JP2004289410A - Semiconductor relay - Google Patents

Semiconductor relay Download PDF

Info

Publication number
JP2004289410A
JP2004289410A JP2003077967A JP2003077967A JP2004289410A JP 2004289410 A JP2004289410 A JP 2004289410A JP 2003077967 A JP2003077967 A JP 2003077967A JP 2003077967 A JP2003077967 A JP 2003077967A JP 2004289410 A JP2004289410 A JP 2004289410A
Authority
JP
Japan
Prior art keywords
relay
low
resistance
photo mos
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077967A
Other languages
Japanese (ja)
Inventor
Hideki Naganuma
英樹 永沼
Tatsuyuki Agata
立之 縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003077967A priority Critical patent/JP2004289410A/en
Publication of JP2004289410A publication Critical patent/JP2004289410A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a semiconductor relay with a high off withstand voltage, a low on resistance, and a low off capacity in the semiconductor relay with the high off withstand voltage, the low on resistance, and the low off capacity regarding the semiconductor relay used for an IC (integrated circuit) tester. <P>SOLUTION: The semiconductor relay, which has a first photo MOS (metal oxide semiconductor) relay 10 with the high off withstand voltage, the low on resistance, and the high off capacity; and a second photo MOS relay 20 with low off withstand voltage, the low on resistance, and the low off capacity, is characterised in that the first photo MOS relay 10 and the second photo MOS relay 20 are connected in series, the open ends of the first/second photo MOS relays are made as input ends or output ends, and the first/second photo MOS relays are turned on/off. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、ICテスタに用いられる半導体リレーに関し、高オフ耐圧、低オン抵抗、低オフ容量の半導体リレーに関するものである。
【0002】
【従来の技術】
従来、特許文献1に示されるように、ICテスタでは多くのリレーが用いられ、計測モジュールのオン、オフを行っている。そして、ICテスタに用いられるリレーとして、メカニカルリレーとフォトモスリレーとがある。
【0003】
メカニカルリレーは、オフ耐圧、オフ容量、オン抵抗に優れるが、ICテスタにおいては、使用状態によって約1年で故障に至ってしまう。一方、フォトモスリレーは、寿命は半永久的だが、オフ耐圧を上げると、オン抵抗、オフ容量の積が増大してしてしまうという特性がある。また、同じ耐圧のものを比較しても、オン抵抗を下げるとオフ容量が増大し、オフ容量を下げるとオン抵抗が増大するトレードオフの関係が存在している。このため、高オフ耐圧、低オン抵抗、低オフ容量が要求される場合には、フォトモスリレーを用いることができず、寿命を犠牲にして、メカニカルリレーを用いなければならなかった。
【0004】
【特許文献1】
特開平8−298446号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、高オフ耐圧、低オン抵抗、低オフ容量の半導体リレーを実現することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、
高オフ耐圧、低オン抵抗、高オフ容量の第1のフォトモスリレーと、
低オフ耐圧、低オン抵抗、低オフ容量の第2のフォトモスリレーとを有し、
前記第1のフォトモスリレーと前記第2のフォトモスリレーとが直列に接続され、第1、第2のフォトモスリレーの開放端を入力端あるいは出力端とし、第1、第2のフォトモスリレーをオン、オフすることを特徴とするものである。
請求項2記載の発明は、請求項1記載の発明において、
第2のフォトモスリレーと並列に設けられ、微小電流を流す微小電流バイパス回路を具備したことを特徴とするものである。
請求項3記載の発明は、請求項1記載の発明において、
第2のフォトモスリレーと並列に、逆向きで直列に2つのダイオードを設けたことを特徴とするものである。
【0007】
【発明の実施の形態】
以下図面を用いて本発明の実施の形態を説明する。図1は本発明の一実施例を示した構成図である。
【0008】
図において、第1のフォトモスリレー10は、高オフ耐圧、低オン抵抗、高オフ容量で、MOS型FETを発光ダオードとフォトダイオードによりオン、オフする。第2のフォトモスリレー20は、低オフ耐圧、低オン抵抗、低オフ容量で、第1のフォトモスリレー10に直列に接続し、MOS型FETを発光ダオードとフォトダイオードによりオン、オフする。微小電流バイアス回路30は、ダイオード31、32からなり、第2のフォトモスリレー20と並列に設けられ、微小電流を流す。ダイオード31は、アノードを第2のフォトモスリレー20の一端に接続する。ダイオード32は、カソードをダイオード31のカソードに接続し、アノードを第2のフォトモスリレー20の他端に接続する。ここで、ダイオード31、32のオフ容量は、通常、第2のフォトモスリレー20より小さく、全体の合計容量において、要求仕様以下になるように選択する。また、オフリーク電流をフォトモスリレー10より大きいものを選ぶと共に、リーク電流により、電圧がフォトモスリレー20の耐圧以下になるものを選ぶ。
【0009】
このような装置の動作を以下で説明する。ここで、説明を簡単にするために、ダイオード31、32のオフ容量はないものとして説明する。フォトモスリレー10、フォトモスリレー20のオフ耐圧をそれぞれV1,V2(V1(高オフ耐圧)>V2(低オフ耐圧))、低オン抵抗をそれぞれR1、R2(R1(低オン抵抗)=R2(低オン抵抗))、オフ容量をそれぞれC1,C2(C1(高オフ容量)>C2(低オフ容量))とする。これにより、フォトモスリレー10,20全体のオフ耐圧VonはV1となり、低オン抵抗RoffはR1+R2となり、オフ容量Conは、C1・C2/(C1+C2)となる。
