JP2004289909A - ブラシレスdcモータ - Google Patents

ブラシレスdcモータ Download PDF

Info

Publication number
JP2004289909A
JP2004289909A JP2003077378A JP2003077378A JP2004289909A JP 2004289909 A JP2004289909 A JP 2004289909A JP 2003077378 A JP2003077378 A JP 2003077378A JP 2003077378 A JP2003077378 A JP 2003077378A JP 2004289909 A JP2004289909 A JP 2004289909A
Authority
JP
Japan
Prior art keywords
phase
brushless
motor
position signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077378A
Other languages
English (en)
Inventor
Akira Nakagawa
明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003077378A priority Critical patent/JP2004289909A/ja
Publication of JP2004289909A publication Critical patent/JP2004289909A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】新たな部品を追加することなく、簡単な構成でインバータ出力の欠相をすみやかに検出できるブラシレスDCモータを提供する。
【解決手段】起動時のインバータ出力の電圧,周波数を増加させる同期運転状態において、欠相運転検出部49が位置信号毎の周波数が所定範囲内にあるとき欠相でないと判別すると、位置検出運転切替部42は運転切替スイッチSWを同期運転側から位置検出運転側に切り替える。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
この発明は、起動時に、強制的に回転子に回転磁界を与えて、回転子を回転させた後、電機子コイルに誘起された誘起電圧に基づいて、電機子コイルの電圧パターンの切り換えを行うブラシレスDCモータに関する。
【0002】
【従来の技術】
従来、ブラシレスDCモータとしては、起動時に同期運転から位置検出運転に切り替えるものがある(例えば、特許文献1参照)。このブラシレスDCモータは、複数極の磁石を有する回転子と、3相Y結線された電機子コイルを有する固定子と、上記電機子コイルに対して並列状態で3相Y結線された抵抗回路と、上記電機子コイルの中性点と抵抗回路の中性点との電位差に基づいて、上記回転子と固定子との相対的な回転位置を検出して、位置信号を出力する回転位置検出手段と、上記回転位置検出手段からの位置信号に基づいて、上記電機子コイルの電圧パターンを切り替えるインバータ部とを備えている。
【0003】
上記構成のブラシレスDCモータは、起動時、まずインバータ出力の電圧,周波数を増加させる同期運転を行う。そして、その同期運転状態において、電位差信号が所定のレベルであると判定し、かつ位置信号とインバータモードが一定の関係を有する場合、同期運から位置検出運に切り替える。
【0004】
【特許文献1】
特開平8−98580号公報
【0005】
【発明が解決しようとする課題】
ところで、上記ブラシレスDCモータでは、起動時において、インバータ出力のある相に欠相(断線、接触不良等)が生じた場合、従来の異常判定では「起動不良」と判定されるため、何回か起動リトライを行なった後にシステムダウンとなる。過差圧等によって同期運転から位置検出運転への切り替えが失敗した場合、時間経過による起動差圧変化で起動リトライを行なえば、位置検出運転に切替えることが可能となるが、欠相運転の場合、何度起動リトライを行なっても位置検出運転に切り替わらないため、システムダウンに移行するまでに長時間かかり、何度も発停を繰り返すという問題がある。
【0006】
そこで、この発明の目的は、新たな部品を追加することなく、簡単な構成でインバータ出力の欠相をすみやかに検出できるブラシレスDCモータを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1のブラシレスDCモータは、複数極の磁石を有する回転子と、3相Y結線された電機子コイルを有する固定子と、上記電機子コイルに対して並列状態で3相Y結線された抵抗回路と、上記電機子コイルの中性点と上記抵抗回路の中性点との電位差に基づいて、上記回転子と上記固定子との相対的な回転位置を検出して、位置信号を出力する回転位置検出手段と、上記回転位置検出手段からの上記位置信号に基づいて、上記電機子コイルの電圧パターンを切り替えるインバータ部とを備えたブラシレスDCモータにおいて、起動時に上記インバータ部のインバータ出力の電圧および周波数を所定のパターンに基づいて制御する同期運転制御手段と、上記回転位置検出手段からの上記位置信号に基づいて、上記インバータ部のインバータ出力を制御する位置検出運転制御手段と、上記同期運転制御手段により上記インバータ部が同期運転状態のとき、上記回転位置検出手段からの上記位置信号に基づいて欠相か否かを判別する欠相判別手段と、上記同期運転制御手段により上記インバータ部が同期運転状態のときに上記欠相判別手段が欠相でないと判別すると、上記インバータ部の制御を上記同期運転制御手段から上記位置検出運転制御手段に切り替える運転切替手段とを備えたことを特徴としている。
【0008】
上記請求項1のブラシレスDCモータによれば、起動開始時、上記同期運転制御手段により上記インバータ部からのインバータ出力の電圧および周波数を所定のパターンに基づいて制御し、上記所定のパターン出力終了後、同期運転状態において、上記欠相判別手段は、上記回転位置検出手段からの上記位置信号に基づいて欠相か否かを判別する。そして、上記インバータ部が同期運転状態のときに欠相判別手段が欠相でないと判別すると、運転切替手段は、同期運転制御手段から位置検出運転制御手段に切り換える。そして、上記位置検出運転制御手段は、回転位置検出手段からの位置信号に基づいて、インバータ部のインバータ出力を制御する。例えば、同期運転時、位置信号の周期が正常時の周期に相当しないとき、インバータ部と電機子コイルとの間の中継ケーブル断線と判断する。
【0009】
したがって、位置検出運転に用いられる位置信号に基づいて欠相判断を行うので、新たな部品を追加することなく簡単な構成で起動時の同期運転から位置検出運転への切り替える前にインバータ出力の欠相をすみやかに検出できる。
【0010】
また、請求項2のブラシレスDCモータは、請求項1のブラシレスDCモータにおいて、上記欠相判別手段は、上記位置信号の周期が所定範囲内にあるときに欠相であると判別することを特徴としている。
【0011】
上記請求項2のブラシレスDCモータによれば、欠相になると、位置信号の周期が長くなるので。上記欠相判別手段は、位置信号の周期が所定範囲内にあるときに欠相であると判別するので、欠相検出のばらつきを低減できる。
【0012】
また、請求項3のブラシレスDCモータは、請求項2のブラシレスDCモータにおいて、上記欠相判別手段は、上記位置信号の周期が上記所定範囲内にあることが所定回数連続したときに欠相であると判別することを特徴としている。
【0013】
上記請求項3のブラシレスDCモータによれば、上記欠相判別手段は、上記位置信号の周期が上記所定範囲内にあることが所定回数連続したときに欠相であると判別するので、誤検出なく確実に欠相を検出でき、欠相異常判定検出の精度が向上する。例えば、このブラシレスDCモータが1シリンダ圧縮機に用いられた場合、起動時の負荷トルクが過大な時にモータ1回転中の位置信号の周期が大きくばらつくことがあったとしても、このブラシレスDCモータでは誤検知する可能性がなくなる。
【0014】
また、請求項4のブラシレスDCモータは、請求項1のブラシレスDCモータにおいて、上記欠相判別手段は、上記位置信号毎に発生する割り込み回数を上記インバータ出力の電気角360°毎に計数し、上記インバータ出力の電気角360°毎に計数された割り込み回数が所定範囲内にあるときに欠相であると判別することを特徴としている。
【0015】
上記請求項4のブラシレスDCモータによれば、上記欠相判別手段は、上記位置信号毎に発生する割り込み回数を上記インバータ出力の電気角360°毎に計数する。そして、上記インバータ出力の電気角360°毎に計数された割り込み回数が所定範囲内にあるときに欠相と判別するので、欠相検出のばらつきを低減できると共に、波形制御CPUの周期測定用タイマの分解能、ビット制限等の制約を受けることなく、欠相状態を判断できる。
【0016】
また、請求項5のブラシレスDCモータは、請求項4のブラシレスDCモータにおいて、上記欠相判別手段は、上記インバータ出力の電気角360°毎に計数された割り込み回数が所定範囲内にあることが所定回数連続したときに欠相であると判別することを特徴としている。
【0017】
上記請求項5のブラシレスDCモータによれば、上記欠相判別手段は、上記インバータ出力の電気角360°毎に計数された割り込み回数が所定範囲内にあることが所定回数連続したときに欠相であると判別するので、誤検出なく確実に欠相を検出でき、欠相異常判定検出の精度が向上する。
【0018】
【発明の実施の形態】
以下、この発明のブラシレスDCモータを図示の実施の形態により詳細に説明する。
【0019】
(第1実施形態)
図1はこの発明の第1実施形態のブラシレスDCモータの構成を示しており、1は電機子コイル1a,1b,1cがY結線され、複数の永久磁石を有する回転子10を回転磁界により回転させる固定子、2は上記電機子コイル1a,1b,1cに並列状態に接続され、抵抗2a,2b,2cをY結線した抵抗回路、3は上記抵抗回路2の中性点の電圧Vと電機子コイル1a,1b,1cの中性点の電圧Vに基づいて、回転子10の相対的な位置を検出して、位置信号を出力する回転位置検出手段の一例としての回転位置検出器、4は上記回転位置検出器3からの位置信号を受けて、スイッチング信号を出力するマイクロコンピュータ(以下。マイコンという)、5は上記マイコン4からのスイッチング信号を受けて、転流制御信号を出力するベース駆動回路である。上記ベース駆動回路5からの転流制御信号をインバータ部20に夫々接続している。なお、上記固定子1と回転子10でモータ部11を構成している。
【0020】
上記回転位置検出器3は、抵抗回路2の中性点の電圧Vと電機子コイル1a,1b,1cの中性点の電圧Vとの電位差信号VMNを増幅する差動増幅器31と、上記差動増幅器31により増幅された電位差信号VMNを積分する積分器32と、上記積分器32からの積分信号の零クロスを判定する零クロスコンパレータ33とを備えている。また、上記ブラシレスDCモータは、回転位置検出器3の積分器32からの積分信号を受けて、レベル検出信号をマイコン4に出力するレベル検出器34を備えている。
【0021】
また、上記インバータ部20は、直流電源9の正極側に夫々接続された3つのトランジスタ20a,20b,20cと、直流電源9の負極側に夫々接続された3つのトランジスタ20d,20e,20fとから構成されている。上記トランジスタ20aのエミッタとトランジスタ20dのコレクタを互いに接続し、トランジスタ20bのエミッタとトランジスタ20eのコレクタを互いに接続し、トランジスタ20cのエミッタとトランジスタ20fのコレクタを互いに接続している。また、上記トランジスタ20a,20dの互いに接続された部分にU相の電機子コイル1aを接続し、トランジスタ20b,20eの互いに接続された部分にV相の電機子コイル1bを接続し、トランジスタ20c,20fの互いに接続された部分にW相の電機子コイル1cを接続している。そして、上記各トランジスタ20a〜20fのコレクタとエミッタとの間にダイオードを夫々逆並列接続している。
【0022】
また、上記マイコン4は、図2に示すように、レベル検出器34(図1に示す)からのレベル検出信号を受けて、電位差信号VMNのレベルが所定値以上か否かを判定する電位差信号レベル判定部41と、回転位置検出器3(図1に示す)からの位置信号が接続され、位置信号とインバータモードとを比較するモード比較部42と、上記電位差信号レベル判定部41からの判定結果とモード比較部42からの比較結果に基づいて、位置検出運転切替信号を出力する位置検出運転切替部43と、上記電位差信号レベル判定部41からの判定結果とモード比較部42からの比較結果に基づいて、外部からの運転信号が入力されると、起動のための電圧指令信号と周波数指令信号を出力するV/Fパターン設定部44と、上記V/Fパターン設定部44からの周波数指令信号を受けて、キャリア割込信号IRQ1を出力する波形タイマT1とを備えている。上記電位差信号レベル判定部41,モード比較部42,V/Fパターン設定部44および波形タイマT1で同期運転制御手段を構成している。上記位置検出運転切替部43と後述する運転切替SWで運転切替手段を構成している。また、上記電位差信号レベル判定部41とレベル検出器34でレベル判定手段を構成している。
【0023】
また、上記マイコン4は、上記回転位置検出器3(図1に示す)からの位置信号が外部割込端子を介して接続され、その位置信号によりスタートする位相補正タイマT2と、上記位置信号を受けて、電機子コイル1a,1b,1cの電圧パターンの周期を測定する周期測定タイマT3と、上記周期測定タイマT2からの測定されたタイマ値を受けて、そのタイマ値から電機子コイル1a,1b,1cの電圧パターンの周期を演算して、周期を表わす周期信号を出力する位置信号周期演算部45と、上記位置信号周期演算部45からの周期信号と外部からの位相量指令信号とを受けて、その周期から位相量に相当するタイマ値を演算して、位相補正タイマT2にタイマ値設定信号を出力するタイマ値演算部46と、上記位置信号周期演算部45からの周期信号を受けて、回転速度を演算して現在速度信号を出力する速度演算部47と、上記速度演算部47からの現在速度信号と外部からの速度指令信号とを受けて、電圧指令信号を出力する速度制御部48と、欠相運転検出部49とを備え、位相補正タイマT2,周期測定タイマT3,位置信号周期演算部45,タイマ値演算部46,速度演算部47および速度制御部48で位置検出運転制御手段を構成している。
【0024】
さらに、上記マイコン4は、波形タイマT1からのキャリア割込信号IRQ1を運転切替スイッチSWを介して受けて、電圧パターン信号を出力するインバータモード選択部53と、上記インバータモード選択部53からの電圧パターン信号を受けると共に、V/Fパターン設定部44からの電圧指令信号を運転切替スイッチSWを介して受けて、スイッチング信号を出力するPWM部54とを備えている。
【0025】
上記構成のブラシレスDCモータにおいて、運転切替スイッチSWが位置検出運転側に選択され、モータが位置信号に従って駆動されているとき、電機子コイル1a,1b,1cの各U相,V相,W相の誘起電圧E,E,Eは、図3(A)〜(C)に示すように、120deg毎に位相の異なる台形状の波形となる。そして、図1に示す回転位置検出器3の差動増幅器31は、抵抗回路2の中性点の電圧Vと電機子コイル1a,1b,1cの中性点の電圧Vとの電位差信号VMNを検出する。そして、上記差動増幅器31からの電位差信号VMNを受けて、積分器32は、この電位差信号VMNを積分して、積分信号∫VMNdt(図3(D)に示す)を出力する。そして、上記零クロスコンパレータ33は、非反転入力端子に入力された積分信号∫VMNdtと反転入力端子に接続された基準電圧(グランドGND)とを比較して、位置信号(図3(E)に示す)を出力する。
【0026】
一方、上記積分信号∫VMNdtは、レベル検出器34において、図3(G)に示すように全波整流され、さらに平滑にされ、その平滑波形を表わす平滑信号(図3(H)に示す)を基準電圧Eと比較して、上記平滑信号が基準電圧Eよりも高いとき、レベル検出信号(図3(J)に示す)はLレベルとなるのである。
【0027】
次に、上記零クロスコンパレータ33からの位置信号は、周期測定タイマT3に入力され、周期測定タイマT3は、位置信号のリーディングエッジからトレイリングエッジまでの期間とトレイリングエッジからリーディングエッジまでの期間とを測定して、測定されたタイマ値を位置信号毎に出力する。上記周期測定タイマT3からのタイマ値を表わす信号を受けて、位置信号周期演算部45は、位置信号の周期を求める。すなわち、上記位置信号のトレイリングエッジからリーディングエッジまでの期間とリーディングエッジからトレイリングエッジまでの期間は、60deg毎に繰り返され、測定された各期間のタイマ値を6倍することによって、上記電圧パターンの一周期分のタイマ値を求めるのである。
【0028】
そして、上記位置信号周期演算部45からの周期を表わす周期信号と外部からの位相量指令信号とを受けて、タイマ値演算部46はタイマ値設定信号を出力する。上記タイマ値演算部46からのタイマ値設定信号を受けて、位相補正タイマT2は、位置信号から電圧パターンを切り換えるまでの時間を計時する。すなわち、上記位相補正タイマT2は、カウントが終了するとインバータモード選択部53に割込信号IRQ2を出力し、インバータモード選択部53は、位相補正された電圧パターン信号(図3(K)〜(Q)に示す)をPWM部54に出力するのである。そして、上記PWM部54は、スイッチング信号を図1に示すベース駆動回路5に出力して、ベース駆動回路5はインバータ部20に転流制御信号を出力すると、インバータ部20の各トランジスタ20a〜20fは、夫々オンオフする。なお、図3(F)の位置信号番号は、説明を容易にするために位置信号の一周期分に対して0〜5の番号を割り当てたものである。また、図3(R)に示すインバータモードは、図3(K)〜(Q)に示す電圧パターン信号に対応するように0〜5の番号を割り当てたものである。
【0029】
次に、上記ブラシレスDCモータの始動時は、運転切替スイッチSWが同期運転側に選択され、同期運転制御手段(41,42,44,T1)によりインバータ出力の電圧と周波数を所定のパターンで増加する。そして、上記欠相運転検出部49により欠相でないと判断し、かつ、レベル検出器34,電位差信号レベル判定部41およびモード比較部42により位置検出運転が可能と判断すると、位置検出運転切替部43は、運転切替スイッチSWを同期運転側から位置検出運転側に切り替える。
【0030】
