JP2004289187A - Manufacturing method of thick film multilayer substrate - Google Patents

Manufacturing method of thick film multilayer substrate Download PDF

Info

Publication number
JP2004289187A
JP2004289187A JP2004209427A JP2004209427A JP2004289187A JP 2004289187 A JP2004289187 A JP 2004289187A JP 2004209427 A JP2004209427 A JP 2004209427A JP 2004209427 A JP2004209427 A JP 2004209427A JP 2004289187 A JP2004289187 A JP 2004289187A
Authority
JP
Japan
Prior art keywords
thick film
film resistor
insulating layer
thick
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004209427A
Other languages
Japanese (ja)
Other versions
JP3719518B2 (en
Inventor
Yuji Otani
祐司 大谷
Takashi Nagasaka
長坂  崇
Mitsuhiro Saito
斎藤  光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004209427A priority Critical patent/JP3719518B2/en
Publication of JP2004289187A publication Critical patent/JP2004289187A/en
Application granted granted Critical
Publication of JP3719518B2 publication Critical patent/JP3719518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a thick film multilayer substrate, by which the resistance of a thick film resistor can be simply made highly precise. <P>SOLUTION: In the manufacturing method of the thick film multilayer substrate, a thick film resistor 6 on a ceramic substrate 1 is burnt at a higher temperature than a glass insulating layer 2 which is burnt while contacting with the upper surface of thick film resistor 6. An experiment by the present inventors discloses that when the thick film resistor 6 is burnt at a higher temperature than the glass insulating layer contacting with the resistor 6, a resistance value fluctuation caused by a high temperature process of burning glass insulating layers 2 to 4 thereafter can be reduced. Probably, it is presumed that binding powers of ceramic particles and conductive particles configurating the thick film resistor 6 are enhanced and made compact by burning the thick film resistor 6 at a higher temperature, and thereby any solid phase diffusion becomes hard to occur between the thick film resistor 6 and the glass insulating layer 2 contacting with the thick film resistor 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は厚膜多層基板の製造方法に関する。   The present invention relates to a method for manufacturing a thick film multilayer substrate.

従来、セラミック基板上に絶縁層を印刷、焼成し、この絶縁層上に配線パタンを印刷、焼成することにより厚膜多層基板を製造する際には、複数の絶縁層及び配線パタンは、全て同じ温度で焼成している。したがって、上記技術を応用して、セラミック基板上に厚膜抵抗を印刷、焼成し、このセラミック基板上に複数の絶縁層を順次、印刷、焼成しようとすると、厚膜抵抗、複数の絶縁層及び配線パタンは、全て同じ温度で焼成することが考えられる。   Conventionally, when an insulating layer is printed and fired on a ceramic substrate, and a wiring pattern is printed and fired on the insulating layer to manufacture a thick-film multilayer substrate, a plurality of insulating layers and wiring patterns are all the same. Firing at a temperature. Therefore, by applying the above technology, printing and firing a thick film resistor on a ceramic substrate, and sequentially printing and firing a plurality of insulating layers on this ceramic substrate, a thick film resistor, a plurality of insulating layers and It is conceivable that all the wiring patterns are fired at the same temperature.

しかしながら、上記の製造方法では、厚膜抵抗の焼成温度と絶縁層、配線パタンなどの焼成温度が同じであるため、厚膜抵抗焼成後の焼成工程において、熱的影響により厚膜抵抗とそれに接する絶縁層との間に相互拡散や熱ストレスが発生し、厚膜抵抗の抵抗値が大きく変動してしまうという問題がある。そこで上記問題に対処する従来技術としては、下記の時点において、厚膜抵抗にレーザトリミングを実施し、抵抗値調整を行っている。   However, in the above manufacturing method, since the firing temperature of the thick film resistor and the firing temperature of the insulating layer and the wiring pattern are the same, in the firing step after firing the thick film resistor, the thick film resistor and the thick film resistor come into contact with each other due to thermal influence. There is a problem that mutual diffusion and thermal stress occur between the insulating film and the insulating layer, and the resistance value of the thick film resistor fluctuates greatly. Therefore, as a conventional technique for addressing the above problem, at the following point, laser trimming is performed on the thick film resistor to adjust the resistance value.

第一の従来技術では全ガラス絶縁層の焼成前にレーザトリミングを実施する。第二の従来技術では全ガラス絶縁層の焼成後に全ガラス絶縁層を透過してレーザトリミングを実施する。第三の従来技術では全ガラス絶縁層を開口して設けた窓を通してレーザトリミングを実施する。第四の従来技術では上部のガラス絶縁層に設けた窓を通しかつ最下層のガラス絶縁層を透過してレーザトリミングを実施する。   In the first prior art, laser trimming is performed before firing the all-glass insulating layer. In the second conventional technique, laser trimming is performed by passing through the all-glass insulating layer after firing the all-glass insulating layer. In the third conventional technique, laser trimming is performed through a window provided by opening an all-glass insulating layer. In the fourth prior art, laser trimming is performed through a window provided in the upper glass insulating layer and through the lowermost glass insulating layer.

しかしながら、上記したレーザートリミング方法は、それぞれ下記の問題点を有している。まず上記第一の従来技術では、レーザートリミング後に全ガラス絶縁層及び配線の焼成を行うためにそれらの熱的影響により、厚膜抵抗の抵抗値が変動してしまう。図6に同一基板上に設けた3個の厚膜抵抗の各工程毎の抵抗値変動の一例を示す。図より明らかなように、抵抗体のシート抵抗値あるいは抵抗体の形状等によって抵抗値変動の絶対値が異なる。   However, each of the above-described laser trimming methods has the following problems. First, in the first prior art, since the all-glass insulating layer and the wiring are baked after laser trimming, the resistance value of the thick-film resistance fluctuates due to their thermal influence. FIG. 6 shows an example of the resistance value variation of each of the three thick film resistors provided on the same substrate in each step. As is clear from the drawing, the absolute value of the resistance value variation differs depending on the sheet resistance value of the resistor or the shape of the resistor.

上記第二の従来技術では、厚い全ガラス絶縁層を透過してレーザートリミングを行うために、各ガラス絶縁層及びその界面における吸収、散乱、反射が生じ、厚膜抵抗トリミングのためにレーザー出力を増大させる必要がある。しかし、このレーザー出力の増大は周辺部への熱的影響の増大により周辺の配線や回路素子に熱ストレスなどの悪影響を与える可能性が危惧される。   In the second prior art, laser trimming is performed through a thick all-glass insulating layer, so that absorption, scattering, and reflection occur at each glass insulating layer and its interface, and the laser output is reduced for thick-film resistance trimming. Need to increase. However, there is a concern that the increase in the laser output may adversely affect peripheral wirings and circuit elements, such as thermal stress, due to an increase in thermal influence on the peripheral portion.

上記第三、第四の従来技術では、窓部に配線を布設できないので、多数のレーザートリミング厚膜抵抗を要する場合、配線パターンの設計が複雑となり、配線長が必要以上に長くなり、更に厚膜抵抗が露出するので耐外部環境性に不安が生じる。本発明は上記問題点に鑑みなされたものであり、簡単に厚膜抵抗の抵抗値を高精度化できる厚膜多層基板の製造方法を提供することを、その目的としている。   In the third and fourth prior arts described above, wiring cannot be laid in the window, so when a large number of laser-trimmed thick-film resistors are required, the wiring pattern design becomes complicated, and the wiring length becomes longer than necessary. Since the film resistance is exposed, there is concern about the external environment resistance. The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a thick film multilayer substrate that can easily increase the resistance value of a thick film resistor.

本発明の厚膜多層基板の製造方法は、セラミック基板上に厚膜抵抗を印刷して焼成する厚膜抵抗形成工程と、前記厚膜抵抗及び前記セラミック基板の表面に第1の絶縁層を印刷して焼成する絶縁層形成工程とを備える厚膜多層基板の製造方法において、前記厚膜抵抗を前記厚膜抵抗に接する前記第1の絶縁層よりも高温で焼成するとともに、前記厚膜抵抗を820〜1050℃で焼成し、且つ前記厚膜抵抗を前記第1の絶縁層よりも20〜100℃高温で焼成することを特徴としている。   The method for manufacturing a thick-film multilayer substrate according to the present invention includes a thick-film resistor forming step of printing and firing a thick-film resistor on a ceramic substrate, and printing a first insulating layer on the thick-film resistor and the surface of the ceramic substrate. And baking the insulating layer forming step, wherein the thick film resistor is fired at a higher temperature than the first insulating layer in contact with the thick film resistor, and the thick film resistor is The sintering is performed at 820 to 1050 ° C., and the thick film resistor is baked at a temperature higher by 20 to 100 ° C. than that of the first insulating layer.

温度差が20℃未満の場合には抵抗値変動が大きくなり、温度差が100℃超過の場合には接する配線導体(通常Ag系導体(Ag、AgPd、AgPt)の溶融又は配線導体との固相拡散といった不具合が生じる。   When the temperature difference is less than 20 ° C., the fluctuation of the resistance value becomes large. When the temperature difference exceeds 100 ° C., the wiring conductor (usually Ag-based conductor (Ag, AgPd, AgPt) melts or solidifies with the wiring conductor). Problems such as phase diffusion occur.

好適な態様において、前記厚膜抵抗は、前記第1の絶縁層よりも後に印刷、焼成される第2の絶縁層よりも高温で焼成される。好適な態様において、前記厚膜抵抗をレーザートリミングした後、前記第1の絶縁層を形成する。好適な態様において、前記レーザートリミング直後の前記厚膜抵抗の抵抗値と、前記厚膜抵抗の高温工程終了時の抵抗値との比率を記憶し、前記比率に基づいて目標抵抗値を予め補正して得た抵抗値に基づいてレーザートリミングを実施する。   In a preferred aspect, the thick film resistor is fired at a higher temperature than a second insulating layer printed and fired after the first insulating layer. In a preferred aspect, the first insulating layer is formed after laser-trimming the thick film resistor. In a preferred aspect, the ratio between the resistance of the thick film resistor immediately after the laser trimming and the resistance of the thick film resistor at the end of the high-temperature step is stored, and the target resistance is corrected in advance based on the ratio. Laser trimming is performed based on the obtained resistance value.

また、本発明の厚膜多層基板の製造方法は、セラミック基板上に厚膜抵抗を印刷して焼成する厚膜抵抗形成工程と、前記厚膜抵抗及び前記セラミック基板の表面に絶縁層を印刷して焼成する絶縁層形成工程とを備える厚膜多層基板の製造方法において、前記厚膜抵抗に含まれるガラスを前記厚膜抵抗の焼成により結晶化ガラスとすることを特徴としている。好適な態様において、前記厚膜抵抗に含まれるガラスにおける結晶化状態では、非晶質状態のときより融点が50℃以上上昇する組成である。   The method of manufacturing a thick-film multilayer substrate according to the present invention includes a thick-film resistor forming step of printing and firing a thick-film resistor on a ceramic substrate, and printing an insulating layer on the surface of the thick-film resistor and the ceramic substrate. A method of manufacturing a thick-film multilayer substrate, comprising the step of forming an insulating layer by firing the glass film, wherein the glass contained in the thick-film resistor is crystallized glass by firing the thick-film resistor. In a preferred embodiment, the glass contained in the thick film resistor has a composition in which the melting point is increased by 50 ° C. or more in the crystallized state as compared with the amorphous state.

また、本発明の厚膜多層基板の製造方法は、セラミック基板上に厚膜抵抗を印刷して焼成する厚膜抵抗形成工程と、前記厚膜抵抗及び前記セラミック基板の表面に絶縁層を印刷して焼成する絶縁層形成工程とを備える厚膜多層基板の製造方法において、前記絶縁層に含まれるガラスを前記絶縁層の焼成により結晶化ガラスとすることを特徴としている。好適な態様において、前記絶縁層は前記厚膜抵抗に接する第1の絶縁層である。   The method of manufacturing a thick-film multilayer substrate according to the present invention includes a thick-film resistor forming step of printing and firing a thick-film resistor on a ceramic substrate, and printing an insulating layer on the surface of the thick-film resistor and the ceramic substrate. A method of manufacturing a thick-film multilayer substrate comprising: an insulating layer forming step of firing and firing. A glass contained in the insulating layer is converted into crystallized glass by firing the insulating layer. In a preferred aspect, the insulating layer is a first insulating layer in contact with the thick film resistor.

本発明の厚膜多層基板の製造方法では、セラミック基板上の厚膜抵抗をその上に接して焼成される第1の絶縁層よりも高温で焼成する。このようにすれば、以下の効果を奏することができる。   In the method of manufacturing a thick film multilayer substrate according to the present invention, the thick film resistor on the ceramic substrate is fired at a higher temperature than the first insulating layer fired in contact therewith. By doing so, the following effects can be obtained.

(1)レーザートリミング跡や窓により絶縁層に凹部が形成されるレーザートリミングを使用しなくても高精度に抵抗値を決定できる。   (1) A resistance value can be determined with high accuracy without using laser trimming in which a concave portion is formed in an insulating layer by a laser trimming mark or a window.

すなわち、厚膜抵抗焼成後におけるその抵抗値の変動は、その後の高温工程(絶縁層焼成、配線(回路パタン及びビヤーホール充填導体)焼成)、特に厚膜抵抗に接する絶縁層の焼成工程における厚膜抵抗とそれに接する絶縁層との相互拡散や熱ストレスなどによって生じる。ところが本発明者らの実験によれば、厚膜抵抗をそれに接する第1の絶縁層よりも高温で焼成すれば、その後の絶縁層の焼成などの高温工程による抵抗値変動を低減できることがわかった。   That is, the change in the resistance value after the firing of the thick film resistor is caused by the subsequent high temperature process (firing the insulating layer, firing the wiring (circuit pattern and via-hole filled conductor)), especially the firing process of the insulating layer in contact with the thick film resistor. This is caused by mutual diffusion between the resistor and the insulating layer in contact with the resistor, thermal stress, and the like. However, according to experiments performed by the present inventors, it has been found that if the thick film resistor is fired at a higher temperature than the first insulating layer in contact with the thick film resistor, a change in resistance due to a high-temperature process such as subsequent firing of the insulating layer can be reduced. .

恐らく、厚膜抵抗の高温焼成により、厚膜抵抗を構成するガラス粒子と導電粒子との反応ならびに結合力が強化されるために、その後により低温の絶縁層焼成工程を行っても、厚膜抵抗とそれに接する第1の絶縁層との間で固相拡散が生じにくくなるためと推定される。   Presumably, the high-temperature firing of the thick-film resistor enhances the reaction and bonding force between the glass particles and the conductive particles constituting the thick-film resistor. It is presumed that solid phase diffusion hardly occurs between the first insulating layer and the first insulating layer in contact therewith.

(2)厚膜抵抗焼成後でかつ第1の絶縁層形成前にレーザートリミングすることにより、更なる高精度の抵抗値を得ることができる。また厚膜抵抗を絶縁層で被覆できるので、安定性に優れ、しかもその配線が可能となる。   (2) By performing laser trimming after firing the thick film resistor and before forming the first insulating layer, it is possible to obtain a higher-precision resistance value. Further, since the thick film resistor can be covered with the insulating layer, the stability is excellent and the wiring can be performed.

すなわち、厚膜抵抗が高温焼成されて安定であるので、レーザートリミング跡の絶縁層焼成を行っても抵抗値のばらつきが小さい。したがって、絶縁層に窓などを設ける必要がなくまた絶縁層透過のためにレーザー出力を増大しなくてもよい。   That is, since the thick film resistor is fired at a high temperature and is stable, even if the insulating layer is fired after the laser trimming, the variation in the resistance value is small. Therefore, there is no need to provide a window or the like in the insulating layer, and it is not necessary to increase the laser output for transmission through the insulating layer.

[第1実施例]   [First embodiment]

本発明の厚膜多層基板の一実施例を図1を参照して説明する。図1は、アルミナ基板1上に3層のガラス絶縁層2〜4を有する厚膜多層基板を示す。   One embodiment of the thick film multilayer substrate of the present invention will be described with reference to FIG. FIG. 1 shows a thick-film multilayer substrate having three glass insulating layers 2 to 4 on an alumina substrate 1.

基板1上には配線5、厚膜抵抗6が印刷、焼成されており、その上にガラス絶縁層2〜4が形成され、ガラス絶縁層4上には配線7、保護ガラス71が形成されている。また、ガラス絶縁層4上には回路部品8がはんだ付けされている。9はビアホールに充填された孔部充填導体である。以下、この厚膜多層基板の製造方法を説明する。   The wiring 5 and the thick film resistor 6 are printed and fired on the substrate 1, glass insulating layers 2 to 4 are formed thereon, and the wiring 7 and the protective glass 71 are formed on the glass insulating layer 4. I have. A circuit component 8 is soldered on the glass insulating layer 4. Reference numeral 9 denotes a hole filling conductor filled in the via hole. Hereinafter, a method of manufacturing the thick film multilayer substrate will be described.

(厚膜抵抗形成工程)まず、図2に示すように、Ag粉末にバインダとしてのエチルセルロースと溶剤としてのテルビネオールなどとを混練して導体ペーストを作成し、次に約1600℃で焼成されたアルミナ基板1上にこの導体ペーストを印刷し、空気中、800〜1050℃で10分間保持する焼成プロファイルにて焼成して配線5を形成する。   (Thick film resistance forming step) First, as shown in FIG. 2, Ag powder is kneaded with ethyl cellulose as a binder and terbineol as a solvent to prepare a conductor paste, and then alumina sintered at about 1600 ° C. The conductive paste is printed on the substrate 1 and fired in air at a firing profile of 800 to 1050 ° C. for 10 minutes to form the wiring 5.

次に、1200〜1500℃で溶融後、水中急冷し、粉砕した所定の混合比率のPbO、Al2O3、SiO2、B2O3混合物などからなる平均粒径2〜5μmのガラス粉末50〜80vol%にRu02粉末を所定vol%混合した混合粉末を作成し、この混合粉末に溶剤(例えばテルビネオール)、バインダ(例えばエチルセルロース)を入れて混練して抵抗体ペーストを作成し、この抵抗体ペーストをアルミナ基板1の表面に焼成後の膜厚が7〜15μmの厚さになるように印刷し、空気中、820〜1050℃で10分間保持する焼成プロファイルにて焼成して厚膜抵抗6を形成する。   Next, after melting at 1200 to 1500 ° C., quenched in water and crushed, Ru02 powder is mixed with 50 to 80 vol% of glass powder having an average particle diameter of 2 to 5 μm and made of a mixture of PbO, Al 2 O 3, SiO 2, and B 2 O 3 having a predetermined mixing ratio. A mixed powder mixed at a predetermined vol% is prepared, and a solvent (for example, terbineol) and a binder (for example, ethyl cellulose) are added to the mixed powder and kneaded to prepare a resistor paste. Printing is performed so that the film thickness after firing is 7 to 15 μm, and firing is performed in air at a firing profile of 820 to 1050 ° C. for 10 minutes to form a thick film resistor 6.

(ガラス絶縁層の最下層を厚膜抵抗上に形成する工程)次に、図3に示すように、1200〜1500℃で溶融後、水中急冷し、粉砕した所定の混合比率のCaO、Al2O3、ZrO、PbOなどの混合物からなる平均粒径2〜5μmのガラス粉末に、溶剤(例えばテルビネオール)、バインダ(例えばエチルセルロース)を所定量加え、混練してガラスペーストを作成する。このガラスペーストをアルミナ基板1上に15〜25μmの厚さで印刷し、800〜950℃で10分間保持する焼成プロファイルにて焼成してガラス絶縁層2を形成する。   (Step of Forming Lowermost Layer of Glass Insulating Layer on Thick Film Resistor) Next, as shown in FIG. 3, after melting at 1200 to 1500 ° C., quenching in water, and pulverized CaO, Al 2 O 3 having a predetermined mixing ratio, A predetermined amount of a solvent (for example, terbineol) and a binder (for example, ethyl cellulose) are added to a glass powder having a mean particle size of 2 to 5 μm made of a mixture of ZrO, PbO, and the like, and kneaded to prepare a glass paste. This glass paste is printed on the alumina substrate 1 with a thickness of 15 to 25 μm, and is fired at a firing profile of 800 to 950 ° C. for 10 minutes to form the glass insulating layer 2.

(残部のガラス絶縁層及び内部配線形成工程)次に、図4に示すように、上記したガラス絶縁層2の製造工程と同じ工程でガラス絶縁層3を形成し、次に、上記導体ペーストをガラス絶縁層2、3の互いに連通するビアホールにスクリーン印刷して充填し、空気中、800〜950℃で10分間保持する焼成プロファイルにて焼成して孔部充填導体9の下部を形成する。   (Remaining Glass Insulating Layer and Internal Wiring Forming Step) Next, as shown in FIG. 4, a glass insulating layer 3 is formed in the same step as the above-described manufacturing step of the glass insulating layer 2, and then the conductive paste is applied. The via holes communicating with each other in the glass insulating layers 2 and 3 are screen-printed and filled, and fired in air at a firing profile of 800 to 950 ° C. for 10 minutes to form the lower portion of the hole-filled conductor 9.

次に、上記したガラス絶縁層2の製造工程と同じ工程でガラス絶縁層4を形成し、次に、上記ビアホールに連通するガラス絶縁層4のビアホールにAgペーストをスクリーン印刷して充填し、空気中、800〜950℃で10分間保持する焼成プロファイルにて焼成して孔部充填導体9の上部を形成する。   Next, the glass insulating layer 4 is formed in the same process as the manufacturing process of the glass insulating layer 2 described above, and then the Ag paste is screen-printed and filled into the via holes of the glass insulating layer 4 communicating with the via holes. The upper portion of the hole-filled conductor 9 is formed by sintering with a sintering profile maintained at 800 to 950 ° C. for 10 minutes.

(表層回路形成工程)次に、図4に示す様に導体ペーストをガラス絶縁層4表面に印刷し、800〜950℃で10分間保持する焼成プロファイルにて焼成して配線7を形成し、その上に保護ガラスペーストを印刷し、空気中、500〜650℃をピーク温度とする焼成プロファイルにて焼成して保護ガラス層71を形成した。   (Surface Layer Circuit Forming Step) Next, as shown in FIG. 4, a conductive paste is printed on the surface of the glass insulating layer 4 and baked at a firing profile of 800 to 950 ° C. for 10 minutes to form the wiring 7. The protective glass paste was printed thereon and fired in air with a firing profile having a peak temperature of 500 to 650 ° C. to form a protective glass layer 71.

保護ガラスペーストは、1200〜1500℃で溶融後、水中急冷し、粉砕した所定の混合比率のPbO、SiO2、B2O3混合物からなる平均粒径2〜5μmのガラス粉末に、溶剤(例えばテルピネオール)、バインダ(例えばエチルセルロース)を所定量加え、混練して作成した。   The protective glass paste is melted at 1200 to 1500 ° C., quenched in water, pulverized, and crushed into a glass powder having an average particle diameter of 2 to 5 μm composed of a mixture of PbO, SiO 2 and B 2 O 3 in a predetermined mixing ratio, a solvent (for example, terpineol) and a binder. (For example, ethylcellulose) was added in a predetermined amount and kneaded.

(回路部品装着工程)次に、図1に示すように、ガラス絶縁層4の表面に焼成基板の表面に、回路部品8をはんだ付けして工程を完了した。   (Circuit Component Mounting Step) Next, as shown in FIG. 1, the circuit component 8 was soldered to the surface of the fired substrate on the surface of the glass insulating layer 4 to complete the process.

また、基板形成プロセスにて導体ペーストのAg粉末の代わりにAgとPdあるいはAgとPtとの混合粉を用いてもよい。またCuを用いることもできるがこの場合には酸化防止のため、焼成をN2雰囲気で行なう必要がある。さらに、表層回路形式工程において、導体ペーストを用いて配線形成後、この配線間に抵抗体を形成する事もできる。   Further, a mixed powder of Ag and Pd or Ag and Pt may be used in the substrate forming process instead of the Ag powder of the conductor paste. Cu can be used, but in this case, firing must be performed in an N2 atmosphere to prevent oxidation. Further, in the surface layer circuit type process, after forming a wiring using a conductive paste, a resistor can be formed between the wirings.

次に、厚膜抵抗6の抵抗値変化を各製造工程終了毎にモニターした結果を図5に示す。また、厚膜抵抗6の焼成を850℃で10分間保持する焼成プロファイルにて焼成した他は実施例と同じ方法で作成した厚膜抵抗の抵抗値変化を示す。図6からわかるように、厚膜抵抗6の抵抗値は、高温焼成する本実施例品の抵抗値変化は比較例品に比べて格段に縮小されていることがわかる。
[第2実施例]
Next, FIG. 5 shows the result of monitoring the change in the resistance value of the thick film resistor 6 at each end of each manufacturing process. In addition, a change in the resistance value of the thick film resistor prepared by the same method as that of the example is shown except that the firing of the thick film resistor 6 is performed at a firing profile of holding at 850 ° C. for 10 minutes. As can be seen from FIG. 6, the resistance value of the thick film resistor 6 is much smaller in the resistance value change of the product of the present example fired at a high temperature than the product of the comparative example.
[Second embodiment]

上記実施例では、レーザートリミングを行わなかったが、厚膜抵抗6の形成後にそのレーザートリミングを行って、厚膜抵抗6の値を精密に所定値に決め、その後、厚膜抵抗6を含む基板1上にガラス絶縁層2〜4を形成してもよい。厚膜抵抗6が高温焼成されているために、その上にガラス絶縁層2〜4を低温焼成しても、図5からわかるように殆ど変わらない。
[第3実施例]
In the above embodiment, the laser trimming was not performed, but the laser trimming was performed after the formation of the thick film resistor 6 to accurately determine the value of the thick film resistor 6 to be a predetermined value. Glass insulating layers 2 to 4 may be formed on 1. Since the thick film resistor 6 is fired at a high temperature, even if the glass insulating layers 2 to 4 are fired at a low temperature on the thick film resistor 6, as shown in FIG.
[Third embodiment]

上記実施例2では、ガラス絶縁層2〜4形成前にレーザートリミングを実施したが、ガラス絶縁層2の形成後にレーザートリミングを行い、その後でガラス絶縁層3、4を形成してもよい。このようにすれば更に抵抗値変動を低減し、更に厚膜抵抗6上をガラス絶縁層3そして4で被覆することができる。
[第4実施例]
In the second embodiment, the laser trimming is performed before the glass insulating layers 2 to 4 are formed. However, the laser trimming may be performed after the glass insulating layer 2 is formed, and then the glass insulating layers 3 and 4 may be formed. By doing so, the resistance value fluctuation can be further reduced, and the thick film resistor 6 can be further covered with the glass insulating layers 3 and 4.
[Fourth embodiment]

他の実施例を説明する。   Another embodiment will be described.

この実施例は、実施例1において、厚膜抵抗6のレーザートリミング後の抵抗値R3と、製造工程完了後の上記厚膜抵抗6の抵抗R4との変化率Rr=R4/R3について多数のサンプルの平均変化率Rrmを計算し、レーザートリミング時にこの平均変化率Rrmを利用してレーザートリミング時の抵抗値R3を決定する。   This embodiment is different from the first embodiment in that a large number of samples of the change rate Rr = R4 / R3 between the resistance value R3 of the thick film resistor 6 after the laser trimming and the resistance R4 of the thick film resistor 6 after the completion of the manufacturing process. Is calculated, and the resistance value R3 at the time of laser trimming is determined using the average change rate Rrm at the time of laser trimming.

例えば厚膜抵抗6の目標抵抗値をRxとする。そこでレーザートリミングにより厚膜抵抗6のレーザートリミング設定抵抗値R3をR3=Rx/Rrmとしてレーザートリミングを行う。このようにすれば、レーザートリミング後にガラス絶縁層焼成などを行い、厚膜抵抗6に熱履歴が加えられる場合でも、この熱履歴による厚膜抵抗6の抵抗値変動を最小限に抑制することが可能となる。   For example, the target resistance value of the thick film resistor 6 is Rx. Therefore, laser trimming is performed by laser trimming with the laser trimming set resistance value R3 of the thick film resistor 6 being R3 = Rx / Rrm. In this way, even when the glass insulating layer is baked after the laser trimming and the thermal history is applied to the thick film resistor 6, the change in the resistance value of the thick film resistor 6 due to the thermal history can be suppressed to the minimum. It becomes possible.

これは、レーザートリミング後のガラス絶縁層や配線の焼成工程が一定であり、それによる抵抗値変動も本質的に一定範囲内に収まるためである。
[第5実施例]
This is because the firing process of the glass insulating layer and the wiring after the laser trimming is constant, and the fluctuation of the resistance value due to the process is essentially within a certain range.
[Fifth embodiment]

実施例4の変形態様を以下に説明する。この実施例では、レーザートリミングにおける抵抗値比較(モニタ抵抗と記憶する目標抵抗との比較)を行うコンピュータのメモリに、回路基板上の全部の厚膜抵抗6に対してそれぞれ、平均変化率Rrmを個別に記憶しておく。   A modification of the fourth embodiment will be described below. In this embodiment, the average rate of change Rrm is stored in the memory of the computer which performs the resistance value comparison (comparison between the monitor resistance and the stored target resistance) in the laser trimming for all the thick film resistors 6 on the circuit board. Store them individually.

これは、回路基板上の位置や、各厚膜抵抗6の抵抗値などにより微妙に平均変化率Rrmが異なるのを補償するためである。このようにすれば、回路基板上の位置や、各厚膜抵抗6の抵抗値などにより微妙に平均変化率Rrmが異なる場合でも、熱履歴による各厚膜抵抗6の抵抗値変動を最小化することができる。
[第6実施例]
This is for compensating that the average change rate Rrm is slightly different depending on the position on the circuit board, the resistance value of each thick film resistor 6, and the like. In this way, even when the average change rate Rrm is slightly different depending on the position on the circuit board, the resistance value of each thick film resistor 6, and the like, the variation in the resistance value of each thick film resistor 6 due to the thermal history is minimized. be able to.
[Sixth embodiment]

実施例5の変形態様を以下に説明する。   A modification of the fifth embodiment will be described below.

回路基板は複数枚(例えば4枚)を1ロットとして同じハンドリング用のボート(たとえばアルミナ製)に載置して、各工程を実施する。この実施例では、レーザートリミングにおける抵抗値比較(モニタ抵抗と記憶する目標抵抗との比較)を行うコンピュータのメモリに、上記ボート上の各回路基板上のレーザートリミングが必要な各厚膜抵抗6の全数に対して、それぞれ平均変化率Rrmを個別に記憶しておく。そしてレーザートリミングが必要な全厚膜抵抗6に対して各抵抗値R3を目標抵抗Rx/Rrmとして個別にレーザートリミングする。   A plurality of circuit boards (for example, four) are set as one lot and mounted on the same handling boat (for example, made of alumina) to perform each process. In this embodiment, in the memory of the computer that performs the resistance value comparison (comparison between the monitor resistance and the stored target resistance) in the laser trimming, the thick film resistors 6 that require laser trimming on each circuit board on the boat are stored. The average rate of change Rrm is individually stored for all the numbers. Then, laser trimming is individually performed on all the thick film resistors 6 requiring laser trimming, with each resistance value R3 as a target resistance Rx / Rrm.

これは、上記セラミックボート上の回路基板の載置位置により、回路基板毎に微妙に温度などが変化し、そのために回路基板上の同一位置に形成される厚膜抵抗6でも上記微妙な温度変化により抵抗値が変動するためである。この実施例によれば、更に一層の抵抗値変動抑制が可能となる。   This is because the temperature or the like changes delicately for each circuit board depending on the mounting position of the circuit board on the ceramic boat. Therefore, even when the thick film resistor 6 formed at the same position on the circuit board has the delicate temperature change, This causes the resistance value to fluctuate. According to this embodiment, the resistance value fluctuation can be further suppressed.

(変形態様)以下、他の変形態様を説明する。   (Modification) Hereinafter, another modification will be described.

変形態様1
実施例4において、厚膜抵抗6の膜厚と熱履歴後の平均変化率Rrmとは一定の関係をもつので、この関係を示すグラフを記憶しておけば、厚膜抵抗6の膜厚を変える度にこのグラフから平均変化率Rrmをサーチすることができ、厚膜抵抗6の膜厚を変える度に一々、平均変化率Rrmを実験的に導出しなくてもよい。
Modification 1
In the fourth embodiment, since the thickness of the thick film resistor 6 and the average rate of change Rrm after the thermal history have a fixed relationship, if a graph showing this relationship is stored, the thickness of the thick film resistor 6 can be reduced. The average change rate Rrm can be searched from this graph every time the change is made, and it is not necessary to experimentally derive the average change rate Rrm each time the thickness of the thick film resistor 6 is changed.

変形態様2
この態様では、厚膜抵抗6形成後でかつガラス絶縁層2形成前に、厚膜抵抗6とガラス絶縁層2との間の固相拡散を防止又は低減するバリア層を少なくとも厚膜抵抗6上に形成する。このバリア層はレーザートリミング前に形成してもよく、その後に形成してもよい。このバリア層の条件としては、厚膜抵抗6との固相拡散が少なく、厚膜抵抗6とガラス絶縁層2との間の固相拡散を低減し、厚膜抵抗6形成後の熱履歴に対して相変化しない絶縁性材料であり、例えば、窒化シリコン膜やアルミナ膜などを採用することができ、製造プロセスとしてはCVD法やPVD法や印刷焼成法などを採用できる。なお、レーザートリミング前に形成する場合には、レーザートリミングにより溶断可能な厚さとする必要がある。
Modification 2
In this embodiment, after the thick film resistor 6 is formed and before the glass insulating layer 2 is formed, a barrier layer for preventing or reducing solid phase diffusion between the thick film resistor 6 and the glass insulating layer 2 is formed on at least the thick film resistor 6. Formed. This barrier layer may be formed before laser trimming, or may be formed thereafter. The condition of the barrier layer is that solid phase diffusion with the thick film resistor 6 is small, solid phase diffusion between the thick film resistor 6 and the glass insulating layer 2 is reduced, and the thermal history after the formation of the thick film resistor 6 is reduced. On the other hand, it is an insulating material that does not change phase, and for example, a silicon nitride film, an alumina film, or the like can be used. As a manufacturing process, a CVD method, a PVD method, a printing firing method, or the like can be used. When formed before laser trimming, it is necessary to have a thickness that can be melted by laser trimming.

変形態様3
この態様では、厚膜抵抗6形成後でかつガラス絶縁層2形成前に又はガラス絶縁層2として、直上のガラス絶縁層よりも軟質又は高弾性の緩衝層を少なくとも厚膜抵抗6上に形成する。この緩衝層はレーザートリミング前に形成してもよく、その後に形成してもよい。この緩衝層の条件としては、厚膜抵抗6との固相拡散が少なく、厚膜抵抗6とガラス絶縁層4との間の固相拡散を低減し、厚膜抵抗6形成後の熱履歴に対して相変化しない絶縁性材料であり、製造プロセスとしてはCVD法やPVD法や印刷焼成法などを採用できる。なお、レーザートリミング前に形成する場合には、レーザートリミングにより溶断可能な厚さとする必要がある。
Modification 3
In this embodiment, after the thick film resistor 6 is formed and before the glass insulating layer 2 is formed, or as the glass insulating layer 2, a buffer layer softer or more elastic than the immediately above glass insulating layer is formed on at least the thick film resistor 6. . This buffer layer may be formed before laser trimming or may be formed after laser trimming. The condition of the buffer layer is that solid-phase diffusion with the thick-film resistor 6 is small, solid-phase diffusion between the thick-film resistor 6 and the glass insulating layer 4 is reduced, and the thermal history after the formation of the thick-film resistor 6 is reduced. On the other hand, it is an insulating material that does not change phase, and a CVD method, a PVD method, a printing firing method, or the like can be adopted as a manufacturing process. When formed before laser trimming, it is necessary to have a thickness that can be melted by laser trimming.

このようにすれば、厚膜抵抗6とガラス絶縁層2又は3との熱膨張係数の差に起因する熱応力をこの緩衝層で緩和することができ、それにより上記熱応力による厚膜抵抗6の抵抗値の変動を低減することができる。   With this configuration, the thermal stress caused by the difference in the coefficient of thermal expansion between the thick film resistor 6 and the glass insulating layer 2 or 3 can be reduced by the buffer layer. Can be reduced.

変形態様4
この態様では、厚膜抵抗6形成後でかつガラス絶縁層2形成前に又はガラス絶縁層2として、直上のガラス絶縁層の熱膨張率と厚膜抵抗6の熱膨張率との中間の熱膨張率を有する緩衝層を設ける。この緩衝層はレーザートリミング前に形成してもよく、その後に形成してもよい。この緩衝層の条件としては、厚膜抵抗6との固相拡散が少なく、厚膜抵抗6とガラス絶縁層4との間の固相拡散を低減し、厚膜抵抗6形成後の熱履歴に対して相変化しない絶縁性材料であり、製造プロセスとしてはCVD法やPVD法や印刷焼成法などを採用できる。なお、レーザートリミング前に形成する場合には、レーザートリミングにより溶断可能な厚さとする必要がある。
Modification 4
In this embodiment, after the thick film resistor 6 is formed and before the glass insulating layer 2 is formed, or as the glass insulating layer 2, a thermal expansion intermediate between the coefficient of thermal expansion of the glass insulating layer immediately above and the coefficient of thermal expansion of the thick film resistor 6. A buffer layer having a modulus is provided. This buffer layer may be formed before laser trimming or may be formed after laser trimming. The condition of the buffer layer is that solid-phase diffusion with the thick-film resistor 6 is small, solid-phase diffusion between the thick-film resistor 6 and the glass insulating layer 4 is reduced, and the thermal history after the formation of the thick-film resistor 6 is reduced. On the other hand, it is an insulating material that does not change phase, and a CVD method, a PVD method, a printing firing method, or the like can be adopted as a manufacturing process. When formed before laser trimming, it is necessary to have a thickness that can be melted by laser trimming.

このようにすれば、厚膜抵抗6とガラス絶縁層2又は3との熱膨張係数の差に起因する熱応力をこの緩衝層で緩和することができ、それにより上記熱応力による厚膜抵抗6の抵抗値の変動を低減することができる。   With this configuration, the thermal stress caused by the difference in the coefficient of thermal expansion between the thick film resistor 6 and the glass insulating layer 2 or 3 can be reduced by the buffer layer. Can be reduced.

変形態様5
この態様では、厚膜抵抗6に含まれるガラスの主成分を結晶化ガラスとする。
Modification 5
In this embodiment, the main component of the glass contained in the thick film resistor 6 is crystallized glass.

このようにすれば、厚膜抵抗6の内部のガラスが厚膜抵抗6の焼成時に結晶化し、結晶化ガラスの融点が高くなる。好適には、結晶化状態で非晶質状態のときより融点が50℃以上上昇する組成が好ましい。したがって、その後の絶縁層の焼成工程における絶縁層と厚膜抵抗6との相互反応をより良好に抑止することができる。   In this way, the glass inside the thick film resistor 6 is crystallized when the thick film resistor 6 is fired, and the melting point of the crystallized glass increases. Preferably, a composition in which the melting point is increased by 50 ° C. or more in the crystallized state compared to the amorphous state is preferable. Therefore, the mutual reaction between the insulating layer and the thick film resistor 6 in the subsequent step of firing the insulating layer can be more effectively suppressed.

さらに厚膜抵抗6内部のガラスだけでなく、ガラス絶縁層2に含まれるガラスの主成分をも結晶化ガラスとしても同様の効果が生じる。すなわち、ガラス絶縁層2に含まれるガラスの主成分が結晶化ガラスとなることにより、焼成後のガラス絶縁層2とそれに隣接する厚膜抵抗6との相互反応が抑制される。これにより、厚膜抵抗6の抵抗値変動を低減することができる。   Further, the same effect is obtained by using not only the glass inside the thick film resistor 6 but also the main component of the glass contained in the glass insulating layer 2 and the crystallized glass. That is, since the main component of the glass contained in the glass insulating layer 2 is crystallized glass, the interaction between the fired glass insulating layer 2 and the thick film resistor 6 adjacent thereto is suppressed. Thereby, the resistance value fluctuation of the thick film resistor 6 can be reduced.

実施例1の厚膜多層基板を示す模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating a thick-film multilayer substrate according to the first embodiment. 実施例1の製造工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view illustrating a manufacturing process of the first embodiment. 実施例1の製造工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view illustrating a manufacturing process of the first embodiment. 実施例1の製造工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view illustrating a manufacturing process of the first embodiment. 実施例1における各工程後の厚膜抵抗の抵抗値の変動を示す図である。FIG. 6 is a diagram illustrating a change in a resistance value of a thick film resistor after each step in Example 1. 従来の厚膜多層基板の各部に形成された3個の抵抗の各工程後の抵抗値の変動を示す図である。It is a figure which shows the fluctuation | variation of the resistance value after each process of three resistors formed in each part of the conventional thick film multilayer substrate.

符号の説明Explanation of reference numerals

1…基板、2〜4…ガラス絶縁層、6…厚膜抵抗   1: substrate, 2-4: glass insulating layer, 6: thick film resistor

Claims (8)

セラミック基板上に厚膜抵抗を印刷して焼成する厚膜抵抗形成工程と、前記厚膜抵抗及び前記セラミック基板の表面に第1の絶縁層を印刷して焼成する絶縁層形成工程とを備える厚膜多層基板の製造方法において、
前記厚膜抵抗を前記厚膜抵抗に接する前記第1の絶縁層よりも高温で焼成するとともに、前記厚膜抵抗を820〜1050℃で焼成し、且つ前記厚膜抵抗を前記第1の絶縁層よりも20〜100℃高温で焼成することを特徴とする厚膜多層基板の製造方法。
A thick film resistor forming step of printing and firing a thick film resistor on a ceramic substrate; and an insulating layer forming step of printing and firing a first insulating layer on the surface of the thick film resistor and the ceramic substrate. In the method for manufacturing a film multilayer substrate,
The thick film resistor is fired at a higher temperature than the first insulating layer in contact with the thick film resistor, the thick film resistor is fired at 820 to 1050 ° C., and the thick film resistor is fired at the first insulating layer. Baking at a temperature higher by 20 to 100 ° C. than the above.
前記厚膜抵抗は、前記第1の絶縁層よりも後に印刷、焼成される第2の絶縁層よりも高温で焼成される請求項1記載の厚膜多層基板の製造方法。 2. The method according to claim 1, wherein the thick film resistor is fired at a higher temperature than a second insulating layer printed and fired after the first insulating layer. 前記厚膜抵抗をレーザートリミングした後、前記第1の絶縁層を形成する請求項1記載の厚膜多層基板の製造方法。 2. The method according to claim 1, wherein the first insulating layer is formed after the thick film resistor is laser-trimmed. 前記レーザートリミング直後の前記厚膜抵抗の抵抗値と、前記厚膜抵抗の高温工程終了時の抵抗値との比率を記憶し、前記比率に基づいて目標抵抗値を予め補正して得た抵抗値に基づいてレーザートリミングを実施する請求項1記載の厚膜多層基板の製造方法。 A resistance value obtained by storing the ratio between the resistance value of the thick film resistor immediately after the laser trimming and the resistance value of the thick film resistor at the end of the high-temperature step, and correcting the target resistance value in advance based on the ratio. 2. The method according to claim 1, wherein laser trimming is performed based on the following. セラミック基板上に厚膜抵抗を印刷して焼成する厚膜抵抗形成工程と、前記厚膜抵抗及び前記セラミック基板の表面に絶縁層を印刷して焼成する絶縁層形成工程とを備える厚膜多層基板の製造方法において、
前記厚膜抵抗に含まれるガラスを前記厚膜抵抗の焼成により結晶化ガラスとすることを特徴とする厚膜多層基板の製造方法。
A thick film multilayer substrate comprising: a thick film resistor forming step of printing and firing a thick film resistor on a ceramic substrate; and an insulating layer forming step of printing and firing an insulating layer on the surface of the thick film resistor and the ceramic substrate. In the manufacturing method of
A method for manufacturing a thick-film multilayer substrate, wherein the glass contained in the thick-film resistor is crystallized glass by firing the thick-film resistor.
前記厚膜抵抗に含まれるガラスにおける結晶化状態では、非晶質状態のときより融点が50℃以上上昇する組成である請求項5記載の厚膜多層基板の製造方法。 6. The method for manufacturing a thick-film multilayer substrate according to claim 5, wherein the composition of the glass contained in the thick-film resistance has a melting point higher by 50 ° C. or more than in the amorphous state. セラミック基板上に厚膜抵抗を印刷して焼成する厚膜抵抗形成工程と、前記厚膜抵抗及び前記セラミック基板の表面に絶縁層を印刷して焼成する絶縁層形成工程とを備える厚膜多層基板の製造方法において、
前記絶縁層に含まれるガラスを前記絶縁層の焼成により結晶化ガラスとすることを特徴とする厚膜多層基板の製造方法。
A thick film multilayer substrate comprising: a thick film resistor forming step of printing and firing a thick film resistor on a ceramic substrate; and an insulating layer forming step of printing and firing an insulating layer on the surface of the thick film resistor and the ceramic substrate. In the manufacturing method of
A method for manufacturing a thick-film multilayer substrate, wherein the glass contained in the insulating layer is crystallized glass by firing the insulating layer.
前記絶縁層は前記厚膜抵抗に接する第1の絶縁層である請求項7記載の厚膜多層基板の製造方法。 8. The method according to claim 7, wherein the insulating layer is a first insulating layer in contact with the thick film resistor.
JP2004209427A 1992-12-22 2004-07-16 Method for producing thick film multilayer substrate Expired - Fee Related JP3719518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209427A JP3719518B2 (en) 1992-12-22 2004-07-16 Method for producing thick film multilayer substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34280392 1992-12-22
JP2004209427A JP3719518B2 (en) 1992-12-22 2004-07-16 Method for producing thick film multilayer substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31054393A Division JP3635669B2 (en) 1992-12-22 1993-12-10 Method for producing thick film multilayer substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005141650A Division JP2005277436A (en) 1992-12-22 2005-05-13 Method of producing thick-film multi-layer substrates

Publications (2)

Publication Number Publication Date
JP2004289187A true JP2004289187A (en) 2004-10-14
JP3719518B2 JP3719518B2 (en) 2005-11-24

Family

ID=33301384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209427A Expired - Fee Related JP3719518B2 (en) 1992-12-22 2004-07-16 Method for producing thick film multilayer substrate

Country Status (1)

Country Link
JP (1) JP3719518B2 (en)

Also Published As

Publication number Publication date
JP3719518B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US6436316B2 (en) Conductive paste and printed wiring board using the same
JPH10224004A (en) Thick film resistor paste
JPH08236936A (en) Laminated glass-ceramic circuit board
US5593722A (en) Method of producing thick multi-layer substrates
JP3635669B2 (en) Method for producing thick film multilayer substrate
US6037045A (en) Thick-film paste and ceramic circuit substrate using the same
US5955938A (en) RuO2 resistor paste, substrate and overcoat system
JP2004289187A (en) Manufacturing method of thick film multilayer substrate
EP0704864B1 (en) Resistor on a ceramic circuit board
JP2005277436A (en) Method of producing thick-film multi-layer substrates
JP3605837B2 (en) Method for manufacturing thick film multilayer substrate
CN100590754C (en) Resistance body ointment, resistance body, and circuit substrate using the resistance body
JP2004075534A (en) Insulating composition
JPH09298368A (en) Ceramic wiring board
JP2515202B2 (en) Ceramic wiring board and manufacturing method thereof
JP2004186427A (en) Thick film circuit board and method for manufacturing the same
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JPH10106349A (en) Silver-based conductive paste
JP2760035B2 (en) Thick film circuit board
JP2004320052A (en) Method for manufacturing thick-film multilayer substrate
JPH04328207A (en) Conductor compound and wiring board
JP3210587B2 (en) Low temperature firing ceramic circuit board
JPH06196860A (en) Thick-film multilayer board
JPS61154104A (en) Film resistor
JP2505107B2 (en) Ceramic multilayer wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees