JP2004290749A - Method and apparatus for treating wastewater of condenser water pressure test - Google Patents

Method and apparatus for treating wastewater of condenser water pressure test Download PDF

Info

Publication number
JP2004290749A
JP2004290749A JP2003084019A JP2003084019A JP2004290749A JP 2004290749 A JP2004290749 A JP 2004290749A JP 2003084019 A JP2003084019 A JP 2003084019A JP 2003084019 A JP2003084019 A JP 2003084019A JP 2004290749 A JP2004290749 A JP 2004290749A
Authority
JP
Japan
Prior art keywords
condenser
wastewater
pure water
drainage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084019A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sasaki
伸幸 佐々木
Toshiki Manabe
敏樹 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2003084019A priority Critical patent/JP2004290749A/en
Publication of JP2004290749A publication Critical patent/JP2004290749A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To redcuce the production cost of pure water (replenishing water or test water) by recycling wastewater obtained after a condenser water pressure test. <P>SOLUTION: This treatment apparatus 1 is equipped with a recovery pipe 10 for recovering the wastewater of the condenser water pressure test from a drain means 50, a wastewater purifying device 20 for removing impurities contained in the wastewater of the condenser water pressure test recovered by the recovery pipe 10 and a treated water supply pipe 30 for supplying treated water, which is obtained by treating the wastewater of the condenser water pressure test and from which impurities are removed by the wastewater purifying device 20, to a pure water making apparatus. The wastewater of the condenser water pressure test discharged heretofore is treated to be supplied to the pure water making apparatus before recycled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発電プラントにおいて、復水器の点検時に実施する復水器水圧試験によって発生する排水(復水器水圧試験排水)の処理方法及び処理装置に関する。なお、本明細書中、「発電プラント」には、火力発電所設備及び原子力発電所設備のほか、工場などに設置される自家発電設備等も含む意味である。
【0002】
【従来の技術】
例えば、火力発電所においては、ボイラで発生した水蒸気をタービンに送り、タービンで発電機を回転させて発電し、発電後の蒸気を復水器で冷却して復水として復水処理装置へ送り、ボイラ等の機器類や配管等の配管材料から発生した鉄クラッド等の懸濁物質やNaイオン、Clイオン等の種々のイオン成分等の不純物を除去した後、繰り返し使用している(図7参照)。また、加圧水型原子力発電所(PWR)では、蒸気発生器で発生した水蒸気をタービンに送り、タービンで発電機を回転させて発電し、発電後の蒸気を復水器で冷却して復水として復水処理装置へ送り、上記と同様に浄化した後、繰り返し使用している。また、いずれの発電プラントにおいても、図7に示したように、復水器の前段に純水装置を含む純水製造装置を設置し、工水や市水等の原水を浄化処理して、純水を製造し、復水器に対して補給水として供給している。
【0003】
上記した発電プラントを構成する各機器は、所定のタイミングでそれぞれ点検を行う必要がある。このうち、復水器の点検では、復水器の出口バルブを閉め、純水製造装置で製造した純水を試験用水として復水器内に満たし、復水ポンプを駆動して所定の水圧をかけ、水圧変化の有無等により漏洩箇所を検知する水圧試験が行われている。この水圧試験において復水器内に満たされた試験用水は、試験後、復水器水圧試験排水として、出口バルブを開放して、排水貯留槽を有する排水手段へ移送し、その後、排水処理装置により排水処理されて放流される(図7参照)。
【0004】
【発明が解決しようとする課題】
上記したように、復水器の点検時に発生する復水器水圧試験排水は、単に放流されているのが現状である。かかる復水器水圧試験排水の排出量は、例えば、30〜100kWレベルの火力発電所で、水圧試験1回当たり約500〜1000mにもなり、この排出量に対応する量の試験用水を純水装置で製造するには相当の製造コストを要する。また、復水器水圧試験排水の放流に当たっては、所定の水質値となるように処理する必要があり、かかる排水処理に要するコストも大きい。
本発明は上記に鑑みなされたものであり、従来放流されていた復水器水圧試験排水を処理して再利用することにより、純水装置を含む純水製造装置において製造される純水(補給水や試験用水)の製造コスト及び排水処理コストを低減する復水器水圧試験排水の処理方法及び処理装置を提供することを第1の課題とする。
【0005】
一方、復水器水圧試験排水は、発電プラントの通常運転に伴って常時排出される定常排水と異なり、1年あるいは数年に1〜2回程度の点検時のみに発生する非定常排水である。従って、上記の試験用水の製造コスト及び排水処理コストを低減するために、復水器水圧試験排水を処理して再利用に供する手段を採用するにしても、かかる手段は発電プラントの通常運転時には全く不要であり、かかる手段の占有スペース、施工コスト及びメンテナンスコストに鑑みると常設するのは見合わない。
そこで、本発明は、復水器の点検時のみ、発電プラントに設置するのに適する復水器水圧試験排水の処理装置を提供することを第2の課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の本発明では、発電プラントの復水器の点検時に実施する水圧試験によって発生する復水器水圧試験排水を回収する工程と、
前記復水器水圧試験排水に含まれる不純物を除去する工程と、
前記工程により不純物の除去された復水器水圧試験排水の処理水を、純水製造装置に供給する工程と
を有することを特徴とする復水器水圧試験排水の処理方法を提供する。
請求項2記載の本発明では、前記不純物を除去する工程において、ろ過処理及びイオン交換処理により不純物を除去し、しかる後、かかる処理水を純水製造装置における純水装置の後段に供給することを特徴とする請求項1記載の復水器水圧試験排水の処理方法を提供する。
請求項3記載の本発明では、前記不純物を除去する工程において、ろ過処理のみにより不純物を除去し、しかる後、かかる処理水を純水製造装置における純水装置の前段に供給することを特徴とする請求項1記載の復水器水圧試験排水の処理方法を提供する。
請求項4記載の本発明では、発電プラントの復水器の点検時に実施する水圧試験によって発生する復水器水圧試験排水の排水手段と純水製造装置との間に設けられ、
前記排水手段から復水器水圧試験排水を回収する回収管と、
