JP2004283273A - Low-resistance hollow fiber membrane ventilation module, non-dead-space reciprocating ventilation circuit and its application - Google Patents

Low-resistance hollow fiber membrane ventilation module, non-dead-space reciprocating ventilation circuit and its application Download PDF

Info

Publication number
JP2004283273A
JP2004283273A JP2003076816A JP2003076816A JP2004283273A JP 2004283273 A JP2004283273 A JP 2004283273A JP 2003076816 A JP2003076816 A JP 2003076816A JP 2003076816 A JP2003076816 A JP 2003076816A JP 2004283273 A JP2004283273 A JP 2004283273A
Authority
JP
Japan
Prior art keywords
ventilation
hollow fiber
fiber membrane
module
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003076816A
Other languages
Japanese (ja)
Inventor
Kii Ka
奇偉 何
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003076816A priority Critical patent/JP2004283273A/en
Publication of JP2004283273A publication Critical patent/JP2004283273A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-resistance hollow fiber membrane ventilation module securing a wider sealing area and easily adjusting the length of a membrane screen and to provide a non-dead-space reciprocating ventilation circuit by using the module. <P>SOLUTION: This low-resistance hollow fiber membrane ventilation module is so constituted that the both ends of the hollow fiber membrane screen formed by aligning multiple layers in parallel and disposed approximately flush with one another are sealed by grooves which are opened in side walls of tubes to be the ventilation circuit, being the support body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する分野】本考案は、特に人工鰓、埋込型人工肺等、内外(総圧)等圧交換を特徴とした往復通気と高交換率を要する人体生命維持装置に於いて、中空糸膜を用いる隔離型気―液(気―気)間気体交換装置に関し、外力の介在(灌流)を必要とせず、内部回路の通気抵抗が呼吸圧(100Pa以下)だけで賄える低通気抵抗の換気モジュールとそれを用いる往復式無死腔換気回路である。
【0002】
【従来の技術】隔離型気体交換装置の換気効率は、理論的には隔離された双方の交換気体の平均分圧差を駆動力とし、中空糸膜の透過速度と換気面積及び換気時間によって決めるものである。限定的な容積の条件下では、管を以って接触表面積を拡大するには管の径面積を小さくし、本数を増やす事が幾何学上の定論である。
【0003】
実際に既存する多数の考案は、多数の細い中空糸膜を束ねて、束の断面よりやや大きめの管の径面を用い、軸心線に沿って直列に樹脂を以って封止する(径面封填)のが殆どである。そのうち応力対策、糸膜束形状維持の為糸膜を束ねる方法に種々な工夫を施す物もあるが、概ねその基本形態に逸脱していない。
【0004】
人工鰓等換気のみを行い、内部気体が循環再利用を要する閉鎖回路装置については、特公昭50−037956、特公平06−092238等代表とする既存の考案は、閉鎖循環回路の模式を確立できたが、回路全体の換気効率及び回路内部の通気抵抗に関しては、問題として提起されておらず、その改良案(特開2002−37191)は閉鎖直列往復回路模式を提示され、換気効率問題に幾分の改善があったが、完全解決には至らない。
【0005】
【発明が解決しようとする課題】径面封填案は内部回路の進出気口両端の差圧が小さくて、且つ大流量を要する場合では幾つかの問題が生じる。ハーゲン・ポアズイユの法則により、内部通路の通気抵抗は通路の平均半径の4乗に反比例し、通路の長さに比例する。それを軽減する為にはその関係を逆算し、通路を短くして本数を冪算的に増やす以外方法がない。莫大数の短い中空糸膜を外部流体が通過し易いように一定の間隔を保ちながら、封止するのは工学上困難となる。巨大な封止径面の確保も設計上の支障になりかねない。結論として径面封填案では、少ない本数で外力を以ってモジュール両端の差圧を高めて対応する(強制灌流)方が得策である。
【0006】
内部気体の閉鎖回路装置については、閉鎖循環回路では1周期に1回しか換気できず(分子拡散効果を考慮せず)。実用に於いてより大きな換気モジュールが必要となる。簡単な直列往復換気回路では、1回の呼吸周期に2回気体交換ができるが、気流末端の気体が交換を経ずに再用(回流)される問題がある。
【0007】
【発明が解決しようとする課題】本考案は、幾何学的に全く新しい視点から、管の管壁に着目し、2段集約の方法で僅な容積の増加を代償に既存の中空糸膜を用いて、従来の考案が持つ欠点を排除し、簡単且つ実用的な構造で、低抵抗換気モジュールとそれを用いる高交換率の往復式無死腔換気回路を実現することである。
【0008】
【課題を解決するための手段】前記の目標を達成するため、装置を以下のように構成する。但し、説明を簡略化するため、全ての部品を平面に配置(開放型平面模式)する。実用では用途に応じて立体への変更がかのうである。
【0009】
同様な断面を持ち、口径比10倍以上、一方の端口を封じた管に、中心軸線に沿って、片方管壁を貫通する溝を開く。二本の管を閉鎖した端口を互いに反対側にして平行に置き、多層の平行に揃えてほぼ同一面状に配列した中空糸膜簾の二端を樹脂でそれぞれの溝に封止する。応用環境の要求に応じて、膜簾両端の管の間隔を変更すれば、簡単に弛みのない中空糸膜簾が構成できる。此れを一つの換気ユニット(図1)とする。
【0010】
口径比10倍を超える円管では、1/5口径の幅の溝でも、管の径面より遥かに大きな糸膜の封止面積(2D2>0.25πD2)が確保できる。膜簾が管の中心軸を沿って横に分布することにより、外部流体との剪截面が大きくなり、重積する層数は束より少ない。同一層の中空糸膜の間に一定の間隔を置けば、層間の間隔は必要なくなり、結果的に封止面積と総容積の増加を減少できる。
【0011】
換気ユニット自身の構造及び連結等工学的な理由で、二本の管を「山」字型の断面に一体化(図2)することはより合理的と考えられる。この場合は中空糸膜簾の両端を「U」字型に曲げて、溝に封止する。同様に「U」字型の中空糸膜簾の弧長を調整すれば、応用環境の要求に対応できる。繊維の性質上膜簾弧自体が形状維持の支持体となり、弛みが存在しない。但し、弧の内側と外側の長さをできるだけ等しくさせて中空糸膜の内部抵抗を均一にする為には、管の断面形状又は膜簾の封止層数に工夫が必要である。
【0012】
実用に於いては、管外流体の剪截抵抗、管の断面形状、管内の相当半径、膜簾の層数については、装置の用途に応じて総合的な判断が必要となり、ここでは詳述せず。原則的に中空糸膜と外部流体の剪截性を考慮して、簾は20層以下に、封止強度と管内抵抗を考慮して、円管の場合では溝の幅は管径の4/5以下に収めた方が望ましいと考えられる。
【0013】
断面模式図(図3)のように複数のユニットを並列的に連結機能及び気体進出口を備えた集合ユニットに連結する事で、換気モジュールが構成される。
【0014】
内部回路の気流が往復して再利用を要する場合、図4のようにモジュールの気体進出口に4つの逆止弁を設置すれば、気流の進出通路が選択でき、未換気気体の回流を防ぐ回路を構成する事ができる。
【0015】
換気回路を構成させる為の管一端の閉鎖は、二本の管の同一側でもできるが、互いに反対側の封鎖によりどの位置の中空糸膜にとっても、入口からの距離と出口までの距離の合計が同一となる。即ち、換気回路のどの位置点においても、通気抵抗が同じく、中空糸膜内の通気量と通過流速が均一に保たれ、より完全な気体交換が保証される。平面模式のモジュールの進出口及び逆止弁を対角線上に設置するのも同理である。
【0016】
【発明の実施の形態】以下、実例を以って本考案とその応用を具体的に説明するが、本考案の範囲がこれにより限定されるものではない。又、本考案に直接関係なく、応用に必要な付属装置については、詳細な説明を省略する。
【0017】
(実施例1)図5は本考案が人工鰓水中生命維持装置の外形図で、典型的な開放型平面配置の応用例である。全体的な原理は従来の考案と大差がなく、重複な説明は省略する。最大の差異は、同様な中空糸膜を利用した前提で、必要な有効中空糸膜面積が半減でき、且つ通気(呼吸)抵抗と装置の総容積も実用レベル以下に抑えられる。
【0018】
