JP2004224041A - Phase change type optical recording medium, method for manufacturing the same and method for recording - Google Patents

Phase change type optical recording medium, method for manufacturing the same and method for recording Download PDF

Info

Publication number
JP2004224041A
JP2004224041A JP2003188975A JP2003188975A JP2004224041A JP 2004224041 A JP2004224041 A JP 2004224041A JP 2003188975 A JP2003188975 A JP 2003188975A JP 2003188975 A JP2003188975 A JP 2003188975A JP 2004224041 A JP2004224041 A JP 2004224041A
Authority
JP
Japan
Prior art keywords
recording
phase
recording medium
optical recording
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188975A
Other languages
Japanese (ja)
Inventor
Hiroko Tashiro
浩子 田代
Kazunori Ito
和典 伊藤
Masato Harigai
眞人 針谷
Masaru Magai
勝 真貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003188975A priority Critical patent/JP2004224041A/en
Publication of JP2004224041A publication Critical patent/JP2004224041A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase change type optical recording medium capable of recording/erasing by utilizing a reversible phase change between an amorphous phase and a crystalline phase of a recording layer at the same capacity as DVD-ROM and a linear velocity of ≥10 m/s and having a large modulation degree and a good stability of an amorphous mark, and a method for manufacturing it and a method for recording. <P>SOLUTION: The phase change type optical recording medium has at least a first intermediate layer, the recording layer, a second intermediate layer, a reflective layer and a protective layer in this order on a substrate. The recording layer comprises an alloy of a composition expressed by GeγSbδ (wherein 5≤γ≤25; 75≤δ≤95; and γ and δ are each atomic%). Recording/erasing by utilizing the reversible phase change between the amorphous phase and the crystalline phase of the recording layer is possible even at a linear velocity of ≥10 m/s. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ビームを照射することにより記録層材料に光学的な変化を生じさせ、情報の記録、再生を行ない、かつ書換えが可能な相変化型光記録媒体とその製造方法及び記録方法に関するものである。
【0002】
【従来の技術】
特許文献1には、GaSb又はInSbの組成比50:50近傍の合金に金属又はカルコゲナイド元素Mを添加した記録材料を用いることが開示されており、GaSb又はInSbだけでは結晶化速度が速すぎてアモルファス化することができないが、これに金属又はカルコゲナイド元素Mを添加することにより結晶化速度を遅くすることができ、結晶−アモルファス間の相転移を用いた情報記録が行なえると記載されている。
しかしながら、Ga50Sb50(原子%)組成近傍の合金は融点が710℃、結晶化温度が350℃と高く、現在市販されている初期化装置ではパワーが足りないため、初期結晶化させようとしても周内での均一な結晶状態が得られず反射率が不均一となる。反射率が不均一な状態でマークを記録すると信号のノイズが大きく、特にDVDのように高密度で信号を記録することは困難である。
【0003】
特許文献2には、GaSbを主成分とする合金を記録材料として用いた相変化型光記録媒体が開示されているが、この光記録媒体は、結晶−結晶間の相変化を用いて情報を記録するものであって、変調度は良くても29%であり実用上問題がある。また、「Gaが20%未満の場合には、レーザー光照射部に気泡が生じたのが原因と思われる膜の盛り上がりが出来るため、反射率の変化するレベルが不安定になり実用上問題がある。」との記載がある。
更に、結晶−結晶間の相変化では、結晶粒径の違いによる反射率差を利用するため、微小なマークを記録する必要がある高密度の情報記録には不向きであり、この光記録媒体にDVD−ROMと同容量の密度で情報を記録することはできない。
非特許文献1には、超高速で相変化可能なGeSb薄膜を用いた光記録媒体に関する知見が記載されているが、Fig1の電子回折パターンでは本発明で重要視している結晶の配向は見られず、しかも、このときの結晶相とアモルファス相の変調度は15〜20%であって実用上問題がある。
【0004】
特許文献3には、記録層に(SbxGe1−x)1−yIny(但し0.65≦x≦0.95,0<y≦0.2)なる合金を主成分とする材料を用いた相変化型光記録媒体が開示されている。
しかしながら、初期化条件については、レーザーパワー密度に換算して2.6mW/μm程度で初期結晶化したという記載があるのみで、本発明で必要としている高い初期化レーザーパワー密度については何も記載されていない。
上記の程度の低いパワー密度では、結晶の配向性が小さく結晶の反射率が小さい媒体しか得られないと推測される。また、開示された記録線速範囲は、2.4〜9.6m/sという低線速であって、本発明のような高線速記録への対応については記載されていない。
【0005】
【特許文献1】
米国特許第4818666号明細書
【特許文献2】
特開昭61−168145号公報
【特許文献3】
特開2001−39031号公報
【非特許文献1】
「Appl.Phys.Lett.」60(25),22 June1992,p3123−3125
【0006】
【発明が解決しようとする課題】
本発明は、DVD−ROMと同容量で10m/s以上の線速度で記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用して記録・消去が可能であり、変調度が大きく、アモルファスマークの安定性が良い相変化型光記録媒体とその製造方法及び記録方法の提供を目的とする。
【0007】
【課題を解決するための手段】
上記課題は、次の1)〜15)の発明によって解決される。
1) 基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に有し、該記録層が、GeγSbδ(但し、5≦γ≦25、75≦δ≦95、γ、δは原子%)で示される組成の合金からなり、10m/s以上の線速度においても記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする相変化型光記録媒体。
2) 10≦γ≦20、80≦δ≦90であることを特徴とする1)記載の相変化型光記録媒体。
3) 前記記録層が、更に前記合金の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Si、Nから選ばれる少なくとも1種の元素を含有することを特徴とする1)又は2)記載の相変化型光記録媒体。
4) 14m/s以上の線速度においても記録層の非晶質相と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする1)〜3)の何れかに記載の相変化型光記録媒体。
5) 28m/s以上の線速度においても記録層の非晶質相と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする4)記載の相変化型光記録媒体。
6) 記録層の膜厚が5〜25nmの範囲内にあることを特徴とする1)〜5)の何れかに記載の相変化型光記録媒体。
7) 記録層の膜厚が8〜20nmの範囲内にあることを特徴とする6)記載の相変化型光記録媒体。
8) 基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に積層して光記録媒体を作製したのち、該光記録媒体を3〜18m/sの範囲内の一定の線速度で回転させ、パワー密度が5〜50mW/μmのレーザー光を半径方向に一定の速度で移動させながら該光記録媒体に照射して初期結晶化を行なうことを特徴とする1)〜7)の何れかに記載の相変化型光記録媒体の製造方法。
9) 記録媒体の回転線速度が6〜14m/sの範囲内の一定の線速度であり、レーザー光のパワー密度が15〜40mW/μmであることを特徴とする8)記載の製造方法。
10) GeγSbδ(但し、5≦γ≦25、75≦δ≦95、γ、δは原子%)で示される組成の合金からなる、相変化型光記録媒体製造用スパッタリングターゲット。
11) GeγSbδ(但し、10≦γ≦20、80≦δ≦90、γ、δは原子%)で示される組成の合金からなる10)記載の相変化型光記録媒体製造用スパッタリングターゲット。
12) GeγSbδ(但し、5≦γ≦25、75≦δ≦95、γ、δは原子%)で示される組成の合金を主成分とし、前記合金の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Si、Nから選ばれる少なくとも1種の元素を含有することを特徴とする相変化型光記録媒体製造用スパッタリングターゲット。
13) 記録線速を28m/sとしたときに、記録層材料に光学変化を起こすための光ビームを単一パルス又は複数のパルス列により形成すると共に、そのパルスビームの記録パワーPwにおけるパワー密度を20mW/μm以上とすることを特徴とする1)〜7)の何れかに記載の相変化型光記録媒体の記録方法。
14) 記録線速を10〜35m/sとし、媒体に照射される光ビームを単一パルス又は複数のパルス列により形成すると共に、消去パワーPeと記録パワーPwの比が、0.10≦Pe/Pw≦0.65となるように設定することを特徴とする1)〜7)の何れかに記載の相変化型光記録媒体の記録方法。
15) 0.13≦Pe/Pw≦0.60となるように設定することを特徴とする14)記載の相変化型光記録媒体の記録方法。
【0008】
【発明の実施の形態】
以下、上記本発明について詳しく説明する。
本発明の相変化型光記録媒体は、基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に有するものである。この基本的な構造を図1に示す。図1(a)は、媒体の斜視図であり、図1(b)は、図1(a)の切り欠き部の断面(層構造)を模式的に示したものである。
本発明1における、「10m/s以上の線速度においても記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用した記録・消去が可能である」という記載は、10m/s以上の線速度で記録・消去できる能力を有するという意味であって、10m/s未満の線速度での記録・消去能力は有っても無くても構わない。
基板材料としては一般にガラス、セラミックス又は樹脂が用いられるが、成形性、コストの点から樹脂製基板が望ましい。樹脂の例としては、ポリカーボネート樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フッ素樹脂等が挙げられるが、加工性、光学特性等の点からポリカーボネート樹脂が好ましい。また、基板の形状は、ディスク状、カード状、シート状などの何れであってもよい。基板の厚さは、1.2mm、0.6mm、0.1mm等任意のものが使用できる。
【0009】
第一中間層及び第二中間層に用いられる材料としては、SiO、TiO、ZnO、ZrO等の金属酸化物;AlN、Si、TiN等の窒化物;ZnS、In、TaS等の硫化物;SiC、TiC、ZrC等の炭化物;或いはそれらの混合物が挙げられる。
第一中間層は、基板から水分等の不純物が記録層に混入しないように記録層を保護する役目、基板に熱的ダメージを与えないようにする役目、光学的特性を調整する役目等を担うため、水分を透過し難く、耐熱性が良く、吸収率kが小さく、屈折率nが大きい材料がよい。第一中間層の膜厚は、40〜500nm、好ましくは60〜200nmである。40nm未満では、記録層が加熱されたときに同時に基板も加熱されてしまうため基板が変形してしまい、500nmを越えると基板と第一中間層の界面で剥離が生じ易くなるので好ましくない。
第二中間層は、記録層の熱的な特性を調整する役目を担う。第二中間層の膜厚を薄くすると熱は逃げ易くなり、膜厚を厚くすると逃げ難くなる。第二中間層の膜厚は、5〜100nm、好ましくは5〜20nmである。100nmを越えると、熱が篭りすぎてアモルファス相を形成し難くなり、5nm未満では記録感度が悪くなる。
【0010】
記録層には、GeγSbδ(但し、5≦γ≦25、75≦δ≦95、γ、δは原子%)で示される組成の合金を用いる。好ましい組成範囲は、10≦γ≦20、80≦δ≦90である。この組成範囲であれば、10m/s以上の線速度で記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用して記録・消去ができ、変調度が大きく、アモルファスマークの安定性が良い相変化型光記録媒体が得られる。
更に、上記合金に対し、全体の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Si、Nから選ばれる少なくとも1種の元素を添加することにより、記録パワー、記録可能な線速、アモルファスマークの安定性等の物性を向上させることができる。
記録層の膜厚は、5〜25nmの範囲ならば、DVDの規格を満足する変調度60%以上が得られる。更に望ましい膜厚は8〜20nmであり、この範囲では変調度が65%以上となり、更に安定したシステムを得ることができる。
反射層には各種金属が使用可能であるが、Al、Ag、Cu、Auなどの金属材料又はそれらにTi、Cr、Si、Pd、Cu、In、Mnなどを添加した合金が望ましい。高速記録のときは、特に熱伝導率の高いAg、Cu、Auが好ましい。反射層の膜厚は、60〜300nmが良い。60nm未満では放熱効果が得られなくなりアモルファス化が形成し難くなり、300nmを越えると界面剥離が生じ易くなる。
【0011】
本発明の相変化型光記録媒体を製造するには、初期結晶化条件が重要である。具体的には、基板上に上記各層を積層した後、3〜18m/sの範囲内の一定の線速度で回転させ、5〜50mW/μmのパワー密度のレーザー光を半径方向に一定の速度で移動させながら照射して初期結晶化を行なう。好ましい回転線速度及びパワー密度は6〜14m/s及び15〜40mW/μmである。
本発明の相変化型光記録媒体の記録方法としては、記録線速を28m/sとしたときに、記録層材料に光学変化を起こすための光ビームを単一パルス又は複数のパルス列により形成すると共に、そのパルスビームの記録パワーPwにおけるパワー密度を20mW/μm以上とすることが好ましい。
また、記録線速を10〜35m/sとし、媒体に照射される光ビームを単一パルス又は複数のパルス列により形成すると共に、消去パワーPeと記録パワーPwの比が、0.10≦Pe/Pw≦0.65となるように設定することが好ましい。更に好ましい範囲は、0.13≦Pe/Pw≦0.60である。
【0012】
【実施例】
以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらの実施例により何ら限定されるものではない。
【0013】
実施例1
トラックピッチ0.74μm、溝深さ400Åの案内溝を有する厚さ0.6mm、直径120mmφのポリカーボネート基板上に、スパッタリング法により、SiO20モル%のZnS−SiO混合ターゲットを用いて第一中間層を厚さ75nm、Ge16Sb84(原子%)合金ターゲットを用いて記録層を厚さ16nm、第一中間層と同じターゲットを用いて第二中間層を厚さ14nm、Ag−Pd(1原子%)−Cu(1原子%)ターゲットを用いて反射層を厚さ140nmを、この順に設けた。
記録層の合金ターゲットは、予め仕込み量を秤量しガラスアンプル中で加熱溶融し、その後これを取り出して粉砕機により粉砕し、得られた粉末を加温焼結することによって円盤状のターゲット形状とした。製膜後の記録層の組成比を誘導結合プラズマ(ICP)発光分光分析法により測定したところ、ターゲット仕込み量と同じ組成比であった。ICP発光分光分析法には、セイコーインスツルメンツ製:シーケンシャル型ICP発光分光分析装置SPS4000を使用した。なお、後述する実施例及び比較例においても、記録層の合金組成とスパッタリングターゲットの合金組成とは同一である。
次いで反射層の上に、スピンコート法によりアクリル系樹脂からなる保護層を厚さ約5〜10μm設け、その上に基板と同じ厚さ0.6mmの基板を紫外線硬化樹脂により接着して本実施例の光記録媒体を作製した。
この光記録媒体を一定線速3m/sで回転させ、パワー密度が8mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
【0014】
該光記録媒体に対し、波長660nm、NA0.65のピックアップを用いて記録再生を行った。記録線速17m/s、DVD−ROMと同容量の記録線密度0.267μm/bit、記録パワーPw=20mW、消去パワーPe=7mWという記録条件で、DVDの変調方式であるEFM+変調方式により、ランダムパターンを記録した。
図2に初回記録後の記録層の透過電子顕微鏡像を示す。
図2から分るように、レーザービーム走査方向の長さが短いもので約0.4μm、長いもので約1.8μmのマーク(図の中で白黒のコントラストが見えない灰色の部分)がランダムに記録されているのが観察された。灰色の部分を電子線回折で調べた結果、非晶質相(アモルファス相)であることを示すハローパターンであった。白と黒のコントラストがはっきりしている部分の電子線回折は、結晶相であることを示すスポットが観察された。
また、ダイレクトオーバーライト(DOW)10回後の記録層を透過電子顕微鏡像により観察したところ、初回記録と同様な像が観察され、アモルファス相と結晶相の相変化により繰り返し記録を行えることが確認された。
【0015】
上記と同様な方法で、記録層の組成のみを変えた光記録媒体を作製し、記録線速10m/sでの初回記録及びDOW10回記録後の透過電子顕微鏡像により、アモルファス相と結晶相が形成されているかどうかを観察した。
表1に合金組成及び結果を示す。表中の「○」は結晶相とアモルファス相が観察されたことを示す。また、「×(1)」では、どのような記録条件でもアモルファス相が観察されなかった。これは材料の結晶化速度が速すぎて、現在の記録装置で設定可能な記録条件の範囲では十分な急冷条件を作ることができず全て結晶化してしまうためである。更に、「×(2)」では、アモルファス相は観察されたものの、本来、全て結晶相となるべきスペース部分にアモルファス相が形成されてしまっていた。
【表1】

Figure 2004224041
【0016】
書換え型光記録媒体では、一般的に図3に示すような記録ストラテジにより記録・消去を行なう。通常、パワーが高い方から記録パワーPw(mW)、消去パワーPe、バイアスパワーPbの3値よりなり、PwからPbに急激にパワーを落とすパルスを照射することにより記録層を急冷させてアモルファス相を形成させ、一定パワーのPeを照射することにより記録層を徐冷させてスペース(結晶相)を形成させる。本来結晶相となるべきスペース部分にアモルファス相が形成されてしまったのは、材料の結晶化速度に対して記録線速が速すぎるためである。
これらの結果から、記録層の合金組成は、GeγSbδ(γ、δは原子%)として、5≦γ≦25、75≦δ≦95の範囲がよい。
【0017】
実施例2
記録層用の合金ターゲットを、表2に示した記録層組成と同一組成のGeSb合金に変えた点以外は、実施例1と同様にして光記録媒体を作製し初期結晶化した。
これらの光記録媒体に対して、実施例1と同一の記録条件で3Tを10回オーバーライトしたときのC/N比〔スペクトルアナライザを用いてノイズ(N)レベルと信号強度(C:キャリア)との比を測定〕を表2、図4に示す。
書換え型の光ディスクシステムを実現する場合、そのC/N比は、少なくとも45dB必要であり、50dB以上あれば更に安定したシステムを得ることができる。
【表2】
Figure 2004224041
【0018】
更に、記録層用の合金ターゲットを、表3に示した記録層組成と同一組成のGeSb合金に変えた点以外は、実施例1と同様にして光記録媒体を作製し初期結晶化した。
これらの光記録媒体について、記録線速を10、14、28、35m/sとした点以外は実施例1と同一の記録条件で3Tを10回オーバーライトしたときのC/N比〔スペクトルアナライザを用いてノイズ(N)レベルと信号強度(C:キャリア)との比を測定〕を表3に示す。
【表3】
Figure 2004224041
上記の結果から、GeγSbδ(但し、5≦γ≦25、75≦δ≦95、γ、δは原子%)の範囲ならば、記録線速10〜35m/sでも記録可能であることが確かめられた。しかし、GeSb97では、アモルファス化することができなかった。また、Ge30Sb70では、本来結晶相となるべきスペース部分にアモルファス相が形成されてしまい繰り返し記録することができなかった。
確実にC/N比が45dB以上の安定したシステムを得るには、10≦γ≦20、80≦δ≦90であることが望ましい。
【0019】
実施例3
記録層用の合金ターゲットを、Ge16.7Sb83.3に対しAg、Au、Cu、B、Al、In、Mnをそれぞれ5原子%添加した合金に変えた点以外は、実施例1と同様にして光記録媒体を作製し初期結晶化した。
得られた8種類の光記録媒体について実施例1と同様にして記録試験を行なったところ、28m/sの記録速度条件において、Ge16.7Sb83.3のみの場合にPw=30mWで記録したのと同じ変調度を得るのに必要な記録パワーを、Ag、Au、Cuを添加した合金では約8%、B、Al、In、Mnを添加した合金では約12%減少させることができた。
同様にSn、Si、Zn、Bi、Pbをそれぞれ5原子%添加した合金を用いて作製した光記録媒体では、28m/sの記録速度条件において同じ変調度が得られる記録パワーはGe16.7Sb83.3のみの場合とほぼ同じであったが、Snの場合は記録可能な線速範囲が約5%速くなった。また、Si、Zn、Bi、Pbの場合は記録可能な線速範囲が約3%速くなった。
同様にGe、Nをそれぞれ5原子%添加した合金を用いて作製した光記録媒体について80℃85%RHの高温高湿下の保存信頼性テストを行なったところ、Ge16.7Sb83.3のみの場合の200時間後のジッタ上昇が約2%であったのに対し、1.0%以内に低減できることが分った。
実際の組成設計においては、Ge16.7Sb83.3のみでも十分な記録特性が得られるが、更に使用目的に応じて上記の元素を単独で或いは複合して添加することにより、記録層材料の特性をコントロールできる。
【0020】
実施例4
記録層の膜厚を3、5、8、10、15、20、25、30nmと変えた点以外は、実施例1と同様にして光記録媒体を作製し、初期結晶化した後、実施例1と同様にしてC/N比と変調度を評価した。結果を表4及び図5に示す。
記録層の膜厚が5〜25nmのときに、DVDの規格を満足する変調度60%以上が得られた。望ましい記録層の膜厚は8〜20nmであり、この範囲では変調度が65%以上であり、更に安定したシステムを得ることができる。
【表4】
Figure 2004224041
【0021】
実施例5
実施例1で作製した光記録媒体を一定線速9m/sで回転させ、パワー密度が18mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
この光記録媒体の貼り合せ部分を物理的に剥がした後、粘着テープで(環境)保護層及び反射層を剥がし、記録層が残っている側の基板を有機溶剤に浸して記録層を基板から剥離させ、ろ過した。この粉末をキャピラリに充填し、入射ビームの平行性と輝度が極度に高い放射光を利用して波長0.419Åで粉末X線回折測定を行なった。
図6に粉末X線回折スペクトルを示す。主な回折スペクトルのピークは、2θ=6.51、6.953、8.021、10.972、11.71°であった。これらの各ピークに対応する格子面の面間隔を下記のブラッグの式により計算すると、順に、d=3.69、3.46、3、2.19、2.06であった。これらのピークはSb構造と同様の菱面体構造により指数付けすることができ、記録層は単相であることが分った。
ブラッグの式 2dsinθ=nλ
(d:格子面の間隔、n:反射の次数、λ:X線の波長)
【0022】
上記と同じ光記録媒体の貼り合せ部分を物理的に剥がし記録層が最表面になった状態で、In−planeX線回折(試料の基板面に対し垂直な格子面を測定する方法)により測定を行った。〔この測定法の詳細は、The Rigaku−Denki Journal 31(1)2000に記述されている。〕図7に概略図を示す。
装置はフィリプス社製X′pert MRD、X線の入射光源には銅のKα線(波長λ=1.54Å)を用いた。基板面に対し殆ど平行にX線を入射(入射角0.2〜0.5°)し、X線が当っている部分を回転軸として試料を45°ずつ回転させ、X線回折スペクトルの測定を行なった。この測定法によれば、基板面に対し殆ど平行にX線を入射することにより浸入深さを数nmに抑えることができるので、膜厚が薄い記録層の結晶構造を正確に調べることができる。
光記録媒体の半径位置40mm付近にX線が当るように試料をセットし、光記録媒体のトラック方向に平行にX線を入射させた。このときの角度を0°とし、X線が当っている部分を回転軸として45°ずつ試料を回転させ、それぞれ2θ=20〜70°まで測定したスペクトルを図8に示す。
【0023】
多結晶の膜がある特定の方向に配向していると、該当のピークの強度が強くなるという関係がある。先に述べた粉末X線回折は、試料を基板から剥がし粉末化させたことによって結晶の配向性を取り除いた状態で測定したものであり、粉末X線回折と面内回折(In−planeX線回折)の結果を比較することにより、結晶の配向性がより顕著に判る。
粉末X線回折の結果を波長λ=1.54Åに換算した結果を図9に示す。これを面内回折の結果と比較すると、粉末X線回折では2θ=29°付近のピークの強度が最も強いのに対し、面内回折では29°のピークが小さくなり、現れるピークの数も少なくなる。これは結晶が配向しているため、ブラッグの回折条件を満たさない格子面が出てくるためである。トラック方向に対し90°にX線を入射したとき、格子間隔dが2.10Å(2θ=43.1°)の格子面に強く配向している。
【0024】
次に、パワー密度を3、5、7、15、25、40、50、52mW/μmとし、それぞれ最適な線速で初期化したときの初期化後の状態及び反射率を表5に示す。評価基準は、結晶の配向性が見られないとき「×(1)」、結晶の配向性があるとき「○」、結晶の配向性が強いとき「◎」、膜剥がれが起きたとき「×(2)」とした。
【表5】
Figure 2004224041
線速が3〜18m/s、パワー密度が5〜50mW/μmの範囲で結晶の配向性が見られ、特に線速が6〜14m/s、パワー密度が15〜40mW/μmのとき強い配向性が見られ、それに伴って高い反射率が得られた。
結晶の配向性があり反射率が高い光記録媒体は、記録線速10〜35m/sの記録条件において、C/N比45dB以上の良好な記録特性を示し、記録後の光記録媒体を80℃85%RH環境下で保存した後のジッタ値の変化を調べたところ、400時間後でもジッタ値は変化せず、アモルファスマークの安定性が良いことが確認された(図10)。
ジッタ値は、マークエッジのばらつきを示す値であり、小さい程ばらつきが少なく良好な記録ができていることを示す。加速試験によりアモルファスマークのエッジから結晶化が始まると、ジッタ値は急激に悪くなることが分っている。
上記加速試験の結果を室温での寿命に概算すると10年以上となり、光記録媒体の寿命は十分保証される。従って、本発明の目的とする10m/s以上の記録線速での高速記録が可能な媒体を得るのに上記初期化条件が適していることも確かめられた。
【0025】
記録層用の合金ターゲットをGe17Sb83に変えた点以外は、実施例1と同様にして光記録媒体を作製した。
この光記録媒体を一定線速8m/sで回転させ、パワー密度が20mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
この光記録媒体について、上記と同様の処理を行って測定した面内回折(In−planeX線回折)の結果を図11に示す。この図から、トラック方向に対し垂直方向で格子間隔d(Å)=2.09からのピーク回折強度が強く、配向性が良いことが分った。
この光記録媒体に対し、記録線速28m/s、DVD−ROMと同容量の記録密度でEFMランダムパターンのDOWを10回、記録パワーPw=30mW、消去パワーPe=6mWで行なったところ、変調度63%、反射率24%であった。また、初回記録した記録媒体を80℃85%RH環境下で保存した後のジッタ値の変化を調べたところ、400時間後でもジッタ値は変化せず、アモルファスマークの安定性が良いことが確認された。
【0026】
記録層用の合金ターゲットをAgInSb68Te25、その母相材料となるSb78Te22、Sb88Te12及びIn31.7Sb68.3(以上比較例)、Ga12Sb88(参考例)、Ge16.7Sb83.3に変えた点以外は、実施例1と同様にして光記録媒体を作製した。
これらの光記録媒体を一定線速8m/sで回転させ、パワー密度が20mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
これらの光記録媒体について、上記と同様の処理をして粉末X線回折を行った。比較のために粉末Sbについても粉末X線回折を行なった。結果を纏めて図12に示す。AgInSb68Te25、Sb78Te22、In31.7Sb68.3のそれぞれのピークはcubic(正方晶)構造で指数付けすることができ、Sb88Te12、Ga12Sb88、Ge16.7Sb83.3はSb構造と同様のhexagonal(六方晶)構造で指数付けすることができた。
材料の結晶構造を比較するため、全ての材料をhexagonal構造の単位格子(図13)を基準として格子定数a(Å)、c(Å)を計算した結果及び熱分析により求めた結晶化温度Tc(℃)を表6に示した。c/a比が2.45のときcubic構造と等価である。結晶化温度は、ガラス上に記録層の単膜を製膜し、アモルファス状態の膜を示差走査熱量測定器により昇温速度10℃/分で昇温させ結晶化が起こる温度を結晶化温度とした。結晶化温度が高いほど、アモルファス相が安定で、結晶化し難いと言える。
【表6】
Figure 2004224041
【0027】
AgInSb68Te25系材料は、母相材料SbTeに添加元素としてAg、Inを入れた材料である。母相材料のSbTeのSb量を増やすことにより材料の結晶化速度を速く出来ることが分っているが、Sbを増やした材料系では低温でもアモルファス相が結晶化してしまうという欠点があり、DVDの5倍速である18m/s記録が限界であると見積もっている。SbTeの結晶化温度が、120.5℃、79.5℃と低いのに比較して、GaSb、GeSbはそれぞれ194.5、255.5℃と高く、非常にアモルファス相が結晶化し難く、アモルファスマークの保存安定性が良いことが分る。これらの現象は、材料の構造から説明することができる。今回粉末X線回折を測定した材料は、全てSbに何かが添加されている材料系と考えることができる。Sb単独では結晶化速度は速いものの、室温でもすぐに結晶化してしまうほどアモルファス相の安定性が悪いため、光記録媒体の材料としては利用できない。そこで、アモルファス相の安定性を良くするために、Sb以外の元素を入れることにより結合力を強めていると考えられる。
格子定数aと結晶化温度の関係を図14に示す。格子定数aが小さい材料は共有結合の力が強く、アモルファス相を熱的に結晶化させるために共有結合を切ってネットワークを組み替えるのに大きなエネルギーを必要とするため、結晶化温度が高くなっていると考えられる。
【0028】
比較例1
実施例1で作製した光記録媒体を一定線速2m/sで回転させ、パワー密度が4.5mW/μmのレーザー光を半径方向に送り36μm/rで移動させながら照射することにより初期結晶化を行なった。
この光記録媒体の貼り合せ部分を物理的に剥がし記録層が最表面になった状態で、実施例5と同様にして面内回折(In−planeX線回折)を行った。即ち、基板面に対し殆ど平行にX線を入射(入射角0.2〜0.5°)し、試料を45°ずつ回転させ、X線回折スペクトルの測定を行なった。トラック方向に平行にX線を入射させたときの角度を0°とし、45°ずつ試料を回転させ135°まで測定した結果を図15に示した。
上記初期結晶化を行なった光記録媒体を実施例1と同じ記録再生装置を用いて実施例1と同条件で記録したところ、反射率は17%、変調度は55%と低かった。この材料は配向性が小さく結晶性が悪いため反射率が低く、変調度が小さくなっている。
【0029】
実施例6
実施例1で作製した光記録媒体に対し、波長660nmのLD(レーザーダイオード)とNA0.65の光学系を用い、記録線速度28m/sのときに図3に示すようなパルス列のレーザービームにより、Pe/Pwを0.2とし、Pwを変化させて記録テストを行った結果を図16に示す。
テストはDVDの変調方式であるEFM+変調における3T、6T、8T、14Tの単一マークをそれぞれ10回DOWして、そのC/N比をモニターすることによって行った。8Tマークは、他に1回のみの記録(初回記録)を行ったときの結果も合わせてプロットした。記録に用いたパルスは、それぞれ各Tに最適化してそのパルス数とパルス幅、Pbレベルの幅を最適化して用いた。
Ga16Sb84を記録材料として用いた記録媒体において、C/N比を30dB以上確保するためには記録パワーPwは15mW以上、更に安定した記録が可能な45dB以上の記録特性を得るには20mW前後以上の記録パワーPwが必要である。
今回用いた光学系では、ビームパワーが1/eとなるビーム径は、計算から約0.9ミクロン程度であるため、記録に必要な記録パワーPwにおけるビームのパワー密度は少なくとも20mW/μm、望ましくは30mW/μm以上必要であることが分った。
【0030】
実施例7
実施例1で作製した光記録媒体を用いて、記録速度を10m/s、28m/s、35m/sとし、図3記載のパルスビームを用いて記録を行い、そのC/N比をプロットしたのが図17である。また、記録に用いるレーザー光の、消去パワーPeとピークパワーPwの比をそれぞれの記録線速条件下で最適化して、C/N比が最大となるパワー条件を記録線速に対してプロットしたのが図18である。
実施例6と同様に各Tに対するパルス数は、それぞれの線速条件で変更し最適なものを用いた。記録はEFM+変調方式を用い、各Tのマークをランダムに記録した場合の結果である。
10m/s記録線速条件でPe/Pwを変えた場合にC/N比が良好な範囲は0.42≦Pe/Pw≦0.65であり、特にC/N比を50dBに出来るのは、0.47≦Pe/Pw≦0.60程度であった。また、35m/s記録線速条件ではC/N比が良好な範囲は0.10≦Pe/Pw≦0.25であり、特にC/N比を50dBに出来るのは、0.13≦Pe/Pw≦0.22程度であった。記録線速10m/sと35m/sの条件の間は各線速条件で埋められるため、記録線速を10〜35m/sとしたときに良好な記録特性が得られるPe/Pw比の範囲は、0.10≦Pe/Pw≦0.65であり、望ましくは0.13≦Pe/Pw≦0.60である。
【0031】
【発明の効果】
本発明1によれば、DVD−ROMと同容量で10m/s以上の線速度で記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用して記録・消去が可能な光記録媒体を提供できる。
本発明2によれば、10m/s以上の記録線速でC/N比が高い光記録媒体を提供できる。
本発明3によれば、使用目的に応じて記録層材料の特性をコントロールすることができる光記録媒体を提供できる。特に、Ag、Au、Cu、B、Al、In、Mnを用いると、必要とする記録パワーを下げることができ、Sn、Si、Zn、Bi、Pbを用いると、記録可能な線速を速くすることができ、Nを用いると、アモルファスマークの安定性を良くすることができる
本発明4によれば、DVDの4倍速(14m/s)以上の記録線速で繰り返し記録が可能な光記録媒体を提供できる。
本発明5によれば、DVDの8倍速(28m/s)以上の記録線速で繰り返し記録が可能な光記録媒体を提供できる。
本発明6〜7によれば、変調度が高い光記録媒体を提供できる。
本発明8〜9によれば、DVD−ROMと同容量で10m/s以上の記録線速で高速記録が可能な光記録媒体の製造方法を提供できる。
本発明10〜12によれば、DVD−ROMと同容量で10m/s以上の記録線速で高速記録が可能な光記録媒体製造用スパッタリングターゲットを提供できる。
本発明13によれば、安定した記録が可能な光記録媒体の記録方法を提供できる。
本発明14〜15によれば、10m/s以上の記録線速でC/N比が高い光記録媒体の記録方法を提供できる。
【図面の簡単な説明】
【図1】本発明の相変化型光記録媒体の基本的な構造を示す図。
(a) 斜視図
(b) (a)の切り欠き部の断面(層構造)を模式的に示す図。
【図2】初回記録後の記録層の透過電子顕微鏡像を示す図。
【図3】書換え型光記録媒体で一般的に用いる記録ストラテジを示す図。
【図4】実施例2のGeSb合金を用いた場合のC/N比の測定結果を示す図。
【図5】実施例4の記録層の膜厚を変化させた場合の変調度の評価結果を示す図。
【図6】実施例5の粉末X線回折スペクトルを示す図。
【図7】In−planeX線回折を説明するための図。
【図8】実施例5の光記録媒体について、In−planeX線回折により測定したスペクトルを示す図。
【図9】実施例5の光記録媒体について、粉末X線回折の結果を波長λ=1.54Åに換算した結果を示す図。
【図10】実施例5の光記録媒体について、記録後の媒体を80℃85%RH環境下で保存した後のジッタ値の変化を示す図。
【図11】実施例5の別の光記録媒体についてIn−planeX線回折により測定したスペクトルを示す図。
【図12】実施例5及び比較例の光記録媒体の粉末X線回折の結果を示す図。
【図13】hexagonal構造の単位格子を示す図。
【図14】格子定数aと結晶化温度の関係を示す図。
【図15】比較例1の光記録媒体について、In−planeX線回折により測定したスペクトルを示す図。
【図16】実施例1で作製した光記録媒体に対し、記録テストを行った結果を示す図。
【図17】実施例1で作製した光記録媒体を用いて、記録速度を変えて記録を行ったときのC/N比をプロットした図。
【図18】実施例1で作製した光記録媒体を用い、記録に用いるレーザー光のPe/Pwをそれぞれの記録線速条件下で最適化して、C/N比が最大となるパワー条件を記録線速に対してプロットした図。
【符号の説明】
a 格子定数
c 格子定数[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phase-change optical recording medium capable of recording, reproducing, and rewriting information by causing an optical change in a recording layer material by irradiating a light beam, and a method of manufacturing and recording the same. Things.
[0002]
[Prior art]
Patent Document 1 discloses that a recording material in which a metal or a chalcogenide element M is added to an alloy having a composition ratio of GaSb or InSb in the vicinity of 50:50 is used, and the crystallization speed is too fast with GaSb or InSb alone. Although it cannot be made amorphous, it is described that by adding a metal or chalcogenide element M to this, the crystallization speed can be reduced, and information recording using a crystal-amorphous phase transition can be performed. .
However, Ga 50 Sb 50 (Atomic%) Alloys near the composition have a high melting point of 710 ° C. and a crystallization temperature of 350 ° C., and the power is not sufficient with a commercially available initialization device. A crystalline state cannot be obtained, and the reflectance becomes non-uniform. When a mark is recorded with non-uniform reflectance, signal noise is large, and it is particularly difficult to record a signal at a high density like a DVD.
[0003]
Patent Document 2 discloses a phase change type optical recording medium using an alloy containing GaSb as a main component as a recording material. This optical recording medium uses a phase change between crystals to store information. The modulation is 29% at best, and there is a problem in practice. Also, "If the Ga content is less than 20%, the film may rise due to the formation of bubbles in the laser beam irradiation part, and the level at which the reflectance changes becomes unstable, which poses a practical problem. There is. "
Further, the phase change between crystal and crystal utilizes a difference in reflectance due to a difference in crystal grain size, and is not suitable for high-density information recording in which a minute mark needs to be recorded. Information cannot be recorded at the same density as a DVD-ROM.
Non-Patent Document 1 discloses knowledge about an optical recording medium using a GeSb thin film capable of phase change at an ultra-high speed. However, the electron diffraction pattern of FIG. However, the degree of modulation of the crystalline phase and the amorphous phase at this time is 15 to 20%, which poses a practical problem.
[0004]
Patent Document 3 discloses a phase change using a material whose main component is an alloy of (SbxGe1-x) 1-yIny (0.65 ≦ x ≦ 0.95, 0 <y ≦ 0.2) for a recording layer. A type optical recording medium is disclosed.
However, the initialization condition was 2.6 mW / μm in terms of laser power density. 2 There is only description that initial crystallization has occurred to the extent, but nothing is described about the high initializing laser power density required in the present invention.
It is presumed that at a low power density as described above, only a medium having a low crystal orientation and a low crystal reflectivity can be obtained. Moreover, the disclosed linear recording speed range is a low linear velocity of 2.4 to 9.6 m / s, and does not describe correspondence to high linear velocity recording as in the present invention.
[0005]
[Patent Document 1]
U.S. Pat. No. 4,818,666
[Patent Document 2]
JP-A-61-168145
[Patent Document 3]
JP 2001-39031 A
[Non-patent document 1]
"Appl. Phys. Lett." 60 (25), 22 June 1992, p3123-3125.
[0006]
[Problems to be solved by the invention]
According to the present invention, recording and erasing can be performed using the reversible phase change between the amorphous phase (amorphous phase) and the crystalline phase of the recording layer at a linear velocity of 10 m / s or more with the same capacity as a DVD-ROM. An object of the present invention is to provide a phase-change optical recording medium having a high degree of modulation and a good stability of an amorphous mark, and a method for manufacturing and recording the same.
[0007]
[Means for Solving the Problems]
The above problems are solved by the following inventions 1) to 15).
1) On a substrate, at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer are provided in this order, and the recording layer is formed of GeγSbδ (provided that 5 ≦ γ ≦ 25, 75 ≦ δ ≦ 95, γ, and δ are atomic%) and utilizes the reversible phase change between the amorphous phase (amorphous phase) and the crystalline phase of the recording layer even at a linear velocity of 10 m / s or more. A phase-change type optical recording medium characterized in that it is possible to perform recording and erasing.
2) The phase-change optical recording medium according to 1), wherein 10 ≦ γ ≦ 20 and 80 ≦ δ ≦ 90.
3) The recording layer further contains at least one element selected from the group consisting of Ag, Au, Cu, B, Al, In, Mn, Sn, Zn, Bi, Pb, Si, and N of 10 atomic% or less of the alloy. The phase-change-type optical recording medium according to 1) or 2), which is contained.
4) Recording / erasing using a reversible phase change between the amorphous phase and the crystalline phase of the recording layer is possible even at a linear velocity of 14 m / s or more. A phase-change optical recording medium according to any one of the above.
5) The phase change type according to 4), wherein recording and erasing can be performed using a reversible phase change between the amorphous phase and the crystalline phase of the recording layer even at a linear velocity of 28 m / s or more. Optical recording medium.
6) The phase-change optical recording medium according to any one of 1) to 5), wherein the thickness of the recording layer is in the range of 5 to 25 nm.
7) The phase-change optical recording medium according to 6), wherein the thickness of the recording layer is in the range of 8 to 20 nm.
8) On a substrate, at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer are laminated in this order to produce an optical recording medium. Rotated at a constant linear velocity within the range, power density is 5-50 mW / μm 2 The initial phase crystallization by irradiating the laser beam at a constant speed in the radial direction to the optical recording medium to perform initial crystallization. Production method.
9) The rotational linear velocity of the recording medium is a constant linear velocity in the range of 6 to 14 m / s, and the power density of the laser beam is 15 to 40 mW / μm. 2 The method according to 8), wherein:
10) A sputtering target for producing a phase-change optical recording medium, comprising an alloy having a composition represented by GeγSbδ (where 5 ≦ γ ≦ 25, 75 ≦ δ ≦ 95, and γ and δ are atomic%).
11) The sputtering target for producing a phase-change optical recording medium according to 10), comprising an alloy having a composition represented by GeγSbδ (where 10 ≦ γ ≦ 20, 80 ≦ δ ≦ 90, and γ and δ are atomic%).
12) An alloy having a composition represented by GeγSbδ (where 5 ≦ γ ≦ 25, 75 ≦ δ ≦ 95, and γ and δ are atomic%) as a main component, and 10% or less of Ag, Au, Cu, A sputtering target for producing a phase-change optical recording medium, comprising at least one element selected from the group consisting of B, Al, In, Mn, Sn, Zn, Bi, Pb, Si and N.
13) When the recording linear velocity is 28 m / s, a light beam for causing an optical change in the recording layer material is formed by a single pulse or a plurality of pulse trains, and the power density of the pulse beam at the recording power Pw is determined. 20mW / μm 2 The recording method of a phase-change optical recording medium according to any one of 1) to 7), characterized in that:
14) The recording linear velocity is 10 to 35 m / s, the light beam irradiated on the medium is formed by a single pulse or a plurality of pulse trains, and the ratio between the erasing power Pe and the recording power Pw is 0.10 ≦ Pe / The recording method for a phase change type optical recording medium according to any one of 1) to 7), wherein Pw ≦ 0.65 is set.
15) The recording method for a phase-change optical recording medium according to 14), wherein 0.13 ≦ Pe / Pw ≦ 0.60 is set.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The phase-change optical recording medium of the present invention has at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer on a substrate in this order. This basic structure is shown in FIG. FIG. 1A is a perspective view of a medium, and FIG. 1B schematically shows a cross section (layer structure) of a cutout portion in FIG. 1A.
In the present invention 1, the description that “recording / erasing is possible using a reversible phase change between an amorphous phase (amorphous phase) and a crystalline phase of a recording layer even at a linear velocity of 10 m / s or more” is described. In other words, it has the capability of recording and erasing at a linear velocity of 10 m / s or more, and may or may not have the recording / erasing ability at a linear velocity of less than 10 m / s.
In general, glass, ceramics, or resin is used as the substrate material, but a resin substrate is desirable in terms of moldability and cost. Examples of the resin include a polycarbonate resin, an acrylic resin, an epoxy resin, a polystyrene resin, a polyethylene resin, a polypropylene resin, a silicone resin, a fluororesin, and the like, and a polycarbonate resin is preferable in view of workability, optical characteristics, and the like. Further, the shape of the substrate may be any of a disk shape, a card shape, a sheet shape and the like. Any thickness such as 1.2 mm, 0.6 mm, and 0.1 mm can be used for the thickness of the substrate.
[0009]
The material used for the first intermediate layer and the second intermediate layer is SiO 2 2 , TiO 2 , ZnO, ZrO 2 Metal oxides such as AlN, Si 3 N 4 , TiN and other nitrides; ZnS, In 2 S 3 , TaS 3 And the like; carbides such as SiC, TiC and ZrC; and mixtures thereof.
The first intermediate layer has a role of protecting the recording layer so that impurities such as moisture do not enter the recording layer from the substrate, a role of preventing thermal damage to the substrate, a role of adjusting optical characteristics, and the like. Therefore, a material that does not easily transmit moisture, has good heat resistance, has a small absorption k, and has a large refractive index n is preferable. The thickness of the first intermediate layer is 40 to 500 nm, preferably 60 to 200 nm. When the thickness is less than 40 nm, the substrate is heated at the same time as the recording layer is heated, so that the substrate is deformed. When the thickness is more than 500 nm, peeling easily occurs at the interface between the substrate and the first intermediate layer, which is not preferable.
The second intermediate layer plays a role in adjusting the thermal characteristics of the recording layer. When the thickness of the second intermediate layer is reduced, heat is easily released, and when the thickness is increased, it is difficult to escape. The thickness of the second intermediate layer is 5 to 100 nm, preferably 5 to 20 nm. When the thickness exceeds 100 nm, heat is excessively absorbed and it is difficult to form an amorphous phase, and when the thickness is less than 5 nm, recording sensitivity is deteriorated.
[0010]
For the recording layer, an alloy having a composition represented by GeγSbδ (provided that 5 ≦ γ ≦ 25, 75 ≦ δ ≦ 95, and γ and δ are atomic%) is used. Preferred composition ranges are 10 ≦ γ ≦ 20 and 80 ≦ δ ≦ 90. In this composition range, recording / erasing can be performed at a linear velocity of 10 m / s or more by utilizing the reversible phase change between the amorphous phase (amorphous phase) and the crystalline phase of the recording layer, and the degree of modulation is large. As a result, a phase change type optical recording medium having good amorphous mark stability can be obtained.
Further, at least one element selected from Ag, Au, Cu, B, Al, In, Mn, Sn, Zn, Bi, Pb, Si, and N is added to the alloy in an amount of 10 atomic% or less. Thereby, the physical properties such as the recording power, the linear velocity at which recording can be performed, and the stability of the amorphous mark can be improved.
If the thickness of the recording layer is in the range of 5 to 25 nm, a modulation factor of 60% or more that satisfies the DVD standard can be obtained. A more desirable film thickness is 8 to 20 nm. In this range, the degree of modulation is 65% or more, and a more stable system can be obtained.
Various metals can be used for the reflective layer, but a metal material such as Al, Ag, Cu, or Au or an alloy obtained by adding Ti, Cr, Si, Pd, Cu, In, or Mn to them is desirable. For high-speed recording, Ag, Cu, and Au having particularly high thermal conductivity are preferable. The thickness of the reflection layer is preferably from 60 to 300 nm. If the thickness is less than 60 nm, a heat radiation effect cannot be obtained, and it is difficult to form an amorphous state. If the thickness exceeds 300 nm, interface peeling tends to occur.
[0011]
Initial crystallization conditions are important for producing the phase-change optical recording medium of the present invention. Specifically, after laminating each of the above layers on a substrate, the layer is rotated at a constant linear velocity in a range of 3 to 18 m / s to obtain a 5 to 50 mW / μm 2 The initial crystallization is performed by irradiating a laser beam having a power density of 2 while moving at a constant speed in the radial direction. Preferred rotational linear velocities and power densities are 6 to 14 m / s and 15 to 40 mW / μm 2 It is.
In the recording method of the phase change type optical recording medium of the present invention, a light beam for causing an optical change in a recording layer material is formed by a single pulse or a plurality of pulse trains when a recording linear velocity is 28 m / s. At the same time, the power density of the pulse beam at the recording power Pw is set to 20 mW / μm. 2 It is preferable to make the above.
Further, the recording linear velocity is set to 10 to 35 m / s, the light beam irradiated on the medium is formed by a single pulse or a plurality of pulse trains, and the ratio between the erasing power Pe and the recording power Pw is 0.10 ≦ Pe / It is preferable to set Pw ≦ 0.65. A more preferred range is 0.13 ≦ Pe / Pw ≦ 0.60.
[0012]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0013]
Example 1
On a polycarbonate substrate having a track pitch of 0.74 μm and a guide groove having a groove depth of 400 ° and a thickness of 0.6 mm and a diameter of 120 mmφ, a SiO2 film is formed by sputtering. 2 20 mol% ZnS-SiO 2 Using a mixed target, the first intermediate layer is 75 nm thick, Ge 16 Sb 84 (Atomic%) The recording layer was 16 nm thick using an alloy target, the second intermediate layer was 14 nm thick using the same target as the first intermediate layer, and Ag-Pd (1 atomic%)-Cu (1 atomic%). Using a target, a reflective layer having a thickness of 140 nm was provided in this order.
The alloy target of the recording layer is weighed in advance, melted and heated in a glass ampule, then taken out, crushed by a crusher, and heated and sintered to obtain a disk-shaped target shape. did. When the composition ratio of the recording layer after film formation was measured by inductively coupled plasma (ICP) emission spectroscopy, the composition ratio was the same as the target charge amount. Sequential instruments: Sequential type ICP emission spectrometer SPS4000 was used for ICP emission spectroscopy. In Examples and Comparative Examples described later, the alloy composition of the recording layer is the same as the alloy composition of the sputtering target.
Next, a protective layer made of an acrylic resin is provided on the reflective layer by a spin coating method to a thickness of about 5 to 10 μm, and a substrate having a thickness of 0.6 mm, which is the same as the substrate, is adhered to the protective layer with an ultraviolet curable resin. Example optical recording media were produced.
This optical recording medium was rotated at a constant linear velocity of 3 m / s, and the power density was 8 mW / μm. 2 Initial crystallization was performed by irradiating the laser beam while sending it in the radial direction while moving it at 36 μm / r.
[0014]
Recording and reproduction were performed on the optical recording medium using a pickup having a wavelength of 660 nm and an NA of 0.65. Under the recording conditions of a recording linear velocity of 17 m / s, a recording linear density of the same capacity as a DVD-ROM, 0.267 μm / bit, a recording power Pw = 20 mW, and an erasing power Pe = 7 mW, the EFM + modulation method which is a DVD modulation method is used. A random pattern was recorded.
FIG. 2 shows a transmission electron microscope image of the recording layer after the initial recording.
As can be seen from FIG. 2, marks of about 0.4 μm in the short direction in the laser beam scanning direction and about 1.8 μm in the long direction (gray portions where black and white contrast is not visible in the figure) are randomly arranged. It was observed to be recorded. As a result of examining the gray part by electron beam diffraction, a halo pattern indicating an amorphous phase (amorphous phase) was obtained. In electron beam diffraction of a portion where the contrast between black and white was clear, spots indicating a crystalline phase were observed.
Further, when the recording layer after 10 times of direct overwrite (DOW) was observed with a transmission electron microscope image, an image similar to that of the initial recording was observed, and it was confirmed that repeated recording could be performed due to a phase change between the amorphous phase and the crystalline phase. Was done.
[0015]
An optical recording medium in which only the composition of the recording layer was changed was prepared in the same manner as above, and the amorphous phase and the crystalline phase were determined by the transmission electron microscope images after the initial recording at a recording linear velocity of 10 m / s and the 10-time DOW recording. It was observed whether it was formed.
Table 1 shows the alloy composition and the results. “O” in the table indicates that a crystalline phase and an amorphous phase were observed. In “x (1)”, no amorphous phase was observed under any recording conditions. This is because the crystallization speed of the material is too high, and sufficient quenching conditions cannot be created within the range of the recording conditions that can be set by the current recording apparatus, and all the materials are crystallized. Further, in “× (2)”, although an amorphous phase was observed, the amorphous phase was originally formed in a space portion which should originally be a crystalline phase.
[Table 1]
Figure 2004224041
[0016]
In a rewritable optical recording medium, recording / erasing is generally performed by a recording strategy as shown in FIG. Usually, the recording power Pw (mW), the erasing power Pe, and the bias power Pb consist of three values from the higher power, and the recording layer is rapidly cooled by irradiating a pulse for rapidly decreasing the power from Pw to Pb, thereby forming an amorphous phase. The recording layer is gradually cooled by irradiating Pe with a constant power to form a space (crystal phase). The amorphous phase was formed in the space that should originally be a crystalline phase because the recording linear velocity was too high relative to the crystallization speed of the material.
From these results, the alloy composition of the recording layer is preferably in the range of 5 ≦ γ ≦ 25 and 75 ≦ δ ≦ 95 as GeγSbδ (γ and δ are atomic%).
[0017]
Example 2
An optical recording medium was prepared and initially crystallized in the same manner as in Example 1 except that the alloy target for the recording layer was changed to a GeSb alloy having the same composition as the recording layer shown in Table 2.
For these optical recording media, the C / N ratio when 3T was overwritten 10 times under the same recording conditions as in Example 1 [Noise (N) level and signal intensity (C: carrier) using a spectrum analyzer) Is shown in Table 2 and FIG.
When realizing a rewritable optical disk system, the C / N ratio needs to be at least 45 dB, and if it is 50 dB or more, a more stable system can be obtained.
[Table 2]
Figure 2004224041
[0018]
Further, an optical recording medium was produced and subjected to initial crystallization in the same manner as in Example 1 except that the alloy target for the recording layer was changed to a GeSb alloy having the same composition as the recording layer shown in Table 3.
For these optical recording media, the C / N ratio when 3T was overwritten 10 times under the same recording conditions as in Example 1 except that the recording linear velocity was set to 10, 14, 28, and 35 m / s [spectral analyzer Is used to measure the ratio between the noise (N) level and the signal strength (C: carrier)].
[Table 3]
Figure 2004224041
From the above results, it was confirmed that recording was possible even at a recording linear velocity of 10 to 35 m / s within the range of GeγSbδ (where 5 ≦ γ ≦ 25, 75 ≦ δ ≦ 95, and γ and δ are atomic%). Was. But Ge 3 Sb 97 Could not be made amorphous. Also, Ge 30 Sb 70 In this case, an amorphous phase was formed in a space that should originally be a crystalline phase, and it was not possible to repeatedly record.
In order to surely obtain a stable system having a C / N ratio of 45 dB or more, it is desirable that 10 ≦ γ ≦ 20 and 80 ≦ δ ≦ 90.
[0019]
Example 3
The alloy target for the recording layer was Ge 16.7 Sb 83.3 On the other hand, an optical recording medium was prepared and initially crystallized in the same manner as in Example 1 except that an alloy containing 5 atomic% of each of Ag, Au, Cu, B, Al, In and Mn was used.
When a recording test was performed on the obtained eight types of optical recording media in the same manner as in Example 1, Ge recording was performed at a recording speed of 28 m / s. 16.7 Sb 83.3 The recording power required to obtain the same degree of modulation as that recorded at Pw = 30 mW in the case of only A was about 8% for an alloy containing Ag, Au, and Cu, and an alloy containing B, Al, In, and Mn. Reduced about 12%.
Similarly, in an optical recording medium manufactured using an alloy containing 5 atomic% of Sn, Si, Zn, Bi, and Pb, the recording power at which the same degree of modulation can be obtained at a recording speed of 28 m / s is Ge. 16.7 Sb 83.3 In the case of Sn, the recordable linear velocity range was increased by about 5%. In the case of Si, Zn, Bi, and Pb, the range of recordable linear velocity was increased by about 3%.
Similarly, a storage reliability test under high temperature and high humidity conditions of 80 ° C. and 85% RH was performed on an optical recording medium manufactured using an alloy containing 5 atomic% of Ge and N, respectively. 16.7 Sb 83.3 It was found that the rise in jitter after 200 hours in the case of only the above was about 2%, but could be reduced to within 1.0%.
In the actual composition design, Ge 16.7 Sb 83.3 Sufficient recording characteristics can be obtained with only the above, but the characteristics of the recording layer material can be controlled by adding the above elements alone or in combination depending on the purpose of use.
[0020]
Example 4
An optical recording medium was prepared in the same manner as in Example 1 except that the thickness of the recording layer was changed to 3, 5, 8, 10, 15, 20, 25, and 30 nm, and after initial crystallization, The C / N ratio and the degree of modulation were evaluated in the same manner as in Example 1. The results are shown in Table 4 and FIG.
When the thickness of the recording layer was 5 to 25 nm, a modulation factor of 60% or more satisfying the DVD standard was obtained. Desirable film thickness of the recording layer is 8 to 20 nm. In this range, the degree of modulation is 65% or more, and a more stable system can be obtained.
[Table 4]
Figure 2004224041
[0021]
Example 5
The optical recording medium manufactured in Example 1 was rotated at a constant linear velocity of 9 m / s, and the power density was 18 mW / μm. 2 Initial crystallization was performed by irradiating the laser beam while sending it in the radial direction while moving it at 36 μm / r.
After physically peeling the bonded portion of the optical recording medium, the (environment) protective layer and the reflective layer are peeled off with an adhesive tape, and the recording layer is immersed in an organic solvent to remove the recording layer from the substrate. Peeled off and filtered. This powder was filled in a capillary, and powder X-ray diffraction measurement was performed at a wavelength of 0.419 ° using synchrotron radiation having extremely high parallelism and luminance of the incident beam.
FIG. 6 shows a powder X-ray diffraction spectrum. The main diffraction spectrum peaks were at 2θ = 6.51, 6.953, 8.021, 10.972, and 11.71 °. When the lattice spacing corresponding to each of these peaks was calculated by the following Bragg formula, d = 3.69, 3.46, 3, 2.19, and 2.06 in this order. These peaks can be indexed by a rhombohedral structure similar to the Sb structure, and it was found that the recording layer was a single phase.
Bragg's equation 2dsinθ = nλ
(D: spacing between lattice planes, n: order of reflection, λ: wavelength of X-ray)
[0022]
In the state where the bonded portion of the same optical recording medium as above was physically peeled off and the recording layer became the outermost surface, measurement was performed by In-plane X-ray diffraction (a method of measuring a lattice plane perpendicular to the substrate surface of the sample). went. [Details of this measurement method are described in The Rigaku-Denki Journal 31 (1) 2000. FIG. 7 is a schematic diagram.
The apparatus was X'pert MRD manufactured by Philips, and a copper Kα ray (wavelength λ = 1.54 °) was used as an X-ray incident light source. X-rays are incident almost parallel to the substrate surface (incident angle: 0.2 to 0.5 °), and the sample is rotated by 45 ° with the portion where the X-rays are applied as a rotation axis, and the X-ray diffraction spectrum is measured. Was performed. According to this measuring method, since the penetration depth can be suppressed to several nm by irradiating the X-ray almost parallel to the substrate surface, the crystal structure of the recording layer having a small film thickness can be accurately examined. .
The sample was set so that the X-rays could hit near the radial position of 40 mm of the optical recording medium, and the X-rays were made incident parallel to the track direction of the optical recording medium. At this time, the angle was set to 0 °, the sample was rotated by 45 ° with the portion irradiated with X-rays as a rotation axis, and spectra measured from 2θ = 20 to 70 ° are shown in FIG. 8.
[0023]
When the polycrystalline film is oriented in a specific direction, there is a relationship that the intensity of the corresponding peak is increased. The powder X-ray diffraction described above was measured in a state where the crystal orientation was removed by peeling the sample from the substrate to form a powder, and the powder X-ray diffraction and in-plane X-ray diffraction (In-plane X-ray diffraction) were used. By comparing the results of (1) and (2), the orientation of the crystal is more remarkably determined.
FIG. 9 shows the result of converting the result of powder X-ray diffraction into a wavelength λ = 1.54 °. When this is compared with the result of in-plane diffraction, the peak intensity around 2θ = 29 ° is the strongest in powder X-ray diffraction, whereas the peak at 29 ° is small in in-plane diffraction, and the number of peaks that appear is small. Become. This is because the crystal is oriented, and a lattice plane that does not satisfy the Bragg diffraction condition appears. When X-rays are incident at 90 ° with respect to the track direction, they are strongly oriented on a lattice plane with a lattice spacing d of 2.10 ° (2θ = 43.1 °).
[0024]
Next, the power density was set to 3, 5, 7, 15, 25, 40, 50, 52 mW / μm. 2 Table 5 shows the state and the reflectance after the initialization when each was initialized at the optimum linear velocity. The evaluation criteria were “× (1)” when no crystal orientation was observed, “「 ”when the crystal orientation was high,“ ◎ ”when the crystal orientation was strong, and“ × ”when the film was peeled. (2) ".
[Table 5]
Figure 2004224041
Linear velocity 3 to 18 m / s, power density 5 to 50 mW / μm 2 The crystal orientation is observed in the range of, particularly, the linear velocity is 6 to 14 m / s, and the power density is 15 to 40 mW / μm. 2 At the time, a strong orientation was observed, and accordingly, a high reflectance was obtained.
An optical recording medium having crystal orientation and high reflectivity shows good recording characteristics with a C / N ratio of 45 dB or more under recording conditions of a recording linear velocity of 10 to 35 m / s. When the change in the jitter value after storage in an environment of 85 ° C. and 85% RH was examined, the jitter value did not change even after 400 hours, and it was confirmed that the stability of the amorphous mark was good (FIG. 10).
The jitter value is a value indicating the variation of the mark edge. The smaller the jitter value is, the smaller the variation is, indicating that a good recording is possible. It has been found that when the crystallization starts from the edge of the amorphous mark in the accelerated test, the jitter value rapidly deteriorates.
The result of the accelerated test is approximately 10 years or more when the life at room temperature is roughly estimated, and the life of the optical recording medium is sufficiently guaranteed. Therefore, it was also confirmed that the above-described initialization conditions were suitable for obtaining a medium capable of high-speed recording at a recording linear velocity of 10 m / s or more, which is the object of the present invention.
[0025]
Ge target for recording layer 17 Sb 83 An optical recording medium was manufactured in the same manner as in Example 1 except that the above-mentioned structure was changed.
This optical recording medium was rotated at a constant linear velocity of 8 m / s, and the power density was 20 mW / μm. 2 Initial crystallization was performed by irradiating the laser beam while sending it in the radial direction while moving it at 36 μm / r.
FIG. 11 shows the results of in-plane diffraction (In-plane X-ray diffraction) of the optical recording medium measured by performing the same processing as described above. From this figure, it was found that the peak diffraction intensity from the lattice spacing d (Å) = 2.09 in the direction perpendicular to the track direction was strong and the orientation was good.
This optical recording medium was subjected to 10 EOW random pattern DOWs at a recording linear velocity of 28 m / s and the same recording density as a DVD-ROM at a recording power Pw = 30 mW and an erasing power Pe = 6 mW. The degree was 63% and the reflectance was 24%. In addition, when the change of the jitter value after storing the recording medium on which the initial recording was performed under the environment of 80 ° C. and 85% RH was examined, the jitter value did not change even after 400 hours, and it was confirmed that the stability of the amorphous mark was good. Was done.
[0026]
Ag target for recording layer 2 In 5 Sb 68 Te 25 , Sb as its matrix material 78 Te 22 , Sb 88 Te 12 And In 31.7 Sb 68.3 (Comparative example above), Ga 12 Sb 88 (Reference example), Ge 16.7 Sb 83.3 An optical recording medium was manufactured in the same manner as in Example 1 except that the above-mentioned structure was changed.
These optical recording media were rotated at a constant linear velocity of 8 m / s, and the power density was 20 mW / μm. 2 Initial crystallization was performed by irradiating the laser beam while sending it in the radial direction while moving it at 36 μm / r.
These optical recording media were subjected to powder X-ray diffraction by performing the same treatment as described above. For comparison, powder X-ray diffraction was also performed on powder Sb. The results are shown in FIG. Ag 2 In 5 Sb 68 Te 25 , Sb 78 Te 22 , In 31.7 Sb 68.3 Can be indexed in a cubic (tetragonal) structure and Sb 88 Te 12 , Ga 12 Sb 88 , Ge 16.7 Sb 83.3 Could be indexed by a hexagonal (hexagonal) structure similar to the Sb structure.
In order to compare the crystal structures of the materials, the results of calculating the lattice constants a (Å) and c (Å) of all the materials based on the unit cell of the hexagonal structure (FIG. 13) and the crystallization temperature Tc obtained by thermal analysis (° C.) is shown in Table 6. When the c / a ratio is 2.45, it is equivalent to a cubic structure. The crystallization temperature is such that a single film of a recording layer is formed on glass, and the temperature of the amorphous film is raised by a differential scanning calorimeter at a heating rate of 10 ° C./min. did. It can be said that the higher the crystallization temperature, the more stable the amorphous phase and the more difficult it is to crystallize.
[Table 6]
Figure 2004224041
[0027]
Ag 2 In 5 Sb 68 Te 25 The system material is a material in which Ag and In are added as an additive element to the matrix material SbTe. It has been found that the crystallization speed of the material can be increased by increasing the amount of SbTe in the SbTe matrix material. It is estimated that the recording speed of 18 m / s, which is 5 times faster than the above, is the limit. The crystallization temperature of SbTe is as low as 120.5 ° C. and 79.5 ° C., whereas that of GaSb and GeSb is as high as 194.5 and 255.5 ° C., respectively. It can be seen that the storage stability of the mark is good. These phenomena can be explained from the structure of the material. The materials for which powder X-ray diffraction was measured this time can be considered to be material systems in which something is added to Sb. Although Sb alone has a high crystallization speed, it cannot be used as a material for an optical recording medium because the stability of the amorphous phase is so poor that it crystallizes immediately even at room temperature. Therefore, it is considered that the bonding force is increased by adding an element other than Sb in order to improve the stability of the amorphous phase.
FIG. 14 shows the relationship between the lattice constant a and the crystallization temperature. A material having a small lattice constant a has a strong covalent bond, and requires a large amount of energy to break the covalent bond and rearrange the network in order to thermally crystallize the amorphous phase. It is thought that there is.
[0028]
Comparative Example 1
The optical recording medium produced in Example 1 was rotated at a constant linear velocity of 2 m / s, and the power density was 4.5 mW / μm. 2 Initial crystallization was performed by irradiating the laser beam while sending it in the radial direction while moving it at 36 μm / r.
In-plane diffraction (In-plane X-ray diffraction) was performed in the same manner as in Example 5, with the bonded portion of the optical recording medium physically peeled off and the recording layer being the outermost surface. That is, X-rays were incident almost parallel to the substrate surface (incident angle: 0.2 to 0.5 °), the sample was rotated by 45 °, and the X-ray diffraction spectrum was measured. FIG. 15 shows the results obtained by setting the angle when the X-rays were incident parallel to the track direction to 0 °, rotating the sample by 45 ° in increments of 45 °, and measuring up to 135 °.
When the optical recording medium on which the above initial crystallization was performed was recorded under the same conditions as in Example 1 using the same recording / reproducing apparatus as in Example 1, the reflectance was 17% and the degree of modulation was as low as 55%. This material has low orientation and small crystallinity, and therefore has a low reflectance and a small degree of modulation.
[0029]
Example 6
An LD (laser diode) having a wavelength of 660 nm and an optical system having an NA of 0.65 were used for the optical recording medium manufactured in Example 1 and a laser beam having a pulse train as shown in FIG. 3 at a recording linear velocity of 28 m / s. , Pe / Pw is set to 0.2, and the result of a recording test performed by changing Pw is shown in FIG.
The test was performed by DOWing each single mark of 3T, 6T, 8T, and 14T in the EFM + modulation, which is a DVD modulation method, ten times and monitoring the C / N ratio. The 8T mark is also plotted together with the result of another one-time recording (initial recording). The pulses used for recording were optimized for each T, and the number of pulses, the pulse width, and the width of the Pb level were optimized and used.
Ga 16 Sb 84 In a recording medium using as a recording material, a recording power Pw of 15 mW or more is required to secure a C / N ratio of 30 dB or more, and a recording power of about 20 mW or more is required to obtain a recording characteristic of 45 dB or more that enables more stable recording. Power Pw is required.
In the optical system used this time, the beam power is 1 / e 2 Since the calculated beam diameter is about 0.9 μm, the power density of the beam at the recording power Pw required for recording is at least 20 mW / μm. 2 , Preferably 30 mW / μm 2 It turns out that it is necessary.
[0030]
Example 7
Using the optical recording medium manufactured in Example 1, recording speed was set to 10 m / s, 28 m / s, and 35 m / s, recording was performed using the pulse beam shown in FIG. 3, and the C / N ratio was plotted. FIG. 17 shows this. Further, the ratio of the erasing power Pe to the peak power Pw of the laser beam used for recording was optimized under the respective recording linear velocity conditions, and the power condition at which the C / N ratio became maximum was plotted against the recording linear velocity. FIG. 18 shows this.
As in the case of the sixth embodiment, the optimal number of pulses for each T was changed under each linear velocity condition. The recording is a result of a case where each T mark is recorded randomly using the EFM + modulation method.
When Pe / Pw is changed under the condition of 10 m / s recording linear velocity, the range in which the C / N ratio is good is 0.42 ≦ Pe / Pw ≦ 0.65, and in particular, the C / N ratio can be set to 50 dB. , 0.47 ≦ Pe / Pw ≦ 0.60. Further, under the condition of the recording linear velocity of 35 m / s, the range in which the C / N ratio is favorable is 0.10 ≦ Pe / Pw ≦ 0.25, and particularly, the C / N ratio can be set to 50 dB only when 0.13 ≦ Pe / Pw ≦ approximately 0.22. Since the range between the recording linear velocities of 10 m / s and 35 m / s is filled with each linear velocity condition, the range of the Pe / Pw ratio at which good recording characteristics are obtained when the recording linear velocity is 10 to 35 m / s is as follows. , 0.10 ≦ Pe / Pw ≦ 0.65, and preferably 0.13 ≦ Pe / Pw ≦ 0.60.
[0031]
【The invention's effect】
According to the first aspect of the present invention, recording / erasing is performed at the same capacity as a DVD-ROM at a linear velocity of 10 m / s or more by utilizing a reversible phase change between an amorphous phase (amorphous phase) and a crystalline phase of a recording layer. And an optical recording medium capable of performing the above.
According to the second aspect, an optical recording medium having a high C / N ratio at a recording linear velocity of 10 m / s or more can be provided.
According to the third aspect of the invention, it is possible to provide an optical recording medium capable of controlling the characteristics of the recording layer material according to the purpose of use. In particular, when Ag, Au, Cu, B, Al, In, and Mn are used, the required recording power can be reduced, and when Sn, Si, Zn, Bi, and Pb are used, the recordable linear velocity increases. When N is used, the stability of the amorphous mark can be improved.
According to the fourth aspect of the present invention, it is possible to provide an optical recording medium capable of repeatedly recording at a recording linear velocity of 4 times or more (14 m / s) of DVD.
According to the fifth aspect of the present invention, it is possible to provide an optical recording medium capable of repeatedly recording at a recording linear velocity of 8 × speed (28 m / s) or more of DVD.
According to the present inventions 6 and 7, an optical recording medium having a high modulation degree can be provided.
According to the eighth and ninth aspects of the present invention, it is possible to provide a method of manufacturing an optical recording medium capable of performing high-speed recording at a recording linear velocity of 10 m / s or more with the same capacity as a DVD-ROM.
According to the present inventions 10 to 12, it is possible to provide a sputtering target for manufacturing an optical recording medium capable of performing high-speed recording at a recording linear velocity of 10 m / s or more with the same capacity as a DVD-ROM.
According to the thirteenth aspect, it is possible to provide a recording method for an optical recording medium capable of performing stable recording.
According to the inventions 14 and 15, a recording method for an optical recording medium having a high C / N ratio at a recording linear velocity of 10 m / s or more can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic structure of a phase change type optical recording medium of the present invention.
(A) Perspective view
(B) The figure which shows typically the cross section (layer structure) of the notch part of (a).
FIG. 2 is a diagram showing a transmission electron microscope image of a recording layer after initial recording.
FIG. 3 is a diagram showing a recording strategy generally used in a rewritable optical recording medium.
FIG. 4 is a view showing a measurement result of a C / N ratio when the GeSb alloy of Example 2 is used.
FIG. 5 is a diagram showing the evaluation results of the modulation degree when the thickness of the recording layer of Example 4 was changed.
FIG. 6 is a view showing a powder X-ray diffraction spectrum of Example 5.
FIG. 7 is a diagram for explaining In-plane X-ray diffraction.
FIG. 8 is a diagram showing a spectrum of the optical recording medium of Example 5 measured by In-plane X-ray diffraction.
FIG. 9 is a view showing the result of converting the result of powder X-ray diffraction into a wavelength λ = 1.54 ° for the optical recording medium of Example 5.
FIG. 10 is a diagram showing a change in jitter value of the optical recording medium of Example 5 after storing the medium after recording in an environment of 80 ° C. and 85% RH.
FIG. 11 is a view showing a spectrum of another optical recording medium of Example 5 measured by In-plane X-ray diffraction.
FIG. 12 is a view showing the results of powder X-ray diffraction of the optical recording media of Example 5 and Comparative Example.
FIG. 13 is a diagram showing a unit cell having a hexagonal structure.
FIG. 14 is a diagram showing a relationship between a lattice constant a and a crystallization temperature.
FIG. 15 is a diagram showing a spectrum of the optical recording medium of Comparative Example 1 measured by In-plane X-ray diffraction.
FIG. 16 is a diagram showing a result of performing a recording test on the optical recording medium manufactured in Example 1.
FIG. 17 is a diagram plotting the C / N ratio when recording is performed using the optical recording medium manufactured in Example 1 while changing the recording speed.
FIG. 18 is a graph showing the power conditions under which the C / N ratio is maximized by optimizing the Pe / Pw of the laser beam used for recording under the respective recording linear velocity conditions, using the optical recording medium produced in Example 1. The figure plotted with respect to linear velocity.
[Explanation of symbols]
a Lattice constant
c lattice constant

Claims (15)

基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に有し、該記録層が、GeγSbδ(但し、5≦γ≦25、75≦δ≦95、γ、δは原子%)で示される組成の合金からなり、10m/s以上の線速度においても記録層の非晶質相(アモルファス相)と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする相変化型光記録媒体。On the substrate, at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer are provided in this order, and the recording layer is formed of GeγSbδ (provided that 5 ≦ γ ≦ 25, 75 ≦ δ ≦ 95, γ and δ are alloys having the composition represented by atomic%) and recording utilizing the reversible phase change between the amorphous phase (amorphous phase) and the crystalline phase of the recording layer even at a linear velocity of 10 m / s or more. -A phase-change optical recording medium characterized by being erasable. 10≦γ≦20、80≦δ≦90であることを特徴とする請求項1記載の相変化型光記録媒体。2. The phase change type optical recording medium according to claim 1, wherein 10 ≦ γ ≦ 20 and 80 ≦ δ ≦ 90. 前記記録層が、更に前記合金の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Si、Nから選ばれる少なくとも1種の元素を含有することを特徴とする請求項1又は2記載の相変化型光記録媒体。The recording layer further contains at least one element selected from Ag, Au, Cu, B, Al, In, Mn, Sn, Zn, Bi, Pb, Si, and N in an amount of 10 atomic% or less of the alloy. 3. The phase-change optical recording medium according to claim 1, wherein: 14m/s以上の線速度においても記録層の非晶質相と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする請求項1〜3の何れかに記載の相変化型光記録媒体。4. A recording / erasing method using a reversible phase change between an amorphous phase and a crystalline phase of a recording layer even at a linear velocity of 14 m / s or more. The phase-change optical recording medium according to the above. 28m/s以上の線速度においても記録層の非晶質相と結晶相との可逆的な相変化を利用した記録・消去が可能であることを特徴とする請求項4記載の相変化型光記録媒体。5. The phase change type light according to claim 4, wherein recording / erasing can be performed using a reversible phase change between the amorphous phase and the crystalline phase of the recording layer even at a linear velocity of 28 m / s or more. recoding media. 記録層の膜厚が5〜25nmの範囲内にあることを特徴とする請求項1〜5の何れかに記載の相変化型光記録媒体。6. The phase-change optical recording medium according to claim 1, wherein the thickness of the recording layer is in the range of 5 to 25 nm. 記録層の膜厚が8〜20nmの範囲内にあることを特徴とする請求項6記載の相変化型光記録媒体。7. The optical recording medium according to claim 6, wherein the thickness of the recording layer is in the range of 8 to 20 nm. 基板上に、少なくとも第一中間層、記録層、第二中間層、反射層、保護層をこの順に積層して光記録媒体を作製したのち、該光記録媒体を3〜18m/sの範囲内の一定の線速度で回転させ、パワー密度が5〜50mW/μmのレーザー光を半径方向に一定の速度で移動させながら該光記録媒体に照射して初期結晶化を行なうことを特徴とする請求項1〜7の何れかに記載の相変化型光記録媒体の製造方法。After an optical recording medium is manufactured by laminating at least a first intermediate layer, a recording layer, a second intermediate layer, a reflective layer, and a protective layer in this order on a substrate, the optical recording medium is set in a range of 3 to 18 m / s. Rotating at a constant linear velocity, and irradiating the optical recording medium with laser light having a power density of 5 to 50 mW / μm 2 at a constant speed in the radial direction to perform initial crystallization. A method for manufacturing a phase-change optical recording medium according to claim 1. 記録媒体の回転線速度が6〜14m/sの範囲内の一定の線速度であり、レーザー光のパワー密度が15〜40mW/μmであることを特徴とする請求項8記載の製造方法。9. The method according to claim 8, wherein the linear velocity of rotation of the recording medium is a constant linear velocity within a range of 6 to 14 m / s, and the power density of the laser beam is 15 to 40 mW / [mu] m < 2 >. GeγSbδ(但し、5≦γ≦25、75≦δ≦95、γ、δは原子%)で示される組成の合金からなる、相変化型光記録媒体製造用スパッタリングターゲット。A sputtering target for producing a phase-change optical recording medium, comprising an alloy having a composition represented by GeγSbδ (where 5 ≦ γ ≦ 25, 75 ≦ δ ≦ 95, and γ and δ are atomic%). GeγSbδ(但し、10≦γ≦20、80≦δ≦90、γ、δは原子%)で示される組成の合金からなる請求項10記載の相変化型光記録媒体製造用スパッタリングターゲット。The sputtering target for manufacturing a phase-change optical recording medium according to claim 10, comprising an alloy having a composition represented by GeγSbδ (where 10 ≦ γ ≦ 20, 80 ≦ δ ≦ 90, and γ and δ are atomic%). GeγSbδ(但し、5≦γ≦25、75≦δ≦95、γ、δは原子%)で示される組成の合金を主成分とし、前記合金の10原子%以下のAg、Au、Cu、B、Al、In、Mn、Sn、Zn、Bi、Pb、Si、Nから選ばれる少なくとも1種の元素を含有することを特徴とする相変化型光記録媒体製造用スパッタリングターゲット。GeγSbδ (where 5 ≦ γ ≦ 25, 75 ≦ δ ≦ 95, and γ and δ are atomic%) as a main component, and Ag, Au, Cu, B, 10 atomic% or less of the alloy. A sputtering target for manufacturing a phase-change optical recording medium, comprising at least one element selected from the group consisting of Al, In, Mn, Sn, Zn, Bi, Pb, Si, and N. 記録線速を28m/sとしたときに、記録層材料に光学変化を起こすための光ビームを単一パルス又は複数のパルス列により形成すると共に、そのパルスビームの記録パワーPwにおけるパワー密度を20mW/μm以上とすることを特徴とする請求項1〜7の何れかに記載の相変化型光記録媒体の記録方法。When the recording linear velocity is 28 m / s, a light beam for causing an optical change in the recording layer material is formed by a single pulse or a plurality of pulse trains, and the power density of the pulse beam at the recording power Pw is 20 mW / s. The recording method for a phase-change optical recording medium according to claim 1, wherein the thickness is at least 2 μm. 記録線速を10〜35m/sとし、媒体に照射される光ビームを単一パルス又は複数のパルス列により形成すると共に、消去パワーPeと記録パワーPwの比が、0.10≦Pe/Pw≦0.65となるように設定することを特徴とする請求項1〜7の何れかに記載の相変化型光記録媒体の記録方法。The recording linear velocity is 10 to 35 m / s, the light beam irradiated on the medium is formed by a single pulse or a plurality of pulse trains, and the ratio between the erasing power Pe and the recording power Pw is 0.10 ≦ Pe / Pw ≦ 8. The recording method for a phase-change optical recording medium according to claim 1, wherein the setting is made to be 0.65. 0.13≦Pe/Pw≦0.60となるように設定することを特徴とする請求項14記載の相変化型光記録媒体の記録方法。15. The recording method for a phase change type optical recording medium according to claim 14, wherein the setting is made so that 0.13 ≦ Pe / Pw ≦ 0.60.
JP2003188975A 2002-11-27 2003-06-30 Phase change type optical recording medium, method for manufacturing the same and method for recording Pending JP2004224041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188975A JP2004224041A (en) 2002-11-27 2003-06-30 Phase change type optical recording medium, method for manufacturing the same and method for recording

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344719 2002-11-27
JP2003188975A JP2004224041A (en) 2002-11-27 2003-06-30 Phase change type optical recording medium, method for manufacturing the same and method for recording

Publications (1)

Publication Number Publication Date
JP2004224041A true JP2004224041A (en) 2004-08-12

Family

ID=32910902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188975A Pending JP2004224041A (en) 2002-11-27 2003-06-30 Phase change type optical recording medium, method for manufacturing the same and method for recording

Country Status (1)

Country Link
JP (1) JP2004224041A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485357B2 (en) 2003-11-26 2009-02-03 Ricoh Company, Ltd. Optical recording medium
US7485356B2 (en) 2004-07-15 2009-02-03 Tdk Corporation Optical recording medium
US7524548B2 (en) 2004-09-29 2009-04-28 Tdk Corporation Optical recording medium
US7626915B2 (en) 2004-12-15 2009-12-01 Ricoh Company, Ltd. Phase-change optical recording medium and recording and reproducing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485357B2 (en) 2003-11-26 2009-02-03 Ricoh Company, Ltd. Optical recording medium
US7485356B2 (en) 2004-07-15 2009-02-03 Tdk Corporation Optical recording medium
US7524548B2 (en) 2004-09-29 2009-04-28 Tdk Corporation Optical recording medium
US7626915B2 (en) 2004-12-15 2009-12-01 Ricoh Company, Ltd. Phase-change optical recording medium and recording and reproducing method thereof

Similar Documents

Publication Publication Date Title
JP2990011B2 (en) Optical recording medium
US7260053B2 (en) Optical recording medium, process for manufacturing the same, sputtering target for manufacturing the same, and optical recording process using the same
JP3761287B2 (en) Optical recording medium and manufacturing method thereof
US7081289B2 (en) Phase-change recording material and information recording medium
JPH11240252A (en) Photorecording medium
JPH1173692A (en) Optical recording medium and its production
JP3190274B2 (en) Optical recording medium and manufacturing method thereof
JPH10326438A (en) Production of optical recording medium, and optical recording medium
JPH10241211A (en) Production of optical recording medium
EP1453040B1 (en) Optical storage medium
JP4248323B2 (en) Phase change optical recording medium, manufacturing method thereof, and recording method
JP2003166052A (en) Sputtering target
JPH11110822A (en) Optical recording medium and its recording and reproducing method
JP2004224041A (en) Phase change type optical recording medium, method for manufacturing the same and method for recording
JP4330470B2 (en) Phase change recording material and information recording medium
JP3885051B2 (en) Phase change optical recording medium
JPH11167722A (en) Optical recording medium, its recording method and recorder
JP4109011B2 (en) Optical recording medium
JP4439325B2 (en) Phase change recording material and information recording medium
JP3955007B2 (en) Phase change optical recording medium
JP2004005767A (en) Optical recording medium
JP3664403B2 (en) Phase change optical recording medium
JPWO2006057116A1 (en) Information recording medium and manufacturing method thereof
JP2004111016A (en) Phase transition optical recording medium
US20060165946A1 (en) Optical storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819