【0001】
【産業上の利用分野】
本発明は、内視鏡における挿入部の軟性部やライトガイド軟性部等として用いられる可撓管に関するものである。
【0002】
【従来の技術】
医療用や工業用等として用いられる内視鏡は本体操作部に、挿入部を連結して設けると共に、ライトガイド軟性部を引き出すように構成したものである。挿入部は、通常本体操作部への連結側から大半の長さ分は曲げ方向に可撓性を有する軟性部であり、この軟性部の先端にはアングル部が、またアングル部の先端には先端硬質部が連結されている。照明部及び観察部からなる内視鏡観察機構は、この先端硬質部の先端面または先端側面に設けられる。
【0003】
前述した構成のうち、挿入部を構成する軟性部及びライトガイド軟性部は、耐潰性が良好であり、かつ曲げ方向に可撓性を持つ構造、つまり可撓管として構成される。この種の可撓管は、ばね性のある金属帯片を螺旋状に巻回することにより形成した可撓管体の外周に金属線材を編組した筒状網体を被装させ、さらに軟性樹脂やゴム等からなる外皮層を形成したものから構成される。
【0004】
ここで、例えば大腸鏡等のように、挿入経路に沿って挿入する際の抵抗が大きい場合がある。従って、軟性部の曲げ方向の可撓性をあまり高くすると、その先端にまで押し込み推力が伝達されなくなり、挿入部の挿入操作に支障を来すおそれがある。このために、挿入経路によっては軟性部を曲げ方向にある程度硬く、即ち曲げ方向に対する剛性を高くしなければならない。一方、大腸等の挿入経路は複雑に曲がった経路であり、しかも極端に曲がった部位等もある。このために、軟性部の先端部分、つまりアングル部への連設部及びその近傍では、むしろ曲げ方向の可撓性の度合いを大きくして、曲げ方向に柔軟な構造として、先端側の部分をなだらかに湾曲させる必要がある。
【0005】
以上のように、挿入部の軟性部における曲げ方向の可撓性については、基端側に剛性を持たせ、先端側が軟性構造とするのが望ましい。また、ライトガイド軟性部については、その本体操作部への連結側と、先端に設けたコネクタへの連結側とが折れ防止のために剛性を高め、中間部分は任意の方向に曲がることにより、本体操作部を把持して操作を行う術者等の負担軽減を図るのが望ましい。
【0006】
以上のように、軟性部やライトガイド軟性部といった可撓管は、軸線方向において、曲げ方向の硬さの変化を持たせる構成とする要請があることから、この可撓管を構成する可撓管体、筒状網体、外皮層を軸線方向に硬さを変えるように構成したものが実用化されている。これらのうち、可撓管体が多層重の螺旋管から構成される点に着目して、内側に位置する螺旋管の外周面の一部に摩擦抵抗を増大させる処理を施して、この可撓管体が曲げに対する抵抗を増大させることによって、部分的に硬くするように構成したものは、従来から知られている(例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開平1−185236号公報(第3頁、第6図)
【0008】
【発明が解決しようとする課題】
ところで、多層の螺旋管からなる可撓管体は、内外の螺旋管を反対方向に巻回していることから、2層構造とした場合、可撓管体に捻り力が作用すると、両螺旋管の直径が変化する。内側螺旋管の直径が大きくなり、外側螺旋管の直径が小さくなる方向に捻られると、内外の螺旋管が密着して、前述した摩擦抵抗が増大するので、硬さが増すことになるが、反対に外側螺旋管の直径が大きくなり、内側螺旋管の直径が小さくなる方向に捻られると、内側螺旋管の外周面が外側螺旋管の内周面から離間するようになる結果、両螺旋管間の摩擦抵抗の増大が得られず、むしろ逆に軟らかくなってしまう。従って、軟性部がこの方向に捻られると、可撓管体に十分な硬さを持たせることができなくなる。このために、可撓管体は少なくとも3層構造としなければならず、このために挿入部が太径化するという問題点がある。
【0009】
本発明は以上の点に鑑みてなされたものであって、その目的とするところは、2重の螺旋管から構成される可撓管において、軸線方向に向けて硬さを変化させることができ、かつ捻り方向によっても硬さの差が大きくはでないようにすることにある。
【0010】
【課題を解決するための手段】