前記回収管から回収された復水器水圧試験排水に含まれる不純物を除去する排水浄化装置と、
前記排水浄化装置により不純物の除去された復水器水圧試験排水の処理水を、純水製造装置に供給するための処理水供給管と
を有することを特徴とする復水器水圧試験排水の処理装置を提供する。
請求項5記載の本発明では、前記回収管が、復水器水圧試験排水の排水手段に連結・取り外し可能に設けられていると共に、前記処理水供給管が、純水製造装置に連結・取り外し可能に設けられており、
前記回収管、排水浄化装置及び処理水供給管により一つのユニットを構成し、運搬可能であることを特徴とする請求項4記載の復水器水圧試験排水の処理装置を提供する。
請求項6記載の本発明では、前記排水浄化装置が、膜ろ過装置とイオン交換装置とを備えて構成され、
前記処理水供給管を純水製造装置における純水装置の後段に連結して使用され、懸濁物質及びイオン成分の双方が除去された復水器水圧試験排水の処理水を供給可能であることを特徴とする請求項4又は5記載の復水器水圧試験排水の処理装置を提供する。
請求項7記載の本発明では、前記排水浄化装置が、懸濁物質を除去するフィルタを有する膜ろ過装置を備えて構成され、
前記処理水供給管を純水製造装置における純水装置の前段に連結して使用され、懸濁物質のみが除去された復水器水圧試験排水の処理水を供給可能であることを特徴とする請求項4又は5記載の復水器水圧試験排水の処理装置を提供する。
【0007】
【発明の実施の形態】
以下、図面に示した実施形態に基づいて本発明を更に詳しく説明する。図1は、本発明の一の実施形態に係る復水器水圧試験排水の処理装置1を示す概略構成図である。図1に示したように、処理装置1は、回収管10と、排水浄化装置20と、処理水供給管30とを備えて構成される。
【0008】
回収管10は、一端に接続バルブ11を備えていると共に、他端が排水浄化装置20の膜ろ過装置21に接続されている。接続バルブ11は、復水器水圧試験排水の排水手段50を構成する排水送水用配管53に連結・取り外し可能に設けられている。なお、復水器水圧試験排水の排水手段50は、復水器に設けられた排水管60を経て排水される復水器水圧試験排水を貯留する排水貯留槽51を備えており、上記した排水送水用配管53は、この排水貯留槽51と回収管10との間に配設され、送水ポンプ52の駆動により、排水貯留槽51内の復水器水圧試験排水を回収管10に供給するものである。
【0009】
排水浄化装置20は、膜ろ過装置21とイオン交換装置22とを備えて構成される。膜ろ過装置21は、復水器水圧試験排水に含まれる不純物のうち、鉄クラッド等の懸濁物質を捕捉し除去するものであり、例えば、プリーツ式フィルタ、糸巻き式フィルタ、中空糸膜等を用いたものが挙げられる。本実施形態では、図2に示したように、塔21a内にプリーツ式フィルタ等のろ材を備えたフィルタ21bを複数本配設したものが用いられる。なお、図2においては、フィルタ21bを縦方向に複数本連結すると共に、複数本連結したものを塔21a内の支持板に複数組支持させているが、縦方向に複数本連結させるか否か、連結させた場合の縦方向への連結本数、あるいは支持板への配設数は、処理対象となる復水器水圧試験排水の処理量等により適宜に選択される。また、膜ろ過装置21の配設数も、復水器水圧試験排水の水質や処理量等により適宜に選択される。
【0010】
イオン交換装置22は、上記した膜ろ過装置21に、バルブ23を備えた配管24を介して接続されて配設される。イオン交換装置22は、例えば、カチオン交換樹脂とアニオン交換樹脂が充填された混床式のものが用いられ、イオン交換により、Naイオン、Clイオン等の種々のイオン成分が除去される。イオン交換装置22の配設数は、上記膜ろ過装置21と同様に限定されるものではなく、処理対象となる復水器水圧試験排水の水質や処理量等により適宜に選択される。
【0011】
イオン交換装置22には、処理水を排出するための処理水供給管30が接続されている。処理水供給管30の端部には、接続バルブ31が設けられており、純水製造装置の配管(図示せず)に連結・取り外し可能となっている。本実施形態においては、排水浄化装置20が膜ろ過装置21とイオン交換装置22とを有し、懸濁物質及びイオン成分の双方を除去する構成である。復水器の水圧試験に用いられる試験用水は、「従来の技術」の項で説明したように、純水製造装置の純水装置で製造した純水を用いており、復水器内を経由しただけで、上記した排水手段50に排水されたものである。このため、復水器水圧試験排水自体の濁度はもともと低く、膜ろ過装置21及びイオン交換装置22により処理された復水器水圧試験排水の処理水は、純水製造装置に設けられる純水装置で製造される純水の水質とほぼ同等かそれ以上の水質となっている。従って、本実施形態においては、膜ろ過装置21及びイオン交換装置22を経て得られた処理水を、純水装置の後段に配設される純水タンク又は補給水タンクに供給されるように、処理水供給管30の接続バルブ31を連結して用いられる。
【0012】
上記した回収管10、排水浄化装置20、及び処理水供給管30は、一つのユニットとして構成し、これらを含む処理装置1を運搬可能な構造とすることが好ましい。例えば、排水浄化装置20を構成する膜ろ過装置21が1基で、イオン交換装置22が4基の場合、図3に示したようなレイアウトで配置して、回収管10及び処理水供給管30と共にスキッド40に搭載した構造とすることができる。上記したように、回収管10には排水手段50に対して連結・取り外し可能な接続バルブ11が設けられており、処理水供給管30には純水製造装置に連結・取り外し可能な接続バルブ31が設けられている。従って、スキッド40を所定の箇所に運び、各接続バルブ11,31を連結すれば、復水器水圧試験排水を処理することができる。
【0013】
復水器の水圧試験は、上記したように、1年あるいは数年に1〜2回程度の頻度で行う点検の際に実施するのみである。このため、復水器水圧試験排水の処理装置1は、常設しておく必要がなく、常設するためのスペース確保、設置コスト、メンテナンスコスト等を考慮すると、本実施形態のように運搬可能な構造として、水圧試験の実施時のみに搬送して配置できる構造とすることが好ましい。また、復水器を複数台保有する発電プラントにおいては、復水器の水圧試験を複数台一斉に実施するわけではないので、本実施形態のように処理装置1を運搬可能な構造とすれば、いずれの復水器の試験を行う場合でも例えば1台の処理装置1のみで対処でき、各復水器に対応して処理装置1を常設する場合と比較し、コスト的に遙かに有利である。
【0014】
次に、本実施形態の処理装置1を用いた復水器水圧試験排水の処理方法について説明する。まず、本実施形態の処理装置1は、所定の箇所に搬送した後、図1及び図4に示したように、回収管10の接続バルブ11を排水手段50の排水送水用配管53に連結すると共に、処理水供給管30の接続バルブ31を、純水装置の後段に配置される純水タンク又は補給水タンクに接続された配管に接続して配備する(図4において、実線は純水タンクへ接続する場合を、想像線は補給水タンクへ接続する場合を示す)。
【0015】
そして、復水器水圧試験を実施する。復水器水圧試験は、復水器の排水管に付設された出口バルブを閉め、純水装置で製造した純水を試験用水として復水器内に供給し、復水器を満水状態として、水圧をかけ、圧力変化等で漏洩の有無を検知する。試験終了後、排水管60の出口バルブを開放し、排水貯留槽51に排出する。なお、処理装置1を配備するタイミングは、上記のように、復水器水圧試験の実施前に限らず、復水器水圧試験を実施して、排水貯留槽51に復水器水圧試験排水を貯留した後であってもよい。
【0016】
排水貯留槽51に排出された復水器水圧試験排水を処理する際には、送水ポンプ52を駆動して、排水送水用配管53を経て回収管10に送り込む。回収管10を経た復水器水圧試験排水は、まず、膜ろ過装置21によりろ過処理され、鉄クラッド等の懸濁物質が除去される。次に、配管24を経由してイオン交換装置22に送られ、イオン交換によりイオン成分が除去され、処理水として処理水供給管30に送られ、処理水供給管30に接続される配管を経て、純水タンク又は補給水タンクに返送される。純水タンク又は補給水タンクに返送された処理水は、純水装置で製造され、該純水タンク又は補給水タンクに貯留される純水(補給水)とほぼ同等かそれ以上の水質であるため、発電プラントの通常運転時に使用される補給水としてそのまま使用できる。
【0017】
この結果、通常運転時に必要な補給水を、復水器水圧試験排水の処理水により補充することができ、純水装置による純水(補給水)の製造量、製造負荷を軽減し、純水(補給水)の製造コストを低減することができる。同様に、純水(補給水)を、他の機器あるいは他の復水器の点検のための試験用水として用いる場合にも、試験用水としての純水(補給水)の製造コストの低減等を図ることができる。
なお、復水器水圧試験排水の排出初期においては濁度が高い場合がある。そこで、復水器水圧試験排水は排出初期においては図1に示したライン61を通じて別の貯留槽(図示せず)へ排出し、濁度がある程度下がってからラインを切り換え、排水貯留槽51に排出する構成とすることが好ましい場合がある。これにより、処理装置1における処理負荷を軽減し、装置のコンパクト化を図ることができる。なお、このような構成としても、排出初期における高い濁度の排水量は、復水器水圧試験排水の全体量と比較して極めて少ないため、再利用できる水量が大きく低減することはない。
【0018】
次に、図5及び図6に基づき、本発明の他の実施形態を説明する。図5に示したように、本実施形態の処理装置100は、回収管110、排水浄化装置120、及び処理水供給管130を有して構成される点では上記実施形態と同様であるが、排水浄化装置120の構成が異なる。すなわち、本実施形態の排水浄化装置120は、膜ろ過装置121のみを具備し、イオン交換装置を備えていない。従って、回収管110を経て排水浄化装置120において処理される復水器水圧試験排水は、鉄クラッド等の懸濁物質のみが膜ろ過装置121によって除去され、不純物イオン成分が残存した状態の処理水として処理水供給管130から純水製造装置に供給される。
【0019】
本実施形態の処理装置100を用いて復水器水圧試験排水を処理する場合には、図5及び図6に示したように、回収管110を上記実施形態と同様に排水手段50に連結する一方で、処理水供給管130を純水製造装置における純水装置の前段に配管を介して連結する。純水製造装置には、純水装置の前段に膜ろ過装置等の前処理装置が設置され、工水や市水等の原水をろ過処理して懸濁物質を除去した後、純水装置に供給している。本実施形態の処理装置100の排水浄化装置120は、上記したように膜ろ過装置121のみを具備し、イオン交換装置を備えていないことから、復水器水圧試験排水を該排水浄化装置120で処理した場合の処理水には不純物イオン成分が残存しており、純水装置で製造される純水の水質より劣る。このため、上記実施形態のように処理水供給管130を純水装置の後段に連結し、そのまま純水(補給水)として用いることは好ましくない。
【0020】
しかしながら、本実施形態の排水浄化装置120で処理した処理水は、純水製造装置の前処理装置の出口水の水質とほぼ同等か、同等以上の水質を有する。従って、図6において実線で示したように、処理水供給管130を純水装置の前段であって前処理装置との間に配管を介して接続することにより、純水装置における処理量を、本実施形態の処理装置100を経た復水器水圧試験排水の処理水により補充でき、前処理装置における原水の処理負荷(処理量)を軽減し、前処理装置及び純水装置を含めた純水製造装置において製造される純水(補給水)の製造コストの低減を図ることができる。また、前処理装置及び純水装置の再生処理頻度を低減することができ、それぞれの装置からでてくる排水量、懸濁物質が減るため、その後段に設置される排水処理設備の処理負荷を低減することができる。
【0021】
また、本実施形態の処理装置100の場合には、図6において想像線で示したように、処理水供給管130を前処理装置よりもさらに前段に設置される原水タンクや配管等に連結することもできる。この場合には、原水が、処理装置100において懸濁物質の除去された処理水により希釈されるため、前処理装置の処理負荷を軽減でき、結果として、純水の製造コストの低減、前処理装置や純水装置の再生処理頻度の低減を図ることができる。
なお、復水器水圧試験排水の排出初期においては濁度が高い場合があるため、本実施形態においても、復水器水圧試験排水を、排出初期において図1に示したようなライン61を通じて別の貯留槽(図示せず)へ排出し、濁度がある程度下がってからラインを切り換え、排水貯留槽51に排出する構成とすることが好ましい。
【0022】
また、本実施形態の処理装置100の場合には、排水浄化装置120が膜ろ過装置121のみを有して構成されるため、上記実施形態と比較して、これらを搭載するスキッドをより小型化でき、運搬時の作業負荷をより軽減できる。
【0023】
【発明の効果】
本発明の復水器水圧試験排水の処理方法及び処理装置は、従来放流されていた復水器水圧試験排水を処理して純水製造装置に供給し、再利用することができる。従って、純水装置を含む純水製造装置において製造される純水(補給水や試験用水)の製造コストの低減を図ることができると共に、復水器水圧試験排水の排水処理コストを不要とすることができる。
特に、本発明の処理装置に組み込む排水浄化装置として、膜ろ過装置とイオン交換装置を備えたものを用い、得られた処理水を純水装置の後段に返送することにより、そのまま純水(補給水や試験用水)として使用でき、純水装置の負荷を軽減し、純水製造コストを低減することができる。また、本発明の処理装置に組み込む排水浄化装置として、膜ろ過装置を具備するものを用いた場合には、該膜ろ過装置により得られた処理水を純水装置の前段に返送することにより、純水装置や前処理装置の負荷を軽減し、純水の製造コスト、純水装置等の再生処理頻度を低減することができる。
また、本発明の処理装置を運搬可能な構造とすることにより、復水器の点検時のみに所定の箇所に設置でき、通常運転時においては、処理装置の占有スペースを確保する必要がなく、他の用途に有効利用することができる。
【図面の簡単な説明】
【図1】本発明の一の実施形態にかかる復水器水圧試験排水の処理装置の構成を示す模式図である。
【図2】上記一の実施形態にかかる復水器水圧試験排水の処理装置で用いた膜ろ過装置の構造を示す模式図である。
【図3】排水処理装置等をスキッドに搭載した状態の上記一の実施形態にかかる復水器水圧試験排水の処理装置を示す平面模式図である。
【図4】上記一の実施形態にかかる処理装置を用いた発電プラントにおける復水器水圧試験排水の処理系統図である。
【図5】本発明の他の実施形態にかかる復水器水圧試験排水の処理装置の構成を示す模式図である。
【図6】上記他の実施形態にかかる処理装置を用いた発電プラントにおける復水器水圧試験排水の処理系統図である。
【図7】発電プラントにおける従来の復水器水圧試験排水の処理系統図である。
【符号の説明】
1,100 処理装置
10,110 回収管
20,120 排水浄化装置
21,121 膜ろ過装置
22 イオン交換装置
30,130 処理水供給管
50 排水手段
51 排水貯留槽
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method and a device for treating wastewater (condenser hydraulic test drainage) generated by a condenser hydraulic pressure test performed at the time of checking a condenser in a power plant. In this specification, the term “power generation plant” includes not only thermal power plant equipment and nuclear power plant equipment, but also private power generation equipment installed in factories and the like.
[0002]
[Prior art]
For example, in a thermal power plant, steam generated by a boiler is sent to a turbine, a turbine rotates a generator to generate electricity, and the steam after power generation is cooled by a condenser and sent to a condensate treatment unit as condensate. After removing impurities such as suspended substances such as iron clad and various ion components such as Na ions and Cl ions generated from piping materials such as boilers and piping such as piping (FIG. 7). reference). In a pressurized water nuclear power plant (PWR), steam generated by a steam generator is sent to a turbine, a turbine is used to rotate a generator to generate power, and the steam generated is cooled by a condenser to be condensed. After being sent to the condensate treatment unit and purified in the same manner as above, it is repeatedly used. Also, in any of the power plants, as shown in FIG. 7, a pure water production apparatus including a pure water apparatus is installed in a stage preceding the condenser to purify raw water such as industrial water and city water. Pure water is produced and supplied to the condenser as makeup water.
[0003]
It is necessary to inspect each device constituting the above-described power plant at a predetermined timing. In the condenser inspection, the condenser outlet valve is closed, the pure water produced by the pure water production device is filled in the condenser as test water, and the condenser pump is driven to a predetermined water pressure. A water pressure test is performed to detect a leak location based on the presence or absence of a change in water pressure. After the test, the test water filled in the condenser in the hydraulic pressure test is transferred to a drainage means having a drainage storage tank by opening an outlet valve as a condenser hydraulic test drainage, and then to a drainage treatment device. Is discharged and discharged (see FIG. 7).
[0004]
[Problems to be solved by the invention]
As described above, at present, the condenser hydraulic test drainage generated during the inspection of the condenser is simply discharged. Emissions of such condenser pressure test effluent, for example, in thermal power plants 30~100kW level, is about 500 to 1000 m 3 per hydrostatic test, net amount of test water corresponding to the emissions Manufacturing with water equipment requires considerable manufacturing costs. Also, when discharging the condenser hydraulic test drainage, it is necessary to treat the wastewater to a predetermined water quality value, and the cost required for such wastewater treatment is large.
The present invention has been made in view of the above, and treats and reuses conventionally discharged condenser hydraulic test drainage water to produce pure water (supplementary water) produced in a pure water production apparatus including a pure water apparatus. It is a first object of the present invention to provide a method and an apparatus for treating condenser hydraulic test wastewater, which reduce the production cost of wastewater and test water) and wastewater treatment cost.
[0005]
On the other hand, the condenser hydraulic test drainage is an unsteady drainage that occurs only at the time of inspection once or twice a year or several years, unlike the steady drainage that is constantly discharged with the normal operation of the power plant. . Therefore, in order to reduce the cost of producing the test water and the cost of treating the wastewater, even if a means for treating and reusing the condenser hydraulic test wastewater is used, such means is not used during normal operation of the power plant. It is completely unnecessary, and in view of the space occupied by such means, construction costs, and maintenance costs, it is not worthwhile to install them permanently.
Therefore, a second object of the present invention is to provide a condenser hydraulic test wastewater treatment apparatus suitable for being installed in a power plant only at the time of inspection of a condenser.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention according to claim 1, a step of collecting condenser hydraulic test wastewater generated by a hydraulic test performed when inspecting a condenser of a power plant;
Removing the impurities contained in the condenser hydraulic test wastewater,
Supplying the treated water of the condenser pressure test wastewater from which impurities have been removed by the above-mentioned steps to a pure water production apparatus.