以下、上記マイコン4の同期運転制御手段(41,42,44,T1)の同期運転から位置検出運転への切替動作を図6〜図9に従って説明する。なお、起動前の運転切替スイッチSWは、波形タイマT1のキャリア割込信号IRQ1をインバータモード選択部53に接続すると共に、V/Fパターン設定部44の電圧指令信号をPWM部54に接続する同期運転側に選択されている。
【0031】
まず、上記マイコン4のV/Fパターン設定部44に外部から運転信号が入力されると、V/Fパターン設定部44から周波数指令信号が出力されて、波形タイマT1がスタートする。そして、その波形タイマT1のカウントが終了すると、波形タイマT1からキャリア割込信号IRQ1が出力され、この波形タイマT1のキャリア割込信号IRQ1の発生間隔毎に図7に示すキャリア割り込み処理を行うと共に、マイコン4の外部割込端子に入力される位置信号の立ち上がりおよび立ち下がり毎に図8に示す位置信号割り込み処理を行う。
【0032】
このように、起動時における同期運転において、予めテーブルに格納された電圧,周波数データに基づく所定の略直線パターンに沿って、インバータ出力電圧とインバータ周波数を徐々に増加して、回転子10を加速する。そして、上記回転子10が所定の回転数に加速した後、欠相運転検出部49で欠相を検出せず、レベル検出器34,電位差信号レベル判定部41およびモード比較部42によって電位差信号が安定している場合に、位置検出運転切替部43は、同期運転から位置検出運転に切り替える。
【0033】
また、起動時における同期運転において、上記回転子10が所定の回転数に加速した後、レベル検出器34,電位差信号レベル判定部41およびモード比較部42によって、電位差信号が安定しているか否かを検出して、電位差信号が不安定な場合、V/Fパターン設定部44は、電位差信号が安定するまで、インバータ出力電圧を徐々に下げる。そして、上記電位差信号が安定すると、位置検出運転切替部43は、同期運転から位置検出運転に切り替える。
【0034】
したがって、起動時に上記同期運転制御手段(41,42,44,T1)により回転子10が加速された後、回転位置検出器3からの位置信号による位置検出運転が可能となるまで、同期運転制御手段(41,42,44,T1)はインバータ出力の電圧を下げるので、起動時に負荷の大小や電源電圧の変動により電位差信号が安定する範囲が変動しても、同期運転から位置検出運転に確実に切り替える。
【0035】
図4は上記ブラシレスDCモータの起動時の位置信号と相電流の波形を示しており、同期運転による加速時は、インバータ出力の変調率(図4ではDuty)を徐々に大きくして回転数を徐々に上げると、位置信号の回転数の指令n[rps]に対して、積分信号は6n[rps]に相当し、インバータ出力の相電流は2n[rps]に相当する。ここで、モータは2極対の構成とする。
【0036】
次に、図5は上記ブラシレスDCモータの欠相時の位置信号と相電流の波形を示しており、同期運転状態において回転数の指令が所定回転数になると、位置検出運転切替判定を行う。このとき、モータの1回転あたり位置信号の割り込み回数は正常時に12回であり、欠相時に4回となるので、回転数のn[rps]に対して、正常時の積分信号の周波数は12nHz、欠相時の積分信号の周波数は4nHzとなる。
【0037】
図6は上記ブラシレスDCモータの運転開始処理のフローチャートを示しており、運転開始処理がスタートすると、ステップS11で運転状態を“同期運転加速状態”に設定する。
次に、ステップS12に進み、キャリア割り込みカウンタを初期化する。
次に、ステップS13に進み、出力波形機能設定を行う。
次に、ステップS14に進み、キャリア割り込みを許可する。
そして、ステップS15に進み、波形出力を開始する。
【0038】
次に、図7は上記ブラシレスDCモータのキャリア割り込み処理のフローチャートを示しており、上記ステップS14でキャリア割り込みが許可されると、インバータ出力のキャリア周期毎に波形タイマT1からキャリア割込信号IRQ1が発生する。この波形タイマT1のキャリア割込信号IRQ1の発生間隔毎にキャリア割込処理を行う。
【0039】
そして、キャリア割り込みが発生すると、図7に示すステップS21で運転要求有りと判別して、運転要求有りと判別すると、ステップS22に進む一方、運転要求なしと判別すると、この処理を終了する。
【0040】
次に、ステップS22で位置検出運転に切替済か否かを判別して、位置検出運転に切替済と判別すると、ステップS24に進み、位置検出運転処理を行って処理を終了する。
【0041】
一方、ステップS22で位置検出運転に切替済でないと判別すると、ステップS23に進み、同期運転処理(インバータ出力のデューティなどの設定)を続け、この処理を終了する。
【0042】
次に、図8は上記ブラシレスDCモータの位置信号割り込み処理のフローチャートを示しており、この位置信号割り込み処理は、外部割込端子に入力される位置信号の立ち上がりおよび立ち下がり毎に行う。
【0043】
そして、位置信号割り込みが発生すると、ステップS31で運転要求有りか否かを判別して、運転要求ありと判別すると、ステップS32に進む一方、運転要求なしと判別すると、この処理を終了する。
【0044】
次に、ステップS32で位置検出運転に切替済か否かを判別して、位置検出運転に切替済であると判別すると、ステップS44に進み、位置検出運転処理を行い処理を終了する。
【0045】
一方、ステップS32で位置検出運転に切替済でないと判別すると、ステップS33に進み、
位置信号割り込み周波数=指令周波数×4
の条件を満足するか否か判別する。そして、ステップS33で上記条件を満足しない場合は、ステップS34に進む一方、上記条件を満足する場合は、ステップS41に進み、欠相検出カウンタをインクリメントする。
【0046】
次に、ステップS42に進み、
欠相検出カウンタ=異常確定値
の条件を満足するか否かを判別して、上記条件を満足する場合は、ステップS43に進み、欠相異常処理を行って、この処理を終了する。
【0047】
一方、ステップS42で上記条件を満足しない場合は、ステップS34に進む。
【0048】
次に、ステップS34で、位置検出運転が可能か否かを判別して、位置検出運転ができないと判別すると、ステップS35に進み、同期運転処理を行って処理を終了する。
【0049】
また、ステップS34で位置検出運転切替が可能であると判別すると、ステップ36に進み、位置検出運転切替処理を行って、この処理を終了する。
【0050】
図9は図8のステップS36の位置検出運転切替処理のフローチャートを示している。位置検出運転切替処理がスタートすると、ステップS51で位置検出運転切替が可能か否かを判別して、位置検出運転切替が可能と判別すると、ステップS59に進み、位置検出運転切替を行って、この処理を終了する。
【0051】
一方、ステップS51で位置検出運転切替ができないと判別すると、ステップS52に進み、電圧降下頻度カウンタが規定値か否かを判別して、電圧降下頻度カウンタが規定値でないと判別すると、ステップS53に進み、電圧降下頻度カウンタをインクリメントして、この処理を終了する。
【0052】
また、ステップS52で電圧降下頻度カウンタが規定値であると判別すると、ステップS55に進み、インバータ出力のデューティDutyが所定値Ddown未満か否かを判別して、インバータ出力のデューティDutyが所定値Ddown未満であると判別すると、ステップS58に進み、起動不良停止処理を行って、この処理を終了する。
【0053】
一方、ステップS55でインバータ出力のデューティDutyが所定値Ddown以上であると判別すると、ステップS56に進み、インバータ出力のデューティDutyを所定値Ddownだけ減らして、インバータ出力の電圧を下げる。
【0054】
そして、ステップS57に進み、電圧降下頻度カウンタを初期化してこの処理を終了する。
【0055】
図10は上記ブラシレスDCモータの欠相運転検出部49の欠相検出カウンタの動作の一例を示しており、判定回1,2,…Nにおいて、
4×指令f=1/Tn
指令f : 運転周波数
Tn : 位置信号のレベルの切り換わり毎の周期(n=1,2,…)
の判定式を用いて判定し、判定結果が異常のときはカウンタ値をインクリメントする一方、判定結果が正常のときはカウンタ値をそのまま保持している。
【0056】
このように、上記第1実施形態のブラシレスDCモータによれば、新たな部品を追加することなく簡単な構成でインバータ出力の欠相をすみやかに検出することができる。例えば、ハーネス等の接点不良の場合に、アーク放電等に起因する火災等の事故を未然に防止することができる。また、欠相検出してすぐにシステムダウンすることが可能となり、ユーザーへの異常通知を迅速に行なって、ユーザーからのサービスコールに迅速に対応できるので、サービス工数の削減が可能となる。したがって、不良対策・対応のコストを最小限にすることが可能で、部品追加によるコストアップなしで信頼性を向上できるブラシレスDCモータを提供することができる。
【0057】
上記第1実施形態では、位置信号毎の周波数が所定範囲内にあるときに欠相であると判別したが、位置信号の周期が所定範囲内にあるときに欠相であると判別してもよい。
【0058】
(第2実施形態)
図11はこの発明の第2実施形態のブラシレスDCモータのマイコンの構成図を示している。この第2実施形態のブラシレスDCモータは、マイコンを除いて第1実施形態のブラシレスDCモータと同一の構成をしており、図1を援用する。また、この第2実施形態のマイコンは、欠相運転検出部を除いて第1実施形態のマイコンと同一の構成をしており、同一構成部は同一参照番号を付して説明を省略する。
【0059】
上記第2実施形態のブラシレスDCモータにおいて、欠相運転検出部50は、位置信号に基づいて欠相であるか否かを判別して、その判別結果を位置検出運転切替部43に出力する。
【0060】
図12は上記ブラシレスDCモータの起動時の積分信号と位置信号を示しており、同期運転状態においてモータ1回転あたり6回の位置信号による割り込み信号毎に判定を行う。
【0061】
上記第2実施形態のブラシレスDCモータにおいて、マイコンの位置信号割り込み処理を除いて第1実施形態のマイコンと同様の動作を行うので、この第2実施形態では、位置信号割り込み処理のみを説明する。
【0062】
図13は上記ブラシレスDCモータの位置信号割り込み処理のフローチャートを示している。
【0063】
まず、位置信号割り込みが発生すると、この位置信号割り込み処理がスタートして、ステップS101で運転要求有りか否かを判別して、運転要求なしと判別すると、この処理を終了する一方、運転要求有りと判別すると、ステップS102に進む。
【0064】
次に、ステップS102で位置検出運転が切替済か否かを判別して、位置検出運転が切替済と判別すると、ステップS114に進み、位置検出運転処理を行って、この処理を終了する。
【0065】
一方、ステップS102で位置検出運転が切替済でないと判別すると、ステップS103に進み、
位置信号割り込み周波数 < 指令周波数×4+K (Kは定数)
の条件を満足すると判別すると、ステップS111に進む一方、上記条件を満足しないと判別すると、ステップS104に進む。
【0066】
そして、ステップS111で、
位置信号割り込み周波数 > 指令周波数×4−K (Kは定数)
の条件を満足すると判別すると、ステップS112に進み、連続判定カウントCcontをインクリメントして、ステップS105に進む。
【0067】
また、ステップS104で連続判定カウンタCcontを初期化した後、ステップS105に進む。
【0068】
そして、ステップS105で連続判定カウンタCcontが所定回数Nを越えたか否かを判別して、連続判定カウンタCcontが所定回数Nを越えたと判別すると、ステップS113に進み、欠相異常停止処理を行って、この処理を終了する。
【0069】
一方、ステップS105で連続判定カウンタCcontが所定回数N以下であると判別すると、ステップS106に進み、位置検出運転切替可能か否かを判別する。
【0070】
そして、ステップS106で位置検出運転切替可能でないと判別すると、ステップS107に進み、同期運転処理を行って、この処理を終了する。
【0071】
一方、ステップS106で位置検出運転切替可能と判別すると、ステップS108に進み、位置検出運転切替処理を行って、この処理を終了する。
【0072】
図14は上記ブラシレスDCモータの連続判定カウンタの動作の一例を示しており、判定回1,2,…において、
(4×指令f−K) < 1/Tn < (4×指令f+K)
指令f : 運転周波数
Tn : 位置信号のレベルの切り換わり毎の周期(n=1,2,…)
K : 定数
の判定式を用いて判定し、判定結果が異常のときはカウンタ値をインクリメントする一方、判定結果が正常のときはカウンタ値をゼロにリセットしている。
【0073】
このように、上記第2実施形態のブラシレスDCモータでは、位置信号の周波数が(4×指令f−K)〜(4×指令f+K)の範囲内にあることが所定回数のN回連続したときに欠相であると判別するので、誤検出なく確実に欠相を検出できると共に、欠相異常判定検出の精度が向上する。
【0074】
上記第2実施形態では、位置信号毎の周波数が所定範囲内にあるときに欠相であると判別したが、位置信号の周期が所定範囲内にあるときに欠相であると判別してもよい。
【0075】
(第3実施形態)
次に、この発明の第3実施形態のブラシレスDCモータのマイコンの構成図を示している。この第3実施形態のブラシレスDCモータは、マイコンの処理を除いて第1実施形態のブラシレスDCモータと同一の構成をしており、図1,図2を援用する。
【0076】
図15はこの第3実施形態のブラシレスDCモータの判定カウンタの動作の一例を示しており、図15に示すように、正常時は、インバータ出力の電気角360°の間に6つの位置信号割り込みが発生する一方、欠相時は、インバータ出力の電気角360°の間に2つの位置信号割り込みしか発生しない。
【0077】
図16は上記ブラシレスDCモータのキャリア割り込み処理のフローチャートを示しており、キャリア割り込みが発生すると、ステップS201で運転要求有りか否かを判別して、運転要求なしと判別すると、この処理を終了する、
一方、ステップS201で運転要求有りと判別すると、ステップS202に進み、位置検出運転切替済か否かを判別して、位置検出運転切替済の場合はステップS207に進み、位置検出運転処理を行って、ステップS205に進む。
【0078】
また、ステップS202で位置検出運転切替済でない場合は、ステップS203に進み、出力モードが電気角360度を越えたか否かを判別する。そして、ステップS203で出力モードが電気角360度を越えない場合は、ステップS204に進む一方、出力モードが電気角360度を越えた場合は、ステップS206に進み、電気角フラグfmodeを1にしてステップS204に進む。
【0079】
そして、ステップS204で同期運転処理を行う。
【0080】
次に、ステップS205で波形出力処理を行って、この処理を終了する。
【0081】
図17は上記ブラシレスDCモータの位置信号割り込み処理のフローチャートを示しており、位置信号割り込みが発生すると、ステップS211で運転要求有りか否かを判別して、運転要求がない場合はこの処理を終了する一方、運転要求がある場合は、ステップS212に進む。
【0082】
次に、ステップS212で位置検出運転切替済か否かを判別して、位置検出運転切替済でない場合は、ステップS219に進み、位置検出運転処理を行って、この処理を終了する。一方、ステップS212で位置検出運転切替済の場合は、ステップS213に進む。
【0083】
そして、ステップS213で位置検出運転切替が可能か否かを判別して、位置検出運転切替が可能の場合は、ステップS218に進み、位置検出運転切替処理を行って、この処理を終了する。
【0084】
一方、ステップS213で位置検出運転切替が可能でない場合、ステップ214に進み、同期運転処理を行う。
【0085】
次に、ステップS215に進み、位置信号割り込み回数カウンタCntをインクリメントする。
【0086】
次に、ステップS216に進み、電気角フラグfmodeが1か否かを判別して、電気角フラグfmodeが1でない場合は、この処理を終了する一方、電気角フラグfmodeが1の場合は、ステップS217に進み、欠相判定処理を行って、この処理を終了する。
【0087】
図18は上記ブラシレスDCモータの欠相判定処理のフローチャートを示しており、欠相判定処理がスタートすると、ステップS231で位置信号割り込み回数カウンタCntが3以下か否かを判定する。
【0088】
そして、ステップS231で位置信号割り込み回数カウンタCntが3以下である場合は、ステップS236に進み、位置信号割り込み回数カウンタCntが1以上か否かを判定する。ステップS236で位置信号割り込み回数カウンタCntが1以上である場合は、ステップS237に進む一方、位置信号割り込み回数カウンタCntが1未満である場合は、ステップS232に進む。
【0089】
そして、ステップS232で異常判定カウンタを初期化し、ステップS233に進み、多重割り込みを禁止する。
【0090】
次に、ステップS234に進み、電気角フラグfmodeをゼロに設定して、ステップS235に進み、多重割り込みを許可して、この処理を終了する。
【0091】
一方、ステップS237では、異常判定カウンタをインクリメントし、ステップS238に進み、異常判定カウンタが規定値以上か否かを判別する。
【0092】
そして、ステップS238で異常判定カウンタが規定値未満の場合は、ステップS233に進む一方、ステップS238で異常判定カウンタが規定値以上の場合は、ステップS239に進み、欠相異常停止処理を行って、この処理を終了する。
【0093】
このように、上記第3実施形態のブラシレスDCモータでは、位置信号割り込み回数カウンタCntが3以下でかつ1以上であることが所定回数N連続したときに欠相であると判別するので、欠相検出のばらつきを低減することができると共に、波形制御CPUの周期測定タイマT3の分解能やビット制限等の制約を受けることなく、欠相状態を判断することができる。
【0094】
【発明の効果】
以上より明らかなように、請求項1の発明のブラシレスDCモータは、複数極の磁石を有する回転子と、3相Y結線された電機子コイルを有する固定子と、上記電機子コイルに対して並列状態で3相Y結線された抵抗回路と、上記電機子コイルの中性点と上記抵抗回路の中性点との電位差に基づいて、上記回転子と上記固定子との相対的な回転位置を検出して、位置信号を出力する回転位置検出手段と、上記回転位置検出手段からの上記位置信号に基づいて、上記電機子コイルの電圧パターンを切り替えるインバータ部とを備えたブラシレスDCモータにおいて、起動開始時、同期運転制御手段によりインバータ部からのインバータ出力の電圧および周波数を所定のパターンに基づいて制御し、上記所定のパターン出力終了後、同期運転状態において、欠相判別手段は、回転位置検出手段からの上記位置信号に基づいて欠相か否かを判別して、インバータ部が同期運転状態のときに欠相判別手段が欠相でないと判別すると、運転切替手段は、同期運転制御手段から位置検出運転制御手段に切り換え、位置検出運転制御手段は、回転位置検出手段からの位置信号に基づいて、インバータ部のインバータ出力を制御するものである。
【0095】
したがって、請求項1の発明のブラシレスDCモータによれば、同期運転時、位置信号に基づいて欠相(インバータ部と電機子コイルとの間の中継ケーブル断線など)と判断するので、新たな部品を追加することなく簡単な構成で起動時の同期運転から位置検出運転への切り替える前にインバータ出力の欠相をすみやかに検出することができる。
【0096】
また、請求項2の発明のブラシレスDCモータによれば、請求項1のブラシレスDCモータにおいて、欠相になると位置信号の周期が長くなることを利用して、欠相判別手段は、位置信号の周期が所定範囲内にあるときに欠相であると判別するので、欠相検出のばらつきを低減できる。
【0097】
また、請求項3の発明のブラシレスDCモータによれば、請求項2のブラシレスDCモータにおいて、上記欠相判別手段は、上記位置信号の周期が上記所定範囲内にあることが所定回数連続したときに欠相であると判別するので、誤検出なく確実に欠相を検出でき、欠相異常判定検出の精度を向上することができる。
【0098】
また、請求項4の発明のブラシレスDCモータによれば、請求項1のブラシレスDCモータにおいて、欠相になると位置信号の周期が長くなり位置信号毎に発生する割り込み回数が減ることを利用して、上記欠相判別手段は、上記位置信号毎に発生する割り込み回数をインバータ出力の電気角360°毎に計数して、インバータ出力の電気角360°毎に計数された割り込み回数が所定範囲内にあるときに欠相と判別するので、欠相検出のばらつきを低減することができると共に、波形制御CPUの周期測定用タイマの分解能、ビット制限等の制約を受けることなく、欠相状態を判断することができる。
【0099】
また、請求項5の発明のブラシレスDCモータによれば、請求項4のブラシレスDCモータにおいて、上記欠相判別手段は、インバータ出力の電気角360°毎に計数された割り込み回数が所定範囲内にあることが所定回数連続したときに欠相であると判別するので、誤検出なく確実に欠相を検出でき、欠相異常判定検出の精度を向上することができる。
【図面の簡単な説明】
【図1】図1はこの発明の第1実施形態のブラシレスDCモータの構成図である。
【図2】図2は上記ブラシレスDCモータのマイコンの構成図である。
【図3】図3は上記ブラシレスDCモータの各部の信号を示す図である。
【図4】図4は上記ブラシレスDCモータの起動時の位置信号と相電流の波形を示す図である。
【図5】図5は上記ブラシレスDCモータの欠相時の位置信号と相電流の波形を示す図である。
【図6】図6は上記ブラシレスDCモータの運転開始処理を示すフローチャートである。
【図7】図7は上記ブラシレスDCモータのキャリア割り込み処理を示すフローチャートである。
【図8】図8は上記ブラシレスDCモータの位置信号割り込み処理を示すフローチャートである。
【図9】図9は上記ブラシレスDCモータの位置検出運転切替処理を示すフローチャートである。
【図10】図10は上記ブラシレスDCモータの欠相検出カウンタの動作を説明するための図である。
【図11】図11はこの発明の第2実施形態のブラシレスDCモータのマイコンの構成図である。
【図12】図12は上記ブラシレスDCモータの起動時の位置信号と割り込み信号を示す図である。
【図13】図13は上記ブラシレスDCモータの位置信号割り込み処理を示すフローチャートである。
【図14】図14は上記ブラシレスDCモータの連続判定カウンタの動作を説明するための図である。
【図15】図15はこの発明の第3実施形態のブラシレスDCモータの判定カウンタの動作を説明するための図である。
【図16】図16は上記ブラシレスDCモータのキャリア割り込み処理を示すフローチャートである。
【図17】図17は上記ブラシレスDCモータの位置信号割り込み処理を示すフローチャートである。
【図18】図18は上記ブラシレスDCモータの欠相判定処理を示すフローチャートである。
【符号の説明】
1…固定子、
1a,1b,1c…電機子コイル、
2…抵抗回路、
3…回転位置検出器、
4…マイコン、
5…ベース駆動回路、
9…直流電源、
10…回転子、
11…モータ部、
20…インバータ部、
20a〜20f…トランジスタ、
31…差動増幅器、
32…積分器、
33…零クロスコンパレータ、
34…レベル検出器、
41…電位差信号レベル判定部、
42…モード比較部、
43…位置検出運転切替部、
44…V/Fパターン設定部、
45…位置信号周期演算部、
46…タイマ値演算部、
47…速度演算部、
48…速度制御部、
49,50…欠相運転検出部、
53…インバータモード選択部、
54…PWM部、
T1…波形タイマ、
T2…位相補正タイマ、
T3…周期測定タイマ、
SW…運転切替スイッチ。

Claims (5)

  1. 複数極の磁石を有する回転子(10)と、3相Y結線された電機子コイル(1a,1b,1c)を有する固定子(1)と、上記電機子コイル(1a,1b,1c)に対して並列状態で3相Y結線された抵抗回路(2)と、上記電機子コイル(1a,1b,1c)の中性点と上記抵抗回路(2)の中性点との電位差に基づいて、上記回転子(10)と上記固定子(1)との相対的な回転位置を検出して、位置信号を出力する回転位置検出手段(3)と、上記回転位置検出手段(3)からの上記位置信号に基づいて、上記電機子コイル(1a,1b,1c)の電圧パターンを切り替えるインバータ部(20)とを備えたブラシレスDCモータにおいて、
    起動時に上記インバータ部(20)のインバータ出力の電圧および周波数を所定のパターンに基づいて制御する同期運転制御手段(41,42,44,T1)と、
    上記回転位置検出手段(3)からの上記位置信号に基づいて、上記インバータ部(20)のインバータ出力を制御する位置検出運転制御手段(T2,T3,45〜48)と、
    上記同期運転制御手段(41,42,44,T1)により上記インバータ部(20)が同期運転状態のとき、上記回転位置検出手段(3)からの上記位置信号に基づいて欠相か否かを判別する欠相判別手段(49,50)と、
    上記同期運転制御手段(41,42,44,T1)により上記インバータ部(20)が同期運転状態のときに上記欠相判別手段(49,50)が欠相でないと判別すると、上記インバータ部(20)の制御を上記同期運転制御手段(41,42,44,T1)から上記位置検出運転制御手段(T2,T3,45〜48)に切り替える運転切替手段(43)とを備えたことを特徴とするブラシレスDCモータ。
  2. 請求項1に記載のブラシレスDCモータにおいて、
    上記欠相判別手段は、上記位置信号の周期が所定範囲内にあるときに欠相であると判別することを特徴とするブラシレスDCモータ。
  3. 請求項2に記載のブラシレスDCモータにおいて、
    上記欠相判別手段は、上記位置信号の周期が上記所定範囲内にあることが所定回数連続したときに欠相であると判別することを特徴とするブラシレスDCモータ。
  4. 請求項1に記載のブラシレスDCモータにおいて、
    上記欠相判別手段は、上記位置信号毎に発生する割り込み回数を上記インバータ出力の電気角360°毎に計数し、上記インバータ出力の電気角360°毎に計数された割り込み回数が所定範囲内にあるときに欠相であると判別することを特徴とするブラシレスDCモータ。
  5. 請求項4に記載のブラシレスDCモータにおいて、
    上記欠相判別手段は、上記インバータ出力の電気角360°毎に計数された割り込み回数が所定範囲内にあることが所定回数連続したときに欠相であると判別することを特徴とするブラシレスDCモータ。
JP2003077378A 2003-03-20 2003-03-20 ブラシレスdcモータ Pending JP2004289909A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077378A JP2004289909A (ja) 2003-03-20 2003-03-20 ブラシレスdcモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077378A JP2004289909A (ja) 2003-03-20 2003-03-20 ブラシレスdcモータ

Publications (1)

Publication Number Publication Date
JP2004289909A true JP2004289909A (ja) 2004-10-14

Family

ID=33292146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077378A Pending JP2004289909A (ja) 2003-03-20 2003-03-20 ブラシレスdcモータ

Country Status (1)

Country Link
JP (1) JP2004289909A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106424A (ja) * 2011-11-14 2013-05-30 Hitachi Ltd モータ制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106424A (ja) * 2011-11-14 2013-05-30 Hitachi Ltd モータ制御装置

Similar Documents

Publication Publication Date Title
US6400107B1 (en) Motor control device capable of driving a synchronous motor with high efficiency and high reliability
US5834911A (en) Brushless DC motor capable of being started stably
JP4408571B2 (ja) 電子コミュテーション式モータ
US8035330B2 (en) Apparatus and method for driving synchronous motor
JP6105834B2 (ja) ブラシレスモータの制御
JP5484391B2 (ja) ブラシレスモータの制御
JPH1175394A (ja) 交流回転機用電力変換装置
JP2010011700A (ja) モータ制御装置
US6249101B1 (en) Start-up procedure for brushless DC motors having position sensors with angular resolution lower than the resolution of the driving system
JP2016046886A (ja) モータ制御装置
TWI683531B (zh) 單相直流無刷馬達僅於啟動運用感測器的驅動方法
WO2004006424A1 (ja) 交流電動機のセンサレスベクトル制御方法及びその制御装置
TW202010236A (zh) 單相無感測器直流無刷馬達之固定旋轉方向啟動方法
JP2011024401A (ja) ブラシレスモータの始動方法と駆動方法及びその駆動装置
JP2005057922A (ja) ブラシレスモータ及びブラシレスモータの駆動方法
CN108429425B (zh) 直流无刷电机及其控制方法
JP2004289909A (ja) ブラシレスdcモータ
JP3424307B2 (ja) ブラシレスdcモータ
JP7414436B2 (ja) モータ制御装置およびその制御方法
JP4345155B2 (ja) ロータの磁極位置検出装置
TWI689426B (zh) 驅動裝置、驅動方法、驅動程式以及電動車輛
KR101397888B1 (ko) 모터 구동 제어 장치, 모터 구동 제어 방법 및 그를 이용한 모터
JPH11187691A (ja) ブラシレスモータの駆動装置
JP2004336866A (ja) 同期モータのセンサレス駆動装置
CN113261196B (zh) 电力转换装置及其控制方法