前述した目的を達成するために、本発明は、相互に反対方向に巻回した内外2重の螺旋管からなる可撓管体を筒状網体で覆い、さらに筒状網体の外周に外皮層を外装し、内部に挿通部材の挿通路を形成した内視鏡の可撓管であって、前記可撓管体は、その軸線方向の少なくとも一部が前記内側螺旋管の自由状態での外径を前記外側螺旋管の自由状態の内径より大きくしたもので構成したことをその特徴とするものである。
【0011】
ここで、内側の螺旋管を外側の螺旋管より大きくすることによって、曲げ方向の可撓性が小さくなり硬くなるが、それらの径差をより大きくすると硬さが増し、径差を小さくするとそれだけ曲げ方向の可撓性が大きくなり軟らかい構造となる。この場合、内外2重の螺旋管のうち、外側螺旋管の内径を変化させても良いが、挿入部の外径を全長にわたって変化させないようにするには、外側螺旋管の内外径は変化させず、内側螺旋管の外径を変化させるようにするのが望ましい。例えば、挿入部の軟性部として構成される場合において、その基端側、つまり本体操作部への連結側において、内側螺旋管の外径を最大にし、先端側に向かうに応じて段階的または連続的に外径を縮径するようになし、この内側螺旋管の外径が外側螺旋管の内径と同じか、またはそれより僅かに小さい外径となったときに、それより先端側の外径は変化させず、同じ外径とする。
【0012】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態について説明する。まず、図1に内視鏡の全体構成を示す。同図において、1は挿入部、2は本体操作部、3はライトガイド軟性部である。挿入部1は、本体操作部2への連結側から大半の部分が曲げ方向に可撓性を有する軟性部1aであり、この軟性部1aの先端にはアングル部1bが、またアングル部1bの先端には先端硬質部1cが連設されている。そして、先端硬質部1cの先端面には体腔内等を照明する照明部及びこの照明部からの照明下で体腔内壁等の観察を行う観察部が設けられている。また、必要に応じて、鉗子等の処置具を挿通させるための処置具挿通チャンネルの先端開口部等が形成される。アングル部1bは、先端硬質部1cを所望の方向に向けるためのものであり、上下、若しくは上下、左右に所定角度湾曲操作できるようになっている。
【0013】
挿入部1を構成する軟性部1aからアングル部1bを経て先端硬質部1cに至るまで、図示は省略するが、各種の挿通部材、即ち光ファイバからなるライトガイド、またイメージガイドを構成する光ファイバ(光学式の内視鏡の場合)または固体撮像素子に接続した信号ケーブル(電子内視鏡の場合)、さらには鉗子等の処置具を導出するための処置具挿通チャンネル、送気送水管等からなるチューブ類、その他の長尺の挿通部材が挿通されている。一方、ライトガイド軟性部3内には、ライトガイドが挿通され、また送気送水管等も挿通されている。電子内視鏡の場合には、ライトガイド軟性部3は光源装置だけでなくプロセッサに接続されるものであり、このために信号ケーブルもライトガイド軟性部3内に挿通されている。
【0014】
挿入部1を構成する軟性部1aや、本体操作部2から引き出されたライトガイド軟性部3は内部に種々の挿通部材が挿通されており、これらの挿通部材は、その性質上、軟性の部材である。このために、曲げ方向には可撓性を有し、かつ内部に挿通されている部材を保護するために、保形性、即ち耐潰性を有していなければならない。
【0015】
図2及び図3に挿入部1における軟性部1aの構成を示す。図中において、4は可撓管を示し、この可撓管体4は構造体として外側及び内側の螺旋管5a,5bから構成される。螺旋管5a,5bは、ステンレス等の金属帯片を螺旋状に巻回してなるものであって、これにより内部に各種の挿通部材の挿通路が確保される。また、曲げ方向に可撓性を持たせるために、螺旋管5a,5bは所定のピッチ間隔を空けるようにして巻回されており、巻回方向は相互に反対方向となっている。可撓管体4の外周には、金属線材を編組したネット、つまり筒状網体6で覆われており、この筒状網体6の外面にはさらに外皮層7が積層されている。
【0016】