According to the second aspect of the present invention, in the step of removing the impurities, the impurities are removed by a filtration treatment and an ion exchange treatment, and thereafter, the treated water is supplied to a subsequent stage of the pure water apparatus in the pure water production apparatus. A method for treating condenser hydraulic test wastewater according to claim 1, characterized in that:
According to a third aspect of the present invention, in the step of removing the impurities, the impurities are removed only by a filtration process, and then the treated water is supplied to a stage preceding the pure water apparatus in the pure water production apparatus. A method for treating the condenser hydraulic test wastewater according to claim 1.
According to the present invention as set forth in claim 4, a condenser is provided between a drainage means of a hydraulic pressure test drainage generated by a hydraulic pressure test performed at the time of inspection of the condenser of the power plant and a pure water production apparatus,
A collecting pipe for collecting condenser hydraulic test wastewater from the drainage means,
A drainage purification device that removes impurities contained in the condenser hydraulic test drainage collected from the collection pipe,
A treatment water supply pipe for supplying treated water of the condenser pressure test wastewater from which impurities have been removed by the wastewater purification device to a pure water production device, wherein the treatment of the condenser hydraulic test wastewater is performed. Provide equipment.
According to the fifth aspect of the present invention, the recovery pipe is connected to and detachable from a drainage means of a condenser hydraulic test drainage, and the treated water supply pipe is connected to and disconnected from a pure water producing apparatus. Is provided as possible,
5. The apparatus for treating a condenser hydraulic test wastewater according to claim 4, wherein the recovery pipe, the wastewater purification apparatus, and the treated water supply pipe constitute one unit and can be transported.
In the present invention according to claim 6, the wastewater purification device is configured to include a membrane filtration device and an ion exchange device,
The treated water supply pipe is used by being connected to the subsequent stage of the pure water apparatus in the pure water production apparatus, and is capable of supplying treated water of a condenser hydraulic test drainage from which both suspended substances and ionic components have been removed. An apparatus for treating condenser hydraulic test wastewater according to claim 4 or 5, characterized in that:
In the present invention according to claim 7, the waste water purification device is configured to include a membrane filtration device having a filter for removing suspended substances,
The treated water supply pipe is used by being connected to a preceding stage of a pure water apparatus in a pure water producing apparatus, and is capable of supplying treated water of a condenser hydraulic pressure test wastewater from which only suspended substances have been removed. An apparatus for treating a condenser hydraulic test wastewater according to claim 4 or 5 is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. FIG. 1 is a schematic configuration diagram showing a condenser hydraulic test wastewater treatment apparatus 1 according to one embodiment of the present invention. As shown in FIG. 1, the treatment apparatus 1 includes a recovery pipe 10, a wastewater purification apparatus 20, and a treated water supply pipe 30.
[0008]
The recovery pipe 10 has a connection valve 11 at one end, and the other end is connected to the membrane filtration device 21 of the wastewater purification device 20. The connection valve 11 is provided so as to be connected to and removable from a drainage water supply pipe 53 constituting the drainage means 50 of the condenser hydraulic test drainage. The drainage means 50 for the condenser hydraulic test drainage includes a drainage storage tank 51 for storing the condenser hydraulic test drainage drained through a drainage pipe 60 provided in the condenser. The water supply pipe 53 is disposed between the drainage storage tank 51 and the recovery pipe 10, and supplies the condenser hydraulic test water in the drainage storage tank 51 to the recovery pipe 10 by driving the water supply pump 52. It is.
[0009]
The wastewater purification device 20 includes a membrane filtration device 21 and an ion exchange device 22. The membrane filtration device 21 captures and removes suspended substances such as iron clad among impurities contained in the condenser hydraulic test drainage, and includes, for example, a pleated filter, a wound filter, a hollow fiber membrane, and the like. Used ones. In the present embodiment, as shown in FIG. 2, a plurality of filters 21b provided with a filter medium such as a pleated filter are provided in a tower 21a. In FIG. 2, a plurality of filters 21b are connected in the vertical direction, and a plurality of connected filters are supported on the support plate in the tower 21a. The number of tubes connected in the vertical direction when connected, or the number of tubes connected to the support plate is appropriately selected depending on the amount of wastewater from the condenser hydraulic test water to be treated. Also, the number of the membrane filtration devices 21 is appropriately selected depending on the water quality, the treatment amount, and the like of the condenser hydraulic test drainage.
[0010]
The ion exchange device 22 is disposed to be connected to the above-mentioned membrane filtration device 21 via a pipe 24 having a valve 23. As the ion exchange device 22, for example, a mixed bed type filled with a cation exchange resin and an anion exchange resin is used, and various ion components such as Na ions and Cl ions are removed by ion exchange. The number of the ion exchange devices 22 is not limited as in the case of the membrane filtration device 21 described above, and is appropriately selected according to the water quality, the treatment amount, etc. of the condenser hydraulic test drainage to be treated.
[0011]
A treated water supply pipe 30 for discharging treated water is connected to the ion exchange device 22. A connection valve 31 is provided at an end of the treated water supply pipe 30, and can be connected to and detached from a pipe (not shown) of the pure water producing apparatus. In the present embodiment, the waste water purifying device 20 has a membrane filtration device 21 and an ion exchange device 22, and is configured to remove both suspended substances and ionic components. The test water used for the water pressure test of the condenser uses pure water produced by the pure water equipment of the pure water production equipment as described in the section of “Prior Art” and passes through the inside of the condenser. The water is drained to the above-mentioned drainage means 50 only by doing so. For this reason, the turbidity of the condenser hydraulic test wastewater itself is originally low, and the treated water of the condenser hydraulic test wastewater treated by the membrane filtration device 21 and the ion exchange device 22 is pure water provided in the pure water production device. The water quality is almost equal to or higher than the quality of pure water produced by the equipment. Therefore, in the present embodiment, the treated water obtained through the membrane filtration device 21 and the ion exchange device 22 is supplied to a pure water tank or a makeup water tank disposed at a subsequent stage of the pure water device. The connection valve 31 of the treated water supply pipe 30 is connected and used.
[0012]
It is preferable that the above-described recovery pipe 10, the wastewater purification apparatus 20, and the treated water supply pipe 30 are configured as one unit, and have a structure capable of transporting the treatment apparatus 1 including these. For example, when the drainage purification device 20 has one membrane filtration device 21 and four ion exchange devices 22, they are arranged in a layout as shown in FIG. In addition, a structure mounted on the skid 40 can be adopted. As described above, the recovery pipe 10 is provided with the connection valve 11 which can be connected to and detached from the drainage means 50, and the treated water supply pipe 30 is provided with the connection valve 31 which can be connected to and removed from the pure water producing apparatus. Is provided. Therefore, if the skid 40 is carried to a predetermined location and the connection valves 11 and 31 are connected, the condenser hydraulic test drainage can be treated.
[0013]
As described above, the water pressure test of the condenser is only performed at the time of inspection performed once or twice a year or several years. For this reason, the condenser hydraulic test drainage treatment apparatus 1 does not need to be permanently installed, and can be transported as in the present embodiment in consideration of securing a space for permanent installation, installation costs, maintenance costs, and the like. It is preferable to adopt a structure that can be transported and arranged only when the water pressure test is performed. In a power plant having a plurality of condensers, a plurality of condensers are not subjected to the water pressure test at the same time. When testing any condenser, for example, only one processing unit 1 can deal with it, and it is far more cost-effective than the case where the processing unit 1 is permanently installed for each condenser. It is.
[0014]
Next, a method for treating condenser hydraulic test wastewater using the treatment apparatus 1 of the present embodiment will be described. First, after being transported to a predetermined location, the processing apparatus 1 of the present embodiment connects the connection valve 11 of the recovery pipe 10 to the drainage water supply pipe 53 of the drainage means 50 as shown in FIGS. 1 and 4. At the same time, the connection valve 31 of the treated water supply pipe 30 is connected to a pipe connected to a pure water tank or a make-up water tank arranged at a later stage of the pure water apparatus and is disposed (in FIG. 4, a solid line indicates a pure water tank). And the imaginary line shows the connection to the makeup water tank).
[0015]
Then, a condenser water pressure test is performed. The condenser water pressure test closes the outlet valve attached to the condenser drain pipe, supplies pure water produced by the pure water device into the condenser as test water, and makes the condenser full. Water pressure is applied, and the presence or absence of leakage is detected by a change in pressure. After the test, the outlet valve of the drain pipe 60 is opened, and the water is discharged into the drainage storage tank 51. The timing of disposing the treatment apparatus 1 is not limited to the time before the condenser hydraulic pressure test is performed as described above, and the condenser hydraulic pressure test is performed, and the condenser hydraulic pressure test drainage is discharged to the drainage storage tank 51. It may be after storing.
[0016]
When treating the condenser hydraulic test drainage discharged into the drainage storage tank 51, the water supply pump 52 is driven to send the wastewater to the collection pipe 10 through the drainage water supply pipe 53. The condenser hydraulic test drainage that has passed through the recovery pipe 10 is first filtered by a membrane filtration device 21 to remove suspended substances such as iron clad. Next, the water is sent to the ion exchange device 22 via the pipe 24, ion components are removed by ion exchange, sent to the treated water supply pipe 30 as treated water, and passed through the pipe connected to the treated water supply pipe 30. , Returned to the pure water tank or make-up water tank. The treated water returned to the pure water tank or make-up water tank has a water quality substantially equal to or higher than the pure water (make-up water) produced by the pure water tank and stored in the pure water tank or make-up water tank. Therefore, it can be used as it is as makeup water used during normal operation of the power plant.
[0017]
As a result, make-up water required during normal operation can be replenished with the treated water of the condenser hydraulic test drainage water, and the amount of pure water (make-up water) produced by the pure water device and the production load can be reduced. (Replenishing water) production cost can be reduced. Similarly, when using pure water (make-up water) as test water for inspection of other equipment or other condensers, reduction of the production cost of pure water (make-up water) as test water, etc. Can be planned.
The turbidity may be high in the initial stage of discharge of the condenser hydraulic test drainage water. Therefore, the condenser hydraulic test drainage is discharged to another storage tank (not shown) through the line 61 shown in FIG. 1 in the initial stage of discharge, and after the turbidity has decreased to some extent, the line is switched to the drainage storage tank 51. In some cases, it is preferable to adopt a configuration for discharging. Thereby, the processing load on the processing apparatus 1 can be reduced, and the apparatus can be made compact. In addition, even with such a configuration, the amount of high-turbidity drainage in the initial stage of discharge is extremely small compared to the entire amount of the condenser hydraulic test drainage, so that the amount of water that can be reused does not significantly decrease.
[0018]
Next, another embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 5, the treatment apparatus 100 of the present embodiment is the same as the above embodiment in that the treatment apparatus 100 is configured to include a recovery pipe 110, a wastewater purification apparatus 120, and a treated water supply pipe 130. The configuration of the wastewater purification device 120 is different. That is, the wastewater purification device 120 of the present embodiment includes only the membrane filtration device 121 and does not include the ion exchange device. Therefore, the condenser hydraulic test wastewater treated in the wastewater purification device 120 via the recovery pipe 110 is treated water in which only suspended substances such as iron clad are removed by the membrane filtration device 121 and impurity ion components remain. Is supplied from the treated water supply pipe 130 to the pure water production apparatus.
[0019]
When treating the condenser hydraulic test drainage using the treatment apparatus 100 of the present embodiment, as shown in FIGS. 5 and 6, the collection pipe 110 is connected to the drainage means 50 in the same manner as in the above embodiment. On the other hand, the treated water supply pipe 130 is connected via a pipe to a stage preceding the pure water apparatus in the pure water production apparatus. In the pure water production equipment, a pretreatment device such as a membrane filtration device is installed in front of the pure water device. After filtering raw water such as industrial water and city water to remove suspended substances, the pure water Supplying. As described above, the wastewater purification device 120 of the treatment device 100 includes only the membrane filtration device 121 and does not include the ion exchange device as described above. Impurity ion components remain in the treated water after the treatment, which is inferior to the quality of pure water produced by the pure water apparatus. For this reason, it is not preferable to connect the treated water supply pipe 130 to the subsequent stage of the pure water apparatus as in the above-described embodiment and use the treated water supply pipe 130 as it is as pure water (supply water).
[0020]
However, the treated water treated by the wastewater purification device 120 of the present embodiment has a water quality almost equal to or higher than the water quality of the outlet water of the pretreatment device of the pure water production device. Therefore, as shown by the solid line in FIG. 6, by connecting the treated water supply pipe 130 at a stage before the pure water apparatus and with the pretreatment apparatus via a pipe, the throughput in the pure water apparatus can be reduced. It can be replenished with the treated water of the condenser hydraulic test drainage that has passed through the treatment apparatus 100 of the present embodiment, reduces the processing load (treatment amount) of the raw water in the pretreatment apparatus, and includes pure water including the pretreatment apparatus and the pure water apparatus. It is possible to reduce the production cost of pure water (replenishment water) produced in the production apparatus. In addition, the frequency of regeneration treatment of the pre-treatment unit and the pure water unit can be reduced, and the amount of wastewater and suspended solids coming out of each unit is reduced, thus reducing the processing load on the wastewater treatment equipment installed at the subsequent stage. can do.
[0021]
Further, in the case of the treatment apparatus 100 of the present embodiment, as shown by an imaginary line in FIG. 6, the treated water supply pipe 130 is connected to a raw water tank, a pipe, or the like that is installed further upstream than the pretreatment apparatus. You can also. In this case, the raw water is diluted by the treated water from which suspended substances have been removed in the treatment device 100, so that the processing load on the pretreatment device can be reduced. As a result, the production cost of pure water can be reduced, and pretreatment can be reduced. It is possible to reduce the frequency of regeneration processing of the apparatus and the pure water apparatus.
In addition, since the turbidity may be high in the initial stage of discharge of the condenser hydraulic test wastewater, the condenser hydraulic test wastewater is also separated through the line 61 shown in FIG. It is preferable to discharge to the drainage storage tank 51 after the turbidity is reduced to some extent.
[0022]
Further, in the case of the treatment apparatus 100 of the present embodiment, since the waste water purification device 120 is configured to include only the membrane filtration device 121, the size of the skid on which these components are mounted is reduced as compared with the above embodiment. And the work load during transportation can be further reduced.
[0023]
【The invention's effect】
INDUSTRIAL APPLICABILITY The method and apparatus for treating a condenser hydraulic test wastewater of the present invention can treat a condenser hydraulic test wastewater that has been conventionally discharged, supply it to a pure water production apparatus, and reuse it. Therefore, it is possible to reduce the production cost of pure water (supplementary water and test water) produced in the pure water production apparatus including the pure water apparatus, and to eliminate the cost of drainage treatment of the condenser hydraulic test wastewater. be able to.
In particular, as a wastewater purification device to be incorporated in the treatment device of the present invention, a wastewater purification device provided with a membrane filtration device and an ion exchange device is used. Water or test water), reducing the load on the pure water apparatus and reducing the cost of pure water production. Further, in the case of using a device provided with a membrane filtration device as a wastewater purification device incorporated in the treatment device of the present invention, by returning the treated water obtained by the membrane filtration device to a stage preceding the pure water device, The load on the pure water device and the pretreatment device can be reduced, and the cost of producing pure water and the frequency of regeneration treatment of the pure water device can be reduced.
In addition, since the treatment device of the present invention has a structure capable of being transported, it can be installed at a predetermined location only when checking the condenser, and during normal operation, it is not necessary to secure an occupied space of the treatment device, It can be effectively used for other purposes.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a configuration of a condenser hydraulic test wastewater treatment apparatus according to one embodiment of the present invention.
FIG. 2 is a schematic diagram showing a structure of a membrane filtration device used in a condenser hydraulic test wastewater treatment apparatus according to the one embodiment.
FIG. 3 is a schematic plan view showing a condenser hydraulic test wastewater treatment apparatus according to the embodiment of the present invention in which a wastewater treatment device and the like are mounted on a skid.
FIG. 4 is a treatment system diagram of a condenser hydraulic test drainage in a power plant using the treatment apparatus according to the one embodiment.
FIG. 5 is a schematic diagram showing a configuration of a condenser hydraulic test wastewater treatment apparatus according to another embodiment of the present invention.
FIG. 6 is a system diagram of a condenser hydraulic test drainage in a power plant using the processing apparatus according to the other embodiment.
FIG. 7 is a treatment system diagram of a conventional condenser hydraulic test drainage in a power plant.
[Explanation of symbols]
1,100 Treatment equipment 10,110 Recovery pipe 20,120 Waste water purification equipment 21,121 Membrane filtration equipment 22, Ion exchange equipment 30,130 Treated water supply pipe 50 Drainage means 51 Drainage storage tank

Claims (7)

発電プラントの復水器の点検時に実施する水圧試験によって発生する復水器水圧試験排水を回収する工程と、
前記復水器水圧試験排水に含まれる不純物を除去する工程と、
前記工程により不純物の除去された復水器水圧試験排水の処理水を、純水製造装置に供給する工程と
を有することを特徴とする復水器水圧試験排水の処理方法。
Collecting a condenser hydraulic test drainage generated by a hydraulic test performed when inspecting the condenser of the power plant;
Removing the impurities contained in the condenser hydraulic test wastewater,
Supplying the treated water of the condenser hydraulic test wastewater from which impurities have been removed by the above-mentioned step to a pure water production apparatus.
前記不純物を除去する工程において、ろ過処理及びイオン交換処理により不純物を除去し、しかる後、かかる処理水を純水製造装置における純水装置の後段に供給することを特徴とする請求項1記載の復水器水圧試験排水の処理方法。The method according to claim 1, wherein in the step of removing the impurities, the impurities are removed by a filtration treatment and an ion exchange treatment, and then the treated water is supplied to a subsequent stage of the pure water device in the pure water production device. Condenser hydraulic test wastewater treatment method. 前記不純物を除去する工程において、ろ過処理のみにより不純物を除去し、しかる後、かかる処理水を純水製造装置における純水装置の前段に供給することを特徴とする請求項1記載の復水器水圧試験排水の処理方法。2. The condenser according to claim 1, wherein in the step of removing the impurities, the impurities are removed only by a filtration process, and thereafter, the treated water is supplied to a stage preceding the pure water apparatus in the pure water producing apparatus. Hydraulic test wastewater treatment method. 発電プラントの復水器の点検時に実施する水圧試験によって発生する復水器水圧試験排水の排水手段と純水製造装置との間に設けられ、
前記排水手段から復水器水圧試験排水を回収する回収管と、
前記回収管から回収された復水器水圧試験排水に含まれる不純物を除去する排水浄化装置と、
前記排水浄化装置により不純物の除去された復水器水圧試験排水の処理水を、純水製造装置に供給するための処理水供給管と
を有することを特徴とする復水器水圧試験排水の処理装置。
Provided between the drainage means of the condenser hydraulic pressure test drainage generated by the hydraulic pressure test carried out when inspecting the condenser of the power plant and the pure water production equipment,
A collecting pipe for collecting condenser hydraulic test wastewater from the drainage means,
A drainage purification device for removing impurities contained in the condenser hydraulic test drainage collected from the collection pipe,
A treatment water supply pipe for supplying treated water of the condenser pressure test wastewater from which impurities have been removed by the wastewater purification device to a pure water production device, wherein the treatment of the condenser hydraulic test wastewater is performed. apparatus.
前記回収管が、復水器水圧試験排水の排水手段に連結・取り外し可能に設けられていると共に、前記処理水供給管が、純水製造装置に連結・取り外し可能に設けられており、
前記回収管、排水浄化装置及び処理水供給管により一つのユニットを構成し、運搬可能であることを特徴とする請求項4記載の復水器水圧試験排水の処理装置。
The recovery pipe is connected / removable to a drainage unit of a condenser hydraulic test drainage, and the treated water supply pipe is connected / removable to a pure water production apparatus,
The apparatus according to claim 4, wherein the recovery pipe, the wastewater purification device, and the treated water supply pipe constitute one unit and can be transported.
前記排水浄化装置が、膜ろ過装置とイオン交換装置とを備えて構成され、
前記処理水供給管を純水製造装置における純水装置の後段に連結して使用され、懸濁物質及びイオン成分の双方が除去された復水器水圧試験排水の処理水を供給可能であることを特徴とする請求項4又は5記載の復水器水圧試験排水の処理装置。
The wastewater purification device is configured to include a membrane filtration device and an ion exchange device,
The treated water supply pipe is used by connecting it to the subsequent stage of the pure water apparatus in the pure water production apparatus, and is capable of supplying treated water of a condenser hydraulic test drainage from which both suspended substances and ionic components have been removed. The treatment device for condenser hydraulic test wastewater according to claim 4 or 5, wherein:
前記排水浄化装置が、懸濁物質を除去するフィルタを有する膜ろ過装置を備えて構成され、
前記処理水供給管を純水製造装置における純水装置の前段に連結して使用され、懸濁物質のみが除去された復水器水圧試験排水の処理水を供給可能であることを特徴とする請求項4又は5記載の復水器水圧試験排水の処理装置。
The wastewater purification device is provided with a membrane filtration device having a filter for removing suspended substances,
The treated water supply pipe is used by being connected to a front stage of a pure water apparatus in a pure water producing apparatus, and is capable of supplying treated water of a condenser hydraulic pressure test wastewater from which only suspended substances have been removed. The apparatus for treating condenser hydraulic test wastewater according to claim 4.
JP2003084019A 2003-03-26 2003-03-26 Method and apparatus for treating wastewater of condenser water pressure test Pending JP2004290749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084019A JP2004290749A (en) 2003-03-26 2003-03-26 Method and apparatus for treating wastewater of condenser water pressure test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084019A JP2004290749A (en) 2003-03-26 2003-03-26 Method and apparatus for treating wastewater of condenser water pressure test

Publications (1)

Publication Number Publication Date
JP2004290749A true JP2004290749A (en) 2004-10-21

Family

ID=33399281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084019A Pending JP2004290749A (en) 2003-03-26 2003-03-26 Method and apparatus for treating wastewater of condenser water pressure test

Country Status (1)

Country Link
JP (1) JP2004290749A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119978A (en) * 2008-11-21 2010-06-03 Kotobuki Kakoki Kk Apparatus for treating wastewater
JP2013169530A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Water treatment system for power plant and water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119978A (en) * 2008-11-21 2010-06-03 Kotobuki Kakoki Kk Apparatus for treating wastewater
JP2013169530A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Water treatment system for power plant and water treatment method

Similar Documents

Publication Publication Date Title
KR101798123B1 (en) System for filtering waste water and recovering heat of waste water
KR102095276B1 (en) Method for recovering process wastewater from a steam power plant
CN101475144B (en) Hydrogen gas recovery device and system
TW201937505A (en) Method of removing radioactive gases and hydrogen gas from a nuclear reactor coolant
CN103043820A (en) Method for controlling chemical water treatment process of boiler
CN202246314U (en) Water treatment system for polycrystalline silicon production
JP2004290749A (en) Method and apparatus for treating wastewater of condenser water pressure test
CN111033121B (en) Double-loop nuclear reactor steam generating device with purging and draining system
CN109979635B (en) Pressurized water reactor nuclear power plant steam generator sewage treatment system
JP2006212540A (en) Treatment method of chemical-washing waste liquid
JP2007283199A (en) Method and apparatus for withdrawing ion exchange resin from demineralizer
JP2000140839A (en) Desalting device of condensate
JP2013169530A (en) Water treatment system for power plant and water treatment method
CN113501584B (en) Device system and method for stepped recycling of graded water supply of wet cooling unit
JP3219741B2 (en) Condensate treatment system and condensate treatment method
JPS6059481B2 (en) Filtration equipment for water supply systems in thermal and nuclear power plants
JP4573315B2 (en) Condensate purification system and operation method thereof
JP7062568B2 (en) Water treatment method and water treatment preparation method for nuclear power plants
JPS59177189A (en) Desalination of sea water by reverse osmosis method
KR20160047548A (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant
JP4570714B2 (en) Hollow fiber membrane cleaning method and hollow fiber membrane filtration device
WO2014102978A1 (en) Method for removing iron components from heater drain water in power-generating plant
KR100497856B1 (en) Heat exchange method and system using DIP waste water
Castro et al. Innovative water treatment design for turning wastewater treatment effluent into boiler makeup water
JP2016083641A (en) Reverse osmosis treatment device and method of washing reverse osmosis membrane