JP4248323B2 - Phase change optical recording medium, manufacturing method thereof, and recording method - Google Patents

Phase change optical recording medium, manufacturing method thereof, and recording method Download PDF

Info

Publication number
JP4248323B2
JP4248323B2 JP2003188964A JP2003188964A JP4248323B2 JP 4248323 B2 JP4248323 B2 JP 4248323B2 JP 2003188964 A JP2003188964 A JP 2003188964A JP 2003188964 A JP2003188964 A JP 2003188964A JP 4248323 B2 JP4248323 B2 JP 4248323B2
Authority
JP
Japan
Prior art keywords
recording
phase change
recording medium
optical recording
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003188964A
Other languages
Japanese (ja)
Other versions
JP2004224040A (en
Inventor
浩子 田代
和典 伊藤
眞人 針谷
勝 真貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003188964A priority Critical patent/JP4248323B2/en
Publication of JP2004224040A publication Critical patent/JP2004224040A/en
Application granted granted Critical
Publication of JP4248323B2 publication Critical patent/JP4248323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ビームを照射することにより記録層材料に光学的な変化を生じさせ、情報の記録、再生を行ない、かつ書換えが可能な相変化型光記録媒体とその製造方法及び記録方法に関するものである。
【0002】
【従来の技術】
特許文献1には、GaSb又はInSbの組成比50:50近傍の合金に金属又はカルコゲナイド元素Mを添加した記録材料を用いることが開示されており、GaSb又はInSbだけでは結晶化速度が速すぎてアモルファス化することができないが、これに金属又はカルコゲナイド元素Mを添加することにより結晶化速度を遅くすることができ、結晶−アモルファス間の相転移を用いた情報記録が行なえると記載されている。
しかしながら、Ga50Sb50(原子%)組成近傍の合金は融点が710℃、結晶化温度が350℃と高く、現在市販されている初期化装置ではパワーが足りないため、初期結晶化させようとしても周内での均一な結晶状態が得られず反射率が不均一となる。反射率が不均一な状態でマークを記録すると信号のノイズが大きく、特にDVDのように高密度で信号を記録することは困難である。
【0003】
特許文献2には、GaSbを主成分とする合金を記録材料として用いた相変化型光記録媒体が開示されているが、この光記録媒体は、結晶−結晶間の相変化を用いて情報を記録するものであって、変調度は良くても29%であり実用上問題がある。また、「Gaが20%未満の場合には、レーザー光照射部に気泡が生じたのが原因と思われる膜の盛り上がりが出来るため、反射率の変化するレベルが不安定になり実用上問題がある。」との記載がある。
更に、結晶−結晶間の相変化では、結晶粒径の違いによる反射率差を利用するため、微小なマークを記録する必要がある高密度の情報記録には不向きであり、この光記録媒体にDVD−ROMと同容量の密度で情報を記録することはできない。
非特許文献1には、超高速で相変化可能なGeSb薄膜を用いた光記録媒体に関する知見が記載されているが、Fig1の電子回折パターンでは本発明で重要視している結晶の配向は見られず、しかも、このときの結晶相とアモルファス相の変調度は15〜20%であって実用上問題がある。
【0004】
特許文献3には、記録層に(SbxGe1−x)1−yIny(但し0.65≦x≦0.95,0<y≦0.2)なる合金を主成分とする材料を用いた相変化型光記録媒体が開示されている。
しかしながら、初期化条件については、レーザーパワー密度に換算して2.6mW/μm程度で初期結晶化したという記載があるのみで、本発明で必要としている高い初期化レーザーパワー密度については何も記載されていない。
上記の程度の低いパワー密度では、結晶の配向性が小さく結晶の反射率が小さい媒体しか得られないと推測される。また、開示された記録線速範囲は、2.4〜9.6m/sという低線速であって、本発明のような高線速記録への対応については記載されていない。
【0005】
【特許文献1】
米国特許第4818666号明細書
【特許文献2】
特開昭61−168145号公報
【特許文献3】
特開2001−39031号公報
【非特許文献1】
「Appl.Phys.Lett.」60(25),22 June1992,p3123−3125
【0006】
【発明が解決しようとする課題】
本発明は、DVD−ROMと同容量で10m/s以上の線速度で記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用して記録・消去が可能であり、変調度が大きく、アモルファスマークの安定性が良い相変化型光記録媒体とその製造方法及び記録方法の提供を目的とする。
【0007】
【課題を解決するための手段】
上記課題は、次の1)〜15)の発明によって解決される。
1) 基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に有し、該記録層が、GaαSbβ(但し、5≦α≦20、80≦β≦95、α、βは原子%)で示される組成の合金からなり(但し、Teを含むものを除く)、10m/s以上の線速度においても記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする相変化型光記録媒体。
2) 5≦α≦15、85≦β≦95であることを特徴とする1)記載の相変化型光記録媒体。
3) 前記記録層が、更に前記合金の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Ge、Si、Nから選ばれる少なくとも1種の元素を含有することを特徴とする1)又は2)記載の相変化型光記録媒体。
4) 14m/s以上の線速度においても記録層の非晶質相と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする1)〜3)の何れかに記載の相変化型光記録媒体。
5) 28m/s以上の線速度においても記録層の非晶質相と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする4)記載の相変化型光記録媒体。
6) 記録層の膜厚が5〜25nmの範囲内にあることを特徴とする1)〜5)の何れかに記載の相変化型光記録媒体。
7) 記録層の膜厚が8〜20nmの範囲内にあることを特徴とする6)記載の相変化型光記録媒体。
8) 基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に積層して光記録媒体を作製したのち、該光記録媒体を3〜18m/sの範囲内の一定の線速度で回転させ、パワー密度が5〜50mW/μmのレーザー光を半径方向に一定の速度で移動させながら該光記録媒体に照射して初期結晶化を行なうことを特徴とする1)〜7)の何れかに記載の相変化型光記録媒体の製造方法。
9) 記録媒体の回転線速度が6〜14m/sの範囲内の一定の線速度であり、レーザー光のパワー密度が15〜40mW/μmであることを特徴とする8)記載の製造方法。
10) GaαSbβ(但し、5≦α≦20、80≦β≦95、α、βは原子%)で示される組成の合金からなる(但し、Teを含むものを除く)、相変化型光記録媒体製造用スパッタリングターゲット。
11) GaαSbβ(但し、5≦α≦15、85≦β≦95、α、βは原子%)で示される組成の合金からなる(但し、Teを含むものを除く)、10)記載の相変化型光記録媒体製造用スパッタリングターゲット。
12) GaαSbβ(但し、5≦α≦20、80≦β≦95、α、βは原子%)で示される組成の合金を主成分とし(但し、Teを含むものを除く)、前記合金の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Ge、Si、Nから選ばれる少なくとも1種の元素を含有することを特徴とする相変化型光記録媒体製造用スパッタリングターゲット。
13) 記録線速を28m/sとしたときに、記録層材料に光学変化を起こすための光ビームを単一パルス又は複数のパルス列により形成すると共に、そのパルスビームの記録パワーPwにおけるパワー密度を20mW/μm以上とすることを特徴とする1)〜7)の何れかに記載の相変化型光記録媒体の記録方法。
14) 記録線速を10〜35m/sとし、媒体に照射される光ビームを単一パルス又は複数のパルス列により形成すると共に、消去パワーPeと記録パワーPwの比が、0.10≦Pe/Pw≦0.65となるように設定することを特徴とする1)〜7)の何れかに記載の相変化型光記録媒体の記録方法。
15) 0.13≦Pe/Pw≦0.60となるように設定することを特徴とする14)記載の相変化型光記録媒体の記録方法。
【0008】
【発明の実施の形態】
以下、上記本発明について詳しく説明する。
本発明の相変化型光記録媒体は、基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に有するものである。この基本的な構造を図1に示す。図1(a)は、媒体の斜視図であり、図1(b)は、図1(a)の切り欠き部の断面(層構造)を模式的に示したものである。
本発明1における、「10m/s以上の線速度においても記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用した記録・消去が可能である」という記載は、10m/s以上の線速度で記録・消去できる能力を有するという意味であって、10m/s未満の線速度での記録・消去能力は有っても無くても構わない。
基板材料としては一般にガラス、セラミックス又は樹脂が用いられるが、成形性、コストの点から樹脂製基板が望ましい。樹脂の例としては、ポリカーボネート樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フッ素樹脂等が挙げられるが、加工性、光学特性等の点からポリカーボネート樹脂が好ましい。また、基板の形状は、ディスク状、カード状、シート状などの何れであってもよい。基板の厚さは、1.2mm、0.6mm、0.1mm等任意のものが使用できる。
【0009】
第一中間層及び第二中間層に用いられる材料としては、SiO、TiO、ZnO、ZrO等の金属酸化物;AlN、Si、TiN等の窒化物;ZnS、In、TaS等の硫化物;SiC、TiC、ZrC等の炭化物;或いはそれらの混合物が挙げられる。
第一中間層は、基板から水分等の不純物が記録層に混入しないように記録層を保護する役目、基板に熱的ダメージを与えないようにする役目、光学的特性を調整する役目等を担うため、水分を透過し難く、耐熱性が良く、吸収率kが小さく、屈折率nが大きい材料がよい。第一中間層の膜厚は、40〜500nm、好ましくは60〜200nmである。40nm未満では、記録層が加熱されたときに同時に基板も加熱されてしまうため基板が変形してしまい、500nmを越えると基板と第一中間層の界面で剥離が生じ易くなるので好ましくない。
【0010】
第二中間層は、記録層の熱的な特性を調整する役目を担う。第二中間層の膜厚を薄くすると熱は逃げ易くなり、膜厚を厚くすると逃げ難くなる。第二中間層の膜厚は、5〜100nm、好ましくは5〜20nmである。100nmを越えると、熱が篭りすぎてアモルファス相を形成し難くなり、5nm未満では記録感度が悪くなる。
結晶−アモルファス相の相変化を利用した書換えが可能な相変化型光記録媒体を高速化する場合、その記録線速に適した結晶化速度の速い記録材料を用いるためアモルファスマークの周辺からの再結晶化が進み易くマークが小さくなり変調度が小さくなるという問題が起こる。そのため結晶化速度の速い記録材料を用いる場合ほど再結晶化が起こる時間を短くするため第二中間層の膜厚を薄くし熱が逃げ易い急冷構造にするのが好ましい。また、第二中間層を二層以上にし更に熱が逃げ易い構成にしても良い。
【0011】
記録層には、GaαSbβ(但し、5≦α≦20、80≦β≦95、α、βは原子%)で示される組成の合金を用いる(但し、Teを含むものを除く)。好ましい組成範囲は、5≦α≦15、85≦β≦95である。この組成範囲であれば、10m/s以上の線速度で記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用して記録・消去ができ、変調度が大きく、アモルファスマークの安定性が良い相変化型光記録媒体が得られる。
これまでCD−RWやDVD+RWに使用されているAgInSbTe系材料は、母相材料SbTeに添加元素としてAg、Inを入れた材料である。SbTeの結晶化温度は120℃と低くSb量を増やすほど結晶化温度は下がるため、DVDの5倍速である18m/s記録が限界である。これに対し、本発明のGaSbは結晶化温度が194.5℃と高く、結晶化速度が速い組成範囲でもアモルファスマークの安定性が良い。これは、SbTeと比較してGaSbの格子定数aが小さいため共有結合の力が強く、アモルファス相を熱的に結晶化させるために共有結合を切ってネットワークを組み替えるのに大きなエネルギーを必要とするためである。
【0012】
更に、上記合金に対し、全体の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Ge、Si、Nから選ばれる少なくとも1種の元素を添加することにより、記録パワー、記録可能な線速、アモルファスマークの安定性等の物性を向上させることができる。
記録層の膜厚は、5〜25nmの範囲ならば、DVDの規格を満足する変調度60%以上が得られる。更に望ましい膜厚は8〜20nmであり、この範囲では変調度が65%以上となり、更に安定したシステムを得ることができる。