軟性部1aは以上のように構成されるものであって、その一端側に口金8を連結して、この口金8によってアングル部1bと連結される。また、他端側には接続リング9が連結して設けられており、この接続リング9は本体操作部2に連結されることになる。
【0017】
前述したようにして構成される挿入部1を体腔内等に挿入する際に、押し込み操作に対する抵抗がない場合、または抵抗が小さい場合には、軟性部1aの曲げ方向における可撓性は高い方が挿入操作性及び被検者の負担軽減等の観点から望ましい。一方、例えば大腸鏡等のように、挿入経路に挿入する際の抵抗が大きい場合がある。軟性部1aの可撓性をあまり高くすると、その先端にまで押し込み推力が伝達されなくなり、挿入部1の挿入操作に支障を来すおそれがある。従って、挿入経路によっては軟性部1aを曲げ方向にある程度硬く、即ち曲げ方向に対する剛性を高くしなければならない。
【0018】
また、大腸等の挿入経路は複雑に曲がった経路であり、しかも極端に曲がった部位等もある。このために、軟性部1aの先端部分、つまりアングル部1bへの連設部及びその近傍では、むしろ曲げ方向に柔軟な構造として、先端側の部分をなだらかに湾曲させる必要がある。軟性部1aに連結したアングル部1bは先端硬質部1cを所望の方向に向けるためのものであり、場合によっては180ー以上にまで湾曲操作がなされる。この最大湾曲角乃至それに近い角度で湾曲させた時に、アングル部1bと軟性部1aとの連結部分に応力が極端に集中しないようにするためには、この軟性部1aのアングル部1bとの連結部近傍はより柔軟性を高める必要がある。
【0019】
以上の要請等から、特に挿入部1の軟性部1aとして構成される可撓管体4の曲げ特性としては、先端側が最も柔軟に曲がり、基端側に向けて少なくとも所定の位置までは連続的に硬くなるように変化させている。このために、金属帯片を螺旋状に巻回した内外の螺旋管5a,5bを図4に示したように構成する。
【0020】
図4(a)に示したように、外側螺旋管5bは幅B1,厚みT1を有する金属帯片を螺旋状に巻回するが、その巻回部の自由状態での内径D1は全長にわたって一定になっている。また、ピッチ間隔P1も一定である。ここで、外側螺旋管5bの曲げ角度は幅B1とピッチ間隔P1とにより定まるものであり、これらの寸法は適宜設定される。
【0021】
これに対して、図4(b)に示したように、内側螺旋管5aにおける、幅B2,厚みT2を有し、またピッチ間隔P2となっている。ここで、幅B2,厚みT2,ピッチ間隔P2は、外側螺旋管5bのそれらと同じとする。ただし、これらの寸法を変えても良く、例えば厚み寸法T2を外側螺旋管5bの方を厚くすることができる。また、後述するように、内側螺旋管5aは縮径させた状態で外側螺旋管5b内に挿入されることから、内側螺旋管5aにおける自由状態でのピッチ間隔P2は、外側螺旋管5bのピッチ間隔P1より大きくすることもできる。
【0022】
内側螺旋管5aの外径寸法は、軸線方向に向けて連続的または段階的に変化させる。即ち、内側螺旋管5aの一端側の自由状態での外径D2は、外側螺旋管5bの内径D1と同じか、またはそれより小さくする。そして、この一端側から、若しくは途中位置から内側螺旋管5aの外径を外側螺旋管5bの内径D1より大きくし、他端側における内側螺旋管5aの自由状態での外径D3は外側螺旋管5bの内径D1より十分大きくする。そして、可撓管体4を構成するために、外側螺旋管5b内に内側螺旋管5aが挿入されるが、このときには内側螺旋管5aを巻き込むことによって、縮径させた状態で挿入する。
【0023】
これによって、内側螺旋管5aの外径が大きい部位は外側螺旋管5bの内面に圧接されることから、その間の摺動性が低下する。従って、内側螺旋管5aの外径と外側螺旋管5bの内径との径差が大きくなればなるほど、その間の圧接力が増大して、可撓管体4における硬さが増大することになる。そこで、以上の可撓管体4により挿入部1の軟性部1aを構成するに当って、内側螺旋管5aの外径の大きい側を本体操作部2に連結される接続リング9に連結することによって、軟性部1aにおける曲げ方向の可撓性の度合いとしては、基端側が硬く、先端側が軟らかくなる。
【0024】
そこで、例えば大腸鏡の挿入部1における軟性部1aとして構成した場合に、挿入部1を体腔内に挿入操作において、この挿入部1の体内への挿入深さが深くなるに応じて押し込みに対する抵抗が増大する。しかしながら、軟性部1aの基端側が高い硬度を有する可撓部となるので、押し込み推力を確実に先端にまで及ぼすことができる。その結果、挿入部1の体内への挿入が困難になったり、不可能になったりすることがなく、円滑かつ迅速に先端硬質部1cを目的とする位置にまで進行させることができる。挿入部1を体腔内に挿入する際に、この挿入部1が捻られ、特に内側螺旋管5aが縮径する方向に捻られると、内外の螺旋管5a,5b間の圧接力が弱まるが、前述した内側螺旋管5aの自由状態での外径D3を外側螺旋管5bの内径D1より十分大きくして、この方向に捻られても、なお内外の螺旋管5a,5b間に強い圧接力が得られるようにしておけば、剛性がさほど変化することはない。
【0025】
挿入部1の挿入経路には曲がった部分や分岐部等がある。このために、挿入操作時には、アングル部1bを適宜の方向に湾曲させることにより、挿入部1の先端部分を経路の曲がりに合わせたり、また分岐部のうち、いずれの経路を採るかを選択したりする。アングル部1bは遠隔操作により強制的に湾曲させるが、この時に軟性部1aの先端部分の硬度は低くなっているから、この部分がこれに追従してなだらかに曲がることになる。その結果、挿入部1の挿入経路に対する追従性が良好になり、被検者への苦痛軽減が図られる。しかも、湾曲時に、軟性部1aのアングル部1bへの連設部近傍に応力が集中することがないので、軟性部1aの耐久性が向上すると共に、内部に挿通させた部材に無理な力が加わる等といった不都合を解消できることになる。
【0026】
なお、内側螺旋管5bの外径を大きくすると、外側螺旋管5aが押し広げられる力が作用することになる。ただし、大腸鏡の基端側のように、体腔内に挿入されない部位であれば、挿入部1の基端側が多少太くなっても差し支えない。また、可撓管体4には筒状網体6が被装されるので、この筒状網体6に締め付け力を作用させることによって、外径が膨出するのを防止することもできる。
【0027】
ここで、軸線方向において、曲げ方向の可撓性を変化させた可撓管体4は、またライトガイド軟性部3として用いることもできる。ここで、ライトガイド軟性部3は曲げ方向には軟性となっており、一端が本体操作部2に連設され、他端は光源装置等に着脱可能に接続するためのコネクタが設けられている。従って、ライトガイド軟性部3の両端が硬質構造となっている。このために、硬質構造への連結部分を構成する両端近傍部を内側螺旋管5aの外径を大きくして、高い硬度を持たせるようになし、中間部は内側螺旋管5aの外径を外側螺旋管5bの内径とほぼ同じとして軟らかくすることができる。そして、硬い部分から軟らかい部分への移行部は内側螺旋管5aの外径を変化させて、中間の硬さとすることができる。これによって、ライトガイド軟性部3の両端部における硬質構造連結部における折れ止め機能が発揮される。
【0028】
【発明の効果】
以上説明したように、本発明は、可撓管を構成する内外の螺旋管に径差を持たせることによって、可撓管の曲げ方向における可撓性を軸線方向に変化させることができ、かつこの可撓管を捻っても、硬さが大きくは変化しない等の効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示す内視鏡の一般的な構成を示す外観図である。
【図2】図1の軟性部の構成説明図である。
【図3】本発明の実施の一形態を示す可撓管の断面図である。
【図4】内側螺旋管と外側螺旋管とを分離した状態での構成説明図である。
【符号の説明】
1 挿入部
1a 軟性部
1b アングル部
1c 先端硬質部
2 本体操作部
3 ライトガイド軟性部
4 可撓管体
5a 内側螺旋管
5b 外側螺旋管[0001]
[Industrial applications]
The present invention relates to a flexible tube used as a flexible portion of an insertion portion or a light guide flexible portion of an endoscope.