【0010】
例えば、V1=100[V]、V2=20[V]、R1=R2=0.1[Ω]、C1=1000[pF]、C2=50[pF]とすると、Von=100[V]、Roff=0.2[Ω]、Con≒47.6[pF]となる。
【0011】
このように、高オフ耐圧、低オン抵抗、高オフ容量の第1のフォトモスリレー10と、低オフ耐圧、低オン抵抗、低オフ容量の第2のフォトモスリレー20とを直列に接続することで、高オフ耐圧、低オン抵抗、低オフ容量を実現することができる。そして、ICテスタに用いた場合、試験精度がよく、故障を少なくすることができ、信頼性を向上させることができる。
【0012】
次に、微小電流バイパス回路30の動作について説明する。図2はフォトモスリレー20の特性を示す図である。
【0013】
図1において微小電流バイパス回路30が接続されていない状態で、フォトモスリレー10、20のオフ時に、フォトモスリレー10、20の開放端に電圧を印加すると、オフリーク電流が流れる。通常、高オフ耐圧のフォトモスリレー10のオフリーク電流の方が、低オフ耐圧のフォトモスリレー20より大きい。例えば、フォトモスリレー10のオフリーク電流は1[nA]、フォトモスリレー20のオフリーク電流は100[pA]となる。このため、電源投入直後の電圧はほとんど低オフ容量のフォトモスリレー20に印加される。そして、フォトモスリレー20のオフ耐圧電圧、図2に示すA点を超えると、急激にブレークダウン電流が流れ始める。この電流はフォトモスリレー10のリーク電流値、図2のB点まで上昇するが、高オフ耐圧のリーク電流以上は流れないため、ある点、つまり、B点で電圧がバランスすることになる。すなわち、フォトモスリレー20がブレークダウンしかかりの状態となり、フォトモスリレー20の特性劣化や破壊してしまう可能性がある。
【0014】
これを防止するために、微小電流バイパス回路30が、オフリーク電流を流し、フォトモスリレー20に大きな電圧は印加されなくなる。フォトモスリレー10のリーク電流と微小電流バイパス回路30のバイパス電流との比が、フォトモスリレー20に印加される電圧になるので、フォトモスリレー20のブレークダウン電圧以下になるように制御される。
【0015】
このように、微小電流バイパス回路30により、オフリーク電流を流すので、フォトモスリレー20の破壊や劣化の可能性を防止することができる。
【0016】
なお、微小電流バイパス回路30を設けた構成を示したが、フォトモスリレー20がブレークダウンしかかりの状態で、特性劣化や破壊の可能性がなければ、微小電流バイアス回路30を設けなくともよい。
【0017】
【発明の効果】
本発明によれば、高オフ耐圧、低オン抵抗、高オフ容量の第1のフォトモスリレーと、低オフ耐圧、低オン抵抗、低オフ容量の第2のフォトモスリレーとを直列に接続することで、高オフ耐圧、低オン抵抗、低オフ容量を実現することができる。そして、ICテスタに用いた場合、試験精度がよく、故障を少なくすることができ、信頼性を向上させることができる。
【0018】
また、請求項2,3によれば、微小電流バイパス回路またはダイオードにより、オフリーク電流を流すので、第2のフォトモスリレーの破壊や劣化の可能性を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示した構成図である。
【図2】フォトモスリレー20の特性を示した図である。
【符号の説明】
10 第1のフォトモスリレー
20 第2のフォトモスリレー
30 微小電流バイパス回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor relay used for an IC tester, for example, and relates to a semiconductor relay having a high off-state breakdown voltage, a low on-resistance, and a low off-state capacitance.
[0002]
[Prior art]
Conventionally, as shown in Patent Literature 1, many relays are used in an IC tester to turn on and off a measurement module. As a relay used in the IC tester, there are a mechanical relay and a photo MOS relay.
[0003]
A mechanical relay is excellent in off-breakdown voltage, off-capacity, and on-resistance, but in an IC tester, a failure occurs in about one year depending on a use condition. On the other hand, the photo MOS relay has a characteristic that although its life is semi-permanent, when the off breakdown voltage is increased, the product of the on resistance and the off capacitance increases. Further, even when compared with those having the same breakdown voltage, there is a trade-off relationship in which when the on-resistance is reduced, the off-capacity increases, and when the off-capacity is reduced, the on-resistance increases. For this reason, when high off-breakdown voltage, low on-resistance, and low off-capacity are required, a photo MOS relay cannot be used, and a mechanical relay has to be used at the expense of life.
[0004]
[Patent Document 1]
JP-A-8-298446 [0005]
[Problems to be solved by the invention]
An object of the present invention is to realize a semiconductor relay having a high off-state breakdown voltage, a low on-resistance, and a low off-state capacitance.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is
A first photo MOS relay having a high off-breakdown voltage, a low on-resistance, and a high off-capacity;
A second photomos relay having a low off-breakdown voltage, a low on-resistance, and a low off-capacity,
The first photomos relay and the second photomos relay are connected in series, and the open ends of the first and second photomos relays are used as an input end or an output end. The relay is turned on and off.
The invention according to claim 2 is the invention according to claim 1,
A minute current bypass circuit, which is provided in parallel with the second photo MOS relay and flows a minute current, is provided.
The invention according to claim 3 is the invention according to claim 1,
It is characterized in that two diodes are provided in parallel in the opposite direction to the second photo MOS relay.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the present invention.
[0008]
In the figure, a first photoMOS relay 10 has a high off-state breakdown voltage, a low on-resistance, and a high off-capacity, and turns a MOS-type FET on and off by a light emitting diode and a photodiode. The second photomos relay 20 is connected in series to the first photomos relay 10 with a low off-voltage, a low on-resistance, and a low off-capacity, and turns on and off the MOS FET by means of a light emitting diode and a photodiode. The minute current bias circuit 30 includes diodes 31 and 32, is provided in parallel with the second photo MOS relay 20, and flows a minute current. The diode 31 has an anode connected to one end of the second photomos relay 20. The diode 32 has a cathode connected to the cathode of the diode 31 and an anode connected to the other end of the second photomos relay 20. Here, the off-capacities of the diodes 31 and 32 are usually selected to be smaller than the required specifications in the total capacity of the second photomos relay 20 and smaller than the second photomos relay 20. In addition, an off-leak current larger than that of the photomos relay 10 is selected, and an off-leak current whose voltage is equal to or lower than the withstand voltage of the photomos relay 20 is selected.
[0009]
The operation of such a device is described below. Here, for the sake of simplicity, the description will be made assuming that the diodes 31 and 32 have no off-capacitance. The off-state breakdown voltages of the photo MOS relays 10 and 20 are V1 and V2 (V1 (high off-state breakdown voltage)> V2 (low off-state breakdown voltage)), and the low on-resistances are R1 and R2 (R1 (low on-state resistance) = R2, respectively). (Low on-resistance)) and the off-capacitances are respectively C1 and C2 (C1 (high off-capacity)> C2 (low off-capacity)). As a result, the off-state breakdown voltage Von of the entire photoMOS relays 10 and 20 becomes V1, the low on-resistance Roff becomes R1 + R2, and the off-capacitance Con becomes C1 · C2 / (C1 + C2).
[0010]
For example, if V1 = 100 [V], V2 = 20 [V], R1 = R2 = 0.1 [Ω], C1 = 1000 [pF], and C2 = 50 [pF], Von = 100 [V], Roff = 0.2 [Ω], Con ≒ 47.6 [pF].
[0011]
As described above, the first photoMOS relay 10 having a high off-voltage, low on-resistance, and high off-capacity and the second photomos relay 20 having a low off-voltage, low on-resistance, and low off-capacity are connected in series. Accordingly, a high off-state breakdown voltage, a low on-resistance, and a low off-state capacitance can be realized. When used in an IC tester, test accuracy is good, failures can be reduced, and reliability can be improved.
[0012]
Next, the operation of the minute current bypass circuit 30 will be described. FIG. 2 is a diagram illustrating characteristics of the photo MOS relay 20.
[0013]
In FIG. 1, when a voltage is applied to the open ends of the photo MOS relays 10 and 20 when the photo MOS relays 10 and 20 are turned off in a state where the minute current bypass circuit 30 is not connected, an off-leak current flows. Usually, the off-leak current of the photo-MOS relay 10 having a high off-state breakdown voltage is larger than that of the photo-MOS relay 20 having a low off-state breakdown voltage. For example, the off-leak current of the photo MOS relay 10 is 1 [nA], and the off-leak current of the photo MOS relay 20 is 100 [pA]. For this reason, the voltage immediately after the power is turned on is applied to the photo MOS relay 20 having almost low off-capacity. When the off withstand voltage of the photo MOS relay 20 exceeds the point A shown in FIG. 2, a breakdown current starts to flow rapidly. This current rises to the leak current value of the photo MOS relay 10 up to the point B in FIG. 2. However, since the current does not flow beyond the high off-breakdown voltage leak current, the voltage is balanced at a certain point, that is, at the point B. In other words, the photo MOS relay 20 is in a state of being broken down, and there is a possibility that the characteristics of the photo MOS relay 20 are deteriorated or destroyed.
[0014]
In order to prevent this, the minute current bypass circuit 30 causes an off-leak current to flow, and a large voltage is not applied to the photoMOS relay 20. Since the ratio between the leak current of the photo MOS relay 10 and the bypass current of the minute current bypass circuit 30 becomes the voltage applied to the photo MOS relay 20, the ratio is controlled to be equal to or lower than the breakdown voltage of the photo MOS relay 20. .
[0015]
As described above, since the off-leak current is caused to flow by the minute current bypass circuit 30, the possibility of destruction or deterioration of the photo MOS relay 20 can be prevented.
[0016]
Although the configuration in which the micro current bypass circuit 30 is provided is shown, the micro current bias circuit 30 may not be provided if the photo MOS relay 20 is about to break down and there is no possibility of characteristic deterioration or destruction. .
[0017]
【The invention's effect】
According to the present invention, the first photoMOS relay having a high off-voltage, low on-resistance, and high off-capacity and the second photomos relay having a low off-voltage, low on-resistance, and low off-capacity are connected in series. Accordingly, a high off-state breakdown voltage, a low on-resistance, and a low off-state capacitance can be realized. When used in an IC tester, test accuracy is good, failures can be reduced, and reliability can be improved.
[0018]
According to the second and third aspects, the off-leak current is caused to flow by the minute current bypass circuit or the diode, so that the possibility of destruction or deterioration of the second photomos relay can be prevented.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of the present invention.
FIG. 2 is a diagram showing characteristics of the photo MOS relay 20.
[Explanation of symbols]
Reference Signs List 10 first photomos relay 20 second photomos relay 30 minute current bypass circuit

Claims (3)

高オフ耐圧、低オン抵抗、高オフ容量の第1のフォトモスリレーと、
低オフ耐圧、低オン抵抗、低オフ容量の第2のフォトモスリレーとを有し、
前記第1のフォトモスリレーと前記第2のフォトモスリレーとが直列に接続され、第1、第2のフォトモスリレーの開放端を入力端あるいは出力端とし、第1、第2のフォトモスリレーをオン、オフすることを特徴とする半導体リレー。
A first photo MOS relay having a high off-breakdown voltage, a low on-resistance, and a high off-capacity;
A second photomos relay having a low off-breakdown voltage, a low on-resistance, and a low off-capacity,
The first photomos relay and the second photomos relay are connected in series, and the open ends of the first and second photomos relays are used as an input end or an output end. A semiconductor relay characterized by turning a relay on and off.
第2のフォトモスリレーと並列に設けられ、微小電流を流す微小電流バイパス回路を具備したことを特徴とする請求項1記載の半導体リレー。2. The semiconductor relay according to claim 1, further comprising: a minute current bypass circuit provided in parallel with the second photo MOS relay and configured to flow a minute current. 第2のフォトモスリレーと並列に、逆向きで直列に2つのダイオードを設けたことを特徴とする請求項1記載の半導体リレー。2. The semiconductor relay according to claim 1, wherein two diodes are provided in series in opposite directions in parallel with the second photomos relay.
JP2003077967A 2003-03-20 2003-03-20 Semiconductor relay Pending JP2004289410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077967A JP2004289410A (en) 2003-03-20 2003-03-20 Semiconductor relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077967A JP2004289410A (en) 2003-03-20 2003-03-20 Semiconductor relay

Publications (1)

Publication Number Publication Date
JP2004289410A true JP2004289410A (en) 2004-10-14

Family

ID=33292592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077967A Pending JP2004289410A (en) 2003-03-20 2003-03-20 Semiconductor relay

Country Status (1)

Country Link
JP (1) JP2004289410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103872A (en) * 2008-10-27 2010-05-06 Yokogawa Electric Corp Analog signal attenuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103872A (en) * 2008-10-27 2010-05-06 Yokogawa Electric Corp Analog signal attenuator

Similar Documents

Publication Publication Date Title
KR100398692B1 (en) Circuit for preventing reverse connection of electric power source
US9013161B2 (en) Load drive circuit
JP2023016898A (en) switching circuit
US7889469B2 (en) Electrostatic discharge protection circuit for protecting semiconductor device
WO2013142238A1 (en) Bi-directional switch using series connected n-type mos devices in parallel with series connected p-type mos devices
CN106533129A (en) Bootstrap compensation circuit and power module
JP2007116653A (en) Switching circuit
TWI658695B (en) Output circuit and method for providing an output current
JP2007243585A (en) Drive circuit of power device
JP2011139290A (en) Bidirectional switch
US7733133B2 (en) Power switch circuit having variable resistor coupled between input terminal and output transistor and changing its resistance based on state of output transistor
KR20060045372A (en) Semiconductor device
JP2004289410A (en) Semiconductor relay
US20050162189A1 (en) Current limiter of output transistor
JP2007088550A (en) Semiconductor relay unit
US7679421B1 (en) Level shift circuit
JP2004228317A (en) Semiconductor memory device
JPH10257671A (en) Electronic circuit device
KR101211829B1 (en) high voltage level shift circuit
JP2008311859A (en) High-frequency switch
KR101773814B1 (en) Reverse current protection circuit of switch device
KR100593070B1 (en) Level shift circuit of smart power ic
US20080129262A1 (en) Switching power supply source
CN111490663B (en) Intelligent integrated switch tube and resonant soft switch circuit
JP2005065083A (en) Semiconductor device