反射層には各種金属が使用可能であるが、Al、Ag、Cu、Auなどの金属材料又はそれらにTi、Cr、Si、Pd、Cu、In、Mnなどを添加した合金が望ましい。高速記録のときは、特に熱伝導率の高いAg、Cu、Auが好ましい。これにより熱が逃げ易い急冷構造となるため、高い変調度を得ることができる。反射層の膜厚は、60〜300nmが良い。60nm未満では放熱効果が得られなくなりアモルファス化が形成し難くなり、300nmを越えると界面剥離が生じ易くなる。
【0013】
本発明の相変化型光記録媒体を製造するには、初期結晶化条件が重要である。具体的には、基板上に上記各層を積層した後、3〜18m/sの範囲内の一定の線速度で回転させ、5〜50mW/μmのパワー密度のレーザー光を半径方向に一定の速度で移動させながら照射して初期結晶化を行なう。好ましい回転線速度及びパワー密度は6〜14m/s及び15〜40mW/μmである。
本発明の条件で初期結晶化を行なった場合、配向性が強い結晶が得られ、それに伴って高い反射率の光記録媒体を提供することができる。
本発明の相変化型光記録媒体の記録方法としては、記録線速を28m/sとしたときに、記録層材料に光学変化を起こすための光ビームを単一パルス又は複数のパルス列により形成すると共に、そのパルスビームの記録パワーPwにおけるパワー密度を20mW/μm以上とすることが好ましい。この記録方法によりDVD8倍速相当である28m/sで安定した記録が可能となる。
また、記録線速を10〜35m/sとし、媒体に照射される光ビームを単一パルス又は複数のパルス列により形成すると共に、消去パワーPeと記録パワーPwの比が、0.10≦Pe/Pw≦0.65となるように設定することが好ましい。更に好ましい範囲は、0.13≦Pe/Pw≦0.60である。この記録条件に設定することにより、10m/s以上の記録線速でC/N比が高い記録が可能となる。
【0014】
【実施例】
以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらの実施例により何ら限定されるものではない。
【0015】
実施例1
トラックピッチ0.74μm、溝深さ400Åの案内溝を有する厚さ0.6mm、直径120mmφのポリカーボネート基板上に、スパッタリング法により、SiO20モル%のZnS−SiO混合ターゲットを用いて第一中間層を厚さ75nm、Ga12Sb88(原子%)合金ターゲットを用いて記録層を厚さ16nm、第一中間層と同じターゲットを用いて第二中間層を厚さ14nm、Ag−Pd(1原子%)−Cu(1原子%)ターゲットを用いて反射層を厚さ140nmを、この順に設けた。
記録層の合金ターゲットは、予め仕込み量を秤量しガラスアンプル中で加熱溶融し、その後これを取り出して粉砕機により粉砕し、得られた粉末を加温焼結することによって円盤状のターゲット形状とした。製膜後の記録層の組成比を誘導結合プラズマ(ICP)発光分光分析法により測定したところ、ターゲット仕込み量と同じ組成比であった。ICP発光分光分析法には、セイコーインスツルメンツ製:シーケンシャル型ICP発光分光分析装置SPS4000を使用した。
なお、後述する実施例及び比較例においても、記録層の合金組成とスパッタリングターゲットの合金組成とは同一である。
次いで反射層の上に、スピンコート法によりアクリル系樹脂からなる保護層を厚さ約5〜10μm設け、その上に基板と同じ厚さ0.6mmの基板を紫外線硬化樹脂により接着して本実施例の光記録媒体を作製した。
この光記録媒体を一定線速3m/sで回転させ、パワー密度が8mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
【0016】
該光記録媒体に対し、波長660nm、NA0.65のピックアップを用いて記録再生を行った。記録線速17m/s、DVD−ROMと同容量の記録線密度0.267μm/bit、記録パワーPw=20mW、消去パワーPe=7mWという記録条件で、DVDの変調方式であるEFM+変調方式により、ランダムパターンを記録した。
図2に初回記録後の記録層の透過電子顕微鏡像を示す。
図2から分るように、レーザービーム走査方向の長さが短いもので約0.4μm、長いもので約1.8μmのマーク(図の中で白黒のコントラストが見えない灰色の部分)がランダムに記録されているのが観察された。灰色の部分を電子線回折で調べた結果、非晶質相(アモルファス相)であることを示すハローパターンであった。白と黒のコントラストがはっきりしている部分の電子線回折は、結晶相であることを示すスポットが観察された。
また、ダイレクトオーバーライト(DOW)10回後の記録層を透過電子顕微鏡像により観察したところ、初回記録と同様な像が観察され、アモルファス相と結晶相の相変化により繰り返し記録を行えることが確認された。
【0017】
上記と同様な方法で、記録層の組成のみを変えた光記録媒体を作製し、記録線速10m/sでの初回記録及びDOW10回記録後の透過電子顕微鏡像により、アモルファス相と結晶相が形成されているかどうかを観察した。
表1に合金組成及び結果を示す。表中の「○」は結晶相とアモルファス相が観察されたことを示す。また、「×(1)」では、どのような記録条件でもアモルファス相が観察されなかった。これは材料の結晶化速度が速すぎて、現在の記録装置で設定可能な記録条件の範囲では十分な急冷条件を作ることができず全て結晶化してしまうためである。更に、「×(2)」では、アモルファス相は観察されたものの、本来、全て結晶相となるべきスペース部分にアモルファス相が形成されてしまっていた。
【表1】

Figure 0004248323
【0018】
書換え型光記録媒体では、一般的に図3に示すような記録ストラテジにより記録・消去を行なう。通常、パワーが高い方から記録パワーPw(mW)、消去パワーPe、バイアスパワーPbの3値よりなり、PwからPbに急激にパワーを落とすパルスを照射することにより記録層を急冷させてアモルファス相を形成させ、一定パワーのPeを照射することにより記録層を徐冷させてスペース(結晶相)を形成させる。本来結晶相となるべきスペース部分にアモルファス相が形成されてしまったのは、材料の結晶化速度に対して記録線速が速すぎるためである。
これらの結果から、記録層の合金組成は、GaαSbβ(α、βは原子%)として、5≦α≦20、80≦β≦95の範囲がよい。
特許文献2の詳細な説明において、「Gaの組成は20%以下になると気泡が原因と思われる膜の盛り上がりが出来るため、反射率の変化するレベルが不安定になり、実用上問題がある。」としており、本発明の光記録媒体と特許文献2の光記録媒体は本質的に異なるものであることが確認された。
この事実は、本発明のようにアモルファス−結晶間の相変化を用いる場合には、良好な記録特性が得られる組成範囲が、特許文献2に開示される結晶−結晶間の相変化を用いる場合と明らかに異なることを示している。
【0019】
実施例2
記録層用の合金ターゲットを、表2に示した記録層組成と同一組成のGaSb合金に変えた点以外は、実施例1と同様にして光記録媒体を作製し初期結晶化した。
これらの光記録媒体に対して、実施例1と同一の記録条件で3Tを10回オーバーライトしたときのC/N比〔スペクトルアナライザを用いてノイズ(N)レベルと信号強度(C:キャリア)との比を測定〕を表2、図4に示す。
書換え型の光ディスクシステムを実現する場合、そのC/N比は、少なくとも45dB必要であり、50dB以上あれば更に安定したシステムを得ることができる。
【表2】
Figure 0004248323
【0020】
更に、記録層用の合金ターゲットを、表3に示した記録層組成と同一組成のGaSb合金に変えた点以外は、実施例1と同様にして光記録媒体を作製し初期結晶化した。
これらの光記録媒体について、記録線速を10、14、28、35m/sとした点以外は実施例1と同一の記録条件で3Tを10回オーバーライトしたときのC/N比〔スペクトルアナライザを用いてノイズ(N)レベルと信号強度(C:キャリア)との比を測定〕を表3に示す。
【表3】
Figure 0004248323
上記の結果から、GaαSbβ(5≦α≦20、80≦β≦95、α、βは原子%)の範囲ならば、記録線速10〜35m/sでも記録可能であることが確かめられた。しかし、GaSb97ではアモルファス化することができず、Ga25Sb75では繰り返し記録することができなかった。
確実にC/N比が45dB以上の安定したシステムを得るには、5≦α≦15、85≦β≦95であることが望ましい。
【0021】
実施例3
記録層用の合金ターゲットを、Ga12Sb88に対しAg、In、Sn、Geをそれぞれ5原子%添加した合金に変えた点以外は、実施例1と同様にして光記録媒体を作製し初期結晶化した。
得られた4種類の光記録媒体について実施例1と同様にして記録試験を行ったところ、Ag又はInを添加した合金では、28m/sの記録速度条件において、Ga12Sb88のみの場合にPw=30mWで記録したのと同じ変調度を得るのに必要な記録パワーを、Agを添加した合金で約10%、Inを添加した合金で約13%減少させることができた。但し、記録可能な線速範囲の判定基準をC/N比で45dB以上として、Ga12Sb88のみの場合は36〜38m/sまで記録可能であったが、Agを添加した合金では10%低下し、Inを添加した合金では5%以内の低下が見られた。
Snを添加した合金では、28m/sの記録速度条件において、同じ変調度が得られる記録パワーはGa12Sb88のみの場合とほぼ同じであったが、記録可能な線速範囲は約7%早くなった。
Geを添加した合金では、記録線速範囲が約10%低下し、記録パワーは約5%高くする必要があったが、80℃85%RHの高温高湿下の保存信頼性テストを行ったところ、Ga12Sb88のみの場合の500時間後のジッタ上昇が約1.5%であったのに対し、0.5%以内に低減できることが分った。
同様に、Ga12Sb88に対する添加元素をAu、Cu、B、Al、Mn5原子%に変えた光記録媒体を作製したところ、AgやInと同様に記録パワーを下げることができた。また、Ga12Sb88に対する添加元素をZn、Si、Bi、Pb5原子%に変えた光記録媒体を作製したところ、Snと同様に記録可能な線速が速くなった。また、Ga12Sb88に対する添加元素をN2原子%に変えた光記録媒体を作製したところ、Geと同様にアモルファスマークの安定性が良くなった。
実際の組成設計においては、GaSbのみでも充分な記録特性が得られるが、更に使用目的に応じて上記の元素を単独で或いは複合して添加することにより、記録層材料の特性をコントロールできる。
【0022】
更に、Ga12Sb88にInを添加した合金を用いてInの適正な添加量を評価したところ、10原子%を超えると、記録線速範囲が10m/s以下になってしまい、80℃85%RHの高温高湿下の保存信頼性テストを行うと反射率変化が著しく悪化してしまうという不具合が見られ、本発明の目的である高速記録が出来なくなることが分った。この傾向はAg、Au、Cu、B、Al、In、Mnを添加した合金でも同様である。また、Snを添加した合金では、添加量が10%を超えると5%添加した合金に比べて記録パワーを30%大きくしても同じ変調度を得られなかった。このような場合には現状で想定される記録システムの最大記録パワーPwを用いても十分な信号が得られない恐れがある。この傾向はZn、Bi、Pbを添加した合金でも同様である。また、Geを添加した合金では添加量が10%を超えると、記録線速範囲が、Inを添加した合金と同様に10m/s以下となってしまうことと、記録パワーがGa12Sb88のみの場合に比べて30%以上多く必要となった。
なお、Nは、記録層のスパッタ時の気相反応により合金中に取り込まれるが、5%以上の配合量とすることは困難であった。
【0023】
実施例4
記録層の膜厚を3、5、8、10、15、20、25、30nmと変えた点以外は、実施例1と同様にして光記録媒体を作製し、初期結晶化した後、実施例1と同様にしてC/N比と変調度を評価した。結果を表4及び図5に示す。
記録層の膜厚が5〜25nmのときに、DVDの規格を満足する変調度60%以上が得られた。望ましい記録層の膜厚は8〜20nmであり、この範囲では変調度が65%以上であり、更に安定したシステムを得ることができる。
【表4】
Figure 0004248323
【0024】
実施例5
実施例1で作製した光記録媒体を一定線速9m/sで回転させ、パワー密度が18mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
この光記録媒体の貼り合せ部分を物理的に剥がした後、粘着テープで(環境)保護層及び反射層を剥がし、記録層が残っている側の基板を有機溶剤に浸して記録層を基板から剥離させ、ろ過した。この粉末をキャピラリに充填し、入射ビームの平行性と輝度が極度に高い放射光を利用して波長0.419Åで粉末X線回折測定を行なった。
図6に粉末X線回折スペクトルを示す。主な回折スペクトルのピークは、2θ=6.36、6.875、7.804、10.737、11.334°であった。これらの各ピークに対応する格子面の面間隔を下記のブラッグの式により計算すると、順に、d=3.78、3.49、3.08、2.24、2.12であった。これらのピークはSb構造と同様の菱面体構造により指数付けすることができ、記録層は単相であることが分った。
ブラッグの式 2dsinθ=nλ
(d:格子面の間隔、n:反射の次数、λ:X線の波長)
【0025】
上記と同じ光記録媒体の貼り合せ部分を物理的に剥がし記録層が最表面になった状態で、In−planeX線回折(試料の基板面に対し垂直な格子面を測定する方法)により測定を行った。〔この測定法の詳細は、The Rigaku−Denki Journal 31(1)2000に記述されている。〕図7に概略図を示す。
装置はフィリプス社製X′pert MRD、X線の入射光源には銅のKα線(波長λ=1.54Å)を用いた。基板面に対し殆ど平行にX線を入射(入射角0.2〜0.5°)し、X線が当っている部分を回転軸として試料を45°ずつ回転させ、X線回折スペクトルの測定を行なった。この測定法によれば、基板面に対し殆ど平行にX線を入射することにより浸入深さを数nmに抑えることができるので、膜厚が薄い記録層の結晶構造を正確に調べることができる。
光記録媒体の半径位置40mm付近にX線が当るように試料をセットし、光記録媒体のトラック方向に平行にX線を入射させた。このときの角度を0°とし、X線が当っている部分を回転軸として45°ずつ試料を回転させ、それぞれ2θ=20〜70°まで測定したスペクトルを図8に示す。
【0026】
多結晶の膜がある特定の方向に配向していると、該当のピークの強度が強くなるという関係がある。先に述べた粉末X線回折は、試料を基板から剥がし粉末化させたことによって結晶の配向性を取り除いた状態で測定したものであり、粉末X線回折と面内回折(In−planeX線回折)の結果を比較することにより、結晶の配向性がより顕著に判る。
