JP2004290426A - Mesh for ultrasonic wave type inhalator - Google Patents

Mesh for ultrasonic wave type inhalator Download PDF

Info

Publication number
JP2004290426A
JP2004290426A JP2003087142A JP2003087142A JP2004290426A JP 2004290426 A JP2004290426 A JP 2004290426A JP 2003087142 A JP2003087142 A JP 2003087142A JP 2003087142 A JP2003087142 A JP 2003087142A JP 2004290426 A JP2004290426 A JP 2004290426A
Authority
JP
Japan
Prior art keywords
mesh
metal layer
photosensitive resin
thin
ultrasonic inhaler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003087142A
Other languages
Japanese (ja)
Inventor
Akira Mori
暁 森
Hideaki Yoshida
秀昭 吉田
Toshiharu Hiji
利玄 臂
Tatsuo Sugiyama
達雄 杉山
Akihiro Masuda
昭裕 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003087142A priority Critical patent/JP2004290426A/en
Publication of JP2004290426A publication Critical patent/JP2004290426A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • B05B17/0646Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto

Landscapes

  • Special Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mesh having fine through holes used for an ultrasonic wave type inhalator. <P>SOLUTION: The mesh for the ultrasonic wave type inhalator includes a synthetic resin thin plate having a thin part 8 and a thick part 9 in the synthetic resin thin plate. The fine through holes 7 are provided in the thin part. The thickness of the thin part 8 is in a range of 1 to 10 μm, and the thickness of the thick part 9 is in a range of 20 to 200 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、超音波式吸入器の用いられる微細な貫通孔を有するメッシュに関するものである。
【0002】
【従来の技術】
一般に、超音波式吸入器は、図11の断面図に示されるように、ケース1の下部に薬液Lを入れるボトル部2を形成し、ケース1の中間部に振動子5を弾性体6に支持して設け、この振動子5にパイプ3を固定し、パイプ3の下端部はボトル部2内部の薬液Lに浸漬できるようにボトル部2に突出させ、一方、パイプ3の上端をメッシュ4に接するように固定した構造を有している。
かかる構造を有する超音波式吸入器において、振動子5を超音波振動させると、振動子5に固定されているパイプ3は矢印方向に上下に振動子が振動して、ボトル部2内の薬液Lを吸い上げ、吸い上げられた薬液Lが共振するメッシュ4によって薬液ミストL´になり、このミストになった薬液ミストL´は多数の貫通孔7を通って外部に放散させる。
前記メッシュ4は、アルミナ、ジルコニアなどのセラミックスからなる薄板、Ni、Ti、ステンレスなどの耐食金属または耐食合金からなる薄板、ポリサルフォン、ポリエステル、ポリイミドなどの合成樹脂からなる薄板を使用し、これら薄板にエッチング、放電加工法、レーザー加工法、紫外線ビーム加工法などにより貫通孔7を形成することは知られている(特許文献1、2参照)。
近年、注射薬を超音波式吸入器でミスト状にし、投与する試みが成されており、この時必要とする注射薬ミストの粒の大きさは1〜10μm(好ましくは1〜3μm)であるといわれている。かかる大きさの注射薬ミストを超音波式吸入器で得るには、超音波式吸入器に使用されるメッシュ4に形成される貫通孔の径を一層微細化すると共に口径のばらつきを極力抑えて均一な口径にしなければならない。かかる微細な貫通孔を有するメッシュは、照射径を小さくした放電加工またはレーザー加工法を用いて穿孔することにより形成することができ、これら方法により形成される貫通孔は、形成する薄板の厚さが薄いほど均一微細な口径を形成できることが知られている。
【0003】
【特許文献1】
特開平7−1172号公報
【特許文献2】
特開平7−80369号公報
【0004】
【発明が解決しようとする課題】
しかし、セラミックス製薄板に放電加工法またはレーザー加工法により寸法精度の優れた微細な貫通孔を形成した厚さの薄いセラミックス製メッシュは、これを超音波式吸入器のメッシュとして使用すると、使用時に常に超音波振動を受け、薄いセラミックス製メッシュは靭性が不足するためにるために寿命が短くなる。そこで、セラミックス製薄板の厚さを厚くすると強度が向上するものの、放電加工法またはレーザー加工法により均一な口径を有する微細貫通孔を形成することは難しく、得られた貫通孔は径にバラツキが生じ、また均一な口径を有する微細貫通孔を形成しようとするとコストがかかる。
したがって、通常は、金属製メッシュまたは合成樹脂製メッシュが使用されているが、金属製メッシュは金属の種類によっては薬剤により腐食することがあり、また、腐食により溶け出した金属が体内に入り、アレルギーの原因になるなど安全性の面から好ましくないことがある。
そこで、最も価格が安く薬剤に対して比較的耐食性を有する合成樹脂製メッシュが考えられるが、肉厚の薄い合成樹脂板に貫通孔を形成した合成樹脂製メッシュは、強度が不足し、肉厚の厚い合成樹脂板に貫通孔を形成すると口径が不均一な貫通孔が形成されるので好ましくないなどの問題点があった。
【0005】
【課題を解決するための手段】
そこで、本発明者等は、最も低価格で供給することができる高強度でかつ均一で微細な貫通孔を有する超音波式吸入器用の合成樹脂製メッシュを得るべく研究を行った結果、
(イ)薄い合成樹脂薄板に口径が均一で微細な貫通孔を設けることが簡単にできるところから、薄肉部分および厚肉部分を有する合成樹脂薄板において、薄肉部分に口径が均一で微細な貫通孔を設け、一方、厚肉部分で強度を補足すると、高強度でかつ均一で微細な貫通孔を有する超音波式吸入器用の合成樹脂製メッシュが得られる、
(ロ)前記薄肉部分の厚さは可能な限り薄くして1〜10μmの範囲内にあることが好ましく、厚肉部分の厚さは特に限定されるものではないがメッシュの強度を確保することができるに厚さの20〜200μmにすることが好ましい、
(ハ)前記(イ)および(ロ)記載の合成樹脂製メッシュは、感光性樹脂を用いて作ることが好ましく、感光性樹脂をスピンコート法により塗布して薄肉部分および厚肉部分を有する感光性樹脂層を形成し、感光性樹脂層にフォトマスクを載置して露光し現像して感光性樹脂層の薄肉部分に微細な貫通孔を形成し、加熱処理して感光性樹脂層を硬化させることにより、従来の放電加工法またはレーザー加工法に比べて均一な寸法を有する口径を効率良く形成することができる、などの知見を得たのである。
【0006】
この発明は、かかる知見に基づいてなされたものであって、
(1)薄肉部分および厚肉部分を有する合成樹脂薄板における薄肉部分に微細な貫通孔を設けてなる超音波式吸入器用メッシュ、
(2)薄肉部分と厚肉部分を有する合成樹脂薄板における薄肉部分に微細な貫通孔を設けてなる超音波式吸入器用メッシュであって、薄肉部分の厚さは1〜10μmの範囲内にあり、厚肉部分の厚さは20〜200μmの範囲内にある超音波式吸入器用メッシュ、に特徴を有するものである。
この発明の超音波式吸入器用メッシュの薄肉部分の厚さが1μm未満であると、材質が合成樹脂であるために強度が不足するので好ましくなく、一方、10μmを越えると均一微細な貫通孔を形成できなくなるので好ましくないことによるものである。また、厚肉部分の厚さが20μm未満では十分な強度を確保することができず、200μmを越えると、厚すぎて超音波式吸入器用メッシュとしては好ましくないからである。
【0007】
この発明の超音波式吸入器用メッシュを図1〜図4に基づいて説明する。図1はこの発明の超音波式吸入器用メッシュの断面図、図2は図1におけるA方向から見た平面図、図3は図1におけるB方向から見た平面図である。図1〜図3において、7は貫通孔、8は薄肉部分、9は厚肉部分である。図4はこの発明の別の実施態様を示す平面図であり、図4において超音波式吸入器用メッシュの周囲に厚肉部分と同じ厚さを有するリング枠9´を形成して強度を一層高めた超音波式吸入器用メッシュであり、その他の記号は図1〜図3と同じであるのでそれらの説明は省略する。
【0008】
この発明の超音波式吸入器用メッシュ4の薄肉部分8に設けられる貫通孔7は、薄肉部分に形成されるために口径寸法にバラツキが少なく、均一で微細な貫通孔を比較的簡単に形成することができ、また厚肉部分9を設けることにより強度を確保することができる。この場合、薄肉部分8の厚さは1〜10μmの範囲内にあり、厚肉部分9の厚さは20〜200μmの範囲内にあることが好ましく、その理由はすでに説明してある。図4に示されるように、メッシュの周囲にリング枠9´を形成することにより強度を一層向上させることができる。なお、図面では、この発明の超音波式吸入器用メッシュ4の厚肉部分9は格子状に形成しているが、厚肉部分は円柱状突起であっても良く、この円柱状突起を所定間隔に設け、円柱状突起の隙間に薄肉部分を形成し、この薄肉部分に貫通孔を設けたものであっても良い。
【0009】
次ぎに、この発明の超音波式吸入器用メッシュの製造方法を図5〜図11に基づいて説明する。
図5は、この発明の超音波式吸入器用メッシュを製造するための原型であり、図5において10で示されている。原型10はSi基板11の表面にエッチングにより凹凸を形成し、その凹凸を有するSi基板の表面に緻密な酸化被膜を形成する耐食金属層12を形成して作製する。この耐食金属層は具体的にはCr,Ti,Zr、ステンレスなどの耐食金属をスパッタリングして形成されたCr層,Ti層,Zr層、ステンレス層などであり、その厚さは0.1〜1μmで十分である。なお、この原型は、図10の10´に示されるようにCr,Ti,Zr、ステンレスなどの耐食金属からなる基板の表面に直接エンボス加工により凹凸を形成したものであっても良いが、微細な凹凸を正確に形成するにはSi基板に形成する方が簡単であり、その技術も半導体産業ではすでに確立されているので形成しやすい。例えば、Si基板を用意し、このSi基板の片面にフォトレジストを塗布し、露光し、現像したのち、Cガスを使用してドライエッチング法により縦:70〜90μm、横:70〜90μm、高さ:40〜45μmの寸法を有する正方形の凸部または幅:70〜90μm、深さ:40〜45μmの寸法を有する溝をSi基板の表面に簡単に形成することができる。
【0010】
次ぎに、図6に示されるように、原型10における耐食金属層12の表面に、さらに酸(特に硝酸)に溶解しやすいCu,Znなどの易溶解金属からなる易溶解金属層13を形成する。この易溶解金属層13は電気メッキにより形成する。易溶解金属層13は電気メッキにより形成するのでその厚さは1〜2μm程度となる。
【0011】
さらに、図7に示されるように、易溶解金属層13の上に、感光性樹脂をスピンコート法により積層させる。感光性樹脂として代表的なものとして感光性ポリイミドが知られている。易溶解金属層13の上に感光性樹脂をスピンコート法により積層させたのち得られた感光性樹脂層14を60℃で10分間乾燥させ、乾燥した感光性樹脂層14の表面に、図8に示されるように、微細な穴16を有するフォトマスク15を被覆し、フォトマスク15の表面から高圧水銀ランプにより紫外線(例えば、波長:365nmのi線)を照射して露光し、現像することにより露光した部分に貫通孔を形成する。その後、180℃に60分間保持の加熱処理を施して感光性樹脂層14を硬化させる。
【0012】
このようにして得られた易溶解金属層13および感光性樹脂層14からなる積層体15を、図9に示されるように、原型10の耐食金属層12から剥離する。易溶解金属層13と耐食金属層12とは接合しない特性を有するので簡単に剥離することができる。剥離した積層体15は硝酸水溶液中に浸漬して易溶解金属層13を溶解し、図1に示される薄肉部分8および厚肉部分9を有し、薄肉部分8に微細な貫通孔7を有する合成樹脂板からなるメッシュ4が得られ、このメッシュを打抜き加工して所定の形状を有する超音波式吸入器用メッシュが得られるのである。
一方、Si基板11および耐食金属層12からなる原型10は再利用することができる。
【0013】
【発明の実施の形態】
実施例
厚さ:0.5mmのSi基板を用意し、このSi基板の片面にフォトレジストを塗布し、露光し、現像したのち、Cガスを使用してドライエッチング法により縦:80μm、横:80μm、深さ:45μmの寸法を有する正方形の凹部を形成した。このSi基板の表面にスパッタリングにより厚さ:0.5μmのCr耐食金属層を形成し、このCr耐食金属層の上に電気メッキにより厚さ:1.5μmのCu易溶解金属層を形成した。
【0014】
さらに、市販の感光性ポリイミド粉末:1gをNMP:3gに溶解させた後、2、6−ジ−(4´−アジドベンザル)−4−メチルシクロヘキサン:0.08gの割合で加えることにより感光性ポリイミド溶液を作製し用意した。
前記Cu易溶解金属層の上に、用意した感光性ポリイミド溶液をスピンコート法により塗布して塗膜を形成し、この塗膜を60℃で10分間乾燥させる加熱処理を施すことにより感光性ポリイミド膜を形成した。
この感光性ポリイミド膜の上に微細な直径:5μmの穴を有するフォトマスクを被覆し、フォトマスクの表面に高圧水銀ランプにより発生する直径:5μmの大きさのi線(365nm)を6秒間照射して露光し、次いで、露光した感光性ポリイミド膜を現像することにより、厚肉部分の厚さ:40μm、薄肉部分の厚さ:10μmを有し、薄肉部分に目標口径:5μmの貫通孔を有する感光性ポリイミド樹脂膜を形成した。その後、180℃に60分間保持の加熱処理を施して感光性樹脂塗膜を硬化させた。
【0015】
このようにして得られたCu易溶解金属層および貫通孔を有する感光性ポリイミド樹脂膜からなる積層体を、原型のCr耐食金属層から剥離し、剥離した積層体を硝酸水溶液中に浸漬してCu易溶解金属層を溶解除去し、薄肉部分と厚肉部分を有し、薄肉部分に目標口径:5μmの貫通孔を形成した感光性ポリイミド樹脂板を得た。この貫通孔を有する感光性ポリイミド樹脂板を直径:10mmの寸法に打抜き成形して10枚の超音波式吸入器用メッシュを作製した。1枚の超音波式吸入器用メッシュには2000個の貫通孔を有していた。
【0016】
従来例
さらに、比較のために、厚さ:40μmのポリイミド樹脂板を用意し、このポリイミド樹脂板にレーザー加工により目標口径:5μmの貫通孔を形成し、この貫通孔を形成したポリイミド樹脂板を直径:10mmの寸法に打抜き成形して10枚の超音波式吸入器用メッシュを作製した。1枚の超音波式吸入器用メッシュには2000個の貫通孔を有していた。
【0017】
実施例で作製した10枚の超音波式吸入器用メッシュおよび従来例で作製した10枚の超音波式吸入器用メッシュにおける口径をそれぞれ光学顕微鏡および画像処理装置を用いて測定し、その結果を表1に示した。
【0018】
【表1】

Figure 2004290426
【0019】
【発明の効果】
表1を見ると、この発明では、薄肉部分に貫通孔を形成するために、寸法精度にばらつきの少ない口径の微細な貫通孔を形成することができることが分かる。また、この発明で得られたメッシュは、強度を厚肉部分で確保することができるので、強度および均一な口径の微細貫通孔を有する合成樹脂からなる超音波式吸入器用メッシュを比較的簡単に低コストで提供することができ、特に医療産業上すぐれた効果をもたらすものである。
【図面の簡単な説明】
【図1】この発明の超音波式吸入器用メッシュを説明するための断面図である。
【図2】この発明の超音波式吸入器用メッシュを図1のA方向から見た平面図である。
【図3】この発明の超音波式吸入器用メッシュを図1のB方向から見た平面図である。
【図4】この発明の超音波式吸入器用メッシュの他の実施形態を示す平面図である。
【図5】この発明の超音波式吸入器用メッシュの製造に使用する原型の断面図である。
【図6】この発明の超音波式吸入器用メッシュの製造に使用する原型に易溶解金属層を形成した状態の断面図である。
【図7】この発明の超音波式吸入器用メッシュの製造に使用する原型に易溶解金属層を形成し、その上に感光性樹脂層を形成した状態の断面図である。
【図8】この発明の超音波式吸入器用メッシュの製造に使用する原型に易溶解金属層を形成し、その上に感光性樹脂層を形成したのち、露光している状態の断面図である。
【図9】この発明の超音波式吸入器用メッシュの製造に使用する原型から易溶解金属層および感光性樹脂層からなる積層体を剥離した状態を示す断面図である。
【図10】この発明の超音波式吸入器用メッシュの製造に使用する別の原型の断面図である。
【図11】従来の超音波式吸入器の断面説明図である。
【符号の説明】
1 ケース
2 ボトル部
3 パイプ
4 メッシュ
5 振動子
6 弾性体
7 貫通孔
L 薬液
L´ 薬液ミスト
8 薄肉部分
9 厚肉部分
9´ リング枠
10 原型
11 Si基板
12 耐食金属層
13 易溶解金属層
14 感光性樹脂層
15 フォトマスク
16 穴[0001]
[Industrial applications]
The present invention relates to a mesh having fine through holes used for an ultrasonic inhaler.
[0002]
[Prior art]
Generally, as shown in the cross-sectional view of FIG. 11, the ultrasonic inhaler has a bottle portion 2 in which a chemical solution L is formed at a lower portion of a case 1 and a vibrator 5 is attached to an elastic body 6 at an intermediate portion of the case 1. The pipe 3 is fixed to the vibrator 5 and the lower end of the pipe 3 is protruded from the bottle 2 so that it can be immersed in the chemical solution L inside the bottle 2. It has a structure fixed so as to be in contact with.
In the ultrasonic inhaler having such a structure, when the vibrator 5 is ultrasonically vibrated, the pipe 3 fixed to the vibrator 5 vibrates up and down in the direction of the arrow, and the chemical solution in the bottle portion 2 L is sucked up, and the sucked-up chemical liquid L becomes a chemical mist L ′ by the resonating mesh 4, and the chemical mist L ′ that has become the mist is radiated to the outside through a large number of through holes 7.
The mesh 4 is made of a thin plate made of a ceramic such as alumina or zirconia, a thin plate made of a corrosion-resistant metal or corrosion-resistant alloy such as Ni, Ti, or stainless steel, or a thin plate made of a synthetic resin such as polysulfone, polyester, or polyimide. It is known that the through holes 7 are formed by etching, electric discharge machining, laser machining, ultraviolet beam machining, or the like (see Patent Documents 1 and 2).
In recent years, attempts have been made to form injections into a mist with an ultrasonic inhaler and administer the injections. At this time, the required size of the injection mist is 1 to 10 μm (preferably 1 to 3 μm). It is said that. In order to obtain an injection medicine mist of such a size using an ultrasonic inhaler, the diameter of the through hole formed in the mesh 4 used in the ultrasonic inhaler is further reduced and the variation in the diameter is minimized. Must have a uniform caliber. The mesh having such fine through-holes can be formed by drilling using an electric discharge machining or laser machining method with a reduced irradiation diameter, and the through-holes formed by these methods have a thickness of a thin plate to be formed. It is known that the thinner the film, the more uniform and fine the diameter can be formed.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-1172 [Patent Document 2]
JP-A-7-80369
[Problems to be solved by the invention]
However, a thin ceramic mesh made by forming a fine through hole with excellent dimensional accuracy in a ceramic thin plate by electric discharge machining or laser machining can be used as a mesh for an ultrasonic inhaler. Ultrasonic vibration is always applied, and a thin ceramic mesh has a short life due to insufficient toughness. Therefore, although the strength is improved by increasing the thickness of the ceramic thin plate, it is difficult to form a fine through-hole having a uniform diameter by an electric discharge machining method or a laser machining method, and the obtained through-holes vary in diameter. In addition, it is costly to form a fine through hole having a uniform diameter.
Therefore, usually, a metal mesh or a synthetic resin mesh is used, but the metal mesh may be corroded by a chemical depending on the type of metal, and the metal dissolved by the corrosion enters the body, It may not be preferable from the viewpoint of safety, such as causing allergies.
Therefore, a synthetic resin mesh, which is the cheapest and has relatively corrosion resistance to chemicals, can be considered, but a synthetic resin mesh in which through holes are formed in a thin synthetic resin plate has insufficient strength and is thick. When a through-hole is formed in a thick synthetic resin plate, a through-hole having an uneven diameter is formed, which is not preferable.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors have conducted research to obtain a synthetic resin mesh for an ultrasonic inhaler having high strength and uniform and fine through holes that can be supplied at the lowest price,
(A) Since it is easy to provide a fine through hole with a uniform diameter in a thin synthetic resin thin plate, in a synthetic resin thin plate having a thin portion and a thick portion, a fine through hole with a uniform diameter in the thin portion. Provided, on the other hand, when supplementing the strength with a thick portion, a synthetic resin mesh for an ultrasonic inhaler having high strength and uniform and fine through holes is obtained,
(B) The thickness of the thin portion is preferably as thin as possible and in the range of 1 to 10 μm. The thickness of the thick portion is not particularly limited, but the strength of the mesh is secured. It is preferable that the thickness be 20 to 200 μm.
(C) The synthetic resin mesh described in the above (a) and (b) is preferably made of a photosensitive resin, and has a thin portion and a thick portion by applying the photosensitive resin by spin coating. A photosensitive resin layer is formed, a photomask is placed on the photosensitive resin layer, exposed and developed to form fine through-holes in the thin part of the photosensitive resin layer, and heat treatment is performed to cure the photosensitive resin layer By doing so, it has been found that a caliber having a uniform size can be efficiently formed as compared with a conventional electric discharge machining method or a laser machining method.
[0006]
The present invention has been made based on such knowledge,
(1) A mesh for an ultrasonic inhaler, wherein a fine through hole is provided in a thin portion of a synthetic resin thin plate having a thin portion and a thick portion.
(2) A mesh for an ultrasonic inhaler in which fine through holes are provided in a thin portion of a synthetic resin thin plate having a thin portion and a thick portion, and the thickness of the thin portion is in a range of 1 to 10 μm. The thickness of the thick portion is in the range of 20 to 200 μm, which is characterized by an ultrasonic inhaler mesh.
When the thickness of the thin portion of the mesh for an ultrasonic inhaler of the present invention is less than 1 μm, the strength is insufficient because the material is a synthetic resin, which is not preferable. On the other hand, when the thickness exceeds 10 μm, uniform fine through holes are formed. This is because it is not preferable because the formation cannot be performed. On the other hand, if the thickness of the thick portion is less than 20 μm, sufficient strength cannot be secured, and if it exceeds 200 μm, it is too thick and is not preferable as a mesh for an ultrasonic inhaler.
[0007]
The mesh for an ultrasonic inhaler according to the present invention will be described with reference to FIGS. 1 is a cross-sectional view of a mesh for an ultrasonic inhaler according to the present invention, FIG. 2 is a plan view as viewed from a direction A in FIG. 1, and FIG. 3 is a plan view as viewed from a direction B in FIG. 1 to 3, reference numeral 7 denotes a through hole, 8 denotes a thin portion, and 9 denotes a thick portion. FIG. 4 is a plan view showing another embodiment of the present invention. In FIG. 4, a ring frame 9 'having the same thickness as the thick portion is formed around the mesh for the ultrasonic inhaler to further increase the strength. This is a mesh for an ultrasonic inhaler, and other symbols are the same as those in FIGS.
[0008]
The through-hole 7 provided in the thin portion 8 of the mesh 4 for an ultrasonic inhaler of the present invention is formed in the thin portion, so that the diameter of the through-hole 7 is small and uniform and fine through-holes can be formed relatively easily. By providing the thick portion 9, the strength can be ensured. In this case, the thickness of the thin portion 8 is preferably in the range of 1 to 10 μm, and the thickness of the thick portion 9 is preferably in the range of 20 to 200 μm, the reason of which has already been described. As shown in FIG. 4, the strength can be further improved by forming a ring frame 9 'around the mesh. In the drawing, the thick portion 9 of the mesh 4 for an ultrasonic inhaler of the present invention is formed in a lattice shape, but the thick portion may be a columnar projection. And a thin portion may be formed in the gap between the columnar projections, and a through hole may be provided in the thin portion.
[0009]
Next, a method for manufacturing a mesh for an ultrasonic inhaler according to the present invention will be described with reference to FIGS.
FIG. 5 shows a prototype for manufacturing the mesh for an ultrasonic inhaler of the present invention, which is indicated by 10 in FIG. The prototype 10 is manufactured by forming irregularities on the surface of a Si substrate 11 by etching, and forming a corrosion-resistant metal layer 12 for forming a dense oxide film on the surface of the Si substrate having the irregularities. Specifically, the corrosion-resistant metal layer is a Cr layer, a Ti layer, a Zr layer, a stainless layer, or the like formed by sputtering a corrosion-resistant metal such as Cr, Ti, Zr, or stainless steel. 1 μm is sufficient. In addition, this prototype may be one in which irregularities are formed by embossing directly on the surface of a substrate made of a corrosion-resistant metal such as Cr, Ti, Zr, or stainless steel as shown at 10 'in FIG. It is easier to form such irregularities accurately on a Si substrate, and the technology is already established in the semiconductor industry, so that it is easier to form. For example, a Si substrate is prepared, a photoresist is applied to one surface of the Si substrate, exposed, developed, and then dry-etched using C 2 F 6 gas to have a length of 70 to 90 μm and a width of 70 to 90 μm. A square protrusion having a dimension of 90 μm and a height of 40 to 45 μm or a groove having a dimension of a width of 70 to 90 μm and a depth of 40 to 45 μm can be easily formed on the surface of the Si substrate.
[0010]
Next, as shown in FIG. 6, on the surface of the corrosion-resistant metal layer 12 of the prototype 10, an easily dissolvable metal layer 13 made of an easily dissolvable metal such as Cu or Zn that is easily dissolved in an acid (particularly nitric acid) is formed. . This easily meltable metal layer 13 is formed by electroplating. Since the easily meltable metal layer 13 is formed by electroplating, its thickness is about 1 to 2 μm.
[0011]
Further, as shown in FIG. 7, a photosensitive resin is laminated on the easily meltable metal layer 13 by a spin coating method. As a typical photosensitive resin, photosensitive polyimide is known. After laminating a photosensitive resin on the easily meltable metal layer 13 by a spin coating method, the obtained photosensitive resin layer 14 is dried at 60 ° C. for 10 minutes, and the surface of the dried photosensitive resin layer 14 is formed as shown in FIG. As shown in (1), a photomask 15 having fine holes 16 is covered, and the surface of the photomask 15 is exposed to ultraviolet rays (for example, i-ray having a wavelength of 365 nm) by a high-pressure mercury lamp, and is exposed and developed. To form a through hole in the exposed portion. Thereafter, a heat treatment is performed at 180 ° C. for 60 minutes to cure the photosensitive resin layer 14.
[0012]
As shown in FIG. 9, the laminate 15 composed of the readily soluble metal layer 13 and the photosensitive resin layer 14 thus obtained is peeled off from the corrosion-resistant metal layer 12 of the prototype 10. Since the easily dissolvable metal layer 13 and the corrosion-resistant metal layer 12 have the property of not joining, they can be easily separated. The peeled laminate 15 is immersed in an aqueous nitric acid solution to dissolve the easily dissolvable metal layer 13, and has a thin portion 8 and a thick portion 9 shown in FIG. 1, and has a fine through hole 7 in the thin portion 8. A mesh 4 made of a synthetic resin plate is obtained, and this mesh is punched to obtain a mesh for an ultrasonic inhaler having a predetermined shape.
On the other hand, the prototype 10 including the Si substrate 11 and the corrosion-resistant metal layer 12 can be reused.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Example A Si substrate having a thickness of 0.5 mm was prepared, and a photoresist was applied to one surface of the Si substrate, exposed and developed, and then longitudinally: 80 μm by dry etching using C 2 F 6 gas. , A horizontal concave portion having a dimension of 80 μm and a depth of 45 μm was formed. A 0.5 μm thick Cr corrosion-resistant metal layer was formed on the surface of the Si substrate by sputtering, and a 1.5 μm thick Cu-dissolved metal layer was formed on the Cr corrosion-resistant metal layer by electroplating.
[0014]
Further, 1 g of commercially available photosensitive polyimide powder was dissolved in 3 g of NMP, and then added at a ratio of 2,6-di- (4'-azidobenzal) -4-methylcyclohexane: 0.08 g to obtain a photosensitive polyimide. A solution was prepared and prepared.
On the Cu-soluble metal layer, the prepared photosensitive polyimide solution is applied by a spin coating method to form a coating film, and the coating film is subjected to a heat treatment of drying at 60 ° C. for 10 minutes. A film was formed.
A photomask having fine holes having a diameter of 5 μm is coated on the photosensitive polyimide film, and the surface of the photomask is irradiated with i-line (365 nm) having a diameter of 5 μm generated by a high-pressure mercury lamp for 6 seconds. Then, the exposed photosensitive polyimide film is developed to form a through-hole having a thickness of the thick portion: 40 μm, a thickness of the thin portion: 10 μm, and a target diameter: 5 μm in the thin portion. Having a photosensitive polyimide resin film. Thereafter, a heat treatment was performed at 180 ° C. for 60 minutes to cure the photosensitive resin coating film.
[0015]
The thus-obtained laminate composed of the Cu-soluble metal layer and the photosensitive polyimide resin film having through holes is peeled off from the original Cr corrosion-resistant metal layer, and the peeled laminate is immersed in an aqueous nitric acid solution. The Cu easily meltable metal layer was dissolved and removed to obtain a photosensitive polyimide resin plate having a thin portion and a thick portion, and having a through hole with a target diameter of 5 μm formed in the thin portion. The photosensitive polyimide resin plate having the through holes was punched and formed into a size of 10 mm in diameter to produce ten meshes for an ultrasonic inhaler. One mesh for an ultrasonic inhaler had 2,000 through holes.
[0016]
Conventional Example Further, for comparison, a polyimide resin plate having a thickness of 40 μm was prepared, a through hole having a target diameter of 5 μm was formed in the polyimide resin plate by laser processing, and a polyimide resin plate having the through hole was formed. Punched and formed into a size of 10 mm in diameter to produce 10 meshes for an ultrasonic inhaler. One mesh for an ultrasonic inhaler had 2,000 through holes.
[0017]
The apertures of the ten meshes for ultrasonic inhalers produced in the examples and the ten meshes for ultrasonic inhaler produced in the conventional example were measured using an optical microscope and an image processing device, and the results were shown in Table 1. It was shown to.
[0018]
[Table 1]
Figure 2004290426
[0019]
【The invention's effect】
Table 1 shows that, in the present invention, since the through-hole is formed in the thin portion, it is possible to form a fine through-hole having a small diameter with little variation in dimensional accuracy. In addition, since the mesh obtained by the present invention can secure the strength in a thick portion, it is relatively easy to use a mesh for an ultrasonic inhaler made of a synthetic resin having fine through-holes having strength and a uniform diameter. It can be provided at low cost and has a particularly good effect on the medical industry.
[Brief description of the drawings]
FIG. 1 is a sectional view for explaining a mesh for an ultrasonic inhaler according to the present invention.
FIG. 2 is a plan view of the mesh for an ultrasonic inhaler of the present invention as viewed from the direction A in FIG. 1;
FIG. 3 is a plan view of the mesh for an ultrasonic inhaler of the present invention as viewed from a direction B in FIG. 1;
FIG. 4 is a plan view showing another embodiment of the mesh for an ultrasonic inhaler of the present invention.
FIG. 5 is a sectional view of a prototype used for manufacturing the mesh for an ultrasonic inhaler of the present invention.
FIG. 6 is a cross-sectional view showing a state where an easily dissolvable metal layer is formed on a prototype used for manufacturing the mesh for an ultrasonic inhaler of the present invention.
FIG. 7 is a cross-sectional view showing a state in which a readily soluble metal layer is formed on a prototype used for manufacturing the mesh for an ultrasonic inhaler of the present invention, and a photosensitive resin layer is formed thereon.
FIG. 8 is a cross-sectional view showing a state in which an easily dissolvable metal layer is formed on a prototype used for manufacturing a mesh for an ultrasonic inhaler of the present invention, a photosensitive resin layer is formed thereon, and then exposure is performed. .
FIG. 9 is a cross-sectional view showing a state in which a laminate composed of a readily soluble metal layer and a photosensitive resin layer has been peeled off from a prototype used for manufacturing the mesh for an ultrasonic inhaler of the present invention.
FIG. 10 is a cross-sectional view of another prototype used for manufacturing the mesh for an ultrasonic inhaler of the present invention.
FIG. 11 is an explanatory sectional view of a conventional ultrasonic inhaler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Case 2 Bottle part 3 Pipe 4 Mesh 5 Vibrator 6 Elastic body 7 Through hole L Chemical solution L 'Chemical mist 8 Thin part 9 Thick part 9' Ring frame 10 Prototype 11 Si substrate 12 Corrosion resistant metal layer 13 Easy melting metal layer 14 Photosensitive resin layer 15 Photomask 16 Hole

Claims (4)

薄肉部分および厚肉部分を有する合成樹脂薄板における薄肉部分に微細な貫通孔を設けてなることを特徴とする超音波式吸入器用メッシュ。A mesh for an ultrasonic inhaler, wherein a thin through-hole is provided in a thin portion of a synthetic resin thin plate having a thin portion and a thick portion. 薄肉部分の厚さは1〜10μmの範囲内にあり、厚肉部分の厚さは20〜200μmの範囲内にあることを特徴とする請求項1記載の超音波式吸入器用メッシュ。2. The mesh for an ultrasonic inhaler according to claim 1, wherein the thickness of the thin portion is in a range of 1 to 10 [mu] m, and the thickness of the thick portion is in a range of 20 to 200 [mu] m. 凹凸を有するSi基板の凹凸面表面に緻密な酸化被膜を形成する耐食金属層を形成して原型を作製し、この原型の耐食金属層の上に酸に溶解しやすい易溶解金属層を形成し、この易溶解金属層の上に感光性樹脂を表面が平らになるようにスピンコート法により塗布して感光性樹脂層を形成し、感光性樹脂層の上に微細な貫通孔を有するフォトマスクを載置して露光し現像して感光性樹脂層の薄肉部分に微細な貫通孔を形成し、感光性樹脂層を加熱処理して硬化させたのち、易溶解金属層を耐食金属層から剥がすことにより硬化感光性樹脂層および易溶解金属層からなる積層体を取り出し、積層体の易溶解金属層を酸で溶解することにより薄肉部分および厚肉部分並びに貫通孔を有する硬化感光性樹脂薄板を作製し、この硬化感光性樹脂薄板を機械加工することを特徴とする超音波式吸入器用メッシュの製造方法。A prototype is formed by forming a corrosion-resistant metal layer that forms a dense oxide film on the surface of the irregular surface of a Si substrate having irregularities, and a readily soluble metal layer that is easily dissolved in an acid is formed on the corrosion-resistant metal layer of the prototype. A photomask having a fine through-hole on the photosensitive resin layer by forming a photosensitive resin layer on the easily soluble metal layer by applying a photosensitive resin by spin coating so that the surface becomes flat. Is placed, exposed and developed to form fine through holes in the thin portion of the photosensitive resin layer, and the photosensitive resin layer is heated and cured, and then the easily meltable metal layer is peeled off from the corrosion-resistant metal layer. By taking out the laminate composed of the cured photosensitive resin layer and the easily dissolvable metal layer by doing, the cured photosensitive resin sheet having a thin portion and a thick portion and a through-hole by dissolving the easily dissolvable metal layer of the laminate with an acid. Prepare and cure this cured photosensitive resin thin plate Ultrasonic inhaler mesh manufacturing method, characterized by machinable. 前記原型は、表面に突起を有する耐食金属で構成されていることを特徴とする請求項3記載の超音波式吸入器用メッシュの製造方法。The method for manufacturing a mesh for an ultrasonic inhaler according to claim 3, wherein the prototype is made of a corrosion-resistant metal having a projection on a surface.
JP2003087142A 2003-03-27 2003-03-27 Mesh for ultrasonic wave type inhalator Pending JP2004290426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087142A JP2004290426A (en) 2003-03-27 2003-03-27 Mesh for ultrasonic wave type inhalator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087142A JP2004290426A (en) 2003-03-27 2003-03-27 Mesh for ultrasonic wave type inhalator

Publications (1)

Publication Number Publication Date
JP2004290426A true JP2004290426A (en) 2004-10-21

Family

ID=33401585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087142A Pending JP2004290426A (en) 2003-03-27 2003-03-27 Mesh for ultrasonic wave type inhalator

Country Status (1)

Country Link
JP (1) JP2004290426A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516266A (en) * 2010-01-11 2013-05-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic coupling for aerosol generators
JP2013118952A (en) * 2011-12-07 2013-06-17 Dainippon Printing Co Ltd Liquid cartridge for spray device, liquid cartridge package, spray device, and mesh container for spray device
JP2013255920A (en) * 2006-11-14 2013-12-26 Telemaq Ultrasound liquid atomiser
WO2014002770A1 (en) * 2012-06-26 2014-01-03 オムロンヘルスケア株式会社 Liquid spraying device
WO2014002768A1 (en) * 2012-06-26 2014-01-03 オムロンヘルスケア株式会社 Liquid spraying device
WO2014002769A1 (en) * 2012-06-26 2014-01-03 オムロンヘルスケア株式会社 Liquid spraying device
JP2014030630A (en) * 2012-08-03 2014-02-20 Optnics Precision Co Ltd Atomizer mesh nozzle and atomizer
JP2014508597A (en) * 2011-02-25 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Aerosol generator for atomizing liquid and method for temperature control of atomized liquid
JP2016129717A (en) * 2016-04-07 2016-07-21 大日本印刷株式会社 Spray device liquid cartridge, liquid cartridge package, spray device, and spray device container with mesh
JP2018158150A (en) * 2012-06-11 2018-10-11 スタムフォード・ディバイセズ・リミテッド Method for producing aperture plate for nebulizer
US10508353B2 (en) 2010-12-28 2019-12-17 Stamford Devices Limited Photodefined aperture plate and method for producing the same
US11440030B2 (en) 2014-05-23 2022-09-13 Stamford Devices Limited Method for producing an aperture plate

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255920A (en) * 2006-11-14 2013-12-26 Telemaq Ultrasound liquid atomiser
JP2013516266A (en) * 2010-01-11 2013-05-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic coupling for aerosol generators
US11905615B2 (en) 2010-12-28 2024-02-20 Stamford Devices Limited Photodefined aperture plate and method for producing the same
US11389601B2 (en) 2010-12-28 2022-07-19 Stamford Devices Limited Photodefined aperture plate and method for producing the same
US10662543B2 (en) 2010-12-28 2020-05-26 Stamford Devices Limited Photodefined aperture plate and method for producing the same
US10508353B2 (en) 2010-12-28 2019-12-17 Stamford Devices Limited Photodefined aperture plate and method for producing the same
US10307549B2 (en) 2011-02-25 2019-06-04 Koninklijke Philips N.V. Aerosol generating device for nebulizing a liquid and a method of temperature control of a liquid to be nebulized
JP2014508597A (en) * 2011-02-25 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Aerosol generator for atomizing liquid and method for temperature control of atomized liquid
JP2013118952A (en) * 2011-12-07 2013-06-17 Dainippon Printing Co Ltd Liquid cartridge for spray device, liquid cartridge package, spray device, and mesh container for spray device
US11679209B2 (en) 2012-06-11 2023-06-20 Stamford Devices Limited Aperture plate for a nebulizer
JP2018158150A (en) * 2012-06-11 2018-10-11 スタムフォード・ディバイセズ・リミテッド Method for producing aperture plate for nebulizer
US10512736B2 (en) 2012-06-11 2019-12-24 Stamford Devices Limited Aperture plate for a nebulizer
JP2020096900A (en) * 2012-06-11 2020-06-25 スタムフォード・ディバイセズ・リミテッド Method for producing aperture plate for nebulizer
WO2014002769A1 (en) * 2012-06-26 2014-01-03 オムロンヘルスケア株式会社 Liquid spraying device
WO2014002768A1 (en) * 2012-06-26 2014-01-03 オムロンヘルスケア株式会社 Liquid spraying device
WO2014002770A1 (en) * 2012-06-26 2014-01-03 オムロンヘルスケア株式会社 Liquid spraying device
JP2014030630A (en) * 2012-08-03 2014-02-20 Optnics Precision Co Ltd Atomizer mesh nozzle and atomizer
US11440030B2 (en) 2014-05-23 2022-09-13 Stamford Devices Limited Method for producing an aperture plate
US11872573B2 (en) 2014-05-23 2024-01-16 Stamford Devices Limited Method for producing an aperture plate
JP2016129717A (en) * 2016-04-07 2016-07-21 大日本印刷株式会社 Spray device liquid cartridge, liquid cartridge package, spray device, and spray device container with mesh

Similar Documents

Publication Publication Date Title
JP2004290426A (en) Mesh for ultrasonic wave type inhalator
JP5248772B2 (en) Deposition and patterning methods
TW200933699A (en) Method of creating a template employing a lift-off process
JP2010242141A (en) Vapor deposition mask, and method for producing the same
JP4266596B2 (en) Method for manufacturing conductive pattern forming body
WO2005074052A1 (en) Method for fabricating piezoelectric element
JP5531463B2 (en) Master plate used for manufacturing micro contact print stamps and manufacturing method thereof, micro contact printing stamp and manufacturing method thereof, and pattern forming method using micro contact printing stamp
CN111352335A (en) Method for manufacturing timepiece component
JP2009223310A (en) Method of producing endless pattern, method of manufacturing resin pattern molding, endless molding, resin pattern molding, and optical element
JP5133955B2 (en) Lens shape manufacturing method for optical film manufacturing roll and optical film manufacturing roll formed with lens shape thereby
JP2007266124A (en) Wiring board manufacturing method and liquid discharge head manufactured thereby
JP5168871B2 (en) Thin film carrier substrate and manufacturing method thereof
JP2008265244A (en) Micro-mold, its manufacturing method, and plating matrix for manufacturing micro-mold
JP3638440B2 (en) X-ray mask and method of manufacturing the same
JP2003225586A (en) Fine metal particles having narrow particle distribution
JP2008187322A (en) Manufacturing method of mesa type piezoelectric vibrating element
JP2008279382A (en) Manufacturing method of passage substrate
JP2007292781A (en) Contact board and components thereof
JP4498004B2 (en) Manufacturing method of crystal unit
JP4402568B2 (en) X-ray mask and manufacturing method thereof
JP3404293B2 (en) Method for manufacturing piezoelectric element
KR20130142739A (en) Method for manufacturing of thin metal substrate and thin metal substrate using the same method
JP2004320127A (en) Manufacturing method for thin film piezoelectric resonator, manufacturing apparatus for thin film piezoelectric resonator, thin film piezoelectric resonator and electronic component
JP5646192B2 (en) Electroforming mold and manufacturing method thereof
KR100727371B1 (en) Method for manufacturing a metal mask using multilayer photoresist film and a metal mask using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202