[0002]
[Prior art]
2. Description of the Related Art An endoscope used for medical or industrial use is configured such that an insertion section is connected to a main body operation section and a light guide flexible section is drawn out. The insertion portion is a soft portion having flexibility in the bending direction for most of the length from the side normally connected to the main body operation portion, and an angle portion is provided at a tip of the flexible portion, and a tip portion of the angle portion is provided at a tip of the angle portion. The distal end hard portion is connected. An endoscope observation mechanism including an illumination unit and an observation unit is provided on the distal end surface or distal end side surface of the distal end hard unit.
[0003]
Among the above-described configurations, the flexible portion and the light guide flexible portion forming the insertion portion are configured as a structure having good crush resistance and flexibility in the bending direction, that is, a flexible tube. This type of flexible tube has a flexible mesh formed by spirally winding a metal strip having a spring property, and a tubular mesh body formed by braiding a metal wire around the outer periphery of the flexible tube. It is composed of an outer layer made of rubber or rubber.
[0004]
Here, for example, like a colonoscope, there is a case where the resistance at the time of insertion along the insertion path is large. Therefore, if the flexibility of the flexible portion in the bending direction is too high, the pushing thrust is not transmitted to the tip of the flexible portion, which may hinder the insertion operation of the insertion portion. For this reason, depending on the insertion path, the flexible portion must be somewhat hard in the bending direction, that is, the rigidity in the bending direction must be increased. On the other hand, the insertion path of the large intestine and the like is a complicatedly bent path, and there are some parts that are extremely bent. For this reason, at the distal end portion of the flexible portion, that is, at the portion connected to the angle portion and in the vicinity thereof, the degree of flexibility in the bending direction is rather increased, and the distal portion is formed as a structure that is flexible in the bending direction. It needs to be curved gently.
[0005]
As described above, with respect to the flexibility in the bending direction of the flexible portion of the insertion portion, it is preferable that the proximal end has rigidity and the distal end has a flexible structure. Also, for the light guide flexible part, the rigidity of the connecting side to the main body operating part and the connecting side to the connector provided at the tip are increased to prevent breakage, and the intermediate part is bent in any direction, It is desirable to reduce the burden on an operator or the like performing an operation while holding the main body operation unit.
[0006]
As described above, since there is a demand for a flexible tube such as a flexible portion or a light guide flexible portion to have a change in hardness in a bending direction in an axial direction, a flexible tube constituting the flexible tube is required. A tube, a tubular net, and a skin layer configured to change the hardness in the axial direction have been put to practical use. Focusing on the fact that the flexible tube is composed of a multi-layered spiral tube, a part of the outer peripheral surface of the spiral tube located inside is subjected to a process of increasing frictional resistance, and this A configuration in which a tube body is partially hardened by increasing resistance to bending is conventionally known (for example, see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-1-185236 (page 3, FIG. 6)
[0008]
[Problems to be solved by the invention]
By the way, since a flexible tube composed of a multi-layered spiral tube has inner and outer spiral tubes wound in opposite directions, when a two-layer structure is used, when a torsion force acts on the flexible tube, the two spiral tubes are wound. Changes in diameter. When the diameter of the inner helical tube increases and the outer helical tube is twisted in the direction of decreasing the diameter, the inner and outer helical tubes adhere to each other, increasing the frictional resistance described above. Conversely, if the diameter of the outer spiral tube is increased and the diameter of the inner spiral tube is reduced, the outer peripheral surface of the inner spiral tube is separated from the inner peripheral surface of the outer spiral tube. The frictional resistance between them cannot be increased, but rather becomes softer. Therefore, if the flexible portion is twisted in this direction, the flexible tube cannot have sufficient hardness. For this reason, the flexible tube must have at least a three-layer structure, which causes a problem that the diameter of the insertion portion is increased.
[0009]
The present invention has been made in view of the above points, and an object of the present invention is to make it possible to change the hardness in the axial direction in a flexible tube composed of a double spiral tube. Another object of the present invention is to prevent the difference in hardness from being large depending on the twisting direction.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention covers a flexible tubular body composed of an inner and outer double helical tube wound in opposite directions with a tubular mesh body, and further covers the outer circumference of the tubular mesh body with an outer periphery. A flexible tube of an endoscope in which a skin layer is externally provided and an insertion passage of an insertion member is formed therein, at least a part of the flexible tube in an axial direction of the endoscope in a free state of the inner spiral tube. The outer spiral tube has a larger outer diameter than the inner diameter of the outer spiral tube in a free state.
[0011]
Here, by making the inner helical tube larger than the outer helical tube, the bending direction becomes less flexible and harder, but if the diameter difference is increased, the hardness increases, and if the diameter difference is reduced, the hardness is increased Flexibility in the bending direction is increased, resulting in a soft structure. In this case, the inner diameter of the outer spiral tube may be changed among the inner and outer double spiral tubes. However, in order not to change the outer diameter of the insertion portion over the entire length, the inner and outer diameters of the outer spiral tube are changed. Instead, it is desirable to change the outer diameter of the inner spiral tube. For example, in the case where the insertion portion is configured as a flexible portion, the outer diameter of the inner spiral tube is maximized on the base end side, that is, on the connection side to the main body operation portion, and is stepwise or continuous according to the distal end side. When the outer diameter of the inner spiral tube is equal to or slightly smaller than the inner diameter of the outer spiral tube, the outer diameter at the distal end side is reduced. Does not change and has the same outer diameter.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 shows the entire configuration of the endoscope. In the figure, 1 is an insertion portion, 2 is a main body operation portion, and 3 is a light guide flexible portion. The insertion portion 1 is a flexible portion 1a having flexibility in the bending direction from a portion connected to the main body operation portion 2, and an angle portion 1b is provided at a tip of the flexible portion 1a, and an angle portion 1b of the angle portion 1b. A distal end hard portion 1c is continuously provided at the distal end. An illuminating unit for illuminating the inside of the body cavity and the like and an observation unit for observing the inner wall of the body cavity and the like under illumination from the illuminating unit are provided on the distal end surface of the distal end hard portion 1c. If necessary, a distal end opening of a treatment tool insertion channel through which a treatment tool such as forceps is inserted is formed. The angle portion 1b is for orienting the distal end hard portion 1c in a desired direction, and can be operated to bend up and down, or up and down, left and right by a predetermined angle.
[0013]
Although not shown, from the flexible portion 1a constituting the insertion portion 1 to the distal end hard portion 1c via the angle portion 1b, various insertion members, that is, a light guide composed of an optical fiber, and an optical fiber constituting an image guide (In the case of an optical endoscope) or a signal cable (in the case of an electronic endoscope) connected to a solid-state image sensor, a treatment instrument insertion channel for leading out a treatment instrument such as forceps, an air supply / water supply pipe, and the like And other long insertion members are inserted. On the other hand, a light guide is inserted into the light guide flexible portion 3, and an air supply / water supply pipe and the like are also inserted. In the case of an electronic endoscope, the flexible light guide 3 is connected not only to the light source device but also to the processor. For this purpose, a signal cable is also inserted through the flexible flexible light guide 3.
[0014]
Various insertion members are inserted inside the flexible portion 1a constituting the insertion portion 1 and the light guide flexible portion 3 pulled out from the main body operation portion 2, and these insertion members are soft members due to their properties. It is. For this purpose, it must be flexible in the bending direction and have shape-retaining properties, that is, crush resistance, in order to protect the members inserted therein.
[0015]
2 and 3 show the configuration of the flexible portion 1a in the insertion portion 1. FIG. In the figure, reference numeral 4 denotes a flexible tube, and the flexible tube 4 is composed of outer and inner spiral tubes 5a and 5b as a structure. The spiral tubes 5a and 5b are formed by spirally winding a metal strip of stainless steel or the like, thereby securing insertion paths for various insertion members inside. In order to provide flexibility in the bending direction, the spiral tubes 5a and 5b are wound with a predetermined pitch interval therebetween, and the winding directions are opposite to each other. The outer periphery of the flexible tube 4 is covered with a net formed by braiding a metal wire, that is, a tubular mesh 6, and an outer layer 7 is further laminated on the outer surface of the tubular mesh 6.
[0016]
The flexible portion 1a is configured as described above. The base 8 is connected to one end of the flexible portion 1a, and is connected to the angle portion 1b by the base 8. A connection ring 9 is provided on the other end side so as to be connected thereto, and this connection ring 9 is connected to the main body operation section 2.
[0017]
When the insertion portion 1 configured as described above is inserted into a body cavity or the like, when there is no resistance to the pushing operation or when the resistance is small, the flexibility of the flexible portion 1a in the bending direction is higher. Is desirable from the viewpoint of insertion operability and reduction of the burden on the subject. On the other hand, there is a case where the resistance at the time of insertion into the insertion path is large like a colonoscope or the like. If the flexibility of the flexible portion 1a is too high, the thrust will not be transmitted to the tip of the flexible portion 1a, and the insertion operation of the insertion portion 1 may be hindered. Therefore, depending on the insertion path, the flexible portion 1a must be somewhat hard in the bending direction, that is, the rigidity in the bending direction must be increased.
[0018]
In addition, the insertion path of the large intestine and the like is a complicatedly bent path, and there are some parts that are extremely bent. For this reason, it is necessary that the distal end portion of the flexible portion 1a, that is, the portion connected to the angle portion 1b and the vicinity thereof has a structure that is rather flexible in the bending direction, and the portion on the distal end side is smoothly curved. The angle portion 1b connected to the soft portion 1a is for directing the distal end hard portion 1c in a desired direction. In some cases, the bending operation is performed to 180 ° or more. In order to prevent stress from being extremely concentrated on the connecting portion between the angle portion 1b and the flexible portion 1a when the flexible portion 1a is bent at the maximum bending angle or an angle close to the maximum bending angle, the connection between the flexible portion 1a and the angle portion 1b is required. The vicinity of the part needs to have more flexibility.
[0019]
From the above requirements and the like, in particular, the bending characteristics of the flexible tube 4 configured as the flexible portion 1a of the insertion portion 1 are such that the distal end bends most flexibly, and is continuous toward the proximal end at least up to a predetermined position. It is changed so that it becomes hard. For this purpose, the inner and outer spiral tubes 5a and 5b in which metal strips are spirally wound are configured as shown in FIG.
[0020]
As shown in FIG. 4A, the outer spiral tube 5b spirally winds a metal strip having a width B1 and a thickness T1, and the inner diameter D1 of the winding portion in a free state is constant over the entire length. It has become. Further, the pitch interval P1 is also constant. Here, the bending angle of the outer spiral tube 5b is determined by the width B1 and the pitch interval P1, and these dimensions are appropriately set.
[0021]
On the other hand, as shown in FIG. 4B, the inner spiral tube 5a has a width B2 and a thickness T2 and has a pitch interval P2. Here, the width B2, the thickness T2, and the pitch interval P2 are the same as those of the outer spiral tube 5b. However, these dimensions may be changed. For example, the thickness dimension T2 of the outer spiral tube 5b can be made thicker. Further, as described later, since the inner spiral tube 5a is inserted into the outer spiral tube 5b in a reduced diameter state, the pitch interval P2 in the free state of the inner spiral tube 5a is equal to the pitch of the outer spiral tube 5b. The interval may be larger than P1.
[0022]
The outer diameter of the inner spiral tube 5a is changed continuously or stepwise in the axial direction. That is, the outer diameter D2 of the one end side of the inner spiral tube 5a in a free state is equal to or smaller than the inner diameter D1 of the outer spiral tube 5b. Then, the outer diameter of the inner spiral tube 5a is made larger than the inner diameter D1 of the outer spiral tube 5b from one end side or from the middle position, and the outer diameter D3 in the free state of the inner spiral tube 5a at the other end side is the outer spiral tube. 5b is sufficiently larger than the inner diameter D1. Then, the inner spiral tube 5a is inserted into the outer spiral tube 5b to form the flexible tubular body 4. At this time, the inner spiral tube 5a is inserted into the outer spiral tube 5a in a reduced diameter state.
[0023]
As a result, a portion having a large outer diameter of the inner spiral tube 5a is pressed against the inner surface of the outer spiral tube 5b, and the slidability therebetween is reduced. Therefore, as the diameter difference between the outer diameter of the inner spiral tube 5a and the inner diameter of the outer spiral tube 5b increases, the pressing force therebetween increases, and the hardness of the flexible tube 4 increases. Therefore, in forming the flexible portion 1a of the insertion portion 1 by the flexible tube 4, the side having the larger outer diameter of the inner spiral tube 5a is connected to the connection ring 9 connected to the main body operation portion 2. Accordingly, the degree of flexibility in the bending direction of the flexible portion 1a is such that the proximal end is hard and the distal end is soft.
[0024]
Therefore, for example, when the insertion section 1 is configured as the flexible section 1a in the insertion section 1 of the colonoscope, when the insertion section 1 is inserted into the body cavity, the resistance to the insertion is increased as the insertion depth of the insertion section 1 into the body increases. Increase. However, since the proximal end side of the flexible portion 1a is a flexible portion having high hardness, the pushing thrust can be reliably applied to the distal end. As a result, the insertion of the insertion portion 1 into the body does not become difficult or impossible, and the distal end hard portion 1c can be smoothly and quickly advanced to the target position. When the insertion portion 1 is twisted when inserting the insertion portion 1 into the body cavity, and particularly when the inner spiral tube 5a is twisted in a direction in which the inner spiral tube 5a is reduced in diameter, the pressure contact force between the inner and outer spiral tubes 5a and 5b is reduced. Even if the outer diameter D3 of the inner spiral tube 5a in the free state described above is made sufficiently larger than the inner diameter D1 of the outer spiral tube 5b, even if it is twisted in this direction, a strong pressure contact force between the inner and outer spiral tubes 5a and 5b still remains. If so, the stiffness does not change much.
[0025]
The insertion path of the insertion section 1 includes a bent portion, a branch portion, and the like. For this reason, at the time of the insertion operation, by bending the angle portion 1b in an appropriate direction, the tip portion of the insertion portion 1 is adjusted to the curve of the path, and which path of the branching section is selected. Or The angle portion 1b is forcibly bent by remote control. At this time, since the hardness of the distal end portion of the soft portion 1a is low, this portion follows the curve and bends gently. As a result, the followability of the insertion section 1 to the insertion path is improved, and the pain on the subject is reduced. Moreover, since stress is not concentrated near the portion where the flexible portion 1a is connected to the angle portion 1b at the time of bending, the durability of the flexible portion 1a is improved and an excessive force is applied to the member inserted therein. Inconveniences such as addition can be eliminated.
[0026]
When the outer diameter of the inner spiral tube 5b is increased, a force for expanding the outer spiral tube 5a acts. However, as long as the base end side of the colonoscope is not inserted into the body cavity, the base end side of the insertion portion 1 may be slightly thicker. Further, since the tubular mesh body 6 is provided on the flexible tubular body 4, by applying a tightening force to the tubular mesh body 6, it is possible to prevent the outer diameter from expanding.
[0027]
Here, the flexible tube 4 whose flexibility in the bending direction is changed in the axial direction can be used as the light guide flexible portion 3. Here, the light guide flexible portion 3 is flexible in the bending direction, one end is connected to the main body operation portion 2, and the other end is provided with a connector for detachably connecting to the light source device or the like. . Therefore, both ends of the light guide flexible portion 3 have a hard structure. For this reason, the outer diameter of the inner spiral tube 5a is increased to increase the outer diameter of the inner spiral tube 5a in the vicinity of both ends constituting the connection portion to the rigid structure, and the intermediate portion is adjusted to have the outer diameter of the inner spiral tube 5a outside. The inner diameter of the spiral tube 5b can be made substantially the same as the inner diameter of the spiral tube 5b to make it soft. The transition from the hard portion to the soft portion can change the outer diameter of the inner spiral tube 5a to have an intermediate hardness. Thereby, the function of preventing breakage at the rigid structure connecting portions at both ends of the light guide flexible portion 3 is exhibited.
[0028]
【The invention's effect】
As described above, the present invention can change the flexibility in the bending direction of the flexible tube in the axial direction by giving the inner and outer helical tubes constituting the flexible tube a diameter difference, and Even if this flexible tube is twisted, there is an effect that the hardness does not greatly change.
[Brief description of the drawings]
FIG. 1 is an external view showing a general configuration of an endoscope according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a configuration of a flexible portion in FIG.
FIG. 3 is a cross-sectional view of a flexible tube showing one embodiment of the present invention.
FIG. 4 is a configuration explanatory view in a state where an inner spiral tube and an outer spiral tube are separated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insert part 1a Flexible part 1b Angle part 1c Hard tip part 2 Main body operation part 3 Light guide flexible part 4 Flexible tube 5a Inner spiral tube 5b Outer spiral tube