より高く580℃以下の範囲内であって、50%重量以上の硝酸塩と、炭酸カリウムもしくは炭酸ナトリウムの少なくとも一方を1%重量より多く5%重量以下の量で使用したことを特徴とする軽合金鋳物鋳造用塩中子。A molten salt core used for casting an aluminum alloy casting or a magnesium alloy casting or other light alloy casting, wherein the molten salt has a melting point in the range of higher than 290 ° C and not higher than 580 ° C, and a nitrate salt of 50% by weight or more; A salt core for light alloy casting casting, wherein at least one of potassium carbonate and sodium carbonate is used in an amount of more than 1% by weight and 5% by weight or less. 前記硝酸塩は、成分として硝酸ナトリウム、硝酸カリウム、亜硝酸ナトリウム、硝酸バリウム、硝酸ストロンチウムのうち、少なくとも硝酸バリウムと硝酸ストロンチウムのどちらかを含むことを特徴とする請求項7に記載の軽合金鋳物鋳造用塩中子。The light nitrate casting for casting according to claim 7, wherein the nitrate contains at least one of barium nitrate and strontium nitrate as a component among sodium nitrate, potassium nitrate, sodium nitrite, barium nitrate, and strontium nitrate. Salt core. 融点が290℃より高く580℃以下の範囲内の硝酸塩の溶融塩状態のものを、金型に注入し、凝固固化後に、金型から離型することを特徴とする請求項7に記載の軽合金鋳物鋳造用塩中子の製造方法。8. The light-weight mold according to claim 7, wherein a molten salt of nitrate having a melting point higher than 290 ° C. and not higher than 580 ° C. is poured into a mold, and after solidification and solidification, is released from the mold. A method for producing a salt core for casting an alloy casting. 融点が290℃より高く580℃以下の範囲内の溶融塩中子を用いて軽合金鋳物を鋳造し、その溶融塩中子をマイクロ波で塩中子だけを誘電加熱溶解し、その後温水浴もしくは水蒸気を用いて除去して軽合金鋳物を生産することを特徴とする軽合金鋳物の製造方法。A light alloy casting is cast using a molten salt core having a melting point higher than 290 ° C. and not higher than 580 ° C., and the molten salt core is subjected to microwave heating to melt only the salt core, and then heated in a hot water bath or A method for producing a light alloy casting, comprising producing a light alloy casting by removing it using steam. アルミ合金鋳物又はマグネシウム合金鋳物その他の軽合金鋳物の鋳造に用いる溶融塩中子であって、該溶融塩は融点が290℃より高く580℃以下の範囲内の硝酸塩と、誘電損失の大きい物質を10−55体積%混入したことを特徴とする軽合金鋳物鋳造用塩中子。A molten salt core used for casting an aluminum alloy casting, a magnesium alloy casting or other light alloy castings, wherein the molten salt is composed of a nitrate having a melting point of higher than 290 ° C and lower than 580 ° C, and a substance having a large dielectric loss. A salt core for casting light alloy castings, which is mixed with 10-55% by volume.
JP2003086367A 2003-03-26 2003-03-26 Salt core for casting light-alloy casting, method for manufacturing salt core, and method for producing light-alloy casting Pending JP2004291017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086367A JP2004291017A (en) 2003-03-26 2003-03-26 Salt core for casting light-alloy casting, method for manufacturing salt core, and method for producing light-alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086367A JP2004291017A (en) 2003-03-26 2003-03-26 Salt core for casting light-alloy casting, method for manufacturing salt core, and method for producing light-alloy casting

Publications (1)

Publication Number Publication Date
JP2004291017A true JP2004291017A (en) 2004-10-21

Family

ID=33401047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086367A Pending JP2004291017A (en) 2003-03-26 2003-03-26 Salt core for casting light-alloy casting, method for manufacturing salt core, and method for producing light-alloy casting

Country Status (1)

Country Link
JP (1) JP2004291017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326610A (en) * 2005-05-24 2006-12-07 Toyota Motor Corp Method for removing molten salt core
JP2007144460A (en) * 2005-11-28 2007-06-14 Toyama Prefecture Apparatus for manufacturing core for casting and manufacturing method therefor
CN102294437A (en) * 2010-05-28 2011-12-28 铃木株式会社 Water soluble core removing method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326610A (en) * 2005-05-24 2006-12-07 Toyota Motor Corp Method for removing molten salt core
JP4600151B2 (en) * 2005-05-24 2010-12-15 トヨタ自動車株式会社 Method for removing molten salt core
JP2007144460A (en) * 2005-11-28 2007-06-14 Toyama Prefecture Apparatus for manufacturing core for casting and manufacturing method therefor
CN102294437A (en) * 2010-05-28 2011-12-28 铃木株式会社 Water soluble core removing method and device

Similar Documents

Publication Publication Date Title
JPH10311246A (en) Manufacture of object having cavity
TW200533436A (en) Process for producing cast item
JPWO2007077731A1 (en) Mold manufacturing method
JP2003507192A (en) METHOD AND APPARATUS FOR PRODUCING METAL GRID NETWORK
CA2013835C (en) Method of producing salt cores for use in die casting
Jiang et al. Preparation and properties of a novel water soluble core material
US20060254388A1 (en) Method of removing coating form coated magnesium alloy product, method of making recycled magnesium alloy and method of recycling coating
US4569384A (en) Dissolving ceramic materials
JP2004291017A (en) Salt core for casting light-alloy casting, method for manufacturing salt core, and method for producing light-alloy casting
JP6514237B2 (en) Process for preparing molten metal for casting at low to zero superheat temperatures
CN103834840A (en) Novel flame-retardant and heat-resistant high-strength magnesium-based material and preparation method thereof
JP2003326356A (en) Ultrasonic casting method
JP2004243330A (en) Salt core for light alloy casting, its manufacturing method, and method for manufacturing light alloy cast product
JP5737016B2 (en) Disintegrating core and method for producing the same
US6669900B2 (en) Method of manufacturing magnesium alloy molded product, painted structure thereof, method of painting the same, and casings using the same
JP4129727B2 (en) HIP processing method, salt core and HIP post-processing method of aluminum alloy casting or magnesium alloy casting with molten salt medium
JPS60500906A (en) Pressure molding method using salt core and composition for producing core
JP4403233B2 (en) Casting core manufacturing method
JP2008036702A (en) Casting mold for metal casting
JPH03294055A (en) Die casting method using core
JP4345582B2 (en) Core and molding method
TWI648410B (en) Method for fabricating aluminum-fly ash composite material
SU69308A1 (en) The method of producing alloys
JP4341020B2 (en) Aluminum alloy casting manufacturing method
JP2930164B2 (en) Sand core manufacturing method