JP2004284024A - Phase transition optical recording medium - Google Patents

Phase transition optical recording medium Download PDF

Info

Publication number
JP2004284024A
JP2004284024A JP2003075317A JP2003075317A JP2004284024A JP 2004284024 A JP2004284024 A JP 2004284024A JP 2003075317 A JP2003075317 A JP 2003075317A JP 2003075317 A JP2003075317 A JP 2003075317A JP 2004284024 A JP2004284024 A JP 2004284024A
Authority
JP
Japan
Prior art keywords
phase
phase change
layer
recording medium
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003075317A
Other languages
Japanese (ja)
Inventor
Mikiko Abe
美樹子 安部
Hajime Yuzurihara
肇 譲原
Koji Deguchi
浩司 出口
Eiko Suzuki
栄子 鈴木
Yuji Miura
裕司 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003075317A priority Critical patent/JP2004284024A/en
Publication of JP2004284024A publication Critical patent/JP2004284024A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase transition optical recording medium showing successful recording reproduction properties not depending on the frequency of overwrite. <P>SOLUTION: This phase transition optical recording medium has a first protecting layer 2, a phase transition recording layer 3 which enables the reversible phase transition of an amorphous phase and a crystalline phase to occur, a second protecting layer 4 and a reflective layer 6, laminated on the upper surface of a transparent substrate 1 with a laser beam track (a guide groove). In addition, in this medium which records and/or reproduces information by illuminating the laser beam, a spacing in the crystalline phase after initialization of the phase transition recording layer 3, is 2.9 to 3.3Å, and the crystal face which is perpendicular with the upper surface of the substrate 1 is orientated at an angle of 30±15° with the tangential direction of the track. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光の案内溝が設けられた透明な基板の上面に、第一保護層、非晶質相と結晶相の可逆的相変化をする相変化記録層、第二保護層、反射層を備え、前記レーザ光を照射して情報の記録及び/または再生を行う相変化光記録媒体に関する。
【0002】
【従来の技術】
近年、情報量の増大に伴い高密度でかつ高速に大量データの記録・再生ができる記録媒体が求められている。光ビームを照射し、情報の記録・再生を行う相変化光記録媒体、特に相変化光ディスクは、信号品質に優れているため高密度化が可能で、1ビームオーバーライトが容易なことから高速アクセス性に優れた記録媒体である。
相変化光ディスクは、レーザ光の案内溝が設けられた透明な基板の上面に、第一保護層、非晶質相と結晶相の可逆的相変化をする相変化記録層、第二保護層、金属からなる反射層をこの順に備え、さらに反射層の上に樹脂保護層を備えてなる。また、貼り合わせ型光ディスクの場合には、上述した構成を片方の面に用いるか、または、接着層を介して両面に反射層どうしを向かい合わせて貼り合わせる構成となる。
【0003】
上述の相変化光ディスクは一般に、スパッタリング法、真空蒸着法などによる真空プロセスで成膜して製造されるが、これらの方法で成膜される相変化記録層は、成膜直後の状態、即ち、as−depo(アズ・デポ)状態では、非晶質である場合が多い。オーバーライト時にも、非晶質(マーク)が形成されるが、as−depo状態において、相変化記録層には結晶核が殆どないことから、as−depo状態の非晶質は、オーバーライト時に形成される非晶質とは異なり、結晶化に要する時間が非常に長い。そのため、相変化光ディスクを製造後、出荷前に相変化記録層を結晶化するための初期化工程を設けている。
【0004】
次に、相変化光ディスクに1ビームオーバーライト方式で情報を記録する手順について説明する。
相変化記録層の非晶質相と結晶相の可逆的相変化は、パルス化された3つの出力レベルの集束レーザビームによって行う。なお、最も高い出力レベルのレーザビームは、相変化記録層の溶融に用い、中間の出力レベルのレーザビームは、融点直下、結晶化温度よりも高い温度まで相変化記録層を加熱するのに用い、最も低いレベルのレーザビームは、相変化記録層の加熱または冷却の制御に用いる。
【0005】
相変化光ディスクに情報を記録するには、最も高い出力レベルのレーザビームを所望の箇所に照射して、相変化記録層を急激に熱して溶融し、それに続けて急冷する。すると、相変化記録層の原子配列が乱れたまま固定化して非晶質または微結晶となり、反射率が低下して記録マークとなる。一方、所望の箇所以外には、中間の出力レベルのレーザビームを照射して、徐熱徐冷して相変化記録層の原子配列を元に戻すことにより結晶質にする。これにより、相変化記録層に結晶領域と非晶質領域が作成され、情報が記録される。
また、情報の記録された相変化光ディスクの情報を新たな情報に書き換える場合も、上述の記録の方法と同様である。
【0006】
このようにして情報が記録または書き換えられた相変化光ディスクを再生するには、再生用のレーザビームを照射して、通常、相変化記録層の非晶質−結晶間の可逆的相変化現象に伴う反射率差又は反射光位相差を利用して再生する。
【0007】
相変化光記録媒体は、今後、高密度画像記録への用途拡大が予想され、そのため記録媒体の容量・密度の増加が求められるため、高線速記録が必須となる。しかしながら、上述のような1ビームオーバーライト方式で高線速記録を行う場合、繰り返し記録初期(オーバーライト回数が1回から10回程度まで)の消去率が低く、初期化後に情報の書換えを何回か繰り返さなければ安定した消去率を得ることができないという問題があり、それを解決すべく技術が開示されてきた(例えば、特許文献1など)。
【0008】
【特許文献1】
特許第2830336号公報
【0009】
【発明が解決しようとする課題】
このような繰り返し記録初期に起こる消去率の低下の原因の一つとして、初期化後の相変化記録層の結晶状態と、非晶質マークをオーバーライト消去して再形成した結晶状態とが異なるために反射率の不均一が生じ、その結果、ジッターが増大することが考えられる。一方、オーバーライト回数が10回程度以降で消去率が安定する理由は、オーバーライト回数10回までに初期化後の結晶状態が全て非晶質マークをオーバーライト消去した後の結晶状態へ移り、反射率が均一になるためと考えられる。
【0010】
そこで、この発明の目的は、オーバーライト回数に依らない良好な記録再生特性を有する相変化光記録媒体を提供することにある。
【0011】
【課題を解決するための手段】
このため、請求項1に記載の発明は、レーザ光の案内溝が設けられた透明な基板の上面に、第一保護層、非晶質相と結晶相の可逆的相変化をする相変化記録層、第二保護層、反射層を備え、前記レーザ光を照射して情報の記録及び/または再生を行う相変化光記録媒体において、
前記相変化記録層の初期化後の結晶相にあって、面間隔が2.9〜3.3Å、かつ前記基板の上面に垂直である結晶面が、前記案内溝の接線方向と30±15°をなす角で配向することを特徴とする。
【0012】
請求項2に記載の発明は、請求項1に記載の相変化光記録媒体において、前記相変化記録層がGeαSbβTe(1−α―β)からなり、その原子比率が0.02≦α≦0.07、0.65≦β≦0.80であることを特徴とする。
【0013】
請求項3に記載の発明は、請求項1または2に記載の相変化光記録媒体において、前記相変化記録層が添加元素を原子比率で0.01〜0.10含み、前記添加元素として、Ga、In、Tl、Pb,Sn、Bi、Cd,Hg、Ag、Cu、Mn、Dyのうち、少なくとも一種類を用いることを特徴とする。
【0014】
請求項4に記載の発明は、請求項2または3に記載の相変化光記録媒体において、照射光パワー密度が10〜30mW/μmであり、かつ照射光ビーム線速度が前記相変化記録層の結晶化限界速度に対し±2m/sの範囲で前記初期化が行われることを特徴とする。
【0015】
請求項5に記載の発明は、請求項1ないし4のいずれかに記載の相変化光記録媒体において、前記相変化記録層と前記第一保護層との間及び/又は前記相変化記録層と前記第二保護層との間に酸化物層を備えることを特徴とする。
【0016】
請求項6に記載の発明は、請求項5記載の相変化光記録媒体において、前記酸化物層が、ZrO、AlTiO、SiO、ZnO、In、SnO、PbOのうちの少なくとも一種類からなることを特徴とする。
【0017】
請求項7に記載の発明は、請求項5または6に記載の相変化光記録媒体において、前記酸化物層の膜厚が、8nm未満であることを特徴とする。
【0018】
【発明の実施の形態】
以下、上記発明について具体的に説明する。
この発明の相変化光記録媒体は、例えば、レーザ光の案内溝が設けられた透明な基板の上面に、第一保護層、非晶質相と結晶相の可逆的相変化をする相変化記録層、第二保護層、反射層を備えてなる。
初期化後の相変化記録層の結晶構造は、初期化方法に大きく依存する。そこで本発明者らは、この事実に注目して様々な条件で初期化を行い、相変化記録層の結晶状態と繰り返し記録初期の記録特性(オーバーライト回数が1回から10回程度までの記録特性、以下「繰り返し記録初期の特性」という。)との関係を調査したところ、基板面に対して垂直な結晶面に対し、ある特定の結晶の結晶面がある特定の方向に強く配向するとき、繰り返し記録初期の特性が改善されることが判った。
ここで「ある特定の結晶」とは、面間隔が2.9〜3.3Åの結晶を意味し、また「ある特定の方向」とは、基板に垂直な結晶面がトラック接線方向に対して30±15°の角度をなす方向をいう。
【0019】
相変化記録層中でこのような条件を満たす結晶が多く存在すると、繰り返し記録初期の特性が改善できる理由としては、次のようなことが考えられる。すなわち、非晶質マークをオーバーライト消去により結晶へと再形成する際に、結晶化の進む方向(レーザ走査方向=トラック方向)に沿って非晶質マーク周辺にある特定の方向に配向した結晶が多く存在すると、マーク周辺の構造を下地としてエピタキシャル成長が起こりやすくなり、初期化による結晶化後の相変化記録層の結晶組織と非晶質マークをオーバーライト消去により再形成した結晶の結晶組織との間の不均一性が解消されるためであると考えられる。
また、ノイズ発生の原因の一つと考えられている、結晶相に微細な結晶粒界が存在する場合に対しても、このように結晶粒(結晶面)がある一定の方向に揃うことで回避することができる。
【0020】
本発明の相変化光記録媒体に備える相変化記録層は、後述するように初期化によって結晶化した相変化記録層の面内回折測定の結果において、ある特徴的な強度分布を示すことを特徴としている。
この特徴的な配向の面は、回折角2θ=27〜30度に回折ピークを有する面(面間隔が2.9〜3.3Åの結晶)であり、この面に関して試料を360°回転させながら強度変化を測定した際、φ=45°、225°においてある特定の結晶面の極大値が存在し、この方向以外に他に配向が少ないことを特徴としている。
【0021】
具体的には図1及び図2に示すように、試料の回転角(φ)を、X線の入射方向と基板上のトラック接線方向とが互いに平行である場合を便宜上φ=0°と定め、検出器をθ=27〜30°付近で固定したまま試料を回転させ、出射してくるX線回折強度を測定したとき、φ=45°および225°においてX線回折強度のピークが認められることを意味している。このことは、X線の回折原理より、結晶の結晶面がトラック接線方向と30°前後(本発明においては、30±15°とする。)をなす角で配向している状態であることを意味している。
【0022】
上記の結晶状態を実現することが可能な相変化記録材料としては、不均一核形成により結晶化が進行するSb0.7Te0.3近傍組成のSb−Te2元系合金を母相に、これに必須元素としてGeが含まれ、更にGa、In、Tl、Pb,Sn、Bi、Cd,Hg、Ag、Cu、Mn、Dyから選ばれた少なくとも一種の元素が原子比率で0.01〜0.10添加された相変化記録材料であることが好ましい。
【0023】
ここで均一核形成による結晶化とは、比較的低温でまず結晶の核形成が均一に起こり、その後形成された核を中心に比較的高温で結晶成長することによって進行する結晶化のことである。不均一核形成による結晶化とは、核形成はほとんど起こらず、既に存在する結晶領域と非晶質(マーク)領域の界面からの結晶成長により結晶化が進行することを指す。本発明においては、不均一核形成により結晶化が進行することで、この発明が効果を奏する。
【0024】
以下に、本発明の相変化記録層を構成する各元素の最適組成範囲について述べる。SbとTeのモル比が7:3であるSb70Te30近傍組成のSb−Te二元系合金は、オーバーライトによる組成偏析が起こり難く、繰り返し記録特性に優れた相変化記録材料である。SbとTeの配合比を変えることで後述する「結晶化限界速度」を調整することが可能であり、Sb比率を高くすると結晶化限界速度が速くなり転送速度を高速にすることができる。本発明の対象となる相変化光記録媒体においては、Sbの最適組成範囲は、Sbの原子比率が0.65以上、0.80以下である。これは、Sbの原子比率が0.65より少ないとオーバーライトによるジッター増加が大きくなり、記録特性を改善することが困難となってしまうからであり、また逆にSbが過剰な場合は、結晶化速度の上昇が急激となりマーク形成が困難となるほか、保存信頼性が劣化してしまうからである。
【0025】
一方Geは、Gaほど結晶化温度を上昇させることなく、少量の添加で相変化光記録媒体の保存信頼性を飛躍的に向上させることができるため、必須の添加元素である。このとき添加するGeの原子比率は、0.02以上で結晶化速度の速い記録層のアモルファス安定性を向上させる効果が現れ、添加量が増えるに従いその効果は高くなるが、過剰の添加は、オーバーライトによるジッタ−上昇などの弊害を招くことから上限は原子比率で0.07とする必要がある。
【0026】
またGaは、少ない添加量で結晶化限界速度、記録層材料の結晶化温度を高める効果を持つことから、非晶質マークの安定性に優れた相変化光記録媒体を提供することが可能である。しかし、Gaの添加量が多すぎると結晶化温度が高くなり過ぎ、初期化時に均一な結晶相を得ることが難しくなるためGaの組成範囲は、原子比率で0.10以下とすることが好ましい。
【0027】
InもGaと同様の効果を持つが、Gaほど結晶化温度を上昇させないので、初期化の問題を考慮した場合、Gaを補う元素として用いると有効である。更にGa、In以外に、Tl、Pb、Sn、Bi、Cd、Hgにも結晶化限界速度を速くする効果がある。これらの元素を添加することにより、結晶化限界速度が速くなる理由は不明であるが、仮にSb−Te合金の結晶化が促進されることに依るならば、これらの元素の中でもSbと同じ価数を取り易いGa、In、Biはより好ましく、また、Sbに最も原子番号が近くSbとの親和性が高いと思われるSnも好ましい。しかし、添加量が多すぎると再生光劣化や繰り返し記録初期の特性劣化を引き起すことが予想されるため、組成範囲は何れも10at%以下とする必要がある。また、本発明者らの調査により、添加元素として、MnやDyについてもInと同様の効果を奏することが分っており、特にMnは、結晶化速度を速め、かつ、Ge添加量をそれほど増やす必要のない保存信頼性にも優れた添加元素であることも分っている。
さらに、上述の添加元素と共に、Cu及び/又はAuを含有させることが望ましい。Cu,Auは、保存信頼性に効果のある添加元素であることから、上述の添加元素と共に適当に組み合わせることによって、所望の高線速度光記録媒体を実現し、かつ初期化後反射率とオーバーライト反射率の不均一性を解消し易い記録材料を設計することができる。
【0028】
相変化記録層の膜厚については、8〜20nmの範囲が望ましい。8nmより薄いと繰り返し記録特性の劣化が著しくなる。20nmより厚いと、相変化記録層の均一な初期化が行い辛くなり、また光透過率が不十分となるため高反射率が得られず変調度も低下してしまう。
【0029】
また、成膜条件によっても相変化記録層の初期化直後の非晶質状態(as−depo状態)は変化する。as−depo状態では、基板上で原子が乱雑に配列しており、その乱雑さが大きいほど初期化に長く時間を要し、所望の結晶状態を得ることが困難となる。しかし、低ガス圧、かつ高電圧でのスパッタリング法による成膜において基板上に飛来するスパッタ粒子は、通常のスパッタリングにおけるスパッタ粒子に比べて大きな運動エネルギーを持っていると考えられており、ある程度の秩序性を持った配向膜が形成されやすく、初期化後に所望の結晶状態を得やすい。従って、相変化記録層の成膜に際し、低ガス圧、かつ高電圧でのスパッタリング法を採用することが好ましい。
【0030】
なお、本発明者らは、相変化記録層と第一保護層との間及び/又は相変化記録層と第二保護層との間に酸化物層を設けると、所望の結晶状態を得やすいことも判った。これは、従来、保護層として用いられているZnS−SiOに比べ、一般に酸化物層の熱伝導率が低いために、初期化のエネルギーを効率よく相変化記録層に吸収させることによると考えられる。このような効果は、酸化物層を例えば1nm程度設けた場合でも期待できるが、膜厚が厚くなると記録媒体の保存信頼性が劣化する不具合が生じてしまうため、酸化物層の膜厚は8nm未満、好ましくは2〜4nm程度に薄くして保存信頼性の劣化を防止する必要がある。
【0031】
また、酸化物層は、ZrO、Al、TiO、SiO、ZnO、In、SnO、PbOから選ばれた少なくとも一種の酸化物からなることが望ましい。このうち、特にZrOは、機械的強度に極めて優れるため、繰り返し記録初期の特性を改善するばかりでなく、オーバーライト1000回以上の多数回の書換えに対しても記録特性を劣化させることがない。加えて、熱伝導率が極めて低いので、低い記録パワーでも記録時の記録層到達温度がZnS−SiO保護層のみを設けただけの従来の記録媒体に比べて高くなり、マーク形成に必要な急冷構造が実現されるため感度の向上も図ることが可能である。
【0032】
さらに、ZrOを主成分とする酸化物層には、ZrO以外に酸化チタンを含むことが望ましく、更には希土類酸化物又はベリリウムを除くIIa族の酸化物を含むことが望ましい。これは、酸化チタンを添加することで酸化物層の熱伝導率を更に低下させることが可能であり、また、光学特性の調整や信頼性劣化の低減にも効果的であること、一方、希土類酸化物又はベリリウムを除くIIa族の酸化物に関してはZrOの温度に対する体積変化を小さくする効果があり、初期化や記録時の温度変化に対する安定性を向上させることなどがその理由である。
【0033】
このような効果を得る為には、酸化チタンの含有量を、酸化物層材料全体の60モル%以下とすること、希土類酸化物又はベリリウムを除くIIa族の酸化物の含有量はZrOに対して1〜10モル%とすることが望ましい。酸化チタンの含有量は、必ずしもこの範囲に限定はされないが、60モル%を超えるとZrOを含む酸化物層の効果が不明瞭となることから上記範囲が適している。また、好ましい希土類酸化物又はベリリウムを除くIIa族の酸化物としては、Y、Mg、Caなどの酸化物が挙げられる。ZrOにY、Mg、Ca等の酸化物を固溶させただけの酸化物層の場合は、記録媒体の保存信頼性劣化が顕著となるため、TiOなどの酸化物と併用して添加することが望ましい。
【0034】
その他の酸化物材料Al、TiO、SiO、ZnO、In、SnO、PbOについても、ZrOとほぼ同等の効果を有すことがわかっている。
このうち、AlはZrOを界面層材料として使用した記録媒体に比べて保存信頼牲をそれ程損なわないため、保存安定性が問題となる記録媒体の場合には最適材料である。
【0035】
次に、上述の相変化記録層を備える相変化光記録媒体の初期化方法について説明する。
照射光パワー密度を10〜30mW/μmで、照射光ビーム線速度を相変化記録層の結晶化限界速度に対し±2m/sの速度範囲で初期化する。
【0036】
照射光パワー密度は、高線速記録用に結晶化限界速度の速い記録層材料を用いると、記録層材料の結晶化限界速度が速くなるにつれて初期化がし難くなり、高出力のパワーが必要であったこと、また、高出力の初期化パワーであっても、線速度と送り幅が一定の場合、照射光パワー密度が10〜30mW/μmであると繰り返し記録初期の特性(特にオーバーライト回数1回目の記録特性、以下「DOW1」という。)が一層改善されたことから、照射光パワー密度を10〜30mW/μmに決定した。
【0037】
また、照射光ビーム線速度は、本発明者らが照射光パワー密度範囲において高線速記録時の繰り返し記録初期の特性とビーム線速度の関係を調査したところ、相変化記録層の結晶化限界速度に対し±2m/sの線速度範囲内で初期化された記録媒体は、繰り返し記録初期の特性が良好であったことから、相変化記録層の結晶化限界速度に対し±2m/sに決定した。
【0038】
なお、「結晶化限界速度」とは、本発明者らが経験に基づき考案して定義した記録層材料の特性を表す物性値であり、回転する光ディスクに一定パワーのDC光を照射し、光ディスク反射率の照射光ビーム線速度(すなわち、光ディスク回転速度)依存性(但し記録/再生系での線速度依存性)を評価したとき、図3に示すような反射率の急激な低下が始まる時の線速度のことを意味する。これは、「一定パワーのDC光」を前述の記録原理における中間出力のレーザパルス(消去パルス)に見立て、記録/再生系の照射光ビーム線速度を上昇させたときにどの線速度まで結晶化(消去)が可能であるかについて着目した評価方法である。
【0039】
図3を例にとると、記録層材料の結晶化限界速度(図中太線)に対して2m/sを超える速い線速度で初期化を行うと満足な結晶化が実現されず、また記録層材料の結晶化限界速度に対して2m/sよりも遅い線速度で初期化を行うと、初期化プロセスに時間がかかり実用的でないばかりか、繰り返し記録初期の特性劣化の問題を解消し難くなることが判る。
【0040】
図4には、DOW1ジッターの初期化パワー依存性を示し、また図5では、図4においてAで示すDOW1ジッターが高くなる初期化条件(Pi=9.3mW/μm)と、Bで示すDOW1ジッターが低くなる初期化条件(Pi=12mW/μm)でそれぞれ初期化した場合の相変化記録層のX線面内回折の測定結果を示した。
【0041】
図5によると、φ=45°および225°に観察されるX線回折強度のピークは、DOW1ジッターが高くなる初期化条件で初期化した場合に比べて、DOW1ジッターが低くなる初期化条件で初期化した場合の方が顕著になっていることがわかる。すなわち、DOW1ジッターが低くなる初期化条件(Pi=12mW/μm)で初期化した相変化記録層は、DOW1ジッターが高くなる初期化条件(Pi=9.3mW/μm)で初期化した相変化記録層に比べて、結晶がトラック接線方向と30±15°をなす角でより強く配向し、相変化記録層の記録特性を向上させることができる。
【0042】
なお、φ=135°または315°の角度においてもX線回折強度のピークが観察されているが、これは、相変化記録層を構成するSb−Te二元系共晶合金が立方晶系である性質上、結晶面がトラック接線方向と30±15°をなす角で配向する結晶が増大する(あるいは大きく成長する)につれ、45°から90°ずれた135°、225°から90°ずれた315°においてもX線回折強度のピークが同様に観察されるためと思われる。
【0043】
このように上記範囲において「ある特定の条件を満たす結晶構造」が相変化記録層中で最大に存在するように適切な初期化条件を選択すれば、繰り返し記録初期の特性に優れた光記録媒体を実現することができる。
【0044】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。但し、これら実施例や使用した初期化装置等については、本発明をなんら制限するものではない。
【0045】
[実施例1]
図6には、この発明の相変化光記録媒体の一例としての相変化光ディスクの概略断面図を示す。相変化光ディスクは、レーザ光の案内溝が設けられた透明な1基板の上面に、第一保護層2、非晶質相と結晶相の可逆的相変化をする相変化記録層3、第二保護層4、硫化防止層5、反射層6、樹脂保護層7を備え、接着シートを介して貼り合せ用基板8を貼着してなる。
【0046】
基板1は、直径12cm、厚さ0.6mmのポリカーボネート製で、トラック(案内溝)ピッチ0.74μmである。第一保護層2は、厚さ65nmのZnS(80mol%)−SiO(20mol%)からなる層である。相変化記録層3は、厚さ17nmのGeSb69Te20InAgからなる層であり、前述のように初期結晶化後の結晶相が、以下の条件に示されるある特定の方向に、強く配向した状態であることに特徴がある。すなわち、面間隔が2.9〜3.3Åの結晶であり、基板1の上面に垂直である結晶面が、トラックの接線方向と30±15°の角度をなす。第二保護層4は、厚さ14nmのZnS(80mol%)−SiO(20mol%)からなる層である。硫化防止層5は、厚さ4nmのSiからなる層である。反射層6は、厚さ140nmのAgからなる層である。貼り合せ用基板8は、基板1と同一の、直径12cm、厚さ0.6mmのポリカーボネート製である。
【0047】
まず、基板1の上に、スパッタリング法により、第一保護層2、相変化記録層3、第二保護層4、硫化防止層5、反射層6をこの順に成膜し、その上にスピンコート法により樹脂保護層7を成膜し、さらに、貼り合せ用基板8を接着シートで貼り合せると、相変化光ディスクとなる。
【0048】
次に、この相変化光ディスクの初期化方法について説明する。
本実施例では、日立コンピュータ機器社製(POP240―E4)を用いて相変化光ディスクの初期化を行った(以下の実施例、比較例においても同じ装置で初期化した。)。また、繰り返し記録初期の特性の評価は、波長660nm、NA0.65のピックアップを有する光ディスク評価装置(パルステック社製DDU−1000)を用いて記録線速度14.0m/s、線密度0.267μm/bitのもと、EFM+変調方式でランダム信号の繰り返し記録(2回)を行い、再生線速3.5m/s、再生パワー=0.7mWでDOW1特性(ジッター)を評価した。ここでジッターとは、data to clock jitter(データ・ツー・クロック・ジッター)σを検出窓幅Twで規格化した値のことである。また保存信頼性については、上記ディスクを80℃85%RH恒温槽に300時間放置したのち、再び記録特性を評価することで確認した。
【0049】
下記表1に示すように、相変化光ディスクを照射光パワー密度12.0mW/μm、照射光ビーム線速度9.0m/sで初期化し、繰り返し初期の記録特性評価、及び保存信頼性の評価を行った。その結果を下記表2に示す。
【0050】
【表1】

Figure 2004284024
【0051】
【表2】
Figure 2004284024
【0052】
なお、評価基準は次の通りである。
(1)記録線速度14m/sにおけるDOW1特性について、ジッターが10%以下の場合を「○」、10%より大きい場合を「×」とした。
(2)保存信頼性については80℃85%RH恒温槽で300時間放置した後のジッター変動が0.5%以内の場合を「○」、0.5%を超えてジッターが変動した場合を「×」、未評価のものを「−」とした。
【0053】
本実施例では、DOW1特性、及び保存信頼性の両項目において良好な結果を得ることができた。また、評価後に相変化記録層3のX線面内回折を測定したところ、結果は下記の回折条件を満たすものであった。(以下、実施例において、下記回折条件を満たした場合は○、満たさなかった場合は×で示した。)
回折条件:
図1及び図2で示すように、基板面に対しほぼ平行にX線を入射(入射角0.2〜0.5°)させ、回折したX線を基板面に対しほぼ平行に検出するX線面内回折測定(基板面に対して垂直な格子面を測定する方法)において、前述したように検出角を2θ=27〜30°付近に固定し、結晶化した相変化記録層を持つ光記録媒体の反射層及び保護層を剥がした後、その試料を360度回転させながらX線回折強度を測定したとき、回転角(φ)が45度、135度,225度、315度となるとき回折強度のピークが極大となること。
なお入射するX線の光源には銅のKα線(λ=1.54Å)を用い、従ってBragg条件より、検出角2θ=27〜30°付近では面間隔d=2.97〜3.3Åの結晶が測定されることになる。
【0054】
[実施例2]
この例の相変化光ディスクは、相変化記録層3をGeSb71Te21InAgで成膜する点以外は、実施例1と同様の構成、同様の製造方法であるので説明を省略する。そして、初期化方法は、表1に示すように、相変化光ディスクを照射光パワー密度16.0mW/μm、照射光ビーム線速度11.0m/sとして、実施例1と同様の初期化装置で初期化し、繰り返し初期の記録特性評価、及び保存信頼性の評価を行った。表2に示すように、実施例1と同様にDOW1特性及び保存信頼性の両項目において良好な結果を得た。また、相変化記録層3のX線面内回折も、実施例1の回折条件を満たすものであった。
【0055】
[実施例3]
この例の相変化光ディスクは、相変化記録層3をGeGaSb71Te19Mnで成膜する点以外は、実施例1及び2と同様の構成であり、同様の製造方法であるので、説明を省略する。そして、表1に示すように、相変化光ディスクを照射光パワー密度18.0mW/μm、照射光ビーム線速度13.0m/sで初期化し、繰り返し初期の記録特性評価、及び保存信頼性の評価を行った。表2に示すように、実施例1及び2と同様にDOW1特性及び保存信頼性の両項目において良好な結果を得た。また、相変化記録層3のX線面内回折も、実施例1の回折条件を満たすものであった。
【0056】
なお、実施例3においては他の実施例に比べ、初期化時に要する照射光パワー密度が比較的大きかったが、Mnを添加したことで保存信頼性を損なわずに記録層材料の結晶化限界速度を速めることができ、記録線速度17.5m/s以上(DVDの5倍速以上)でも良好な記録が可能であった。
【0057】
[実施例4]
図7には、この発明の相変化光記録媒体の別の例としての相変化光ディスクの概略断面図を示す。相変化光ディスクは、レーザ光の案内溝が設けられた透明な1基板の上面に、第一保護層2、酸化物層9、非晶質相と結晶相の可逆的相変化をする相変化記録層3、第二保護層4、硫化防止層5、反射層6、樹脂保護層7を備え、接着シートを介して貼り合せ用基板8を貼着してなる。
【0058】
基板1は、直径12cm、厚さ0.6mmのポリカーボネート製で、トラック(案内溝)ピッチ0.74μmである。第一保護層2は、厚さ55nmのZnS(80mol%)−SiO(20mol%)からなる層である。酸化層9は、厚さ3nmの、8mol%のYを含むZrO(80mol%)−TiO(20mol%)からなる層である。相変化記録層3は、厚さ11nmのGeSb71Te21InAgからなる層であり、前述のように初期結晶化後の結晶相が、以下の条件に示されるある特定の方向に、強く配向した状態であることに特徴がある。すなわち、面間隔が2.9〜3.3Åの結晶であり、基板1の上面に垂直である結晶面が、トラックの接線方向と30±15°の角度をなす。
【0059】
第二保護層4は、厚さ11nmのZnS(80mol%)−SiO(20mol%)からなる層である。硫化防止層5は、厚さ4nmのSiからなる層である。反射層6は、厚さ140nmのAgからなる層である。貼り合せ用基板8は、基板1と同一の、直径12cm、厚さ0.6mmのポリカーボネート製である。
【0060】
まず、基板1の上に、スパッタリング法により、第一保護層2、酸化物層9、相変化記録層3、第二保護層4、硫化防止層5、反射層6をこの順に成膜し、その上にスピンコート法により樹脂保護層7を成膜し、更に直径12cm、厚さ0.6mmのポリカーボネート基板を接着シートで貼り合せると、相変化光ディスクとなる。
【0061】
そして、この相変化光ディスクを表1に示すように、照射光パワー密度17.0mW/μm、照射光ビーム線速度11.0m/sで初期化し、繰り返し初期の記録特性評価、及び保存信頼性の評価を行った。表2に示すように、実施例1〜3と同様にDOW1特性及び保存信頼性の両項目において良好な結果を得た。また、相変化記録層3のX線面内回折も、実施例1の回折条件を満たすものであった。
この例では、実施例2に比べてオーバーライト特性が一層改善され、また80℃85%RHの恒温槽に放置後も特性の劣化は見られず、良好な保存信頼性を得ることができた。
【0062】
なお、この例では、相変化光ディスクの第一保護層2と相変化記録層3との間に酸化物層9を備えたが、図8に示すように、相変化記録層3と第二保護層4との間に酸化物層9を備えてもよいし、図9に示すように、第一保護層2と相変化記録層3との間、及び相変化記録層3と第二保護層4との間に酸化物層9を備えてもよい。
【0063】
[実施例5]
この例の相変化光ディスクは、酸化物層をAlで成膜する点以外は、実施例4と同様の構成であり、同様の製造方法であるので、説明を省略する。そして、表1に示すように、相変化光ディスクを照射光パワー密度17.0mW/μm、照射光ビーム線速度11.0m/sで初期化し、繰り返し初期の記録特性評価、及び保存信頼性の評価を行った。表2に示すように、実施例1〜4と同様にDOW1特性及び保存信頼性の両項目において良好な結果を得た。また、相変化記録層3のX線面内回折も、実施例1の回折条件を満たすものであった。実施例4と同様、実施例2に比べオーバーライト特性が一層改善され、また更に保存信頼性においても実施例4よりも良好な結果を得ることができた。
【0064】
[比較例1]
この例は、実施例1と同様の相変化光ディスクを作製し、照射光パワー密度を9.0mW/μm、照射光ビーム線速度9.0m/sで初期化し、繰り返し初期の記録特性評価、及び保存信頼性の評価を行った。評価結果は、表2に示すように、DOW1特性、保存信頼性とも特性が悪かった。また、相変化記録層3のX線面内回折は、実施例1の回折条件を満たすものではなかった。
【0065】
[比較例2]
この例は、実施例4と同様の相変化光ディスクを作製し、照射光パワー密度を17.0mW/μm、照射光ビーム線速度11.0m/sで初期化し、繰り返し初期の記録特性評価、及び保存信頼性の評価を行った。結果は、表2に示すように、DOW1特性については良好であったが、保存信頼性が悪かった。また、相変化記録層3のX線面内回折は、実施例1の回折条件を満たすものであった。
【0066】
なお、上述の全ての例において、日立コンピュータ機器社製(POP240―E4)を用いて相変化光ディスクの初期化を行ったが、この発明はこれに限定されるものではなく、どのような初期化装置を用いて光記憶媒体を初期化してもよい。
【0067】
また、この発明は、成膜の順序が逆になる表面記録型の相変化光記録媒体や、DVD系の相変化光記録媒体に見られるような貼り合せ用基板に代えて樹脂保護層を介し同一、又は異なる光記録媒体が互いに2枚貼り合わされた相変化光記録媒体の場合などに対しても適用しうる。
【0068】
【発明の効果】
以上詳述したように、この発明によれば、相変化記録層の初期化後の結晶相にあって、面間隔が2.9〜3.3Å、かつ前記基板の上面に垂直である結晶面が、前記案内溝の接線方向と30±15°をなす角で配向するので、初期化後、最初に情報を記録する前の相変化記録層の結晶と、オーバーライト消去によって非晶質相を結晶化した結晶との結晶組織を均質化し、高線速記録における繰り返し記録初期の特性を改善することができ、オーバーライト回数に依らない良好な記録再生特性を有する相変化光記録媒体を提供することができる。
【0069】
請求項2に係る発明によれば、相変化記録層がGeαSbβTe(1−α―β)からなり、その原子比率が0.02≦α≦0.07、0.65≦β≦0.80であるので、初期化後、最初に情報を記録する前の相変化記録層の結晶と、オーバーライト消去によって非晶質相を結晶化した結晶との結晶組織を一層均質化し、高線速記録における繰り返し記録初期の特性を改善することができ、オーバーライト回数に依らない一層良好な記録再生特性を有する相変化光記録媒体を提供することができる。
【0070】
請求項3に係る発明によれば、相変化記録層が添加元素を原子比率で0.01〜0.10含み、添加元素として、Ga、In、Tl、Pb,Sn、Bi、Cd,Hg、Ag、Cu、Mn、Dyのうち、少なくとも一種類を用いるので、DVDの4倍速(記録線速度14m/s)以上の高線速記録においても、オーバーライト回数が10回程度までに見られるジッターの上昇を抑え、オーバーライト回数に依らないさらに一層良好な記録再生特性を有し、保存信頼牲にも優れた相変化光記録媒体を提供することができる。
【0071】
請求項4に係る発明によれば、照射光パワー密度が10〜30mW/μmであり、かつ照射光ビーム線速度が相変化記録層の結晶化限界速度に対し±2m/sの範囲で初期化が行われるので、相変化記録層の初期化後の結晶相における、面間隔が2.9〜3.3Å、かつ基板の上面に垂直である結晶面が、案内溝の接線方向と30±15°をなす角で強く配向するように相変化光記録媒体を初期化することができ、一層、オーバーライト回数に依らない良好な記録再生特性を有する相変化光記録媒体を提供することができる。
【0072】
請求項5に係る発明によれば、相変化記録層と第一保護層との間及び/又は相変化記録層と第二保護層との間に酸化物層を備えるので、酸化物層の低い熱伝導性によって初期化エネルギーを効率良く相変化記録層に伝達し、急熱、急冷が容易になり、一層オーバーライト特性に優れた相変化光記録媒体を提供することができる。
【0073】
請求項6に係る発明によれば、酸化物層が、ZrO、AlTiO、SiO、ZnO、In、SnO、PbOのうちの少なくとも一種類からなるので、さらに低い熱伝導性によって初期化エネルギーを一層効率良く相変化記録層に伝達し、急熱、急冷が一層容易になり、さらに一層オーバーライト特性に優れた相変化光記録媒体を提供することができる。
【0074】
請求項7に係る発明によれば、酸化物層の膜厚が、8nm未満であるので、保存信頼性を劣化させることなく、オーバーライト特性に優れた相変化光記録媒体を提供することができる。
【図面の簡単な説明】
【図1】面内回折法による結晶面間隔及び配向の同定を示す説明図である。
【図2】面内回折法における側的の幾何学的条件を示す説明図である。
【図3】結晶化限界速度を示す説明図である。
【図4】初期化パワーとDOW1ジッタの関係を示す図である。
【図5】2θ=28.9°におけるX線面内回折のディスク回転角度依存度を示す図である。
【図6】この発明の一例としての相変化光ディスクの概略断面図である。
【図7】この発明の別の例の相変化光ディスクの概略断面図である。
【図8】この発明のさらに別の例の相変化光ディスクの概略断面図である。
【図9】この発明のまたさらに別の例の相変化光ディスクの概略断面図である。
【符号の説明】
1 基板
2 第一保護層
3 相変化記録層
4 第二保護層
5 硫化防止層
6 反射層
7 樹脂保護層
8 貼り合せ用基板
9 酸化物層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a first protective layer, a phase change recording layer that performs a reversible phase change between an amorphous phase and a crystalline phase, a second protective layer, a reflective layer, on a transparent substrate provided with a laser light guide groove. The present invention relates to a phase-change optical recording medium having a layer and recording and / or reproducing information by irradiating the laser beam.
[0002]
[Prior art]
In recent years, with an increase in the amount of information, a recording medium capable of recording and reproducing a large amount of data at a high density and at a high speed has been demanded. A phase-change optical recording medium, which records and reproduces information by irradiating a light beam, particularly a phase-change optical disk, has high signal quality and can be made high-density, and one-beam overwriting is easy, so that high-speed access is possible. It is a recording medium with excellent properties.
A phase-change optical disc has a first protective layer, a phase-change recording layer that performs a reversible phase change between an amorphous phase and a crystalline phase, a second protective layer, on the upper surface of a transparent substrate provided with laser light guide grooves. A reflective layer made of metal is provided in this order, and a resin protective layer is further provided on the reflective layer. In the case of a bonded optical disk, the above-described configuration is used on one side, or the configuration is such that the reflective layers face each other on both sides via an adhesive layer and are bonded.
[0003]
The above-described phase-change optical disk is generally manufactured by forming a film by a vacuum process such as a sputtering method or a vacuum evaporation method, and the phase-change recording layer formed by these methods is in a state immediately after the film formation, that is, In the as-depo state, the material is often amorphous. An amorphous (mark) is also formed during overwriting, but in the as-depo state, the phase change recording layer has almost no crystal nuclei. Unlike amorphous to be formed, the time required for crystallization is very long. Therefore, after the phase change optical disc is manufactured, an initialization step for crystallizing the phase change recording layer before shipping is provided.
[0004]
Next, a procedure for recording information on the phase-change optical disk by the one-beam overwrite method will be described.
The reversible phase change between the amorphous phase and the crystalline phase of the phase change recording layer is performed by a pulsed focused laser beam having three output levels. The laser beam having the highest output level is used for melting the phase change recording layer, and the laser beam having an intermediate output level is used for heating the phase change recording layer to a temperature just below the melting point and higher than the crystallization temperature. The lowest level laser beam is used to control the heating or cooling of the phase change recording layer.
[0005]
In order to record information on a phase change optical disk, a laser beam having the highest output level is irradiated to a desired portion, and the phase change recording layer is rapidly heated and melted, and then rapidly cooled. Then, the phase change recording layer is fixed while the atomic arrangement is disturbed, and becomes amorphous or microcrystalline, and the reflectance is reduced to become a recording mark. On the other hand, a portion other than the desired portion is irradiated with a laser beam having an intermediate output level, gradually cooled, and gradually cooled to return the atomic arrangement of the phase change recording layer to the original state, thereby making the phase change recording layer crystalline. As a result, a crystalline region and an amorphous region are created in the phase change recording layer, and information is recorded.
Further, the case of rewriting the information of the phase change optical disc on which the information is recorded with new information is the same as the recording method described above.
[0006]
In order to reproduce a phase-change optical disc on which information has been recorded or rewritten in this way, a laser beam for reproduction is irradiated, and the phase-change recording layer usually undergoes a reversible amorphous-crystal phase change phenomenon. Reproduction is performed using the accompanying reflectance difference or reflected light phase difference.
[0007]
The phase change optical recording medium is expected to expand its application to high-density image recording in the future. Therefore, it is required to increase the capacity and density of the recording medium, so that high linear velocity recording is indispensable. However, when high linear velocity recording is performed by the one-beam overwriting method as described above, the erasing rate at the beginning of repetitive recording (from the number of overwrites of about 1 to about 10) is low. There is a problem that a stable erasing rate cannot be obtained unless the operation is repeated once or twice, and a technique has been disclosed to solve the problem (for example, Patent Document 1).
[0008]
[Patent Document 1]
Japanese Patent No. 2830336
[0009]
[Problems to be solved by the invention]
One of the causes of the decrease in the erasing rate occurring at the beginning of such repetitive recording is that the crystal state of the phase change recording layer after the initialization is different from the crystal state obtained by overwriting and erasing the amorphous mark. As a result, the reflectance may become non-uniform, and as a result, jitter may increase. On the other hand, the reason why the erasing rate is stabilized after the number of overwrites is about 10 is that the crystal state after the initialization is completely shifted to the crystal state after overwriting and erasing the amorphous mark by the number of overwrites 10 times. It is considered that the reflectance becomes uniform.
[0010]
Accordingly, an object of the present invention is to provide a phase change optical recording medium having good recording / reproducing characteristics irrespective of the number of times of overwriting.
[0011]
[Means for Solving the Problems]
For this reason, the first aspect of the present invention provides a phase change recording in which a first protective layer and a reversible phase change between an amorphous phase and a crystalline phase are formed on the upper surface of a transparent substrate provided with a laser light guide groove. A phase-change optical recording medium comprising a layer, a second protective layer, and a reflective layer for recording and / or reproducing information by irradiating the laser beam;
In the crystal phase after the initialization of the phase change recording layer, a crystal plane having a plane interval of 2.9 to 3.3 ° and perpendicular to the upper surface of the substrate is 30 ± 15 with respect to the tangential direction of the guide groove. It is characterized by being oriented at an angle forming an angle of °.
[0012]
According to a second aspect of the present invention, in the phase change optical recording medium according to the first aspect, the phase change recording layer is made of Ge. α Sb β Te (1-α-β) Wherein the atomic ratio is 0.02 ≦ α ≦ 0.07 and 0.65 ≦ β ≦ 0.80.
[0013]
The invention according to claim 3 is the phase change optical recording medium according to claim 1 or 2, wherein the phase change recording layer contains an additive element in an atomic ratio of 0.01 to 0.10. At least one of Ga, In, Tl, Pb, Sn, Bi, Cd, Hg, Ag, Cu, Mn, and Dy is used.
[0014]
According to a fourth aspect of the present invention, in the phase change optical recording medium according to the second or third aspect, the irradiation light power density is 10 to 30 mW / μm. 2 And the initialization is performed within the range of ± 2 m / s in the irradiation light beam linear velocity with respect to the crystallization limit velocity of the phase change recording layer.
[0015]
According to a fifth aspect of the present invention, in the phase change optical recording medium according to any one of the first to fourth aspects, between the phase change recording layer and the first protective layer and / or between the phase change recording layer and the first protection layer. An oxide layer is provided between the second protective layer and the second protective layer.
[0016]
The invention according to claim 6 is the phase change optical recording medium according to claim 5, wherein the oxide layer is made of ZrO. 2 , Al 2 O 3 TiO 2 , SiO 2 , ZnO, In 2 O 3 , SnO, and PbO.
[0017]
According to a seventh aspect of the present invention, in the phase-change optical recording medium according to the fifth or sixth aspect, the oxide layer has a thickness of less than 8 nm.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the above-mentioned invention is explained concretely.
The phase-change optical recording medium according to the present invention is, for example, a phase-change recording method in which a first protective layer and a reversible phase change between an amorphous phase and a crystalline phase are formed on an upper surface of a transparent substrate provided with a guide groove for laser light. Layer, a second protective layer, and a reflective layer.
The crystal structure of the phase change recording layer after initialization largely depends on the initialization method. Therefore, the present inventors focused on this fact, performed initialization under various conditions, and performed the crystal state of the phase change recording layer and the recording characteristics at the beginning of repeated recording (recording when the number of overwrites was about 1 to 10 times). Investigation of the relationship between the characteristics and the "initial characteristics of repetitive recording") revealed that when a crystal plane of a specific crystal was strongly oriented in a specific direction with respect to a crystal plane perpendicular to the substrate surface. It was found that the characteristics at the beginning of repeated recording were improved.
Here, “a specific crystal” means a crystal having a plane spacing of 2.9 to 3.3 °, and “a specific direction” means that a crystal plane perpendicular to the substrate is in a track tangential direction. It refers to a direction forming an angle of 30 ± 15 °.
[0019]
The following can be considered as reasons why the characteristics at the initial stage of repeated recording can be improved when many crystals satisfying such conditions exist in the phase change recording layer. That is, when an amorphous mark is re-formed into a crystal by overwriting and erasing, the crystal is oriented in a specific direction around the amorphous mark along the direction of crystallization (laser scanning direction = track direction). When there is a large number of layers, epitaxial growth is likely to occur with the structure around the mark as a base, and the crystal structure of the phase-change recording layer after crystallization by initialization and the crystal structure of the crystal formed by overwriting and erasing the amorphous mark It is considered that the non-uniformity between them is eliminated.
Further, even when fine crystal grain boundaries are present in the crystal phase, which is considered to be one of the causes of noise generation, it is possible to avoid the crystal grains (crystal faces) being aligned in a certain direction. can do.
[0020]
The phase-change recording layer provided in the phase-change optical recording medium of the present invention has a characteristic intensity distribution in the in-plane diffraction measurement result of the phase-change recording layer crystallized by initialization as described later. And
The plane having this characteristic orientation is a plane having a diffraction peak at a diffraction angle 2θ = 27 to 30 degrees (a crystal having a plane interval of 2.9 to 3.3 °). The sample is rotated by 360 ° with respect to this plane. When the change in intensity is measured, there is a local maximum value of a specific crystal plane at φ = 45 ° and 225 °, and it is characterized in that there is little orientation other than this direction.
[0021]
Specifically, as shown in FIGS. 1 and 2, the rotation angle (φ) of the sample is set to φ = 0 ° for convenience when the incident direction of the X-rays and the tangential direction of the track on the substrate are parallel to each other. When the sample is rotated with the detector fixed at about θ = 27 to 30 ° and the emitted X-ray diffraction intensity is measured, peaks of the X-ray diffraction intensity are observed at φ = 45 ° and 225 °. Means that. This means that the crystal plane is oriented at an angle of about 30 ° with the track tangent direction (30 ± 15 ° in the present invention) from the principle of X-ray diffraction. Means.
[0022]
As a phase change recording material capable of realizing the above-mentioned crystalline state, an Sb-Te binary alloy having a composition in the vicinity of Sb0.7Te0.3, in which crystallization proceeds due to heterogeneous nucleation, is used as a mother phase, and essential to this. Ge is contained as an element, and at least one element selected from Ga, In, Tl, Pb, Sn, Bi, Cd, Hg, Ag, Cu, Mn, and Dy has an atomic ratio of 0.01 to 0.10. The added phase change recording material is preferably used.
[0023]
Here, crystallization by uniform nucleation refers to crystallization that occurs by crystal nucleation occurring first at a relatively low temperature and then by growing the crystal at a relatively high temperature around the nucleus formed. . Crystallization by heterogeneous nucleation means that nucleation hardly occurs, and crystallization proceeds by crystal growth from the interface between an existing crystal region and an amorphous (mark) region. In the present invention, the crystallization proceeds due to the formation of heterogeneous nuclei, so that the present invention has an effect.
[0024]
Hereinafter, the optimum composition range of each element constituting the phase change recording layer of the present invention will be described. An Sb-Te binary alloy having a composition in the vicinity of Sb70Te30, in which the molar ratio of Sb to Te is 7: 3, is a phase change recording material in which composition segregation due to overwriting hardly occurs and excellent in repetitive recording characteristics. The crystallization limit speed, which will be described later, can be adjusted by changing the mixing ratio of Sb and Te. When the Sb ratio is increased, the crystallization limit speed is increased, and the transfer speed can be increased. In the phase change optical recording medium to which the present invention is applied, the optimum composition range of Sb is such that the atomic ratio of Sb is 0.65 or more and 0.80 or less. This is because if the atomic ratio of Sb is less than 0.65, the increase in jitter due to overwriting becomes large and it becomes difficult to improve the recording characteristics. This is because the formation speed is rapidly increased to make it difficult to form a mark and storage reliability is deteriorated.
[0025]
On the other hand, Ge is an essential additive element because the storage reliability of the phase-change optical recording medium can be drastically improved by adding a small amount without increasing the crystallization temperature as compared with Ga. When the atomic ratio of Ge added at this time is 0.02 or more, the effect of improving the amorphous stability of the recording layer with a high crystallization rate appears, and the effect increases as the amount of addition increases. The upper limit needs to be set to 0.07 in atomic ratio because adverse effects such as an increase in jitter due to overwriting are caused.
[0026]
Further, since Ga has the effect of increasing the crystallization limit speed and the crystallization temperature of the recording layer material with a small amount of addition, it is possible to provide a phase change optical recording medium having excellent stability of amorphous marks. is there. However, if the addition amount of Ga is too large, the crystallization temperature becomes too high, and it becomes difficult to obtain a uniform crystal phase at the time of initialization. Therefore, the composition range of Ga is preferably set to 0.10 or less in atomic ratio. .
[0027]
In has the same effect as Ga, but does not increase the crystallization temperature as much as Ga. Therefore, considering the problem of initialization, it is effective to use Ga as an element to supplement Ga. Further, in addition to Ga and In, Tl, Pb, Sn, Bi, Cd, and Hg also have the effect of increasing the crystallization limit speed. The reason why the addition of these elements increases the crystallization limit speed is unknown, but if the crystallization of the Sb-Te alloy is promoted, the same valence as Sb among these elements is obtained. Ga, In, and Bi, which can easily take numbers, are more preferable, and Sn, which has the closest atomic number to Sb and is considered to have high affinity with Sb, is also preferable. However, if the added amount is too large, it is expected that deterioration of reproduction light and deterioration of characteristics at the initial stage of repetitive recording will be caused. In addition, according to the investigation by the present inventors, it has been found that Mn and Dy also have the same effect as In as an additive element. In particular, Mn accelerates the crystallization rate and decreases the amount of Ge added. It has also been found that it is an additive element that does not need to be increased and has excellent storage reliability.
Further, it is desirable that Cu and / or Au be contained together with the above-mentioned additional element. Since Cu and Au are additive elements that have an effect on storage reliability, a desired high linear velocity optical recording medium can be realized by combining them appropriately with the above-mentioned additive elements, and the reflectance after initialization and the reflectivity can be reduced. It is possible to design a recording material that can easily eliminate the nonuniformity of the light reflectance.
[0028]
The thickness of the phase change recording layer is preferably in the range of 8 to 20 nm. If the thickness is less than 8 nm, the repetitive recording characteristics deteriorate significantly. When the thickness is more than 20 nm, it is difficult to uniformly initialize the phase change recording layer, and the light transmittance is insufficient, so that a high reflectance cannot be obtained and the degree of modulation is reduced.
[0029]
The amorphous state (as-depo state) immediately after the initialization of the phase change recording layer also changes depending on the film forming conditions. In the as-depo state, atoms are randomly arranged on the substrate, and the greater the degree of disorder, the longer it takes to initialize and the more difficult it is to obtain a desired crystal state. However, the sputtered particles flying on the substrate in the film formation by the sputtering method at a low gas pressure and a high voltage are considered to have a larger kinetic energy than the sputtered particles in normal sputtering, and to some extent An ordered alignment film is easily formed, and a desired crystal state is easily obtained after initialization. Therefore, it is preferable to employ a sputtering method at a low gas pressure and a high voltage when forming the phase change recording layer.
[0030]
Note that the present inventors can easily obtain a desired crystal state by providing an oxide layer between the phase change recording layer and the first protective layer and / or between the phase change recording layer and the second protective layer. I also understood. This is because ZnS-SiO which has been conventionally used as a protective layer is used. 2 In general, the thermal conductivity of the oxide layer is lower than that of the oxide layer, and it is considered that the initialization energy is efficiently absorbed by the phase change recording layer. Such an effect can be expected even when the oxide layer is provided, for example, in a thickness of about 1 nm. However, when the thickness is increased, a problem occurs in that the storage reliability of the recording medium is deteriorated. It is necessary to prevent the deterioration of storage reliability by reducing the thickness to less than, preferably about 2 to 4 nm.
[0031]
The oxide layer is made of ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , ZnO, In 2 O 3 , SnO, and PbO. Among them, especially ZrO 2 Has extremely excellent mechanical strength, so that not only the characteristics at the initial stage of repeated recording are improved, but also the recording characteristics are not degraded even after overwriting 1000 times or more. In addition, since the thermal conductivity is extremely low, the recording layer reaching temperature at the time of recording is ZnS-SiO 2 It is higher than a conventional recording medium having only a protective layer, and a quenching structure required for forming a mark is realized, so that sensitivity can be improved.
[0032]
Furthermore, ZrO 2 The oxide layer mainly composed of ZrO 2 In addition, it is preferable to include titanium oxide, and further to include a rare earth oxide or a Group IIa oxide other than beryllium. This means that the addition of titanium oxide can further reduce the thermal conductivity of the oxide layer, and is effective in adjusting optical characteristics and reducing reliability deterioration. For oxides or Group IIa oxides except beryllium, ZrO 2 This has the effect of reducing the volume change with respect to the temperature, and improving the stability with respect to the temperature change during initialization and recording.
[0033]
In order to obtain such an effect, the content of titanium oxide should be 60 mol% or less of the whole oxide layer material, and the content of rare earth oxides or Group IIa oxides except beryllium should be ZrO. 2 Is desirably 1 to 10 mol% with respect to The content of titanium oxide is not necessarily limited to this range, but if it exceeds 60 mol%, ZrO 2 The above range is suitable because the effect of the oxide layer containing ambiguity becomes unclear. Preferred examples of rare earth oxides or Group IIa oxides other than beryllium include oxides of Y, Mg, Ca and the like. ZrO 2 In the case of an oxide layer in which an oxide such as Y, Mg, Ca or the like is dissolved as a solid solution, the storage reliability of the recording medium is significantly deteriorated. 2 It is desirable to add it in combination with an oxide such as.
[0034]
Other oxide materials Al 2 O 3 , TiO 2 , SiO 2 , ZnO, In 2 O 3 , SnO and PbO, ZrO 2 It is known that it has almost the same effect as.
Of these, Al 2 O 3 Is ZrO 2 Since the storage reliability is not significantly impaired as compared with a recording medium in which is used as an interface layer material, this is an optimal material for a recording medium in which storage stability is a problem.
[0035]
Next, a method for initializing a phase-change optical recording medium having the above-described phase-change recording layer will be described.
Irradiation light power density is 10 to 30 mW / μm 2 Then, the irradiation light beam linear velocity is initialized within a range of ± 2 m / s with respect to the crystallization limit velocity of the phase change recording layer.
[0036]
When the recording layer material with a high crystallization limit speed is used for high linear velocity recording, the irradiation light power density becomes difficult to initialize as the crystallization limit speed of the recording layer material increases, and high output power is required. In addition, even with a high output power, the irradiation light power density is 10 to 30 mW / μm when the linear velocity and the feed width are constant. 2 In this case, the characteristics at the initial stage of repetitive recording (especially, the recording characteristics of the first overwriting operation, hereinafter referred to as "DOW1") were further improved, so that the irradiation light power density was 10 to 30 mW / μm. 2 Was decided.
[0037]
In addition, the present inventors investigated the relationship between the initial characteristics of repetitive recording and the beam linear velocity during high linear velocity recording in the irradiation light power density range, and found that the crystallization limit of the phase change recording layer was determined. Since the recording medium initialized within the linear velocity range of ± 2 m / s with respect to the speed had good characteristics at the initial stage of repeated recording, the recording medium was reduced to ± 2 m / s with respect to the crystallization limit velocity of the phase-change recording layer. Were determined.
[0038]
The “crystallization limit speed” is a physical property value that indicates the characteristics of the recording layer material defined and devised based on the experience of the present inventors. When the dependence of the reflectivity on the irradiation light beam linear velocity (that is, the rotational speed of the optical disk) (however, the linear velocity dependence in the recording / reproducing system) is evaluated, the sharp decrease in the reflectivity as shown in FIG. 3 starts. Means linear velocity. This is based on the assumption that "DC light of constant power" is regarded as an intermediate output laser pulse (erase pulse) based on the above-described recording principle, and to which linear velocity when the irradiation light beam linear velocity of the recording / reproducing system is increased. This is an evaluation method focusing on whether (erasing) is possible.
[0039]
Taking FIG. 3 as an example, satisfactory crystallization cannot be realized if the initialization is performed at a high linear velocity exceeding 2 m / s with respect to the crystallization limit velocity (thick line in the figure) of the recording layer material. When the initialization is performed at a linear velocity lower than 2 m / s with respect to the crystallization limit velocity of the material, the initialization process takes a long time and is not practical, and it is difficult to solve the problem of the characteristic deterioration at the initial stage of repetitive recording. You can see that.
[0040]
FIG. 4 shows the dependency of the DOW1 jitter on the initialization power. FIG. 5 shows the initialization condition (Pi = 9.3 mW / μm) at which the DOW1 jitter indicated by A in FIG. 2 ) And initialization conditions (Pi = 12 mW / μm) at which the DOW1 jitter indicated by B is reduced. 2 ) Shows the measurement results of the in-plane X-ray diffraction of the phase change recording layer in the case of initialization.
[0041]
According to FIG. 5, the peaks of the X-ray diffraction intensity observed at φ = 45 ° and 225 ° were obtained under the initializing condition in which the DOW1 jitter was lower than in the initializing condition in which the DOW1 jitter was higher. It can be seen that the case of initialization is more remarkable. That is, the initialization condition (Pi = 12 mW / μm 2 The phase change recording layer initialized in ()) has an initialization condition (Pi = 9.3 mW / μm) in which the DOW1 jitter is high. 2 The crystal is more strongly oriented at an angle of 30 ± 15 ° with the track tangent direction as compared with the phase change recording layer initialized in the step (1), and the recording characteristics of the phase change recording layer can be improved.
[0042]
Although the peak of the X-ray diffraction intensity was observed even at an angle of φ = 135 ° or 315 °, this was because the Sb—Te binary eutectic alloy constituting the phase change recording layer was cubic. Due to certain properties, as the number of crystals whose crystal planes are oriented at an angle of 30 ± 15 ° with the track tangent direction increases (or grows larger), the angle shifts from 45 ° to 90 °, 135 ° and 225 ° to 90 °. It is considered that the peak of the X-ray diffraction intensity was similarly observed at 315 °.
[0043]
As described above, if an appropriate initialization condition is selected so that “a crystal structure satisfying a certain condition” is maximized in the phase change recording layer in the above range, an optical recording medium having excellent initial characteristics of repetitive recording can be obtained. Can be realized.
[0044]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments and the used initialization device.
[0045]
[Example 1]
FIG. 6 is a schematic sectional view of a phase change optical disk as an example of the phase change optical recording medium of the present invention. The phase-change optical disc has a first protective layer 2, a phase-change recording layer 3 that undergoes a reversible phase change between an amorphous phase and a crystalline phase, It is provided with a protective layer 4, an anti-sulfuration layer 5, a reflective layer 6, and a resin protective layer 7, and has a bonding substrate 8 adhered thereto via an adhesive sheet.
[0046]
The substrate 1 is made of polycarbonate having a diameter of 12 cm and a thickness of 0.6 mm, and has a track (guide groove) pitch of 0.74 μm. The first protective layer 2 is made of ZnS (80 mol%)-SiO having a thickness of 65 nm. 2 (20 mol%). The phase change recording layer 3 is a 17 nm thick Ge 4 Sb 69 Te 20 In 5 Ag 2 Which is characterized in that, as described above, the crystal phase after the initial crystallization is strongly oriented in a specific direction indicated by the following conditions. That is, the crystal is a crystal having a plane spacing of 2.9 to 3.3 °, and a crystal plane perpendicular to the upper surface of the substrate 1 forms an angle of 30 ± 15 ° with the tangential direction of the track. The second protective layer 4 is made of ZnS (80 mol%)-SiO having a thickness of 14 nm. 2 (20 mol%). The sulfuration prevention layer 5 is a layer made of Si having a thickness of 4 nm. The reflection layer 6 is a layer made of Ag having a thickness of 140 nm. The bonding substrate 8 is made of the same polycarbonate as the substrate 1 and has a diameter of 12 cm and a thickness of 0.6 mm.
[0047]
First, a first protective layer 2, a phase-change recording layer 3, a second protective layer 4, an anti-sulfuration layer 5, and a reflective layer 6 are formed in this order on a substrate 1 by a sputtering method. When a resin protective layer 7 is formed by a method and a bonding substrate 8 is bonded with an adhesive sheet, a phase change optical disk is obtained.
[0048]
Next, a method for initializing this phase change optical disk will be described.
In the present embodiment, the phase change optical disk was initialized using Hitachi Computer Equipment Co., Ltd. (POP240-E4) (the same device was used in the following examples and comparative examples). The evaluation of the characteristics at the beginning of the repetitive recording was performed by using an optical disk evaluation apparatus (DDU-1000 manufactured by Pulstec) having a pickup with a wavelength of 660 nm and NA of 0.65, a recording linear velocity of 14.0 m / s and a linear density of 0.267 μm. / Bit, a random signal was repeatedly recorded (two times) by the EFM + modulation method, and the DOW1 characteristic (jitter) was evaluated at a reproduction linear velocity of 3.5 m / s and a reproduction power of 0.7 mW. Here, the jitter is a value obtained by standardizing data to clock jitter (σ) with the detection window width Tw. The storage reliability was confirmed by leaving the disk in an 80 ° C. and 85% RH constant temperature bath for 300 hours and then evaluating the recording characteristics again.
[0049]
As shown in Table 1 below, the phase change optical disk was irradiated with an irradiation light power density of 12.0 mW / μm. 2 Initialization was performed at an irradiation light beam linear velocity of 9.0 m / s, and the recording characteristics at the initial stage of repetition and the storage reliability were evaluated. The results are shown in Table 2 below.
[0050]
[Table 1]
Figure 2004284024
[0051]
[Table 2]
Figure 2004284024
[0052]
The evaluation criteria are as follows.
(1) Regarding the DOW1 characteristics at a recording linear velocity of 14 m / s, the case where the jitter was 10% or less was evaluated as “○”, and the case where the jitter was greater than 10% was evaluated as “X”.
(2) Regarding the storage reliability, “」 ”indicates that the jitter fluctuation after being left in a constant temperature bath at 80 ° C. and 85% RH for 300 hours is within 0.5%, and that the jitter fluctuation exceeds 0.5%. “×” and those not evaluated were “−”.
[0053]
In this example, good results were obtained in both items of DOW1 characteristics and storage reliability. After the evaluation, the in-plane X-ray diffraction of the phase change recording layer 3 was measured, and the result satisfied the following diffraction conditions. (Hereinafter, in the examples, the case where the following diffraction conditions were satisfied was indicated by ○, and the case where they were not satisfied was indicated by ×)
Diffraction conditions:
As shown in FIGS. 1 and 2, X-rays are incident (into an incident angle of 0.2 to 0.5 °) substantially parallel to the substrate surface and diffracted X-rays are detected substantially parallel to the substrate surface. In the in-line diffraction measurement (method of measuring a lattice plane perpendicular to the substrate surface), as described above, the detection angle is fixed at around 2θ = 27 to 30 °, and the light having the crystallized phase change recording layer is used. When the X-ray diffraction intensity is measured while rotating the sample 360 degrees after peeling off the reflective layer and the protective layer of the recording medium, when the rotation angles (φ) are 45 degrees, 135 degrees, 225 degrees, and 315 degrees The peak of the diffraction intensity is maximized.
Note that a copper Kα ray (λ = 1.54 °) is used as a light source for the incident X-rays. Therefore, according to the Bragg condition, the surface interval d = 2.97 to 3.3 ° near the detection angle 2θ = 27 to 30 °. The crystals will be measured.
[0054]
[Example 2]
In the phase change optical disk of this example, the phase change recording layer 3 is 3 Sb 71 Te 21 In 4 Ag 1 Except for the point that the film is formed, the configuration and the manufacturing method are the same as those of the first embodiment, and the description is omitted. Then, as shown in Table 1, the initialization method uses the irradiation light power density of 16.0 mW / μm 2 With the irradiation light beam linear velocity set to 11.0 m / s, initialization was performed using the same initialization apparatus as in Example 1, and the recording characteristics and storage reliability at the initial stage were repeatedly evaluated. As shown in Table 2, similar to Example 1, good results were obtained in both items of DOW1 characteristics and storage reliability. Further, the in-plane X-ray diffraction of the phase change recording layer 3 also satisfied the diffraction condition of Example 1.
[0055]
[Example 3]
In the phase change optical disk of this example, the phase change recording layer 3 is 3 Ga 3 Sb 71 Te 19 Mn 4 The structure is the same as in Examples 1 and 2, except that the film is formed by the method described in Example 1. Since the manufacturing method is the same, the description is omitted. Then, as shown in Table 1, the phase change optical disk was irradiated with the irradiation light power density of 18.0 mW / μm. 2 Initialization was performed at an irradiation light beam linear velocity of 13.0 m / s, and the recording characteristics at the initial stage of repetition and the storage reliability were evaluated. As shown in Table 2, as in Examples 1 and 2, good results were obtained in both items of DOW1 characteristics and storage reliability. Further, the in-plane X-ray diffraction of the phase change recording layer 3 also satisfied the diffraction condition of Example 1.
[0056]
In Example 3, the irradiation light power density required at the time of initialization was relatively large as compared with the other examples, but the addition of Mn did not impair the storage reliability, and the crystallization limit speed of the recording layer material was not impaired. , And good recording was possible even at a recording linear velocity of 17.5 m / s or more (5 times the speed of DVD or more).
[0057]
[Example 4]
FIG. 7 is a schematic sectional view of a phase change optical disk as another example of the phase change optical recording medium of the present invention. The phase-change optical disc has a first protective layer 2, an oxide layer 9, and a phase-change recording in which a reversible phase change between an amorphous phase and a crystalline phase is formed on an upper surface of a transparent substrate provided with a laser light guide groove. It is provided with a layer 3, a second protective layer 4, an anti-sulfuration layer 5, a reflective layer 6, and a resin protective layer 7, and is attached with a bonding substrate 8 via an adhesive sheet.
[0058]
The substrate 1 is made of polycarbonate having a diameter of 12 cm and a thickness of 0.6 mm, and has a track (guide groove) pitch of 0.74 μm. The first protective layer 2 is made of ZnS (80 mol%)-SiO having a thickness of 55 nm. 2 (20 mol%). The oxide layer 9 has a thickness of 3 nm and 8 mol% of Y. 2 O 3 ZrO containing 2 (80mol%)-TiO 2 (20 mol%). The phase change recording layer 3 is made of 11 nm thick Ge. 3 Sb 71 Te 21 In 4 Ag 1 Which is characterized in that, as described above, the crystal phase after the initial crystallization is strongly oriented in a specific direction indicated by the following conditions. That is, the crystal is a crystal having a plane spacing of 2.9 to 3.3 °, and a crystal plane perpendicular to the upper surface of the substrate 1 forms an angle of 30 ± 15 ° with the tangential direction of the track.
[0059]
The second protective layer 4 is made of ZnS (80 mol%)-SiO having a thickness of 11 nm. 2 (20 mol%). The sulfuration prevention layer 5 is a layer made of Si having a thickness of 4 nm. The reflection layer 6 is a layer made of Ag having a thickness of 140 nm. The bonding substrate 8 is made of the same polycarbonate as the substrate 1 and has a diameter of 12 cm and a thickness of 0.6 mm.
[0060]
First, a first protective layer 2, an oxide layer 9, a phase change recording layer 3, a second protective layer 4, an anti-sulfuration layer 5, and a reflective layer 6 are formed on the substrate 1 in this order by a sputtering method. When a resin protective layer 7 is formed thereon by a spin coating method, and a polycarbonate substrate having a diameter of 12 cm and a thickness of 0.6 mm is bonded with an adhesive sheet, a phase change optical disk is obtained.
[0061]
Then, as shown in Table 1, the irradiation light power density was 17.0 mW / μm 2 Initialization was performed at an irradiation light beam linear velocity of 11.0 m / s, and the recording characteristics and the storage reliability were evaluated repeatedly at the initial stage. As shown in Table 2, similar to Examples 1 to 3, good results were obtained in both items of DOW1 characteristics and storage reliability. Further, the in-plane X-ray diffraction of the phase change recording layer 3 also satisfied the diffraction condition of Example 1.
In this example, the overwrite characteristics were further improved as compared with Example 2, and no deterioration of the characteristics was observed even after being left in a constant temperature bath at 80 ° C. and 85% RH, so that good storage reliability could be obtained. .
[0062]
In this example, although the oxide layer 9 was provided between the first protective layer 2 and the phase change recording layer 3 of the phase change optical disk, as shown in FIG. An oxide layer 9 may be provided between the first protective layer 2 and the phase change recording layer 3 and between the first protective layer 2 and the phase change recording layer 3 and between the phase change recording layer 3 and the second protective layer as shown in FIG. 4, an oxide layer 9 may be provided.
[0063]
[Example 5]
The phase change optical disk of this example has an oxide layer of Al 2 O 3 The structure is the same as that of the fourth embodiment except that the film is formed by the method described in Example 4. Since the manufacturing method is the same, the description is omitted. Then, as shown in Table 1, the irradiation light power density was 17.0 mW / μm 2 Initialization was performed at an irradiation light beam linear velocity of 11.0 m / s, and the recording characteristics and the storage reliability were evaluated repeatedly at the initial stage. As shown in Table 2, similar to Examples 1 to 4, good results were obtained in both items of DOW1 characteristics and storage reliability. Further, the in-plane X-ray diffraction of the phase change recording layer 3 also satisfied the diffraction condition of Example 1. As in the case of Example 4, the overwrite characteristics were further improved as compared with Example 2, and a better result was also obtained in the storage reliability than in Example 4.
[0064]
[Comparative Example 1]
In this example, a phase change optical disk similar to that of Example 1 was manufactured, and the irradiation light power density was 9.0 mW / μm. 2 Initialization was performed at an irradiation light beam linear velocity of 9.0 m / s, and the recording characteristics at the initial stage of repetition and the storage reliability were evaluated. As shown in Table 2, as shown in Table 2, both the DOW1 characteristics and the storage reliability were poor. Further, the in-plane X-ray diffraction of the phase change recording layer 3 did not satisfy the diffraction conditions of Example 1.
[0065]
[Comparative Example 2]
In this example, a phase change optical disk similar to that of Example 4 was manufactured, and the irradiation light power density was 17.0 mW / μm. 2 Initialization was performed at an irradiation light beam linear velocity of 11.0 m / s, and the recording characteristics and the storage reliability were evaluated repeatedly at the initial stage. As shown in Table 2, the DOW1 characteristics were good, but the storage reliability was poor. The in-plane X-ray diffraction of the phase change recording layer 3 satisfied the diffraction conditions of Example 1.
[0066]
In all the above examples, the initialization of the phase change optical disk was performed using Hitachi Computer Instruments (POP240-E4). However, the present invention is not limited to this, and any initialization may be performed. The optical storage medium may be initialized using the device.
[0067]
In addition, the present invention provides a resin-protective layer instead of a bonding substrate such as a surface-recording type phase-change optical recording medium in which the order of film formation is reversed or a DVD-based phase-change optical recording medium. The present invention can also be applied to a phase change optical recording medium in which two identical or different optical recording media are bonded to each other.
[0068]
【The invention's effect】
As described above in detail, according to the present invention, in the crystal phase after the initialization of the phase change recording layer, the crystal plane having a plane distance of 2.9 to 3.3 ° and perpendicular to the upper surface of the substrate However, since it is oriented at an angle of 30 ± 15 ° with the tangential direction of the guide groove, after initialization, the crystal of the phase change recording layer before the first recording of information and the amorphous phase by overwrite erasing are used. Provided is a phase-change optical recording medium which can homogenize a crystal structure with a crystallized crystal, improve characteristics at the time of repeated recording at high linear velocity recording, and have good recording / reproducing characteristics regardless of the number of overwrites. be able to.
[0069]
According to the invention of claim 2, the phase change recording layer is made of Ge. α Sb β Te (1-α-β) Since the atomic ratios are 0.02 ≦ α ≦ 0.07 and 0.65 ≦ β ≦ 0.80, the crystal of the phase change recording layer after the initialization and before the first information is recorded, The crystal structure of the amorphous phase crystallized by overwrite erasure can be further homogenized to improve the initial characteristics of repetitive recording at high linear velocity recording. A phase change optical recording medium having characteristics can be provided.
[0070]
According to the invention according to claim 3, the phase change recording layer contains an additive element in an atomic ratio of 0.01 to 0.10, and includes Ga, In, Tl, Pb, Sn, Bi, Cd, Hg, Since at least one of Ag, Cu, Mn, and Dy is used, even at a high linear velocity recording of 4 × speed (recording linear velocity of 14 m / s) or more of DVD, the jitter which can be seen up to about 10 times of overwriting times. It is possible to provide a phase-change optical recording medium which has an even better recording / reproducing characteristic independent of the number of overwrites, and which has excellent storage reliability.
[0071]
According to the invention of claim 4, the irradiation light power density is 10 to 30 mW / μm. 2 And the initialization is performed within a range of ± 2 m / s of the irradiation light beam linear velocity with respect to the crystallization limit velocity of the phase change recording layer. Therefore, the plane spacing in the crystal phase after the initialization of the phase change recording layer is performed. Initializing the phase-change optical recording medium such that the crystal plane perpendicular to the upper surface of the substrate is oriented at an angle of 30 ± 15 ° with respect to the tangential direction of the guide groove. Thus, it is possible to provide a phase-change optical recording medium having good recording / reproducing characteristics irrespective of the number of overwrites.
[0072]
According to the invention according to claim 5, since the oxide layer is provided between the phase change recording layer and the first protective layer and / or between the phase change recording layer and the second protective layer, the oxide layer is low. Initialization energy is efficiently transmitted to the phase change recording layer by thermal conductivity, rapid heating and rapid cooling are facilitated, and a phase change optical recording medium having more excellent overwrite characteristics can be provided.
[0073]
According to the invention according to claim 6, the oxide layer is made of ZrO. 2 , Al 2 O 3 TiO 2 , SiO 2 , ZnO, In 2 O 3 , SnO, and PbO, the initialization energy is transmitted to the phase-change recording layer more efficiently due to lower thermal conductivity, rapid heating and rapid cooling are further facilitated, and overwriting characteristics are further improved. It is possible to provide a phase change optical recording medium which is excellent in quality.
[0074]
According to the invention of claim 7, since the thickness of the oxide layer is less than 8 nm, it is possible to provide a phase-change optical recording medium having excellent overwrite characteristics without deteriorating storage reliability. .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing identification of crystal plane spacing and orientation by an in-plane diffraction method.
FIG. 2 is an explanatory diagram showing lateral geometric conditions in an in-plane diffraction method.
FIG. 3 is an explanatory diagram showing a crystallization limit speed.
FIG. 4 is a diagram showing a relationship between initialization power and DOW1 jitter.
FIG. 5 is a diagram showing the disc rotation angle dependence of X-ray in-plane diffraction at 2θ = 28.9 °.
FIG. 6 is a schematic sectional view of a phase change optical disk as an example of the present invention.
FIG. 7 is a schematic sectional view of a phase change optical disk according to another example of the present invention.
FIG. 8 is a schematic sectional view of a phase change optical disk according to still another example of the present invention.
FIG. 9 is a schematic sectional view of a phase change optical disk according to still another example of the present invention.
[Explanation of symbols]
1 substrate
2 First protective layer
3 Phase change recording layer
4 Second protective layer
5 Anti-sulfuration layer
6 Reflective layer
7 Resin protective layer
8 Lamination substrate
9 Oxide layer

Claims (7)

レーザ光の案内溝が設けられた透明な基板の上面に、第一保護層、非晶質相と結晶相の可逆的相変化をする相変化記録層、第二保護層、反射層を備え、前記レーザ光を照射して情報の記録及び/または再生を行う相変化光記録媒体において、
前記相変化記録層の初期化後の結晶相にあって、面間隔が2.9〜3.3Å、かつ前記基板の上面に垂直である結晶面が、前記案内溝の接線方向と30±15°をなす角で配向することを特徴とする相変化光記録媒体。
On the upper surface of the transparent substrate provided with a guide groove for laser light, a first protective layer, a phase change recording layer that performs a reversible phase change of an amorphous phase and a crystalline phase, a second protective layer, a reflective layer, In a phase change optical recording medium for recording and / or reproducing information by irradiating the laser beam,
In the crystal phase after the initialization of the phase change recording layer, a crystal plane having a plane interval of 2.9 to 3.3 ° and perpendicular to the upper surface of the substrate is 30 ± 15 with respect to the tangential direction of the guide groove. A phase-change optical recording medium characterized by being oriented at an angle forming an angle of °.
前記相変化記録層がGeαSbβTe(1−α―β)からなり、その原子比率が0.02≦α≦0.07、0.65≦β≦0.80であることを特徴とする請求項1に記載の相変化光記録媒体。And wherein the phase change recording layer is made of Ge α Sb β Te (1- α-β), the atomic ratio is 0.02 ≦ α ≦ 0.07,0.65 ≦ β ≦ 0.80 The phase change optical recording medium according to claim 1. 前記相変化記録層が添加元素を原子比率で0.01〜0.10含み、前記添加元素として、Ga、In、Tl、Pb,Sn、Bi、Cd,Hg、Ag、Cu、Mn、Dyのうち、少なくとも一種類を用いることを特徴とする請求項1または2に記載の相変化光記録媒体。The phase change recording layer contains an additive element in an atomic ratio of 0.01 to 0.10, and the additive element includes Ga, In, Tl, Pb, Sn, Bi, Cd, Hg, Ag, Cu, Mn, and Dy. 3. The phase-change optical recording medium according to claim 1, wherein at least one type is used. 照射光パワー密度が10〜30mW/μmであり、かつ照射光ビーム線速度が前記相変化記録層の結晶化限界速度に対し±2m/sの範囲で前記初期化が行われることを特徴とする請求項2または3に記載の相変化光記録媒体。The initialization is performed when the irradiation light power density is 10 to 30 mW / μm 2 and the irradiation light beam linear velocity is within ± 2 m / s of the crystallization limit velocity of the phase change recording layer. The phase-change optical recording medium according to claim 2 or 3, wherein: 前記相変化記録層と前記第一保護層との間及び/又は前記相変化記録層と前記第二保護層との間に酸化物層を備えることを特徴とする請求項1ないし4のいずれかに記載の相変化光記録媒体。5. An oxide layer is provided between the phase change recording layer and the first protective layer and / or between the phase change recording layer and the second protective layer. 3. The phase-change optical recording medium according to claim 1. 前記酸化物層が、ZrO、AlTiO、SiO、ZnO、In、SnO、PbOのうちの少なくとも一種類からなることを特徴とする請求項5記載の相変化光記録媒体。The oxide layer, ZrO 2, Al 2 O 3 TiO 2, SiO 2, ZnO, In 2 O 3, SnO, phase change optical according to claim 5, characterized in that it consists of at least one of PbO recoding media. 前記酸化物層の膜厚が、8nm未満であることを特徴とする請求項5または6に記載の相変化光記録媒体。7. The phase change optical recording medium according to claim 5, wherein the thickness of the oxide layer is less than 8 nm.
JP2003075317A 2003-03-19 2003-03-19 Phase transition optical recording medium Pending JP2004284024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075317A JP2004284024A (en) 2003-03-19 2003-03-19 Phase transition optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075317A JP2004284024A (en) 2003-03-19 2003-03-19 Phase transition optical recording medium

Publications (1)

Publication Number Publication Date
JP2004284024A true JP2004284024A (en) 2004-10-14

Family

ID=33290657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075317A Pending JP2004284024A (en) 2003-03-19 2003-03-19 Phase transition optical recording medium

Country Status (1)

Country Link
JP (1) JP2004284024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514195A (en) * 2005-10-17 2009-04-02 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ New phase change magnetic materials
CN107358172A (en) * 2017-06-22 2017-11-17 华南理工大学 A kind of human face characteristic point initial method based on facial orientation classification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514195A (en) * 2005-10-17 2009-04-02 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ New phase change magnetic materials
US8329319B2 (en) 2005-10-17 2012-12-11 Agency For Science, Technology And Research Phase change magnetic material
CN107358172A (en) * 2017-06-22 2017-11-17 华南理工大学 A kind of human face characteristic point initial method based on facial orientation classification

Similar Documents

Publication Publication Date Title
JP3150267B2 (en) Optical recording medium
JP3566743B2 (en) Optical recording medium
US5523140A (en) Optical recording method and medium
JP2001184725A (en) Optical information recording medium
JPH10241211A (en) Production of optical recording medium
JP2003291534A (en) Optical recording medium
US7443776B2 (en) Optical recording method
JP4093846B2 (en) Phase change optical recording medium
JP2004284024A (en) Phase transition optical recording medium
JP4248323B2 (en) Phase change optical recording medium, manufacturing method thereof, and recording method
JPH05151619A (en) Optical information recording medium and recording method
JP3692776B2 (en) Optical information recording medium and method for manufacturing the same
JP2004224041A (en) Phase change type optical recording medium, method for manufacturing the same and method for recording
JPH11167722A (en) Optical recording medium, its recording method and recorder
JP3885051B2 (en) Phase change optical recording medium
JP3664403B2 (en) Phase change optical recording medium
JP3955007B2 (en) Phase change optical recording medium
JP4248645B2 (en) Optical information recording medium
JP2004178779A (en) Optical recording medium
JP2002337451A (en) Optical recording medium
JP2004181742A (en) Phase changing optical recording medium
JP2007062319A (en) Optical recording medium
JP2003331467A (en) Optical recording medium
JP2001184723A (en) Optical information recording medium
JP2001202658A (en) Optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211