装置の原理は概ね、呼気時では、呼気が口からマウスピース(実用及び設計の便宜上のため、結露除湿器をマウスピースに一体化する)、呼気管、逆止弁1、換気モジュール、逆止弁3を経て気嚢に到達する。吸気時ではその逆、気体が気嚢から逆止弁2、換気モジュール、逆止弁4、吸気管、マウスピースを経て、口に達する。1往復周期において、マウス‐ピース内の滞留分はそのまま人体に戻り、中空糸膜内の滞留分は1回しか通過しないことを除く、全ての気体が中空糸膜を2回通過する。容積の比率から見て、滞留分は無視できる。
【0019】
周知の知識から、成人男子は重労働の状態において、平均1kg当りの体重が毎分約30ml(ATM)の酸素を消耗する事が分かっている。体重70kgの成人男子は約2l/min(ATM)の酸素が必要である。人間の呼気には酸素分圧が約15000Pa、二酸化炭素分圧が約4000Paで、これを呼気管の環境とする。人間の呼吸を維持するには、最低でも酸素分圧は約18500Paより高く、二酸化炭素分圧は1700Paより低い環境が必要である。これを吸気管内の最低要求とし、回路内部流量(吸気、呼気の合計)はマスク工業規格計測標準の40l/minとする。又、開放環境で使用するので外部環境の変化(個々の気体の分圧変化)を無とする。
【0020】
上記の情報を基にして、現在入手できる量産化されている中空糸膜(外径300μm、内径240μm、透過速度120×10−5cm3(STP)/cm2・sec・cmHg)を用い、実用な人工鰓水中生命維持装置の性能を試作する。中空糸膜の有効総延長は6000m(膜簾の平均有効長は40mm、両端の封止長は各3mm、中空糸膜総延長は6900m、有効換気面積は約5.4m2)とし、換気ユニットは内径が22mm、有効長が210mmの二本半円管を一体化したものとした場合、膜簾の層数18層となり、換気モジュールの寸法は300mm×350mm×50mmで、3lの気嚢と其の他補助装置を含め、背負って行動に妨げない寸法に収めた。
【0021】
計算上の内部通気抵抗は50Paである。又、呼気環境を下限、吸気要求を上限とし、1往復で要求(分圧)に達する前提に、外部環境との差圧だけで計算した換気能力は酸素が約8000ml/min(ATM)、二酸化炭素は約6000ml/min(ATM)となる。
【0022】
装置の陸地実測では、マウスピースを含む全通気回路の総抵抗は約70Paで、これは防毒マスクの工業基準の150Paより遥かに低い値である。吸気管内の環境もほぼ外部環境と同じ結果がえられた。又、海で水深2mの実測では、圧力の関係で内部通気の密度が高くなり、総抵抗も幾分(数Pa)高くなる。換気能力については境膜除去装置が稼動せずにも、吸気管内の環境が最低要求を上回る結果がえられた。
【0023】
(実施例2)人工肺は、体内血液の視点から見て、閉鎖的往復回路とみなされる。気体交換は血液と直接の行うため、内外分圧の差圧は呼気より遥かに大きい、又、通気流量は生理容量しか要しないので、中空糸膜の用量は少なく、換気モジュールはかなり小型化が可能であり、実際に既存の人工肺には、タバコ箱ぐらい小型の物もある。換気回路の抵抗を実用レベルに抑えられれば、肺切除後の胸部空間に埋込みは十分可能である。以下はその模式を説明する。
【0024】
換気モジュールの入気口と出気口は、気管の残部(又は喉頭)と連結する。血液通路の入口は肺動脈の残部、出口は肺静脈の残部と連結する。更に、通気の駆動力としては、気嚢を大隔膜と胸膜に、胸部筋肉の運動によって、容積の変化を生じるよう連結する。
【0025】
その内、血液側については、血液通路の総抵抗値は肺動脈圧と肺静脈圧の差圧より小さく抑える。更に血液の流速も血液が膜簾を剪截しても、赤血球と血小板が破壊しないように抑えるべきである。又、通路の非透過血液の発生を減少する為、血液通路の断面をできるだけ膜簾の外形に近づける必要がある。その相反する要求に適切な妥協点を見つけなければならない。有利な点としては、膜簾が「U」字型とした場合、一端固定と見なす事ができ、血液が剪截した時、幾分揺らぎが生じて、血球の破壊が減少できる。事実上既存の人工肺がわざと中空糸膜の弛みを持たせて血球の破壊を減少する研究報告が有る。
【0026】
通気側については、毎回吸込んだ空気は、酸素が消耗され、二酸化炭素が増すことで、血液側との差圧が小さくなり、換気効率は悪くなる。十分の交換面積を確保すべきである。これも又、小型と相反する要求である。
【0027】
全体の問題として、生体との連結手法、生体免疫反応の抑制は一番重要な課題であるが、本考案と直接関係がなく、ここでは省略する。
【発明の効果】
上述したように、本考案の換気モジュール部は、抵抗が極めて低く、且つ用途に応じて容易に変形できるため、様々の気体交換のみ要する装置に応用できる。
【図面の簡単な説明】
【図1】考案の核心部である換気ユニットの基本模式図
【図2】考案の核心部である換気ユニットの一体化模式図
【図3】平面模式換気モジュールの配管断面図
【図4】人工鰓用の往復式無死腔換気回路に組立図
【図5】人工鰓水中生命維持装置試作品の全体図
【符号の説明】
▲1▼ 封填管
▲2▼ 中空糸膜
▲3▼ 片方端口閉鎖作用を兼ねた集合総管
▲4▼ 進気口逆止弁
▲5▼ 出気口逆止弁
▲6▼ 換気モジュール
▲7▼ 気嚢
▲8▼ 呼気管
▲9▼ 吸気管
[0001]
The present invention relates to an artificial gill, an implantable oxygenator, and the like, which is used for a human life support device which requires reciprocating ventilation and a high exchange rate characterized by equal pressure exchange between inside and outside (total pressure). Regarding an isolated gas-liquid (gas-gas) gas exchange device using a fibrous membrane, it does not require the intervention of external force (perfusion), and the ventilation resistance of the internal circuit can be covered only by the respiratory pressure (100 Pa or less). A ventilation module and a reciprocating dead space ventilation circuit using the same.
[0002]
2. Description of the Related Art The ventilation efficiency of an isolated gas exchange device is theoretically determined by the average partial pressure difference between both exchanged gases as driving force, and determined by the permeation speed of the hollow fiber membrane, ventilation area and ventilation time. It is. Under the condition of a limited volume, it is a geometric theory that to increase the contact surface area with a tube, the diameter area of the tube is reduced and the number of tubes is increased.
[0003]
In actuality, many existing devices bundle a large number of thin hollow fiber membranes, use a tube whose diameter is slightly larger than the cross section of the bundle, and seal with a resin in series along the axis ( Most of the time). Among them, there is a method in which various methods are applied to the method of bundling the thread film in order to reduce stress and maintain the shape of the thread film bundle, but the method does not substantially deviate from its basic form.
[0004]
For closed circuit devices that only require ventilation such as artificial gills and that require recirculation of the internal gas, the existing devices represented by Japanese Patent Publication No. 50-037956, Japanese Patent Publication No. 06-092238, etc. can establish a model of a closed circuit. However, the ventilation efficiency of the entire circuit and the ventilation resistance inside the circuit have not been raised as a problem, and the improvement proposal (Japanese Patent Application Laid-Open No. 2002-37191) proposes a closed series reciprocating circuit model. Minute improvements, but not a complete solution.
[0005]
The radial sealing method has several problems when the differential pressure across the outlet of the internal circuit is small and a large flow rate is required. According to Hagen-Poiseuille's law, the ventilation resistance of the internal passage is inversely proportional to the fourth power of the average radius of the passage and proportional to the length of the passage. To alleviate this, there is no other way but to reverse the relationship, shorten the path, and increase the number in number. It is technically difficult to seal while maintaining a certain interval so that an external fluid can easily pass through an enormous number of short hollow fiber membranes. Ensuring a large sealing diameter surface can also hinder design. In conclusion, it is better to increase the pressure difference between both ends of the module with a small number of external force by using a small number of tubes (forced perfusion).
[0006]
As for the closed circuit device for the internal gas, the closed circulation circuit can only ventilate once per cycle (without considering the molecular diffusion effect). Larger ventilation modules are needed in practice. In a simple series reciprocating ventilation circuit, gas exchange can be performed twice in one respiratory cycle, but there is a problem that gas at the end of the airflow is reused (recirculated) without exchange.
[0007]
SUMMARY OF THE INVENTION The present invention focuses on the wall of a pipe from a completely new geometrical point of view, and replaces the existing hollow fiber membrane with a two-stage consolidation method at the expense of a slight increase in volume. The object of the present invention is to provide a low-resistance ventilation module and a high exchange rate reciprocal dead space ventilation circuit using the same with a simple and practical structure, eliminating the drawbacks of the conventional device.
[0008]
In order to achieve the above-mentioned object, the apparatus is constructed as follows. However, for simplicity of description, all the components are arranged on a plane (open-type planar model). In practical use, it can be changed to a three-dimensional object depending on the application.
[0009]
A groove having a similar cross section, a diameter ratio of 10 times or more, and one end of which is sealed is opened along the central axis through one wall of the tube. The closed ends of the two tubes are placed in parallel with the opposite ends facing each other, and the two ends of the multi-layered hollow fiber membranes arranged in parallel and substantially flush with each other are sealed in respective grooves with resin. By changing the distance between the pipes at both ends of the membrane according to the requirements of the application environment, a hollow fiber membrane with no slack can be easily constructed. This is one ventilation unit (FIG. 1).
[0010]
In a circular pipe having a diameter ratio exceeding 10 times, a sealing area (2D2> 0.25πD2) of the thread membrane which is much larger than the diameter of the pipe can be secured even with a groove having a width of 1/5. The lateral distribution of the membrane along the central axis of the tube increases the cutting surface with the external fluid, and the number of stacked layers is smaller than that of the bundle. If a certain interval is provided between the hollow fiber membranes of the same layer, the interval between the layers becomes unnecessary, and as a result, the increase in the sealing area and the total volume can be reduced.
[0011]
For engineering reasons, such as the structure and connection of the ventilation unit itself, it would seem more reasonable to integrate the two tubes into a “mountain” shaped cross section (FIG. 2). In this case, both ends of the hollow fiber membrane are bent into a “U” shape and sealed in a groove. Similarly, if the arc length of the “U” -shaped hollow fiber membrane is adjusted, it is possible to meet the requirements of the application environment. Due to the nature of the fibers, the membrane itself serves as a support for maintaining the shape, and there is no slack. However, in order to make the inner and outer lengths of the arc as equal as possible to make the internal resistance of the hollow fiber membrane uniform, it is necessary to devise the cross-sectional shape of the tube or the number of sealing layers of the membrane.
[0012]
In practical use, it is necessary to make comprehensive judgments on the shear resistance of the extravascular fluid, the cross-sectional shape of the pipe, the equivalent radius inside the pipe, and the number of layers of the membrane, depending on the application of the device. Without. In principle, in consideration of the cutting properties of the hollow fiber membrane and the external fluid, the number of layers is 20 layers or less. In the case of a circular pipe, the width of the groove is 4/4 of the pipe diameter in consideration of the sealing strength and the resistance in the pipe. It is considered that it is more desirable to keep the value to 5 or less.
[0013]
As shown in the schematic cross-sectional view (FIG. 3), a ventilation module is configured by connecting a plurality of units in parallel to a collective unit having a connection function and a gas outlet.
[0014]
If the air flow in the internal circuit goes back and forth and needs to be reused, four check valves can be installed at the gas inlet / outlet of the module as shown in Fig. 4 so that the air flow path can be selected and the circulation of unventilated gas is prevented. A circuit can be configured.
[0015]
Closing of one end of the pipes to form a ventilation circuit can be done on the same side of the two pipes, but for the hollow fiber membrane at any position due to the blockade on the opposite side, the sum of the distance from the inlet and the distance to the outlet Are the same. That is, at any point in the ventilation circuit, the airflow resistance and the airflow rate in the hollow fiber membrane are kept uniform at the same position, and more complete gas exchange is guaranteed. It is also the same as installing the exit and the check valve of the module of the plane type on a diagonal line.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention and its application will be specifically described by way of examples, but the scope of the present invention is not limited thereby. In addition, the detailed description of the auxiliary devices necessary for the application is omitted, regardless of the present invention.
[0017]
(Embodiment 1) FIG. 5 is an external view of an artificial gill underwater life support device according to the present invention, which is an application example of a typical open plan layout. The overall principle is not much different from the conventional inventor, and redundant description is omitted. The biggest difference is that the necessary effective hollow fiber membrane area can be reduced by half, and the ventilation (respiration) resistance and the total volume of the device can be suppressed to practical levels or less on the assumption that a similar hollow fiber membrane is used.
[0018]
The principle of the device is generally that when exhaled, the exhaled air is taken from the mouth through the mouthpiece (for practical and design convenience, the dehumidifier is integrated into the mouthpiece), the exhalation tube, the check valve 1, the ventilation module, the check It reaches the air sac via the valve 3. At the time of inhalation, on the contrary, the gas reaches the mouth from the air sac via the check valve 2, the ventilation module, the check valve 4, the suction pipe and the mouthpiece. In one reciprocating cycle, the stay in the mouth-piece returns to the human body as it is, and all the gas passes through the hollow fiber membrane twice except that the stay in the hollow fiber membrane passes only once. Retention is negligible in terms of volume ratio.
[0019]
It is known from knowledge that adult men consume about 30 ml of oxygen per minute (ATM) per kilogram on average during heavy labor. An adult male weighing 70 kg needs about 2 l / min (ATM) of oxygen. For human expiration, the oxygen partial pressure is about 15000 Pa and the carbon dioxide partial pressure is about 4000 Pa, which is the environment of the expiratory tract. In order to maintain human respiration, an environment in which the oxygen partial pressure is at least higher than about 18500 Pa and the carbon dioxide partial pressure is lower than 1700 Pa is required. This is set as the minimum requirement in the intake pipe, and the flow rate in the circuit (total of intake and expiration) is set to 40 l / min, which is the mask industry standard measurement standard. In addition, since it is used in an open environment, there is no change in the external environment (change in the partial pressure of each gas).
[0020]
Based on the above information, a commercially available hollow fiber membrane (outside diameter 300 μm, inside diameter 240 μm, permeation speed 120 × 10 −5 cm3 (STP) / cm2 · sec · cmHg) that is currently mass-produced, and Prototype of performance of gill water life support system. The effective total length of the hollow fiber membrane is 6000 m (the average effective length of the membrane is 40 mm, the sealing length at both ends is 3 mm each, the total length of the hollow fiber membrane is 6900 m, the effective ventilation area is about 5.4 m2), and the ventilation unit is When two semi-circular tubes with an inner diameter of 22 mm and an effective length of 210 mm are integrated, the number of layers of the membrane becomes 18 layers, the size of the ventilation module is 300 mm x 350 mm x 50 mm, and a 3 l air sac and its The size, including other assistive devices, was set so as not to interfere with the user's behavior.
[0021]
The calculated internal airflow resistance is 50 Pa. On the premise that the expiratory environment is at the lower limit and the inspiratory demand is at the upper limit, and the demand (partial pressure) is reached in one round trip, the ventilation capacity calculated only by the differential pressure with the external environment is about 8000 ml / min (ATM) of oxygen and carbon dioxide. Carbon is about 6000 ml / min (ATM).
[0022]
According to actual measurements of the apparatus on land, the total resistance of the entire ventilation circuit including the mouthpiece is about 70 Pa, which is far lower than the industry standard of 150 Pa of the gas mask. The environment inside the intake pipe was almost the same as the external environment. In actual measurement at a depth of 2 m in the sea, the density of internal ventilation increases due to pressure, and the total resistance increases somewhat (several Pa). Regarding the ventilation capacity, the result that the environment in the intake pipe exceeded the minimum requirement even without the operation of the membrane removing device was obtained.
[0023]
Example 2 An artificial lung is considered as a closed reciprocating circuit from the viewpoint of body blood. Since gas exchange is performed directly with blood, the differential pressure between the internal and external partial pressures is much larger than expiration, and the ventilation flow requires only physiological capacity, so the volume of the hollow fiber membrane is small, and the ventilation module can be considerably downsized. It is possible, and in fact, some existing artificial lungs are as small as a cigarette box. If the resistance of the ventilation circuit can be reduced to a practical level, it can be implanted in the chest space after lung resection. The following describes the pattern.
[0024]
The inlet and outlet of the ventilation module are connected to the rest of the trachea (or larynx). The inlet of the blood passage connects to the rest of the pulmonary artery and the outlet connects to the rest of the pulmonary vein. Further, as a driving force for ventilation, the air sac is connected to the large septum and the pleura so that a change in volume is caused by the movement of the chest muscle.
[0025]
Among them, on the blood side, the total resistance value of the blood passage is suppressed to be smaller than the differential pressure between the pulmonary artery pressure and the pulmonary vein pressure. In addition, the blood flow rate should be suppressed so that red blood cells and platelets are not destroyed even if the blood cuts the membrane. Further, in order to reduce the generation of non-permeated blood in the passage, it is necessary to make the cross section of the blood passage as close as possible to the outer shape of the membrane. We must find the right compromise for that conflicting demand. Advantageously, if the membrane is "U" shaped, it can be regarded as fixed at one end, and when the blood is cut, there is some fluctuation and the destruction of blood cells can be reduced. In fact, there is a research report that the existing artificial lung intentionally causes the hollow fiber membrane to loosen to reduce blood cell destruction.
[0026]
Regarding the ventilation side, the air sucked every time is depleted of oxygen and increases in carbon dioxide, so that the pressure difference between the air and the blood side decreases, and the ventilation efficiency deteriorates. Sufficient replacement area should be secured. This is also a conflicting demand for compactness.
[0027]
As a whole problem, the method of connection with the living body and the suppression of the biological immune reaction are the most important issues, but they are not directly related to the present invention and will not be described here.
【The invention's effect】
As described above, the ventilation module according to the present invention has extremely low resistance and can be easily deformed according to the application, so that it can be applied to various devices requiring only gas exchange.
[Brief description of the drawings]
FIG. 1 is a basic schematic diagram of a ventilation unit which is a core part of the invention. FIG. 2 is an integrated schematic diagram of a ventilation unit which is a core part of the invention. FIG. 3 is a cross-sectional view of a piping of a plane model ventilation module. Assembly diagram of reciprocating dead space ventilation circuit for gills [Figure 5] Overall view of artificial gill underwater life support device prototype [Description of symbols]
(1) Sealing tube (2) Hollow fiber membrane (3) Collecting total tube which also has one end closing function (4) Inlet check valve (5) Outlet check valve (6) Ventilation module (7) ▼ Air sac ▲ 8 ▼ Expiratory tract ▲ 9 ▼ Inhalation tube

Claims (3)

複数の同様な断面を有し、軸線に沿い、片方管壁を貫通する溝を
以って多層の平行に揃えてほぼ同一面状に配列される短い中空糸膜簾の一端を封止する互いに平行して、且つ反対側の端口を閉じた二本一組の管の並列集合体で構成することを特徴とする低内部抵抗の換気モジュール。
A plurality of similar hollow cross-sections, each having a similar cross-section, and which seals one end of short hollow fiber membranes which are arranged in parallel and substantially flush with each other with a groove penetrating through one tube wall along the axis. A ventilation module having a low internal resistance, comprising a parallel assembly of a pair of pipes which are parallel and have opposite end ports closed.
請求項目1に記載される換気モジュール及び連結機能を備えた気
体進出口に逆止弁を用いて、内部気流の進出通路を制御し、未換気気流の回流を防止できる事を特徴とする往復式無死腔換気回路。
A reciprocating type wherein the ventilating module according to claim 1 and a gas inlet / outlet provided with a connection function are provided with a check valve to control an internal airflow exit passage and prevent circulation of unventilated airflow. Dead space ventilation circuit.
請求項目2に記載される往復式無死腔換気回路を用い、外力によ
る内部灌流を要しない事を特徴とする人工鰓水中生命維持装置及び体内埋めこみ型人工肺。
An artificial gill underwater life support device and an implantable artificial lung, characterized by using the reciprocating dead space ventilation circuit according to claim 2 and not requiring internal perfusion by external force.
JP2003076816A 2003-03-20 2003-03-20 Low-resistance hollow fiber membrane ventilation module, non-dead-space reciprocating ventilation circuit and its application Withdrawn JP2004283273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076816A JP2004283273A (en) 2003-03-20 2003-03-20 Low-resistance hollow fiber membrane ventilation module, non-dead-space reciprocating ventilation circuit and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076816A JP2004283273A (en) 2003-03-20 2003-03-20 Low-resistance hollow fiber membrane ventilation module, non-dead-space reciprocating ventilation circuit and its application

Publications (1)

Publication Number Publication Date
JP2004283273A true JP2004283273A (en) 2004-10-14

Family

ID=33291738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076816A Withdrawn JP2004283273A (en) 2003-03-20 2003-03-20 Low-resistance hollow fiber membrane ventilation module, non-dead-space reciprocating ventilation circuit and its application

Country Status (1)

Country Link
JP (1) JP2004283273A (en)

Similar Documents

Publication Publication Date Title
CN111032106B (en) Dual chamber gas exchanger for respiratory support
US4176069A (en) Device for exchanging substances and method of manufacturing the device
US20110259339A1 (en) Ventilating apparatus and method enabling a patient to talk with or without a trachostomy tube check valve
CN105705176B (en) Gas exchanger and artificial lung
CA2019752A1 (en) Heat and moisture exchange devices
CN107929839A (en) A kind of portable membrane oxygenator and preparation method and its oxygen close method
US9827534B2 (en) Gas exchanger and artificial lung
JP4026037B2 (en) Hollow fiber membrane gas-liquid gas exchange device and gas exchange method thereof
CN110404147A (en) A kind of breather valve and its breathing equipment improving double air pressure ventilator performances
CN115192807A (en) Oxygenator and extracorporeal membrane lung oxygenating device
US6723132B2 (en) Artificial lung device
CN212308546U (en) Artificial lung for extracorporeal circulation
JP2004283273A (en) Low-resistance hollow fiber membrane ventilation module, non-dead-space reciprocating ventilation circuit and its application
BR112012006434B1 (en) MEMBRANE ELEMENT, GAS SEPARATION DEVICE, AND, INTERNAL COMBUSTION ENGINE
JP4594581B2 (en) Humidifier
CN113144317A (en) Oxygenator
CN208823714U (en) A kind of breather valve and breathing equipment improving double air pressure ventilator performances
JP4435557B2 (en) Humidifier
CN111554400A (en) Management system of breathing machine
JP2008246141A (en) Heat exchanger and heart-lung machine
CN117504026B (en) Oxygenator assembly for extracorporeal membrane oxygenation
CN219375788U (en) Oxygen mask
CN215194806U (en) A breather valve for breathing machine
CN212967131U (en) Management system of breathing machine
CN111494741A (en) Artificial lung for extracorporeal circulation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606