粉末X線回折の結果を波長λ=1.54Åに換算した結果を図9に示す。これを面内回折の結果と比較すると、粉末X線回折では2θ=29°付近のピークの強度が最も強いのに対し、面内回折では29°のピークが小さくなり、現れるピークの数も少なくなる。これは結晶が配向しているため、ブラッグの回折条件を満たさない格子面が出てくるためである。トラック方向に対し90°にX線を入射したとき、格子間隔dが2.12Å(2θ=42.6°)の格子面に強く配向している。
【0027】
次に、パワー密度を3、5、7、15、25、40、50、52mW/μmとし、それぞれ最適な線速で初期化したときの初期化後の状態及び反射率を表5に示す。評価基準は、結晶の配向性が見られないとき「×(1)」、結晶の配向性があるとき「○」、結晶の配向性が強いとき「◎」、膜剥がれが起きたとき「×(2)」とした。
【表5】
Figure 0004248323
線速が3〜18m/s、パワー密度が5〜50mW/μmの範囲で結晶の配向性が見られ、特に線速が6〜14m/s、パワー密度が15〜40mW/μmのとき強い配向性が見られ、それに伴って高い反射率が得られた。
結晶の配向性があり反射率が高い光記録媒体は、記録線速10〜35m/sの記録条件において、C/N比45dB以上の良好な記録特性を示し、記録後の光記録媒体を80℃85%RH環境下で保存した後のジッタ値の変化を調べたところ、300時間後でもジッタ値は変化せず、アモルファスマークの安定性が良いことが確認された(図10)。
ジッタ値は、マークエッジのばらつきを示す値であり、小さい程ばらつきが少なく良好な記録ができていることを示す。加速試験によりアモルファスマークのエッジから結晶化が始まると、ジッタ値は急激に悪くなることが分っている。
上記加速試験の結果を室温での寿命に概算すると10年以上となり、光記録媒体の寿命は十分保証される。従って、本発明の目的とする10m/s以上の記録線速での高速記録が可能な媒体を得るのに上記初期化条件が適していることも確かめられた。
【0028】
記録層用の合金ターゲットをAgInSb68Te25、その母相材料となるSb78Te22、Sb88Te12及びIn31.7Sb68.3(以上比較例)、Ge16.7Sb83.3(参考例)、Ga12Sb88に変えた点以外は、実施例1と同様にして光記録媒体を作製した。
これらの光記録媒体を一定線速8m/sで回転させ、パワー密度が20mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
これらの光記録媒体について、上記と同様の処理をして粉末X線回折を行った。比較のために粉末Sbについても粉末X線回折を行なった。結果を纏めて図11に示す。AgInSb68Te25、Sb78Te22、In31.7Sb68.3のそれぞれのピークはcubic(正方晶)構造で指数付けすることができ、Sb88Te12、Ga12Sb88、Ge16.7Sb83.3はSb構造と同様のhexagonal(六方晶)構造で指数付けすることができた。
材料の結晶構造を比較するため、全ての材料をhexagonal構造の単位格子(図12)を基準として格子定数a(Å)、c(Å)を計算した結果及び熱分析により求めた結晶化温度Tc(℃)を表6に示した。c/a比が2.45のときcubic構造と等価である。結晶化温度は、ガラス上に記録層の単膜を製膜し、アモルファス状態の膜を示差走査熱量測定器により昇温速度10℃/分で昇温させ結晶化が起こる温度を結晶化温度とした。結晶化温度が高いほど、アモルファス相が安定で、結晶化し難いと言える。
【表6】
Figure 0004248323
【0029】
AgInSb68Te25系材料は、母相材料SbTeに添加元素としてAg、Inを入れた材料である。母相材料のSbTeのSb量を増やすことにより材料の結晶化速度を速く出来ることが分っているが、Sbを増やした材料系では低温でもアモルファス相が結晶化してしまうという欠点があり、DVDの5倍速である18m/s記録が限界であると見積もっている。SbTeの結晶化温度が、120.5℃、79.5℃と低いのに比較して、GaSb、GeSbはそれぞれ194.5、255.5℃と高く、非常にアモルファス相が結晶化し難く、アモルファスマークの保存安定性が良いことが分る。これらの現象は、材料の構造から説明することができる。今回粉末X線回折を測定した材料は、全てSbに何かが添加されている材料系と考えることができる。Sb単独では結晶化速度は速いものの、室温でもすぐに結晶化してしまうほどアモルファス相の安定性が悪いため、光記録媒体の材料としては利用できない。そこで、アモルファス相の安定性を良くするために、Sb以外の元素を入れることにより結合力を強めていると考えられる。
格子定数aと結晶化温度の関係を図13に示す。格子定数aが小さい材料は共有結合の力が強く、アモルファス相を熱的に結晶化させるために共有結合を切ってネットワークを組み替えるのに大きなエネルギーを必要とするため、結晶化温度が高くなっていると考えられる。
【0030】
比較例1
実施例1で作製した光記録媒体を一定線速2m/sで回転させ、パワー密度が4.5mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
この光記録媒体の貼り合せ部分を物理的に剥がし記録層が最表面になった状態で、実施例5と同様にして面内回折(In−planeX線回折)を行った。即ち、基板面に対し殆ど平行にX線を入射(入射角0.2〜0.5°)し、試料を45°ずつ回転させ、X線回折スペクトルの測定を行なった。トラック方向に平行にX線を入射させたときの角度を0°とし、45°ずつ試料を回転させ135°まで測定した結果を図14に示した。
上記初期結晶化を行なった光記録媒体を実施例1と同じ記録再生装置を用いて実施例1と同条件で記録したところ、反射率は17%、変調度は55%と低かった。この材料は配向性が小さく結晶性が悪いため反射率が低く、変調度が小さくなっている。
【0031】
実施例6
実施例1で作製した光記録媒体に対し、波長660nmのLD(レーザーダイオード)とNA0.65の光学系を用い、記録線速度28m/sのときに図3に示すようなパルス列のレーザービームにより、Pe/Pwを0.2とし、Pwを変化させて記録テストを行った結果を図15に示す。
テストはDVDの変調方式であるEFM+変調における3T、6T、8T、14Tの単一マークをそれぞれ10回DOWして、そのC/N比をモニターすることによって行った。8Tマークは、他に1回のみの記録(初回記録)を行ったときの結果も合わせてプロットした。記録に用いたパルスは、それぞれ各Tに最適化してそのパルス数とパルス幅、Pbレベルの幅を最適化して用いた。
Ga12Sb88を記録材料として用いた記録媒体において、C/N比を30dB以上確保するためには記録パワーPwは15mW以上、更に安定した記録が可能な45dB以上の記録特性を得るには20mW前後以上の記録パワーPwが必要である。
今回用いた光学系では、ビームパワーが1/eとなるビーム径は、計算から約0.9ミクロン程度であるため、記録に必要な記録パワーPwにおけるビームのパワー密度は少なくとも20mW/μm、望ましくは30mW/μm以上必要であることが分った。
【0032】
実施例7
実施例1で作製した光記録媒体を用いて、記録速度を10m/s、28m/s、35m/sとし、図3記載のパルスビームを用いて記録を行い、そのC/N比をプロットしたのが図16である。また、記録に用いるレーザー光の、消去パワーPeとピークパワーPwの比をそれぞれの記録線速条件下で最適化して、C/N比が最大となるパワー条件を記録線速に対してプロットしたのが図17である。
実施例6と同様に各Tに対するパルス数は、それぞれの線速条件で変更し最適なものを用いた。記録はEFM+変調方式を用い、各Tのマークをランダムに記録した場合の結果である。
10m/s記録線速条件でPe/Pwを変えた場合にC/N比が良好な範囲は0.42≦Pe/Pw≦0.65であり、特にC/N比を50dBに出来るのは、0.47≦Pe/Pw≦0.60程度であった。また、35m/s記録線速条件ではC/N比が良好な範囲は0.10≦Pe/Pw≦0.25であり、特にC/N比を50dBに出来るのは、0.13≦Pe/Pw≦0.22程度であった。記録線速10m/sと35m/sの条件の間は各線速条件で埋められるため、記録線速を10〜35m/sとしたときに良好な記録特性が得られるPe/Pw比の範囲は、0.10≦Pe/Pw≦0.65であり、望ましくは0.13≦Pe/Pw≦0.60である。
【0033】
【発明の効果】
本発明1によれば、DVD−ROMと同容量で10m/s以上の線速度で記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用して記録・消去が可能な光記録媒体を提供できる。
本発明2によれば、10m/s以上の記録線速でC/N比が高い光記録媒体を提供できる。
本発明3によれば、使用目的に応じて記録層材料の特性をコントロールすることができる光記録媒体を提供できる。特に、Ag、Au、Cu、B、Al、In、Mnを用いると、必要とする記録パワーを下げることができ、Sn、Si、Zn、Bi、Pbを用いると、記録可能な線速を速くすることができ、Ge、Nを用いると、アモルファスマークの安定性を良くすることができる
本発明4によれば、DVDの4倍速(14m/s)以上の記録線速で繰り返し記録が可能な光記録媒体を提供できる。
本発明5によれば、DVDの8倍速(28m/s)以上の記録線速で繰り返し記録が可能な光記録媒体を提供できる。
本発明6〜7によれば、変調度が高い光記録媒体を提供できる。
本発明8〜9によれば、DVD−ROMと同容量で10m/s以上の記録線速で高速記録が可能な光記録媒体の製造方法を提供できる。
本発明10〜12によれば、DVD−ROMと同容量で10m/s以上の記録線速で高速記録が可能な光記録媒体製造用スパッタリングターゲットを提供できる。
本発明13によれば、安定した記録が可能な光記録媒体の記録方法を提供できる。
本発明14〜15によれば、10m/s以上の記録線速でC/N比が高い光記録媒体の記録方法を提供できる。
【図面の簡単な説明】
【図1】本発明の相変化型光記録媒体の基本的な構造を示す図。
(a) 斜視図
(b) (a)の切り欠き部の断面(層構造)を模式的に示す図。
【図2】初回記録後の記録層の透過電子顕微鏡像を示す図。
【図3】書換え型光記録媒体で一般的に用いる記録ストラテジを示す図。
【図4】実施例2のGaSb合金を用いた場合のC/N比の測定結果を示す図。
【図5】実施例4の記録層の膜厚を変化させた場合の変調度の評価結果を示す図。
【図6】実施例5の粉末X線回折スペクトルを示す図。
【図7】In−planeX線回折を説明するための図。
【図8】実施例5の光記録媒体について、In−planeX線回折により測定したスペクトルを示す図。
【図9】実施例5の光記録媒体について、粉末X線回折の結果を波長λ=1.54Åに換算した結果を示す図。
【図10】実施例5の光記録媒体について、記録後の媒体を80℃85%RH環境下で保存した後のジッタ値の変化を示す図。
【図11】実施例5及び比較例の光記録媒体の粉末X線回折の結果を示す図。
【図12】hexagonal構造の単位格子を示す図。
【図13】格子定数aと結晶化温度の関係を示す図。
【図14】比較例1の光記録媒体について、In−planeX線回折により測定したスペクトルを示す図。
【図15】実施例1で作製した光記録媒体に対し、記録テストを行った結果を示す図。
【図16】実施例1で作製した光記録媒体を用いて、記録速度を変えて記録を行ったときのC/N比をプロットした図。
【図17】実施例1で作製した光記録媒体を用い、記録に用いるレーザー光のPe/Pwをそれぞれの記録線速条件下で最適化して、C/N比が最大となるパワー条件を記録線速に対してプロットした図。
【符号の説明】
a 格子定数
c 格子定数[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phase-change optical recording medium capable of optically changing a recording layer material by irradiating a light beam, recording and reproducing information, and rewritable, a manufacturing method thereof, and a recording method thereof. Is.
[0002]
[Prior art]
Patent Document 1 discloses that a recording material in which a metal or chalcogenide element M is added to an alloy having a composition ratio of GaSb or InSb in the vicinity of 50:50 is used, and crystallization speed is too high with GaSb or InSb alone. Although it cannot be made amorphous, it is described that by adding a metal or chalcogenide element M to this, the crystallization speed can be slowed down, and information recording using a phase transition between crystal and amorphous can be performed. .
However, Ga 50 Sb 50 (Atom%) Alloys near the composition have a high melting point of 710 ° C. and a crystallization temperature of 350 ° C., and there is not enough power in the commercially available initialization devices, so even if initial crystallization is attempted, it is uniform within the circumference. A crystal state cannot be obtained and the reflectance becomes non-uniform. If a mark is recorded in a state where the reflectance is non-uniform, the noise of the signal is large, and it is difficult to record a signal at a high density, particularly as in a DVD.
[0003]
Patent Document 2 discloses a phase change optical recording medium using an alloy containing GaSb as a main component as a recording material. This optical recording medium uses a phase change between crystals to transmit information. Recording is performed, and the degree of modulation is 29% at most, which is problematic in practical use. In addition, “If Ga is less than 20%, the film may be swelled due to the occurrence of bubbles in the laser light irradiation part, so that the level at which the reflectivity changes becomes unstable, causing a problem in practical use. There is a description.
Furthermore, since the phase change between crystals uses the difference in reflectance due to the difference in crystal grain size, it is not suitable for high-density information recording that requires recording of minute marks. Information cannot be recorded at the same density as the DVD-ROM.
Non-Patent Document 1 describes the knowledge about an optical recording medium using a GeSb thin film capable of phase change at an ultra-high speed. However, the orientation of crystals that are regarded as important in the present invention is not observed in the electron diffraction pattern of FIG. In addition, the degree of modulation between the crystalline phase and the amorphous phase at this time is 15 to 20%, which is problematic in practice.
[0004]
Patent Document 3 discloses a phase change using a material whose main component is an alloy of (SbxGe1-x) 1-yIny (provided that 0.65 ≦ x ≦ 0.95, 0 <y ≦ 0.2) for the recording layer. Type optical recording media are disclosed.
However, the initialization conditions are 2.6 mW / μm in terms of laser power density. 2 There is only a description that initial crystallization has occurred to a certain extent, and nothing is described about the high initialization laser power density required in the present invention.
It is presumed that a medium having a low crystal orientation and a low crystal reflectance can be obtained at a power density as low as described above. Also, the disclosed recording linear velocity range is a low linear velocity of 2.4 to 9.6 m / s, and no description is given regarding the correspondence to the high linear velocity recording as in the present invention.
[0005]
[Patent Document 1]
U.S. Pat. No. 4,818,666
[Patent Document 2]
JP 61-168145 A
[Patent Document 3]
JP 2001-39031 A
[Non-Patent Document 1]
“Appl. Phys. Lett.” 60 (25), 22 June 1992, p 3123-3125.
[0006]
[Problems to be solved by the invention]
The present invention enables recording / erasing by using a reversible phase change between an amorphous phase (amorphous phase) and a crystalline phase of a recording layer at a linear velocity of 10 m / s or more with the same capacity as a DVD-ROM. Another object of the present invention is to provide a phase change type optical recording medium having a large modulation degree and good stability of amorphous marks, a manufacturing method thereof, and a recording method.
[0007]
[Means for Solving the Problems]
The above problems are solved by the following inventions 1) to 15).
1) At least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer are provided on the substrate in this order, and the recording layer has GaαSbβ (where 5 ≦ α ≦ 20, 80 ≦ β ≦ 95, α and β are atomic%) (provided that Including Te Recording and erasing utilizing a reversible phase change between an amorphous phase (amorphous phase) and a crystalline phase of a recording layer even at a linear velocity of 10 m / s or more. Phase change type optical recording medium.
2) The phase change optical recording medium according to 1), wherein 5 ≦ α ≦ 15 and 85 ≦ β ≦ 95.
3) The recording layer further comprises at least one selected from Ag, Au, Cu, B, Al, In, Mn, Sn, Zn, Bi, Pb, Ge, Si, and N of 10 atomic% or less of the alloy. The phase change optical recording medium according to 1) or 2), which contains an element.
4) Any one of 1) to 3), wherein recording / erasing utilizing reversible phase change between the amorphous phase and the crystalline phase of the recording layer is possible even at a linear velocity of 14 m / s or more. A phase change optical recording medium according to claim 1.
5) The phase change type according to 4), wherein recording and erasing utilizing reversible phase change between the amorphous phase and the crystalline phase of the recording layer is possible even at a linear velocity of 28 m / s or more. Optical recording medium.
6) The phase change optical recording medium as described in any one of 1) to 5) above, wherein the thickness of the recording layer is in the range of 5 to 25 nm.
7) The phase change optical recording medium according to 6), wherein the recording layer has a thickness in the range of 8 to 20 nm.
8) On the substrate, at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer are laminated in this order to produce an optical recording medium, and then the optical recording medium is 3 to 18 m / s. It is rotated at a constant linear velocity within the range, and the power density is 5 to 50 mW / μm. 2 The phase-change optical recording medium according to any one of 1) to 7), wherein initial crystallization is performed by irradiating the optical recording medium while moving the laser beam at a constant speed in the radial direction. Production method.
9) The rotational linear velocity of the recording medium is a constant linear velocity in the range of 6 to 14 m / s, and the power density of the laser beam is 15 to 40 mW / μm. 2 8) The production method according to 8).
10) An alloy having a composition represented by GaαSbβ (where 5 ≦ α ≦ 20, 80 ≦ β ≦ 95, α and β are atomic%) (where, Including Te A sputtering target for producing a phase change optical recording medium.
11) GaαSbβ (where 5 ≦ α ≦ 15, 85 ≦ β ≦ 95, where α and β are atomic%) (provided that Including Te A sputtering target for producing a phase change optical recording medium according to 10).
12) Mainly an alloy having a composition represented by GaαSbβ (where 5 ≦ α ≦ 20, 80 ≦ β ≦ 95, α and β are atomic%) (where, Including Te Including at least one element selected from Ag, Au, Cu, B, Al, In, Mn, Sn, Zn, Bi, Pb, Ge, Si, and N of 10 atomic% or less of the alloy) A sputtering target for producing a phase change optical recording medium.
13) When the recording linear velocity is 28 m / s, a light beam for causing an optical change in the recording layer material is formed by a single pulse or a plurality of pulse trains, and the power density of the pulse beam at the recording power Pw is 20mW / μm 2 The recording method for a phase change optical recording medium according to any one of 1) to 7), characterized in that it is as described above.
14) The recording linear velocity is set to 10 to 35 m / s, the light beam applied to the medium is formed by a single pulse or a plurality of pulse trains, and the ratio of the erasing power Pe to the recording power Pw is 0.10 ≦ Pe / The recording method for a phase change optical recording medium according to any one of 1) to 7), wherein Pw ≦ 0.65 is set.
15) The recording method for a phase change optical recording medium according to 14), wherein 0.13 ≦ Pe / Pw ≦ 0.60 is set.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The phase change optical recording medium of the present invention has at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer in this order on a substrate. This basic structure is shown in FIG. FIG. 1A is a perspective view of the medium, and FIG. 1B schematically shows a cross section (layer structure) of the notch portion of FIG.
In the first aspect of the invention, the description “recording / erasing using a reversible phase change between an amorphous phase (amorphous phase) and a crystalline phase of a recording layer is possible even at a linear velocity of 10 m / s or more” This means that it has the ability to record / erase at a linear velocity of 10 m / s or higher, and it may or may not have a recording / erasing capability at a linear velocity of less than 10 m / s.
Generally, glass, ceramics, or resin is used as the substrate material, but a resin substrate is preferable in terms of moldability and cost. Examples of the resin include a polycarbonate resin, an acrylic resin, an epoxy resin, a polystyrene resin, a polyethylene resin, a polypropylene resin, a silicone resin, a fluorine resin, and the like, and a polycarbonate resin is preferable from the viewpoint of processability and optical characteristics. Further, the shape of the substrate may be any of a disk shape, a card shape, a sheet shape, and the like. Arbitrary things, such as 1.2 mm, 0.6 mm, and 0.1 mm, can be used for the thickness of a board | substrate.
[0009]
As materials used for the first intermediate layer and the second intermediate layer, SiO 2 2 TiO 2 , ZnO, ZrO 2 Metal oxide such as AlN, Si 3 N 4 Nitrides such as TiN; ZnS, In 2 S 3 , TaS 3 Sulfides such as SiC; carbides such as SiC, TiC and ZrC; or a mixture thereof.
The first intermediate layer plays a role of protecting the recording layer so that impurities such as moisture are not mixed into the recording layer from the substrate, a role of preventing thermal damage to the substrate, a role of adjusting optical characteristics, and the like. Therefore, a material that hardly permeates moisture, has good heat resistance, has a low absorption rate k, and a high refractive index n is preferable. The film thickness of the first intermediate layer is 40 to 500 nm, preferably 60 to 200 nm. If the thickness is less than 40 nm, the substrate is also heated at the same time when the recording layer is heated, so that the substrate is deformed. If the thickness exceeds 500 nm, peeling is likely to occur at the interface between the substrate and the first intermediate layer.
[0010]
The second intermediate layer serves to adjust the thermal characteristics of the recording layer. When the thickness of the second intermediate layer is reduced, heat is likely to escape, and when the thickness is increased, escape is difficult. The film thickness of the second intermediate layer is 5 to 100 nm, preferably 5 to 20 nm. If the thickness exceeds 100 nm, the heat is too high to form an amorphous phase, and if it is less than 5 nm, the recording sensitivity is deteriorated.
When speeding up a phase-change optical recording medium that can be rewritten using the phase change of the crystal-amorphous phase, a recording material with a high crystallization speed suitable for the recording linear velocity is used. There is a problem that the crystallization is easy to proceed and the mark becomes small and the modulation degree becomes small. For this reason, in order to shorten the recrystallization time as the recording material having a higher crystallization speed is used, it is preferable to make the second intermediate layer thin and to have a rapid cooling structure in which heat can easily escape. Further, the second intermediate layer may be composed of two or more layers so that heat can escape more easily.
[0011]
For the recording layer, an alloy having a composition represented by GaαSbβ (where 5 ≦ α ≦ 20, 80 ≦ β ≦ 95, α and β are atomic%) is used (where, Including Te Except stuff). Preferred composition ranges are 5 ≦ α ≦ 15 and 85 ≦ β ≦ 95. Within this composition range, recording / erasing can be performed using a reversible phase change between the amorphous phase (amorphous phase) and the crystalline phase of the recording layer at a linear velocity of 10 m / s or more, and the degree of modulation is large. Thus, a phase change optical recording medium having good stability of amorphous marks can be obtained.
The AgInSbTe-based material used so far for CD-RW and DVD + RW is a material in which Ag and In are added as additive elements to the matrix phase material SbTe. Since the crystallization temperature of SbTe is as low as 120 ° C. and the amount of Sb is increased, the crystallization temperature is lowered, so that recording at 18 m / s, which is 5 times faster than DVD, is the limit. On the other hand, GaSb of the present invention has a high crystallization temperature of 194.5 ° C., and the stability of the amorphous mark is good even in a composition range where the crystallization speed is fast. This is because the GaSb lattice constant a is smaller than that of SbTe, so the force of the covalent bond is strong, and in order to thermally crystallize the amorphous phase, a large amount of energy is required to break the covalent bond and recombine the network. Because.
[0012]
Furthermore, at least one element selected from Ag, Au, Cu, B, Al, In, Mn, Sn, Zn, Bi, Pb, Ge, Si, and N of 10 atomic% or less of the total alloy is included. By adding, it is possible to improve physical properties such as recording power, recordable linear velocity, and stability of amorphous marks.
If the film thickness of the recording layer is in the range of 5 to 25 nm, a modulation degree of 60% or more that satisfies the DVD standard can be obtained. Further, the desirable film thickness is 8 to 20 nm, and in this range, the modulation degree is 65% or more, and a more stable system can be obtained.
Various metals can be used for the reflective layer, but metal materials such as Al, Ag, Cu, and Au, or alloys obtained by adding Ti, Cr, Si, Pd, Cu, In, Mn, and the like to them are preferable. For high-speed recording, Ag, Cu, and Au, which have a particularly high thermal conductivity, are preferable. As a result, a rapid cooling structure in which heat can easily escape is obtained, so that a high degree of modulation can be obtained. The thickness of the reflective layer is preferably 60 to 300 nm. If the thickness is less than 60 nm, the heat dissipation effect cannot be obtained, and it is difficult to form an amorphization. If the thickness exceeds 300 nm, interface peeling tends to occur.
[0013]
The initial crystallization conditions are important for producing the phase change optical recording medium of the present invention. Specifically, after laminating each of the above layers on the substrate, it is rotated at a constant linear velocity within a range of 3 to 18 m / s, and 5 to 50 mW / μm. 2 Initial crystallization is performed by irradiating a laser beam having a power density of 1 mm while moving it at a constant speed in the radial direction. Preferred rotational linear velocities and power densities are 6-14 m / s and 15-40 mW / μm. 2 It is.
When the initial crystallization is performed under the conditions of the present invention, a crystal having a strong orientation is obtained, and accordingly, an optical recording medium having a high reflectance can be provided.
In the recording method of the phase change optical recording medium of the present invention, when the recording linear velocity is 28 m / s, a light beam for causing an optical change in the recording layer material is formed by a single pulse or a plurality of pulse trains. In addition, the power density at the recording power Pw of the pulse beam is 20 mW / μm. 2 The above is preferable. This recording method enables stable recording at 28 m / s, which is equivalent to DVD 8 × speed.
Further, the recording linear velocity is set to 10 to 35 m / s, and the light beam applied to the medium is formed by a single pulse or a plurality of pulse trains, and the ratio of the erasing power Pe to the recording power Pw is 0.10 ≦ Pe / It is preferable to set so that Pw ≦ 0.65. A more preferable range is 0.13 ≦ Pe / Pw ≦ 0.60. By setting this recording condition, recording with a high C / N ratio can be performed at a recording linear velocity of 10 m / s or more.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these Examples.
[0015]
Example 1
On a polycarbonate substrate having a thickness of 0.6 mm and a diameter of 120 mmφ having a guide groove with a track pitch of 0.74 μm and a groove depth of 400 mm, SiO 2 is formed by sputtering. 2 20 mol% ZnS-SiO 2 Using a mixed target, the first intermediate layer is 75 nm thick, Ga 12 Sb 88 (Atom%) Recording layer 16 nm thick using alloy target, second intermediate layer 14 nm thick using the same target as the first intermediate layer, Ag-Pd (1 atomic%)-Cu (1 atomic%) Using a target, a reflective layer having a thickness of 140 nm was provided in this order.
The alloy target of the recording layer is preliminarily weighed and heated and melted in a glass ampoule, and then taken out and pulverized by a pulverizer. did. When the composition ratio of the recording layer after film formation was measured by inductively coupled plasma (ICP) emission spectroscopy, the composition ratio was the same as the target charge amount. For the ICP emission spectroscopic analysis method, a sequential type ICP emission spectroscopic analyzer SPS4000 manufactured by Seiko Instruments Inc. was used.
In the examples and comparative examples described later, the alloy composition of the recording layer and the alloy composition of the sputtering target are the same.
Next, a protective layer made of an acrylic resin is provided on the reflective layer by a spin coat method to a thickness of about 5 to 10 μm, and a substrate having a thickness of 0.6 mm, which is the same as the substrate, is adhered to the reflective layer with an ultraviolet curable resin. An example optical recording medium was prepared.
This optical recording medium is rotated at a constant linear velocity of 3 m / s, and the power density is 8 mW / μm. 2 The initial crystallization was carried out by irradiating the laser beam in the radial direction while moving the laser beam at 36 μm / r.
[0016]
Recording and reproduction were performed on the optical recording medium using a pickup having a wavelength of 660 nm and NA of 0.65. Under the recording conditions of a recording linear velocity of 17 m / s, a recording linear density of 0.267 μm / bit having the same capacity as a DVD-ROM, a recording power Pw = 20 mW, and an erasing power Pe = 7 mW, the EFM + modulation method, which is a DVD modulation method, A random pattern was recorded.
FIG. 2 shows a transmission electron microscope image of the recording layer after the initial recording.
As can be seen from FIG. 2, marks with a short length in the laser beam scanning direction of about 0.4 .mu.m and long ones of about 1.8 .mu.m (gray portions where black and white contrast cannot be seen in the figure) are randomly. It was observed that it was recorded. As a result of examining the gray part by electron diffraction, it was a halo pattern indicating an amorphous phase. In the electron diffraction of the portion where the contrast between black and white is clear, a spot indicating a crystalline phase was observed.
In addition, when the recording layer after direct overwrite (DOW) 10 times was observed with a transmission electron microscope image, an image similar to the initial recording was observed, and it was confirmed that repeated recording could be performed by the phase change between the amorphous phase and the crystalline phase. It was done.
[0017]
In the same manner as described above, an optical recording medium with only the composition of the recording layer changed was produced, and the amorphous phase and the crystalline phase were confirmed by transmission electron microscopic images after initial recording at a recording linear velocity of 10 m / s and after 10 recordings of DOW. It was observed whether it was formed.
Table 1 shows the alloy composition and results. “◯” in the table indicates that a crystalline phase and an amorphous phase were observed. In “× (1)”, an amorphous phase was not observed under any recording condition. This is because the crystallization speed of the material is too high, and sufficient quenching conditions cannot be created within the range of recording conditions that can be set with the current recording apparatus, and all the materials are crystallized. Further, in “× (2)”, although an amorphous phase was observed, an amorphous phase was originally formed in a space portion that should be a crystalline phase.
[Table 1]
Figure 0004248323
[0018]
In a rewritable optical recording medium, recording / erasing is generally performed by a recording strategy as shown in FIG. Normally, the recording power Pw (mW), the erasing power Pe, and the bias power Pb are three values from the higher power, and the recording layer is rapidly cooled by irradiating a pulse that suddenly decreases the power from Pw to Pb, thereby causing the amorphous phase. The recording layer is gradually cooled by irradiating with a constant power of Pe to form a space (crystal phase). The reason why the amorphous phase is formed in the space portion that should originally become the crystal phase is that the recording linear velocity is too high with respect to the crystallization speed of the material.
From these results, the alloy composition of the recording layer is preferably in the range of 5 ≦ α ≦ 20 and 80 ≦ β ≦ 95 as GaαSbβ (α and β are atomic%).
In the detailed description of Patent Document 2, “If the composition of Ga is 20% or less, the film that is thought to be caused by bubbles can swell, and the level at which the reflectance changes becomes unstable, causing a problem in practical use. It was confirmed that the optical recording medium of the present invention and the optical recording medium of Patent Document 2 are essentially different.
The fact is that when the phase change between amorphous and crystal is used as in the present invention, the composition range in which good recording characteristics can be obtained uses the phase change between crystal and crystal disclosed in Patent Document 2. It is clearly different.
[0019]
Example 2
An optical recording medium was produced and initially crystallized in the same manner as in Example 1 except that the recording layer alloy target was changed to a GaSb alloy having the same composition as the recording layer composition shown in Table 2.
C / N ratio when 3T was overwritten 10 times under the same recording conditions as in Example 1 for these optical recording media [noise (N) level and signal intensity (C: carrier) using spectrum analyzer] Are measured in Table 2 and FIG.
When realizing a rewritable optical disk system, the C / N ratio needs to be at least 45 dB, and if it is 50 dB or more, a more stable system can be obtained.
[Table 2]
Figure 0004248323
[0020]
Further, an optical recording medium was produced and initially crystallized in the same manner as in Example 1 except that the alloy target for the recording layer was changed to a GaSb alloy having the same composition as the recording layer composition shown in Table 3.
With respect to these optical recording media, the C / N ratio when 3T was overwritten 10 times under the same recording conditions as in Example 1 except that the recording linear velocity was 10, 14, 28, and 35 m / s [spectrum analyzer. Table 3 shows the measurement of the ratio between the noise (N) level and the signal intensity (C: carrier).
[Table 3]
Figure 0004248323
From the above results, it was confirmed that recording was possible even at a recording linear velocity of 10 to 35 m / s within the range of GaαSbβ (5 ≦ α ≦ 20, 80 ≦ β ≦ 95, where α and β are atomic%). However, Ga 3 Sb 97 Can not be amorphized, Ga 25 Sb 75 It was not possible to record repeatedly.
In order to reliably obtain a stable system with a C / N ratio of 45 dB or more, it is desirable that 5 ≦ α ≦ 15 and 85 ≦ β ≦ 95.
[0021]
Example 3
Alloy target for recording layer is Ga 12 Sb 88 On the other hand, an optical recording medium was produced and initially crystallized in the same manner as in Example 1 except that the alloy was changed to an alloy containing 5 atomic% of Ag, In, Sn, and Ge.
When the recording test was performed on the obtained four types of optical recording media in the same manner as in Example 1, the alloy to which Ag or In was added had Ga under the recording speed condition of 28 m / s. 12 Sb 88 In this case, the recording power required to obtain the same degree of modulation as that recorded at Pw = 30 mW could be reduced by about 10% for the alloy added with Ag and about 13% for the alloy added with In. . However, the criterion for the recordable linear velocity range is set to 45 dB or more in the C / N ratio, and Ga 12 Sb 88 In the case of only No. 1, it was possible to record up to 36 to 38 m / s. However, the alloy added with Ag was reduced by 10%, and the alloy added with In was reduced within 5%.
In the alloy added with Sn, the recording power at which the same degree of modulation can be obtained under the recording speed condition of 28 m / s is Ga. 12 Sb 88 However, the recordable linear velocity range was about 7% faster.
In the alloy with Ge added, the recording linear velocity range decreased by about 10% and the recording power had to be increased by about 5%. However, a storage reliability test at 80 ° C. and 85% RH under high temperature and high humidity was performed. However, Ga 12 Sb 88 It was found that the jitter increase after 500 hours in the case of only No. 1 was about 1.5%, but could be reduced within 0.5%.
Similarly, Ga 12 Sb 88 When an optical recording medium was prepared by changing the additive element to Au, Cu, B, Al, and Mn at 5 atomic%, the recording power could be lowered as in the case of Ag and In. Ga 12 Sb 88 When an optical recording medium was produced in which the additive element for Zn was changed to Zn, Si, Bi, and Pb 5 atomic%, the linear velocity that could be recorded was increased in the same manner as Sn. Ga 12 Sb 88 When an optical recording medium in which the additive element with respect to N2 was changed to N2 atomic% was produced, the stability of the amorphous mark was improved as in the case of Ge.
In actual composition design, sufficient recording characteristics can be obtained with GaSb alone, but the characteristics of the recording layer material can be controlled by adding the above elements alone or in combination depending on the purpose of use.
[0022]
Furthermore, Ga 12 Sb 88 When an appropriate addition amount of In was evaluated using an alloy added with In, if exceeding 10 atomic%, the recording linear velocity range became 10 m / s or less, and high temperature and high humidity of 80 ° C. and 85% RH. When the following storage reliability test was performed, it was found that the change in reflectance was remarkably deteriorated, and high-speed recording, which is the object of the present invention, could not be performed. This tendency is the same for alloys added with Ag, Au, Cu, B, Al, In, and Mn. Further, in the alloy added with Sn, when the added amount exceeds 10%, the same degree of modulation could not be obtained even when the recording power was increased by 30% compared to the alloy added with 5%. In such a case, there is a possibility that a sufficient signal cannot be obtained even if the maximum recording power Pw of the recording system assumed at present is used. This tendency is the same for alloys to which Zn, Bi, and Pb are added. In addition, when the addition amount exceeds 10% in the alloy to which Ge is added, the recording linear velocity range becomes 10 m / s or less like the alloy to which In is added, and the recording power is Ga. 12 Sb 88 More than 30% more than the case of only the case.
Note that N is taken into the alloy by a gas phase reaction during sputtering of the recording layer, but it has been difficult to achieve a compounding amount of 5% or more.
[0023]
Example 4
An optical recording medium was prepared in the same manner as in Example 1 except that the film thickness of the recording layer was changed to 3, 5, 8, 10, 15, 20, 25, and 30 nm. In the same manner as in Example 1, the C / N ratio and the modulation degree were evaluated. The results are shown in Table 4 and FIG.
When the film thickness of the recording layer was 5 to 25 nm, a modulation degree of 60% or more satisfying the DVD standard was obtained. The desirable film thickness of the recording layer is 8 to 20 nm. In this range, the modulation degree is 65% or more, and a more stable system can be obtained.
[Table 4]
Figure 0004248323
[0024]
Example 5
The optical recording medium produced in Example 1 was rotated at a constant linear velocity of 9 m / s, and the power density was 18 mW / μm. 2 The initial crystallization was carried out by irradiating the laser beam in the radial direction while moving the laser beam at 36 μm / r.
After physically peeling off the bonded portion of this optical recording medium, the (environmental) protective layer and the reflective layer are peeled off with an adhesive tape, and the substrate on which the recording layer remains is immersed in an organic solvent to remove the recording layer from the substrate. Stripped and filtered. The powder was filled in a capillary, and powder X-ray diffraction measurement was performed at a wavelength of 0.419 mm using radiation light with extremely high parallelism and brightness of the incident beam.
FIG. 6 shows a powder X-ray diffraction spectrum. The main diffraction spectrum peaks were 2θ = 6.36, 6.875, 7.804, 10.737, and 11.334 °. When the plane spacing of the lattice plane corresponding to each of these peaks was calculated according to the following Bragg equation, d = 3.78, 3.49, 3.08, 2.24, 2.12. These peaks can be indexed by a rhombohedral structure similar to the Sb structure, and it was found that the recording layer was a single phase.
Bragg's equation 2 d sin θ = nλ
(D: interval between lattice planes, n: order of reflection, λ: wavelength of X-ray)
[0025]
Measured by In-plane X-ray diffraction (method of measuring a lattice plane perpendicular to the substrate surface of the sample) with the recording layer physically peeled off from the bonded portion of the same optical recording medium as described above. went. [Details of this measurement method are described in The Rigaku-Denki Journal 31 (1) 2000]. FIG. 7 shows a schematic diagram.
The apparatus used was X'pert MRD manufactured by Phillips, and copper Kα ray (wavelength λ = 1.54 mm) was used as an X-ray incident light source. X-rays are incident almost parallel to the substrate surface (incident angle 0.2 to 0.5 °), and the sample is rotated by 45 ° about the portion where the X-rays hit as a rotation axis, and the X-ray diffraction spectrum is measured. Was done. According to this measurement method, since the penetration depth can be suppressed to several nm by making X-rays incident almost parallel to the substrate surface, the crystal structure of the thin recording layer can be accurately examined. .
A sample was set so that X-rays hit the vicinity of a radial position of 40 mm of the optical recording medium, and X-rays were incident parallel to the track direction of the optical recording medium. FIG. 8 shows a spectrum obtained by rotating the sample by 45 ° with the angle at this time set to 0 °, and the portion where the X-ray hits as the rotation axis, and measuring from 2θ = 20 to 70 °.
[0026]
When the polycrystalline film is oriented in a specific direction, there is a relationship that the intensity of the corresponding peak is increased. The powder X-ray diffraction described above was measured in a state in which the orientation of the crystal was removed by peeling the sample from the substrate to form powder, and the powder X-ray diffraction and in-plane diffraction (In-plane X-ray diffraction) ), The orientation of the crystal can be recognized more remarkably.
The result of converting the result of the powder X-ray diffraction into the wavelength λ = 1.54 mm is shown in FIG. When this is compared with the results of in-plane diffraction, the peak intensity around 2θ = 29 ° is the strongest in powder X-ray diffraction, whereas the peak at 29 ° is smaller in in-plane diffraction, and the number of peaks that appear is small. Become. This is because the crystal is oriented, and a lattice plane that does not satisfy the Bragg diffraction condition appears. When X-rays are incident at 90 ° with respect to the track direction, they are strongly oriented on the lattice plane with a lattice spacing d of 2.12 mm (2θ = 42.6 °).
[0027]
Next, the power density is 3, 5, 7, 15, 25, 40, 50, 52 mW / μm. 2 Table 5 shows the state after the initialization and the reflectivity when initialized at the optimum linear velocity. The evaluation criteria are “× (1)” when no crystal orientation is observed, “◯” when there is crystal orientation, “◎” when the crystal orientation is strong, “×” when film peeling occurs. (2) ".
[Table 5]
Figure 0004248323
Line speed 3-18 m / s, power density 5-50 mW / μm 2 The crystal orientation is observed in the range of, particularly, the linear velocity is 6 to 14 m / s, and the power density is 15 to 40 mW / μm. 2 In this case, a strong orientation was observed, and a high reflectance was obtained accordingly.
An optical recording medium with crystal orientation and high reflectance exhibits good recording characteristics with a C / N ratio of 45 dB or more under recording conditions of a recording linear velocity of 10 to 35 m / s. When the change in the jitter value after storage in the environment of 85 ° C. and 85% RH was examined, it was confirmed that the jitter value did not change even after 300 hours and the stability of the amorphous mark was good (FIG. 10).
The jitter value is a value indicating the variation of the mark edge, and the smaller the value, the smaller the variation and the better the recording. It is known that when crystallization starts from the edge of the amorphous mark by the acceleration test, the jitter value deteriorates rapidly.
If the result of the acceleration test is roughly estimated as the lifetime at room temperature, it becomes 10 years or more, and the lifetime of the optical recording medium is sufficiently guaranteed. Therefore, it was confirmed that the above initialization conditions are suitable for obtaining a medium capable of high-speed recording at a recording linear velocity of 10 m / s or more, which is an object of the present invention.
[0028]
Alloy target for recording layer is Ag 2 In 5 Sb 68 Te 25 , Sb as the matrix material 78 Te 22 , Sb 88 Te 12 And In 31.7 Sb 68.3 (Comparative example above), Ge 16.7 Sb 83.3 (Reference example), Ga 12 Sb 88 An optical recording medium was fabricated in the same manner as in Example 1 except that the point was changed to.
These optical recording media are rotated at a constant linear velocity of 8 m / s, and the power density is 20 mW / μm. 2 The initial crystallization was carried out by irradiating the laser beam in the radial direction while moving the laser beam at 36 μm / r.
These optical recording media were subjected to the same treatment as described above and subjected to powder X-ray diffraction. For comparison, powder X-ray diffraction was also performed on the powder Sb. The results are summarized in FIG. Ag 2 In 5 Sb 68 Te 25 , Sb 78 Te 22 , In 31.7 Sb 68.3 Each peak of can be indexed with a cubic structure and Sb 88 Te 12 , Ga 12 Sb 88 , Ge 16.7 Sb 83.3 Could be indexed with a hexagonal structure similar to the Sb structure.
In order to compare the crystal structures of the materials, the crystallization temperature Tc obtained by calculating the lattice constants a (Å) and c (Å) with reference to the unit cell (FIG. 12) of the hexagonal structure and the thermal analysis for all materials. (° C.) is shown in Table 6. When the c / a ratio is 2.45, it is equivalent to the cubic structure. The crystallization temperature is obtained by forming a single recording layer on glass and heating the amorphous film with a differential scanning calorimeter at a heating rate of 10 ° C./min. did. It can be said that the higher the crystallization temperature, the more stable the amorphous phase and the harder it is to crystallize.
[Table 6]
Figure 0004248323
[0029]
Ag 2 In 5 Sb 68 Te 25 The system material is a material in which Ag and In are added as additive elements to the matrix phase material SbTe. It has been found that the crystallization speed of the material can be increased by increasing the amount of SbTe of the SbTe matrix material, but the material system with increased Sb has the disadvantage that the amorphous phase crystallizes even at low temperatures. It is estimated that 18 m / s recording, which is 5 times the speed, is the limit. Compared to the low crystallization temperatures of SbTe, 120.5 ° C and 79.5 ° C, GaSb and GeSb are 194.5 and 255.5 ° C, respectively, and the amorphous phase is very difficult to crystallize. It can be seen that the storage stability of the mark is good. These phenomena can be explained from the structure of the material. The materials for which powder X-ray diffraction was measured this time can be considered as a material system in which something is added to Sb. Although Sb alone has a high crystallization speed, it cannot be used as a material for an optical recording medium because the stability of the amorphous phase is so poor that it crystallizes immediately even at room temperature. Therefore, in order to improve the stability of the amorphous phase, it is considered that the bonding force is strengthened by adding an element other than Sb.
The relationship between the lattice constant a and the crystallization temperature is shown in FIG. A material having a small lattice constant a has a strong covalent bond, and requires a large amount of energy to break the covalent bond and recombine the network in order to thermally crystallize the amorphous phase. It is thought that there is.
[0030]
Comparative Example 1
The optical recording medium produced in Example 1 was rotated at a constant linear velocity of 2 m / s, and the power density was 4.5 mW / μm. 2 The initial crystallization was carried out by irradiating the laser beam in the radial direction while moving the laser beam at 36 μm / r.
In-plane diffraction (In-plane X-ray diffraction) was performed in the same manner as in Example 5 in a state where the bonded portion of the optical recording medium was physically peeled off and the recording layer became the outermost surface. That is, X-rays were incident almost parallel to the substrate surface (incident angle 0.2 to 0.5 °), the sample was rotated 45 °, and the X-ray diffraction spectrum was measured. FIG. 14 shows the results of measuring up to 135 ° by rotating the sample by 45 ° in increments of 0 ° when X-rays are incident in parallel to the track direction.
The optical recording medium subjected to the above initial crystallization was recorded under the same conditions as in Example 1 using the same recording / reproducing apparatus as in Example 1. As a result, the reflectance was as low as 17% and the modulation factor was as low as 55%. Since this material has low orientation and poor crystallinity, the reflectivity is low and the degree of modulation is small.
[0031]
Example 6
For the optical recording medium manufactured in Example 1, an LD (laser diode) with a wavelength of 660 nm and an optical system with NA of 0.65 were used, and at a recording linear velocity of 28 m / s, a pulse train laser beam as shown in FIG. FIG. 15 shows the result of the recording test performed by changing Pe / Pw to 0.2 and changing Pw.
The test was carried out by monitoring a C / N ratio of 10 times each of a single mark of 3T, 6T, 8T, and 14T in EFM + modulation which is a DVD modulation method. The 8T mark was also plotted together with the results when recording was performed only once (initial recording). The pulses used for recording were optimized for each T, and the number of pulses, the pulse width, and the Pb level width were optimized.
Ga 12 Sb 88 In a recording medium using a recording material, the recording power Pw is 15 mW or more to ensure a C / N ratio of 30 dB or more, and a recording characteristic of about 20 mW or more is required to obtain a recording characteristic of 45 dB or more that enables more stable recording. Power Pw is required.
In the optical system used this time, the beam power is 1 / e. 2 Since the calculated beam diameter is about 0.9 microns from the calculation, the power density of the beam at the recording power Pw required for recording is at least 20 mW / μm. 2 , Preferably 30mW / μm 2 It turns out that this is necessary.
[0032]
Example 7
Using the optical recording medium produced in Example 1, recording speeds were set to 10 m / s, 28 m / s, and 35 m / s, recording was performed using the pulse beam shown in FIG. 3, and the C / N ratio was plotted. This is shown in FIG. Further, the ratio of the erasing power Pe and the peak power Pw of the laser beam used for recording was optimized under the respective recording linear velocity conditions, and the power condition that maximized the C / N ratio was plotted against the recording linear velocity. This is shown in FIG.
As in Example 6, the number of pulses for each T was changed according to the respective linear velocity conditions, and the optimum number was used. The recording is a result of recording each T mark at random using an EFM + modulation system.
When Pe / Pw is changed under the recording linear velocity condition of 10 m / s, the range where the C / N ratio is good is 0.42 ≦ Pe / Pw ≦ 0.65, and in particular, the C / N ratio can be 50 dB. 0.47 ≦ Pe / Pw ≦ 0.60. Further, in the 35 m / s recording linear velocity condition, the range where the C / N ratio is good is 0.10 ≦ Pe / Pw ≦ 0.25, and in particular, the C / N ratio can be 50 dB, 0.13 ≦ Pe. /Pw≦0.22. The range between the recording linear velocity of 10 m / s and 35 m / s is filled with each linear velocity condition, so the range of the Pe / Pw ratio at which good recording characteristics can be obtained when the recording linear velocity is 10 to 35 m / s is 0.10 ≦ Pe / Pw ≦ 0.65, preferably 0.13 ≦ Pe / Pw ≦ 0.60.
[0033]
【The invention's effect】
According to the first aspect of the present invention, recording / erasing is performed using a reversible phase change between an amorphous phase (amorphous phase) and a crystalline phase of a recording layer at a linear velocity of 10 m / s or more with the same capacity as a DVD-ROM. It is possible to provide an optical recording medium that can
According to the present invention 2, an optical recording medium having a recording linear velocity of 10 m / s or more and a high C / N ratio can be provided.
According to the third aspect of the present invention, it is possible to provide an optical recording medium capable of controlling the characteristics of the recording layer material according to the purpose of use. In particular, when Ag, Au, Cu, B, Al, In, and Mn are used, the required recording power can be lowered, and when Sn, Si, Zn, Bi, and Pb are used, the recordable linear velocity is increased. If Ge and N are used, the stability of the amorphous mark can be improved.
According to the fourth aspect of the present invention, it is possible to provide an optical recording medium capable of repetitive recording at a recording linear velocity of 4 times the DVD (14 m / s) or higher.
According to the fifth aspect of the present invention, it is possible to provide an optical recording medium capable of repetitive recording at a recording linear speed of 8 times the speed (28 m / s) or more of DVD.
According to the sixth to seventh aspects of the present invention, an optical recording medium having a high modulation degree can be provided.
According to the present invention 8 to 9, it is possible to provide an optical recording medium manufacturing method capable of high-speed recording at a recording linear velocity of 10 m / s or more with the same capacity as a DVD-ROM.
According to the present invention 10 to 12, it is possible to provide a sputtering target for producing an optical recording medium capable of high-speed recording at a recording linear velocity of 10 m / s or more with the same capacity as a DVD-ROM.
According to the thirteenth aspect of the present invention, a recording method for an optical recording medium capable of stable recording can be provided.
According to the fourteenth to fifteenth aspects of the present invention, it is possible to provide a recording method for an optical recording medium having a recording linear velocity of 10 m / s or higher and a high C / N ratio.
[Brief description of the drawings]
FIG. 1 is a view showing a basic structure of a phase change optical recording medium of the present invention.
(A) Perspective view
(B) The figure which shows typically the cross section (layer structure) of the notch part of (a).
FIG. 2 is a view showing a transmission electron microscope image of a recording layer after the initial recording.
FIG. 3 is a diagram showing a recording strategy generally used in a rewritable optical recording medium.
4 is a graph showing the measurement result of the C / N ratio when using the GaSb alloy of Example 2. FIG.
FIG. 5 is a diagram showing the evaluation result of the degree of modulation when the film thickness of the recording layer of Example 4 is changed.
6 shows an X-ray powder diffraction spectrum of Example 5. FIG.
FIG. 7 is a diagram for explaining In-plane X-ray diffraction.
8 is a diagram showing a spectrum measured by In-plane X-ray diffraction for the optical recording medium of Example 5. FIG.
9 is a graph showing the result of converting the result of powder X-ray diffraction into a wavelength λ = 1.54 mm for the optical recording medium of Example 5. FIG.
FIG. 10 is a view showing a change in jitter value of the optical recording medium of Example 5 after storing the recorded medium in an environment of 80 ° C. and 85% RH.
FIG. 11 is a graph showing the results of powder X-ray diffraction of optical recording media of Example 5 and Comparative Example.
FIG. 12 shows a unit cell having a hexagonal structure.
FIG. 13 is a graph showing the relationship between the lattice constant a and the crystallization temperature.
14 is a diagram showing a spectrum measured by In-plane X-ray diffraction for the optical recording medium of Comparative Example 1. FIG.
FIG. 15 is a diagram showing a result of a recording test performed on the optical recording medium manufactured in Example 1;
16 is a graph plotting C / N ratios when recording is performed at different recording speeds using the optical recording medium manufactured in Example 1. FIG.
FIG. 17 uses the optical recording medium manufactured in Example 1 and records the power condition that maximizes the C / N ratio by optimizing the Pe / Pw of the laser beam used for recording under each recording linear velocity condition. The figure plotted with respect to the linear velocity.
[Explanation of symbols]
a Lattice constant
c Lattice constant

Claims (15)

基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に有し、該記録層が、GaαSbβ(但し、5≦α≦20、80≦β≦95、α、βは原子%)で示される組成の合金からなり(但し、Teを含むものを除く)、10m/s以上の線速度においても記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする相変化型光記録媒体。The substrate has at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer in this order, and the recording layer is GaαSbβ (where 5 ≦ α ≦ 20, 80 ≦ β ≦ 95, α and β are atoms%) (except for those containing Te ), and the recording layer has an amorphous phase (amorphous phase) and a crystalline phase even at a linear velocity of 10 m / s or more. A phase change optical recording medium capable of recording and erasing utilizing reversible phase change. 5≦α≦15、85≦β≦95であることを特徴とする請求項1記載の相変化型光記録媒体。  2. The phase change optical recording medium according to claim 1, wherein 5 ≦ α ≦ 15 and 85 ≦ β ≦ 95. 前記記録層が、更に前記合金の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Ge、Si、Nから選ばれる少なくとも1種の元素を含有することを特徴とする請求項1又は2記載の相変化型光記録媒体。  The recording layer further contains at least one element selected from Ag, Au, Cu, B, Al, In, Mn, Sn, Zn, Bi, Pb, Ge, Si, and N at 10 atomic% or less of the alloy. The phase change optical recording medium according to claim 1, wherein the phase change optical recording medium is contained. 14m/s以上の線速度においても記録層の非晶質相と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする請求項1〜3の何れかに記載の相変化型光記録媒体。  4. Recording / erasing using a reversible phase change between an amorphous phase and a crystalline phase of a recording layer is possible even at a linear velocity of 14 m / s or more. The phase change optical recording medium described. 28m/s以上の線速度においても記録層の非晶質相と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする請求項4記載の相変化型光記録媒体。  5. The phase change type light according to claim 4, wherein recording / erasing utilizing reversible phase change between an amorphous phase and a crystalline phase of the recording layer is possible even at a linear velocity of 28 m / s or more. recoding media. 記録層の膜厚が5〜25nmの範囲内にあることを特徴とする請求項1〜5の何れかに記載の相変化型光記録媒体。  6. The phase change optical recording medium according to claim 1, wherein the recording layer has a thickness in the range of 5 to 25 nm. 記録層の膜厚が8〜20nmの範囲内にあることを特徴とする請求項6記載の相変化型光記録媒体。  7. The phase change optical recording medium according to claim 6, wherein the thickness of the recording layer is in the range of 8 to 20 nm. 基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に積層して光記録媒体を作製したのち、該光記録媒体を3〜18m/sの範囲内の一定の線速度で回転させ、パワー密度が5〜50mW/μmのレーザー光を半径方向に一定の速度で移動させながら該光記録媒体に照射して初期結晶化を行なうことを特徴とする請求項1〜7の何れかに記載の相変化型光記録媒体の製造方法。An optical recording medium is produced by laminating at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer in this order on a substrate, and then the optical recording medium is within a range of 3 to 18 m / s. The initial crystallization is performed by irradiating the optical recording medium while rotating the laser beam having a power density of 5 to 50 mW / μm 2 at a constant speed in the radial direction. A method for producing a phase change optical recording medium according to claim 1. 記録媒体の回転線速度が6〜14m/sの範囲内の一定の線速度であり、レーザー光のパワー密度が15〜40mW/μmであることを特徴とする請求項8記載の製造方法。9. The manufacturing method according to claim 8, wherein the rotational linear velocity of the recording medium is a constant linear velocity in the range of 6 to 14 m / s, and the power density of the laser beam is 15 to 40 mW / [mu] m < 2 >. GaαSbβ(但し、5≦α≦20、80≦β≦95、α、βは原子%)で示される組成の合金からなる(但し、Teを含むものを除く)、相変化型光記録媒体製造用スパッタリングターゲット。GaαSbβ (where 5 ≦ α ≦ 20, 80 ≦ β ≦ 95, where α and β are atomic%) (excluding those containing Te ), for producing phase change optical recording media Sputtering target. GaαSbβ(但し、5≦α≦15、85≦β≦95、α、βは原子%)で示される組成の合金からなる(但し、Teを含むものを除く)、請求項10記載の相変化型光記録媒体製造用スパッタリングターゲット。The phase change type according to claim 10, comprising an alloy having a composition represented by GaαSbβ (where 5 ≦ α ≦ 15, 85 ≦ β ≦ 95, α and β are atomic%) (excluding those containing Te ). Sputtering target for manufacturing optical recording media. GaαSbβ(但し、5≦α≦20、80≦β≦95、α、βは原子%)で示される組成の合金を主成分とし(但し、Teを含むものを除く)、前記合金の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Ge、Si、Nから選ばれる少なくとも1種の元素を含有することを特徴とする相変化型光記録媒体製造用スパッタリングターゲット。An alloy having a composition represented by GaαSbβ (where 5 ≦ α ≦ 20, 80 ≦ β ≦ 95, α and β are atomic percent) (excluding those containing Te ), and 10 atomic percent of the alloy Phase change optical recording comprising at least one element selected from the following Ag, Au, Cu, B, Al, In, Mn, Sn, Zn, Bi, Pb, Ge, Si, N Sputtering target for medium production. 記録線速を28m/sとしたときに、記録層材料に光学変化を起こすための光ビームを単一パルス又は複数のパルス列により形成すると共に、そのパルスビームの記録パワーPwにおけるパワー密度を20mW/μm以上とすることを特徴とする請求項1〜7の何れかに記載の相変化型光記録媒体の記録方法。When the recording linear velocity is 28 m / s, a light beam for causing an optical change in the recording layer material is formed by a single pulse or a plurality of pulse trains, and the power density of the pulse beam at the recording power Pw is 20 mW / s The recording method for a phase change optical recording medium according to claim 1, wherein the recording method is μm 2 or more. 記録線速を10〜35m/sとし、媒体に照射される光ビームを単一パルス又は複数のパルス列により形成すると共に、消去パワーPeと記録パワーPwの比が、0.10≦Pe/Pw≦0.65となるように設定することを特徴とする請求項1〜7の何れかに記載の相変化型光記録媒体の記録方法。  The recording linear velocity is set to 10 to 35 m / s, the light beam applied to the medium is formed by a single pulse or a plurality of pulse trains, and the ratio of the erasing power Pe to the recording power Pw is 0.10 ≦ Pe / Pw ≦ 8. The recording method for a phase change optical recording medium according to claim 1, wherein the recording method is set to 0.65. 0.13≦Pe/Pw≦0.60となるように設定することを特徴とする請求項14記載の相変化型光記録媒体の記録方法。  15. The recording method for a phase change optical recording medium according to claim 14, wherein 0.13 ≦ Pe / Pw ≦ 0.60 is set.
JP2003188964A 2002-11-27 2003-06-30 Phase change optical recording medium, manufacturing method thereof, and recording method Expired - Fee Related JP4248323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188964A JP4248323B2 (en) 2002-11-27 2003-06-30 Phase change optical recording medium, manufacturing method thereof, and recording method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344719 2002-11-27
JP2003188964A JP4248323B2 (en) 2002-11-27 2003-06-30 Phase change optical recording medium, manufacturing method thereof, and recording method

Publications (2)

Publication Number Publication Date
JP2004224040A JP2004224040A (en) 2004-08-12
JP4248323B2 true JP4248323B2 (en) 2009-04-02

Family

ID=32910901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188964A Expired - Fee Related JP4248323B2 (en) 2002-11-27 2003-06-30 Phase change optical recording medium, manufacturing method thereof, and recording method

Country Status (1)

Country Link
JP (1) JP4248323B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153338A (en) 2003-11-26 2005-06-16 Ricoh Co Ltd Optical recording medium
JP4248486B2 (en) 2004-12-15 2009-04-02 株式会社リコー Phase change optical recording medium
JP4793313B2 (en) * 2007-04-16 2011-10-12 ソニー株式会社 Optical information recording medium and recording and / or reproducing method thereof
JP2009266277A (en) * 2008-04-23 2009-11-12 Nec Corp Information recording unit and recording condition adjusting method

Also Published As

Publication number Publication date
JP2004224040A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
US7260053B2 (en) Optical recording medium, process for manufacturing the same, sputtering target for manufacturing the same, and optical recording process using the same
EP1406254B1 (en) Optical recording medium
EP1453040A2 (en) Optical storage medium
US6707783B2 (en) Optical recording medium and recording/erasing method
JP2002074741A (en) Optical information recording medium
JP3963781B2 (en) Optical recording medium
JP4248323B2 (en) Phase change optical recording medium, manufacturing method thereof, and recording method
JP3651231B2 (en) Optical information recording medium
JP2001039031A (en) Optical information recording medium and method for optical recording
JP4996610B2 (en) Optical information recording medium
JP2004224041A (en) Phase change type optical recording medium, method for manufacturing the same and method for recording
JP3927410B2 (en) Optical recording medium
JP4272934B2 (en) Phase change optical recording medium
JP2000233576A (en) Medium for optical information recording, and its reproduction and recording
JP3493913B2 (en) Optical information recording medium
JP3885051B2 (en) Phase change optical recording medium
JP4109011B2 (en) Optical recording medium
JP4439325B2 (en) Phase change recording material and information recording medium
JP2004005767A (en) Optical recording medium
JP2003211849A (en) Optical recoding medium
JP3955007B2 (en) Phase change optical recording medium
JP3664403B2 (en) Phase change optical recording medium
JP2003067974A (en) Phase change optical recording medium
JP3971198B2 (en) Optical recording medium
JP2007237437A (en) Optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees