JP2004282889A - Permanent magnet rotor and wind power generator - Google Patents

Permanent magnet rotor and wind power generator Download PDF

Info

Publication number
JP2004282889A
JP2004282889A JP2003070262A JP2003070262A JP2004282889A JP 2004282889 A JP2004282889 A JP 2004282889A JP 2003070262 A JP2003070262 A JP 2003070262A JP 2003070262 A JP2003070262 A JP 2003070262A JP 2004282889 A JP2004282889 A JP 2004282889A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
range
magnet
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003070262A
Other languages
Japanese (ja)
Other versions
JP4357856B2 (en
Inventor
Eiji Shimomura
英二 霜村
Masanori Shin
政憲 新
Tadashi Tokumasu
正 徳増
Masashi Fujita
真史 藤田
Kazuto Sakai
和人 堺
Satoru Higuchi
知 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003070262A priority Critical patent/JP4357856B2/en
Publication of JP2004282889A publication Critical patent/JP2004282889A/en
Application granted granted Critical
Publication of JP4357856B2 publication Critical patent/JP4357856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind power generator having a high efficiency and reliability, a wide variable speed range and having output characteristics desired for a wind power generation and to provide a permanent magnet rotor for constituting the wind power generator. <P>SOLUTION: The permanent magnet rotor 2 constitutes a permanent magnet rotary electric machine by embedding a permanent magnet 4 in a rotor core 2a and forming a rotor pole 2b. In the permanent magnet rotor 2, changes in the generating end voltage and current of the permanent magnet rotary electric machine respectively fall within a range of 20% in a rotational speed range of 110 to 125% of the rated rotational speed from the rated rotational speed of the permanent magnet rotary electric machine. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転子鉄心に永久磁石を取り付けて構成された永久磁石回転子、および前記永久磁石回転子を備えた風力発電機に関する。
【0002】
【従来の技術】
発電機用途の永久磁石回転電機は、下記特許文献1に記載されているように、回転子に永久磁石を配置して磁極を形成し、さらに電機子側に移動磁界を発生させ、回転エネルギーをその移動磁界を介して電機子側に伝達し電力を取り出す同期回転機であり、その動作原理により高い運転効率が得られる。最近では、永久磁石回転機においてもインバータと組み合せることにより、可変速運転が可能となり、広い運転速度範囲を持つ用途に適用されるようになっている。
【0003】
ところで永久磁石は、近年、希土類燒結磁石に分類され高いエネルギー密度を有し且つ低価格であるネオジ磁石が発明されて以来、各種モータへの適用が進められている。特に、大型回転機への適用は従来磁石ほどコスト的に圧迫感がないことから伸長していると言える。
【0004】
また、焼結磁石はモータ出力増大に寄与するが、焼結品であるために、或いは硬く脆い性質であるために、複雑な形状に成形することができず、せいぜい研削・研磨加工で形を整える程度しか成形できないことから、円弧形状、平板形状が広く使用されている。そのため、エネルギー密度を損なわずに最小使用量で磁極を形成する必要がある。
【0005】
風力発電機は、現在、誘導発電機,巻線形同期発電機などが主流である。風力はエネルギー密度が小さいため、そのエネルギーを効率良く電力に変換することが必要である。そのため、風車においては、風のエネルギーを最大限取り込む必要があり、ブレードの最適形状設計を始め、広い風速範囲で高い効率を得るためのピッチ制御などの技術開発が進められている。また、発電機においても、風車から伝えられる回転エネルギーを効率良く電気エネルギーに変換する必要があることから、可変速範囲の拡大、即ちどのような風速でも電力として変換する能力および効率の向上が望まれている。
【0006】
風力発電の発電方式の特長として、発電はカットイン風速から開始され、その発電出力は風速のほぼ3乗で増加し、定格風速以降の風速では一定出力運転に移行する。定格風速以降は、風速が上がっても、風車の回転数は、その失速特性を利用して一定回転数を維持するようにピッチ制御される。これは、羽根の強度限界に起因している。
【0007】
しかしながら、実際の定格風速以降の回転数はピッチ制御の機械的遅れから一定にはならない。即ち、風速の秒,分単位での変動や風向の変化により、短時間にて風速が変動するため、ピッチ制御が追従できず回転数は大きく脈動するのが実態である。我々の調査によると、定格回転数(定格風速において)に対し、10%〜25%の変動が実際に発生していることが明らかになった。
【0008】
このように、風車の特性は、定出力範囲を20%程度持つ可変速駆動であり、この特性にマッチした発電機を組み合せることが、風力発電システムとして出力増大に寄与することになる。
【0009】
従来の風力発電機である誘導発電機は、可変速運転を可能とするため、極数変換方式とすべり制御が採用されている。このような方式の場合、突入電流など系統への影響が大きく、その保護回路設置などにより、付帯設備が大きくなる。また、力率の低下が避けられず、もともとの低効率の点も含め、エネルギーの機内消費が大きい。
【0010】
それに対して巻線形同期発電機は、比較的高い効率と広い可変速範囲での運転が可能である。しかしながら、回転子巻線へ励磁電流を通電するためにブラシを使用しなければならず、メンテナンスの面で問題がある。また、直流電流を発生させるために、励磁機(エキサイター)を設備することが必須となるが、この励磁電流の発生動力はエネルギー損失と位置付けられることから、効率の点でも自ずと限界がある。
【0011】
これら従来型の発電機に比べると、永久磁石発電機は、そもそも磁石の磁力を界磁として使用するため、エキサイターによる励磁が不要であり、高い効率の実現が可能である。また、ブラシを必要としないため、メンテナンス面においても大幅に改善することができる。さらに、この特長を維持しながら、前述の風力発電独特の出力特性にマッチする特性を永久磁石発電機に付与することができれば、高いコストパフォーマンスが達成できることになる。
【0012】
【特許文献1】
特開平11−299197号公報
【0013】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、高い効率と信頼性及び広い可変速範囲を有するとともに風力発電に望ましい出力特性を有する風力発電機および前記風力発電機を構成する永久磁石回転子を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1に記載の発明は、上記目的を達成するために、回転子鉄心に永久磁石を埋設して回転子磁極を形成し永久磁石回転電機を構成する永久磁石回転子において、前記永久磁石回転電機の定格回転数から、前記定格回転数の110%ないし125%の回転数範囲において前記永久磁石回転電機の発電端電圧および電流の変動がそれぞれ20%の範囲内にある構成とする。
【0015】
請求項2に記載の発明は、前記回転子磁極1極あたり2個の平板状の永久磁石が対向して設けられ、磁石極の極弧が92%以上であり、前記2個の永久磁石のなす角度が75°から105°の範囲にある構成とする。
【0016】
請求項3に記載の発明は、前記回転子磁極1極あたり2個の平板状の永久磁石が対向して設けられ、磁石極の極弧が70%から92%の範囲であり、前記2個の永久磁石のなす角度が60°から90°の範囲にある構成とする。
【0017】
請求項4に記載の発明は、前記回転子磁極1極あたり2個の平板状の永久磁石が対向して設けられ、磁石極の極弧が85%から92%の範囲であり、前記2個の永久磁石のなす角度が60°から90°の範囲にあり、前記永久磁石の前面の回転子鉄心に、前記永久磁石と平行な辺を持つ扇形の窓が形成されている構成とする。
【0018】
請求項5に記載の発明は、前記扇形の窓に、扇形の中空或いは中実形状の磁性片が装着されている構成とする。
請求項6に記載の発明は、前記回転子磁極1極あたり2個の平板状の永久磁石が対向して設けられ、磁石極の極弧が85%から92%の範囲であり、前記2個の永久磁石のなす角度が60°から90°の範囲にあり、前記永久磁石の前面の回転子鉄心に溝を形成し、空隙長を大きくした構成とする。
【0019】
請求項7に記載の発明は、前記永久磁石は円弧状をなして回転鉄子鉄心の外周部に埋設され、磁石極の極弧が65%から80%の範囲である構成とする。
請求項8に記載の発明は、前記永久磁石はカマボコ形をなして回転鉄子鉄心の外周部に埋設され、磁石極の極弧が65%から80%の範囲である構成とする。
【0020】
請求項9に記載の発明は、前記永久磁石の前面に環状の磁性体が設けられている構成とする。
請求項10に記載の発明は、前記環状の磁性体は隣り合う回転子磁極間において回転子鉄心に係合する継手部を有し、この継手部が軸方向に伸展する冷却用フィンが設けられている構成とする。
【0021】
請求項11に記載の発明は風力発電機であり、回転子鉄心に永久磁石を埋設して回転子磁極を形成した永久磁石回転子を備え、定格回転数から、前記定格回転数の110%ないし125%の回転数範囲において発電端電圧および電流の変動がそれぞれ20%の範囲内にある構成とする。
【0022】
【発明の実施の形態】
以下、図1および図2を参照して本発明の永久磁石回転子および風力発電機の第1の実施の形態を説明する。
図1(a)は、永久磁石回転電機の横断面構造を概略的に示すものであり、電機子1は電機子鉄心1aに形成されたスロットに電機子コイル1bを収納した構成となっており、その界磁空間内に、回転子鉄心2aに回転子磁極2bを形成した回転子2が配置される。
【0023】
回転子2は、その詳細を図1(b)に示すように、回転子鉄心2aに設けた磁極装着用打抜き部に、1つの磁極2bあたり2個の平板状の磁石4を対向させるように配置し、その磁石極の極弧β/αを92%以上とし、さらに同一磁極に配置した磁石4のなす角度γが75°から105°の範囲に構成にしている。
【0024】
永久磁石回転電機を風力発電機として適用する場合、原動機側である風車の出力特性に適った発電特性を付帯させることが必要となる。風力発電システムの発電方式の特長として、発電はカットイン風速から開始され、その発電出力は風速のほぼ3乗で増加し、定格風速以降の風速では一定出力運転に移行する。定格風速以降は、風速が上がっても、風車の回転数は、その失速特性を利用して一定回転数を維持するようにピッチ制御される。これは、羽根の強度限界に起因している。
【0025】
従って、発電機は理想的には、図2(a)の負荷曲線のような回転数と出力の関係(以降、負荷特性とする)に適合すれば良いことになる。この場合、永久磁石回転子としては、図1に示したような表面磁石配置型の回転子構成が、高い力率が得られることなどから好ましい。
【0026】
図2(a)には、前記回転子を採用した発電機の出力特性を、負荷電流をパラメータとして、示してある。定格電流のみで負荷特性をカバーできているため、発電機出力に変動が無いことになり、高品質の発電が可能である。
【0027】
しかしながら、実際の、定格風速以降の回転数は、ピッチ制御の機械的遅れから図2(a)の負荷特性のように一定にはならない。即ち、風速の秒、分単位での変動や、風向の変化により、短時間にて風速が変動するため、ピッチ制御が追従できず、回転数は大きく脈動するのが実態である。
【0028】
我々の調査によると、定格回転数(定格風速において)に対し、10%〜25%の変動が実際に発生していることが明らかになった。これを図2(a)と同様に、出力v.s.回転数として見ると、図2(b)のような関係が得られる。これは、変動幅を定格回転数の20%としている。
【0029】
このような負荷特性を一定電流でカバーすることは、前記発電機特性では不可能である。また、120%電流が流れた場合においても、その負荷をカバーすることはできない。例えば、130%電流でカバーできた場合、それは20%以上の力率低下につながり、出力変動が大きくなって、高品質の電力を供給することはできない。
【0030】
出力変動を後段に設置したパワーエレクトロニクス装置で安定化することを考えるにしても、発電端の電流、電圧の変動幅としては、それぞれ120%以内が限界であり、それを超える変動が生じる発電機に対しては、バッテリー、フライホイール装置などの電力貯蔵装置を設置することが必要であり、発電システム自体が大型になり、特に、風力発電システムとしてはコスト的に成立しない場合が多い。このように、風車の特性は、定出力範囲を20%程度持つ可変速駆動であり、この特性にマッチした発電機を組み合せることが、風力発電システムとして出力増大に寄与することになる。
【0031】
本実施の形態の永久磁石回転子は、隣り合う磁極2bの磁石4の間隔がほとんど無い(極弧93%以上)ことから、角度γが前記の範囲を超えた場合、その出力特性はほとんど図2(a)のそれと同じになる。しかしながら、γが前記の範囲に入ると、磁石4の前面の鉄心部には磁石4の磁束以外に、出力を安定させる効果を持つリラクタンス磁束が流れる空間が確保される。
【0032】
これにより、本実施の形態の永久磁石回転子は磁石磁束により高出力化が達成され、また、リラクタンス磁束により、高出力を維持する機能が付加されることになる。従って、カットイン風速から定格風速(回転数)まで、風車の出力を余すところ無く電気エネルギーに変換することができ、さらに、定格風速からカットアウト風速の間にて生じる回転数変動においても、パワーエレクトロニクス装置の許容できる範囲内に負荷電流の変動を抑えることができ、結果として一定出力を得ることができる。
【0033】
また、本実施の形態の風力発電機は、後段のパワーエレクトロニクス装置の安定化作用によって変動を吸収できるように、発電端電圧と負荷電流の変動をそれぞれ20%の範囲内に収めることができ、付帯設備を設置することもなく、低廉な風力システムを提供することができる。
【0034】
つぎに本発明の第2の実施の形態を説明する。本実施の形態の永久磁石回転子は、図3に示すように、回転子鉄心2aに設けた磁石装着用打抜き部に、1つの極2bあたり2個の平板状の磁石4を対向させるように挿入し、且つ、その磁石極の極弧β/αを70%から92%の範囲とし、さらに同一磁極に配置した磁石4のなす角度γが60°から90°の範囲となるように構成している。
【0035】
極弧β/αが上記の範囲にある場合、リラクタンス磁束は隣り合う磁極の磁石の間に存在する鉄心を通り、磁石4の後を通って磁束が流れる空間が確保される。しかしながら、角度γがこの角度範囲を超えた場合、リラクタンス磁束の量は大きく減少し、磁石磁束量もそれにより低下することから、磁石による高出力化が阻害される。結果として、出力維持の機能は付帯するが、定格出力を発揮するために、磁石磁束の不足分を電流を増加することでカバーすることとなって、全体的な力率が低下する。前記範囲に角度γを設定すると、リラクタンス磁束量が増え、力率低下を防ぐだけの磁石磁束が得られる。
【0036】
従って、カットイン風速から定格風速(回転数)まで、風車の出力を余すところ無く電気エネルギーに変換することができ、さらに、定格風速からカットアウト風速の間にて生じる回転数変動においても、パワーエレクトロニクス装置の許容できる範囲内に負荷電流の変動を抑えることができ、結果として一定出力を得ることができる。
【0037】
つぎに本発明の第3の実施の形態を説明する。本実施の形態の永久磁石回転子は、図4に示すように、磁石極の極弧β/αが85%から92%の範囲の比較的高い極弧範囲にある場合、配置した磁石4の前面に、磁石と平行な辺を持つ扇形の窓3を形成した構成である。
【0038】
発電機の寸法仕様などによって、磁石磁束が不足する場合も起こる。その場合、磁束量を増やすと、磁石長さが伸び、隣り合う磁極の磁石間隔が狭くなって、リラクタンス磁束の流れる空間が足りなくなり、出力維持機能が低下することになる。
【0039】
その場合、前記扇形の窓3を、磁石4の前面に、磁石4の磁束の流れを阻害しない、即ち鉄心2aが磁気飽和することのない断面積で形成すると、リラクタンス磁束を増加させることができる。即ち、磁石4のある磁極中心径方向の磁気回路を遮断することで、そちらに漏れていたリラクタンス磁束を、磁石4の後を通過する望ましい流路に導くことができ、結果的に、リラクタンス磁束を補うことができるのである。
【0040】
従って、カットイン風速から定格風速(回転数)まで、風車の出力を余すところ無く電気エネルギーに変換することができ、さらに、定格風速からカットアウト風速の間にて生じる回転数変動においても、パワーエレクトロニクス装置の許容できる範囲内に負荷電流の変動を抑えることができ、結果として一定出力を得ることができる。
【0041】
つぎに本発明の第4の実施の形態の永久磁石回転子は、図5に示すように、予め広く明けた扇形の窓に、扇形の中空或いは中実形状の磁性片5を装着した構成である。
【0042】
本実施の形態によれば、定格風速以上の風速での回転数変動幅が大きくなった場合、或いは、異なる風車の負荷特性仕様に合わせる必要が生じた場合など、磁石磁束とリラクタンス磁束のバランスが壊れ、その結果、出力一定維持が不可能になった時に、窓の大きさを必要な大きさに変更することによって、そのバランスを回復し、パワーエレクトロニクス装置の許容できる範囲内に負荷電流の変動を抑えることができる。また、発電機の特性を風車出力に容易に合わせることができることから、発電機の共通部品化ができ、生産コストの低減が可能となる。
【0043】
つぎに本発明の第5の実施の形態の永久磁石回転子は、図6に示すように、磁石極の極弧β/αが85%から92%の範囲に限ってではあるが、扇形窓の代わりに、磁石4の前面に対向する回転子鉄心2aの表面に深さtの溝を形成し、その部分のみ空隙長を広くした構成である。
【0044】
溝の深さtは、大きくなるほど、リラクタンス磁束の増加効果が大きくなるが、ギャップ長が逆に増加するため、磁石磁束の低下につながり、いたずらに深くすることができない。我々の調査では、tの大きさとしては、正規のギャップ長に対し、10%〜30%の範囲が好ましいとの結果を得ている。
【0045】
つぎに本発明の第6の実施の形態の永久磁石回転子は、図7に示すように、回転子鉄心2aに設けた磁石装着用打抜き部に、円弧状の磁石4aを挿入し、且つ、その磁石極の極弧β/αを65%から80%の範囲にした構成である。
【0046】
この実施の形態では、磁石4aの前面にはリラクタンス磁束の流れる空間は無く、隣り合う磁極の磁石の間から磁石の後を通って流れる磁気回路のみがその流路となる。従って、比較的その磁石の間隔は広くとる必要があり、上記範囲の設定になっている。この円弧状の磁石4aは、回転子の外周に沿った形状となっているが、例えば、逆円弧状態で磁石4aを配置していもよい。
【0047】
この実施の形態の永久磁石回転子によれば、カットイン風速から定格風速(回転数)まで、風車の出力を余すところ無く電気エネルギーに変換することができ、さらに、定格風速からカットアウト風速の間にて生じる回転数変動においても、パワーエレクトロニクス装置の許容できる範囲内に負荷電流の変動を抑えることができ、結果として一定出力を得ることができる。
【0048】
なお、この円弧状の磁石4aは、1枚の磁石とすることができるが、その扇形角度を鉄心2aの打抜き孔に対して小さくとり、打抜き孔のなかでできた隙間に、前記第4の実施の形態におけるような、磁性片を配置することで、リラクタンス磁束流路、従ってリラクタンス磁束量と磁石磁束量の比率を任意にしかも容易に調節することができる。
【0049】
これにより、定格風速以上の風速での回転数変動幅が大きくなった場合、或いは、異なる風車の負荷特性仕様に合わせる必要が生じた場合など、磁石磁束とリラクタンス磁束のバランスが壊れ、その結果、出力一定維持が不可能になった時に、磁束量とリラクタンス磁束流路を任意に変更することで、そのバランスを回復し、パワーエレクトロニクス装置の許容できる範囲内に負荷電流の変動を抑えることができる。また、発電機の特性を風車出力に容易に合わせることができることから、発電機の共通部品化ができ、生産コストの低減が可能となる。
【0050】
つぎに本発明の第7の実施の形態の永久磁石回転子は、図8に示すように、永久磁石としてカマボコ形の磁石4bを使用している。極弧β/αの指定は、第6の実施の形態と同じである。カマボコ形の磁石4bの効果は、基本的には、円弧磁石のそれと同じであるが、さらに、リラクタンス磁束を増加させ、優れた出力維持能力が得られる。
【0051】
リラクタンス磁束は、その流路を確保することで増大できるが、前述したように、磁石の方向の漏れを無くすことによっても増加させることができる。カマボコ形の磁石4bは、極中央の部分の磁石厚さが大きくなっているが、磁石は、リラクタンス磁束の流れを阻害する働きがあることから、極中央はその効果が大きい。さらに、リラクタンス磁束の漏れは極中央が大きくなる傾向があることから、カマボコ形の磁石4bの効果により、強く且つ効果的にリラクタンス磁束の漏れを遮断することができる。結果として、少ない磁束量で、永久磁石回転電機の出力維持能力が向上でき、力率、効率の向上が図れる。
【0052】
つぎに本発明の第8の実施の形態を説明する。この実施の形態の永久磁石回転子は、図9に示すように、円弧状の磁石4aの外面に配する鉄心部(円環部)を、鉄心2aとは別体の環状磁性体6にて形成し、隣接する磁石4aに挟まれた鉄心部を継手として前記環状磁性体6を固定した構成である。
【0053】
この円環部を鉄心2aと別の部材とすることで、この部分の形状或いは材質を任意に選ぶことができる。例えば、最大回転数が大きくなり、磁石4aの遠心力による飛散を防止することが困難である場合、図7の構成では、円環部の肉厚を増やすことで対処するしかなく、この場合、必然的に磁石4aの位置が内周側に移動するため、磁束量が減少し、且つ、磁石磁束の前記円環部を通って流れる漏れ成分が大きくなって、出力に寄与する磁石磁束量が低下してしまう。
【0054】
本実施の形態では、その場合、円環部材料にマルエージ鋼などの高強度材を使用することで、その肉厚を小さくすることができ、結果として出力低下を防止することができる。また、図7の構成についても円環部を削除するだけで、簡単に採用することができる。
【0055】
さらに、円環部の形状を凸円弧形状とすることで、ギャップに流れる磁束分布を正弦波形状に成形することが可能で、これにより、高調波磁束成分を低減することもできる。これによって、高調波磁束成分に起因した高調波損失を低減でき、効率を向上することも可能である。このように、本実施の形態によると、種々の風車特性或いは、負荷仕様に対して発電機性能を容易に順応させることができる。
【0056】
つぎに本発明の第9の実施の形態を説明する。この実施の形態の永久磁石回転子は、図10に示すように、前記第8の実施の形態の永久磁石回転子において、環状磁性体6の継手部分に軸方向に冷却用のフィン7を付設したものである。鉄心2aの円環部は、別材料によって任意の形状に作製できることから、軸方向に伸ばし、フィン7を形成する。図では、軸流フィンを形成しているが、このフィン7の部分のみ非磁性にすることもできる。
【0057】
このフィン7の効果としていくつかあるが、ひとつには、永久磁石4a及び環状磁性体6にて発生する表面損失などによる発熱を速やかにフィン7から放熱する作用がある。また、別の効果として、フィン7が回転することによって生じる冷却風により、相対的に高い温度になりがちな電機子コイル1bのエンド部を循環冷却する作用がある。
【0058】
一般に風力発電機はナセルの中に収納されるが、他の電気部品の保護のためにナセルは密閉構造を採用することが多い。また、発電機の冷却は自然冷却が一般的であり、冷却条件が悪いので、発電機は比較的大型に製造される傾向にある。本実施の形態では、そのホットスポットとなる、電機子コイルエンド部をフィン7によって冷却できることから、冷却性能が飛躍的に向上し、発電機自体を小型化することができる。これによって、発電機重量、体格、損失が小さくなり、出力向上及びナセル寸法縮小効果をもたらすことが可能である。
【0059】
【発明の効果】
本発明によれば、高い効率と信頼性及び広い可変速範囲を有するとともに風力発電に望ましい出力特性を有する風力発電機および前記風力発電機を構成する永久磁石回転子を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示し、(a)は本実施の形態の永久磁石回転子を備えた永久磁石回転電機を模式的に示す径方向断面図、(b)は上記永久磁石回転子を示す部分断面図。
【図2】本発明の第1の実施の形態の永久磁石回転子の作用(b)を従来の永久磁石回転子の作用(a)と比較して説明する曲線図。
【図3】本発明の第2の実施の形態の永久磁石回転子の部分断面図。
【図4】本発明の第3の実施の形態の永久磁石回転子の部分断面図。
【図5】本発明の第4の実施の形態の永久磁石回転子の部分断面図。
【図6】本発明の第5の実施の形態の永久磁石回転子の部分断面図。
【図7】本発明の第6の実施の形態の永久磁石回転子の部分断面図。
【図8】本発明の第7の実施の形態の永久磁石回転子の部分断面図。
【図9】本発明の第8の実施の形態の永久磁石回転子の部分断面図。
【図10】本発明の第9の実施の形態の永久磁石回転子を備えた風力発電機の軸方向断面図。
【符号の説明】
1…電機子、1a…電機子鉄心、1b…電機子コイル、2…回転子、2a…回転子鉄心、2b…回転子磁極、3…窓、4,4a,4b…磁石、5…磁性片、6…環状磁性体、7…フィン、8…シャフト。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a permanent magnet rotor configured by attaching a permanent magnet to a rotor core, and a wind power generator including the permanent magnet rotor.
[0002]
[Prior art]
As described in Patent Document 1, a permanent magnet rotating electric machine for a generator uses a permanent magnet disposed on a rotor to form a magnetic pole, and further generates a moving magnetic field on the armature side to generate rotational energy. This is a synchronous rotating machine that transmits power to the armature side through the moving magnetic field to extract power, and high operating efficiency can be obtained by its operation principle. In recent years, variable speed operation has become possible by combining a permanent magnet rotating machine with an inverter, and it has been applied to applications having a wide operating speed range.
[0003]
Incidentally, permanent magnets have recently been invented as neodymium magnets which are classified as rare earth sintered magnets and have a high energy density and a low price, and have been applied to various motors. In particular, it can be said that the application to a large rotating machine is growing because there is no feeling of pressure in the cost as compared with the conventional magnet.
[0004]
Sintered magnets also contribute to increasing motor output, but because they are sintered products or because they are hard and brittle, they cannot be formed into complex shapes. Since it can be formed only to the extent that it can be adjusted, arc shapes and flat plate shapes are widely used. Therefore, it is necessary to form a magnetic pole with a minimum usage amount without deteriorating the energy density.
[0005]
At present, the mainstream wind power generators are induction generators, wound synchronous generators, and the like. Since wind power has a low energy density, it is necessary to efficiently convert that energy into electric power. For this reason, it is necessary for wind turbines to capture the maximum amount of wind energy, and technical developments such as optimal shape design of blades and pitch control for obtaining high efficiency in a wide range of wind speeds are being advanced. Also, in a generator, since it is necessary to efficiently convert rotational energy transmitted from a windmill into electric energy, it is desired to expand the variable speed range, that is, to improve the ability and efficiency of converting power as power at any wind speed. It is rare.
[0006]
As a feature of the power generation system of wind power generation, power generation is started from the cut-in wind speed, and the power generation output increases by approximately the third power of the wind speed, and shifts to a constant output operation at a wind speed after the rated wind speed. After the rated wind speed, even if the wind speed increases, the rotation speed of the wind turbine is controlled to maintain a constant rotation speed by utilizing its stall characteristic. This is due to the strength limit of the blade.
[0007]
However, the rotation speed after the actual rated wind speed is not constant due to the mechanical delay of the pitch control. That is, since the wind speed fluctuates in a short time due to the fluctuation of the wind speed in seconds and minutes or the change of the wind direction, the pitch control cannot be followed and the rotation speed greatly pulsates. According to our investigation, it was found that a fluctuation of 10% to 25% actually occurred with respect to the rated rotation speed (at the rated wind speed).
[0008]
As described above, the characteristic of the wind turbine is variable speed drive having a constant output range of about 20%, and the combination of a generator matching this characteristic contributes to an increase in output as a wind power generation system.
[0009]
An induction generator, which is a conventional wind power generator, employs a pole number conversion method and slip control to enable variable speed operation. In the case of such a system, the influence on the system such as an inrush current is large, and the installation equipment becomes large due to the installation of the protection circuit or the like. In addition, a reduction in the power factor is inevitable, and the in-flight consumption of energy is large, including the originally low efficiency.
[0010]
In contrast, wound synchronous generators can operate at relatively high efficiency and in a wide variable speed range. However, a brush must be used to supply an exciting current to the rotor winding, and there is a problem in terms of maintenance. In order to generate a DC current, it is essential to provide an exciter, but since the power for generating the excitation current is regarded as energy loss, there is naturally a limit in terms of efficiency.
[0011]
Compared with these conventional generators, the permanent magnet generator uses the magnetic force of the magnet as a field in the first place, and therefore does not require excitation by an exciter and can achieve high efficiency. Further, since a brush is not required, maintenance can be greatly improved. Furthermore, if the characteristics that match the above-described unique output characteristics of the wind power generation can be imparted to the permanent magnet generator while maintaining these characteristics, high cost performance can be achieved.
[0012]
[Patent Document 1]
JP-A-11-299197
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has a high efficiency and reliability, a wide variable speed range, and a wind power generator having output characteristics desirable for wind power generation, and a permanent magnet rotor constituting the wind power generator. The purpose is to provide.
[0014]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a permanent magnet rotor comprising a permanent magnet embedded in a rotor core to form a rotor magnetic pole to constitute a permanent magnet rotating electric machine. In the rotation speed range of 110% to 125% of the rated rotation speed from the rated rotation speed of the electric machine, each of the fluctuations in the power generation terminal voltage and the current of the permanent magnet rotating electric machine is within a range of 20%.
[0015]
According to a second aspect of the invention, two flat permanent magnets are provided to face each rotor magnetic pole, and the pole arc of the magnet pole is 92% or more. The angle formed is in the range of 75 ° to 105 °.
[0016]
According to a third aspect of the present invention, two flat permanent magnets are provided facing each other for one rotor magnetic pole, and the pole arc of the magnet pole is in a range of 70% to 92%. The angle between the permanent magnets is in the range of 60 ° to 90 °.
[0017]
According to a fourth aspect of the present invention, two flat permanent magnets are provided facing each other for each rotor magnetic pole, and the pole arc of the magnet pole ranges from 85% to 92%. The angle between the permanent magnets is in the range of 60 ° to 90 °, and a fan-shaped window having sides parallel to the permanent magnets is formed in the rotor core in front of the permanent magnets.
[0018]
The invention according to claim 5 is configured such that a fan-shaped hollow or solid magnetic piece is mounted on the fan-shaped window.
According to a sixth aspect of the present invention, two flat permanent magnets are provided facing each other for one rotor magnetic pole, and the pole arc of the magnet pole ranges from 85% to 92%. The angle between the permanent magnets is in the range of 60 ° to 90 °, a groove is formed in the rotor core in front of the permanent magnet, and the gap length is increased.
[0019]
According to a seventh aspect of the present invention, the permanent magnet is formed in an arc shape and is embedded in the outer peripheral portion of the rotating iron core, and the arc of the magnet pole ranges from 65% to 80%.
According to an eighth aspect of the present invention, the permanent magnet is formed in a camber shape and is embedded in the outer periphery of the rotary iron core, and the arc of the magnet pole ranges from 65% to 80%.
[0020]
According to a ninth aspect of the present invention, an annular magnetic body is provided on a front surface of the permanent magnet.
According to a tenth aspect of the present invention, the annular magnetic body has a joint that engages with a rotor core between adjacent rotor magnetic poles, and the joint has a cooling fin that extends in the axial direction. Configuration.
[0021]
The invention according to claim 11 is a wind power generator, comprising a permanent magnet rotor in which a permanent magnet is embedded in a rotor core to form a rotor magnetic pole, and from a rated speed, 110% or less of the rated speed. The configuration is such that the fluctuations in the power generation terminal voltage and the current are each within the range of 20% in the 125% rotation speed range.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of a permanent magnet rotor and a wind power generator according to the present invention will be described with reference to FIGS.
FIG. 1A schematically shows a cross-sectional structure of a permanent magnet rotating electric machine. An armature 1 has a configuration in which an armature coil 1b is housed in a slot formed in an armature core 1a. The rotor 2 having the rotor magnetic pole 2b formed on the rotor core 2a is arranged in the field space.
[0023]
As shown in detail in FIG. 1B, the rotor 2 is configured such that two plate-shaped magnets 4 per magnetic pole 2b are opposed to a magnetic pole mounting punching portion provided on the rotor core 2a. And the poles β / α of the magnet poles are set to 92% or more, and the angle γ between the magnets 4 arranged at the same magnetic pole is in the range of 75 ° to 105 °.
[0024]
When a permanent magnet rotating electric machine is applied as a wind power generator, it is necessary to add power generation characteristics suitable for the output characteristics of a windmill on the prime mover side. As a feature of the power generation system of the wind power generation system, the power generation is started from the cut-in wind speed, and the power generation output increases by approximately the third power of the wind speed, and shifts to the constant output operation at the wind speed after the rated wind speed. After the rated wind speed, even if the wind speed increases, the rotation speed of the wind turbine is controlled to maintain a constant rotation speed by utilizing its stall characteristic. This is due to the strength limit of the blade.
[0025]
Therefore, the generator ideally needs to conform to the relationship between the rotational speed and the output (hereinafter referred to as load characteristics) as shown by the load curve in FIG. In this case, as the permanent magnet rotor, a surface magnet arrangement type rotor configuration as shown in FIG. 1 is preferable because a high power factor can be obtained.
[0026]
FIG. 2A shows output characteristics of a generator employing the rotor, using load current as a parameter. Since the load characteristics can be covered only by the rated current, there is no change in the generator output, and high-quality power generation is possible.
[0027]
However, the actual rotation speed after the rated wind speed is not constant as in the load characteristics of FIG. 2A due to the mechanical delay of the pitch control. That is, since the wind speed fluctuates in a short time due to the fluctuation of the wind speed in units of seconds and minutes or the change of the wind direction, pitch control cannot be followed, and the rotation speed greatly pulsates.
[0028]
According to our investigation, it was found that a fluctuation of 10% to 25% actually occurred with respect to the rated rotation speed (at the rated wind speed). This is likewise the output v. s. In terms of the number of rotations, a relationship as shown in FIG. 2B is obtained. This sets the fluctuation range to 20% of the rated rotation speed.
[0029]
It is impossible to cover such load characteristics with a constant current with the generator characteristics. Further, even when a 120% current flows, the load cannot be covered. For example, when the current can be covered by 130% current, it leads to a power factor reduction of 20% or more, the output fluctuation becomes large, and high-quality power cannot be supplied.
[0030]
Even if it is considered that the output fluctuation is stabilized by the power electronics device installed at the subsequent stage, the fluctuation range of the current and voltage at the power generation end is within 120%, respectively, and the fluctuation that exceeds that limit is generated. Therefore, it is necessary to install a power storage device such as a battery and a flywheel device, and the power generation system itself becomes large, and in particular, it often cannot be realized in terms of cost as a wind power generation system. As described above, the characteristic of the wind turbine is variable speed drive having a constant output range of about 20%, and the combination of a generator matching this characteristic contributes to an increase in output as a wind power generation system.
[0031]
In the permanent magnet rotor according to the present embodiment, since the interval between the magnets 4 of the adjacent magnetic poles 2b is almost nonexistent (pole arc 93% or more), when the angle γ exceeds the above range, the output characteristics thereof are almost not shown. It becomes the same as that of 2 (a). However, when γ falls within the above range, a space in which the reluctance magnetic flux having an effect of stabilizing the output flows in the iron core portion in front of the magnet 4 in addition to the magnetic flux of the magnet 4.
[0032]
Thus, the permanent magnet rotor of the present embodiment achieves high output by the magnet magnetic flux, and has a function of maintaining high output by the reluctance magnetic flux. Therefore, from the cut-in wind speed to the rated wind speed (rotational speed), the output of the wind turbine can be converted into electric energy without any excess. Further, even when the rotational speed fluctuates between the rated wind speed and the cut-out wind speed, the power can be reduced. The fluctuation of the load current can be suppressed within an allowable range of the electronic device, and as a result, a constant output can be obtained.
[0033]
In addition, the wind power generator according to the present embodiment can keep the fluctuations of the power generation terminal voltage and the load current within the range of 20%, respectively, so that the fluctuations can be absorbed by the stabilizing action of the subsequent power electronics device. A low-cost wind system can be provided without installing any additional equipment.
[0034]
Next, a second embodiment of the present invention will be described. As shown in FIG. 3, the permanent magnet rotor of the present embodiment is configured such that two flat magnets 4 per pole 2 b face the magnet mounting punching portion provided on the rotor core 2 a. And the arc β / α of the magnet pole is set in the range of 70% to 92%, and the angle γ formed by the magnets 4 arranged on the same magnetic pole is set in the range of 60 ° to 90 °. ing.
[0035]
When the pole arc β / α is in the above range, the reluctance magnetic flux passes through the iron core existing between the magnets of the adjacent magnetic poles, and a space where the magnetic flux flows after the magnet 4 is secured. However, when the angle γ exceeds this angle range, the amount of the reluctance magnetic flux is greatly reduced, and the amount of the magnetic flux of the magnet is also reduced, thereby preventing the output from being increased by the magnet. As a result, although the function of maintaining the output is attached, the shortage of the magnet magnetic flux is covered by increasing the current in order to exhibit the rated output, and the overall power factor is reduced. When the angle γ is set in the above range, the amount of reluctance magnetic flux increases, and a magnet magnetic flux sufficient to prevent a decrease in power factor can be obtained.
[0036]
Therefore, from the cut-in wind speed to the rated wind speed (rotational speed), the output of the wind turbine can be converted into electric energy without any excess. Further, even when the rotational speed fluctuates between the rated wind speed and the cut-out wind speed, the power can be reduced. The fluctuation of the load current can be suppressed within an allowable range of the electronic device, and as a result, a constant output can be obtained.
[0037]
Next, a third embodiment of the present invention will be described. As shown in FIG. 4, the permanent magnet rotor according to the present embodiment has a structure in which the magnet 4 is arranged when the pole arc β / α of the magnet pole is in a relatively high pole arc range of 85% to 92%. In this configuration, a fan-shaped window 3 having sides parallel to the magnet is formed on the front surface.
[0038]
Depending on the dimensional specifications of the generator, the magnet flux may be insufficient. In this case, when the amount of magnetic flux is increased, the length of the magnet is increased, the magnet interval between the adjacent magnetic poles is reduced, and the space for the reluctance magnetic flux is insufficient, and the output maintaining function is reduced.
[0039]
In this case, if the fan-shaped window 3 is formed on the front surface of the magnet 4 with a cross-sectional area that does not hinder the flow of the magnetic flux of the magnet 4, that is, the iron core 2a does not cause magnetic saturation, the reluctance magnetic flux can be increased. . That is, by shutting off the magnetic circuit in the direction of the center of the magnetic pole of the magnet 4, the reluctance magnetic flux leaking there can be guided to a desired flow path passing after the magnet 4, and as a result, the reluctance magnetic flux Can be supplemented.
[0040]
Therefore, from the cut-in wind speed to the rated wind speed (rotational speed), the output of the wind turbine can be converted into electric energy without any excess. Further, even when the rotational speed fluctuates between the rated wind speed and the cut-out wind speed, the power can be reduced. The fluctuation of the load current can be suppressed within an allowable range of the electronic device, and as a result, a constant output can be obtained.
[0041]
Next, as shown in FIG. 5, the permanent magnet rotor according to the fourth embodiment of the present invention has a configuration in which a fan-shaped hollow or solid magnetic piece 5 is mounted on a fan-shaped window which is wide open in advance. is there.
[0042]
According to the present embodiment, the balance between the magnetic flux and the reluctance magnetic flux is increased when the fluctuation range of the rotation speed at the wind speed equal to or higher than the rated wind speed becomes large, or when it becomes necessary to match the load characteristic specifications of different wind turbines. When broken, as a result, it becomes impossible to maintain a constant output, by resizing the window to the required size, it restores its balance and changes in the load current within the acceptable range of the power electronics device. Can be suppressed. Further, since the characteristics of the generator can be easily adjusted to the output of the windmill, the generator can be used as a common component, and the production cost can be reduced.
[0043]
Next, as shown in FIG. 6, the permanent magnet rotor according to the fifth embodiment of the present invention has a sector-shaped window in which the pole arc β / α of the magnet pole is limited to a range of 85% to 92%. Instead of this, a groove having a depth t is formed on the surface of the rotor core 2a facing the front surface of the magnet 4, and the gap length is increased only in that portion.
[0044]
As the depth t of the groove increases, the effect of increasing the reluctance magnetic flux increases, but the gap length increases, which leads to a decrease in the magnetic flux of the magnet and cannot be increased unnecessarily. According to our investigation, it has been found that the value of t is preferably in the range of 10% to 30% with respect to the normal gap length.
[0045]
Next, in a permanent magnet rotor according to a sixth embodiment of the present invention, as shown in FIG. 7, an arc-shaped magnet 4a is inserted into a magnet mounting punching portion provided on a rotor core 2a, and The configuration is such that the pole arc β / α of the magnet pole is in the range of 65% to 80%.
[0046]
In this embodiment, there is no space for the reluctance magnetic flux to flow on the front surface of the magnet 4a, and only the magnetic circuit flowing between the magnets of the adjacent magnetic poles and passing behind the magnet is the flow path. Therefore, the interval between the magnets needs to be relatively wide, and the above range is set. The arc-shaped magnet 4a has a shape along the outer periphery of the rotor. For example, the magnet 4a may be arranged in an inverted arc state.
[0047]
According to the permanent magnet rotor of this embodiment, the output of the windmill can be converted into electric energy from the cut-in wind speed to the rated wind speed (rotation speed) without any excess, and the cut-out wind speed can be further reduced from the rated wind speed. Even in the intermittent rotation speed fluctuation, the fluctuation of the load current can be suppressed within an allowable range of the power electronic device, and as a result, a constant output can be obtained.
[0048]
The arc-shaped magnet 4a may be a single magnet, but its fan-shaped angle is set smaller than the punched hole of the iron core 2a, and the fourth hole is formed in the gap formed in the punched hole. By arranging the magnetic pieces as in the embodiment, it is possible to arbitrarily and easily adjust the reluctance magnetic flux flow path, that is, the ratio of the reluctance magnetic flux amount to the magnet magnetic flux amount.
[0049]
As a result, the balance between the magnetic flux and the reluctance magnetic flux is broken, for example, when the fluctuation range of the rotation speed at the wind speed equal to or higher than the rated wind speed becomes large, or when it becomes necessary to match the load characteristic specifications of different wind turbines, as a result, When it becomes impossible to maintain a constant output, the balance can be restored by arbitrarily changing the amount of magnetic flux and the reluctance magnetic flux flow path, and the fluctuation of the load current can be suppressed within the allowable range of the power electronics device. . Further, since the characteristics of the generator can be easily adjusted to the output of the windmill, the generator can be used as a common component, and the production cost can be reduced.
[0050]
Next, a permanent magnet rotor according to a seventh embodiment of the present invention uses a Kamaboko-shaped magnet 4b as a permanent magnet as shown in FIG. The designation of the pole arc β / α is the same as in the sixth embodiment. The effect of the cam-shaped magnet 4b is basically the same as that of the arc magnet, but further increases the reluctance magnetic flux and obtains an excellent output maintaining ability.
[0051]
The reluctance magnetic flux can be increased by securing the flow path, but can also be increased by eliminating leakage in the direction of the magnet as described above. The magnet 4b in the shape of a camber has a large magnet thickness at the center of the pole, but since the magnet has a function of inhibiting the flow of the reluctance magnetic flux, the magnet center has a large effect. Furthermore, since the leakage of the reluctance magnetic flux tends to be large at the pole center, the leakage of the reluctance magnetic flux can be strongly and effectively shut off by the effect of the magnet 4b having a camber shape. As a result, the output maintaining ability of the permanent magnet rotating electric machine can be improved with a small amount of magnetic flux, and the power factor and efficiency can be improved.
[0052]
Next, an eighth embodiment of the present invention will be described. In the permanent magnet rotor of this embodiment, as shown in FIG. 9, an iron core portion (annular portion) provided on the outer surface of an arc-shaped magnet 4a is formed by an annular magnetic body 6 separate from the iron core 2a. In this configuration, the annular magnetic body 6 is fixed using the iron core portion sandwiched between the adjacent magnets 4a as a joint.
[0053]
By making this annular portion a member different from the iron core 2a, the shape or material of this portion can be arbitrarily selected. For example, when it is difficult to prevent the scattering due to the centrifugal force of the magnet 4a when the maximum number of rotations is large, the configuration of FIG. 7 must be dealt with by increasing the thickness of the annular portion. Since the position of the magnet 4a inevitably moves to the inner peripheral side, the amount of magnetic flux decreases, and the leakage component of the magnet magnetic flux flowing through the annular portion increases. Will drop.
[0054]
In this embodiment, in this case, by using a high-strength material such as maraging steel for the annular portion material, the wall thickness can be reduced, and as a result, a decrease in output can be prevented. Also, the configuration of FIG. 7 can be easily adopted only by removing the annular portion.
[0055]
Furthermore, by making the shape of the annular portion a convex arc shape, the distribution of magnetic flux flowing through the gap can be shaped into a sine wave shape, thereby reducing harmonic magnetic flux components. As a result, it is possible to reduce the harmonic loss caused by the harmonic magnetic flux component, and it is also possible to improve the efficiency. As described above, according to the present embodiment, the generator performance can be easily adapted to various wind turbine characteristics or load specifications.
[0056]
Next, a ninth embodiment of the present invention will be described. As shown in FIG. 10, the permanent magnet rotor according to this embodiment is provided with cooling fins 7 in the axial direction at the joint portion of the annular magnetic body 6 in the permanent magnet rotor according to the eighth embodiment. It was done. Since the annular portion of the iron core 2a can be formed into an arbitrary shape by using another material, the annular portion is extended in the axial direction to form the fin 7. In the figure, axial fins are formed, but only the fins 7 may be made non-magnetic.
[0057]
There are several effects of the fins 7, and one of them is an effect of quickly releasing heat from the fins 7 due to surface loss or the like generated in the permanent magnet 4a and the annular magnetic body 6. Further, as another effect, there is an effect of circulating cooling the end portion of the armature coil 1b, which tends to have a relatively high temperature, by the cooling air generated by the rotation of the fins 7.
[0058]
Generally, a wind power generator is housed in a nacelle, but the nacelle often employs a closed structure to protect other electric components. In addition, the cooling of the generator is generally natural cooling, and the cooling condition is poor, so that the generator tends to be manufactured relatively large. In the present embodiment, the armature coil end portion, which is the hot spot, can be cooled by the fins 7, so that the cooling performance is dramatically improved and the generator itself can be downsized. As a result, the weight, size and loss of the generator are reduced, and it is possible to improve the output and reduce the size of the nacelle.
[0059]
【The invention's effect】
According to the present invention, it is possible to provide a wind generator having high efficiency and reliability, a wide variable speed range, and output characteristics desirable for wind power generation, and a permanent magnet rotor constituting the wind generator.
[Brief description of the drawings]
FIGS. 1A and 1B show a first embodiment of the present invention, in which FIG. 1A is a radial cross-sectional view schematically showing a permanent magnet rotating electric machine including a permanent magnet rotor according to the embodiment, and FIG. FIG. 3 is a partial sectional view showing the permanent magnet rotor.
FIG. 2 is a curve diagram for explaining an operation (b) of the permanent magnet rotor according to the first embodiment of the present invention in comparison with an operation (a) of a conventional permanent magnet rotor.
FIG. 3 is a partial sectional view of a permanent magnet rotor according to a second embodiment of the present invention.
FIG. 4 is a partial sectional view of a permanent magnet rotor according to a third embodiment of the present invention.
FIG. 5 is a partial sectional view of a permanent magnet rotor according to a fourth embodiment of the present invention.
FIG. 6 is a partial sectional view of a permanent magnet rotor according to a fifth embodiment of the present invention.
FIG. 7 is a partial sectional view of a permanent magnet rotor according to a sixth embodiment of the present invention.
FIG. 8 is a partial sectional view of a permanent magnet rotor according to a seventh embodiment of the present invention.
FIG. 9 is a partial sectional view of a permanent magnet rotor according to an eighth embodiment of the present invention.
FIG. 10 is an axial sectional view of a wind power generator provided with a permanent magnet rotor according to a ninth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Armature, 1a ... Armature core, 1b ... Armature coil, 2 ... Rotor, 2a ... Rotor core, 2b ... Rotor magnetic pole, 3 ... Window, 4, 4a, 4b ... Magnet, 5 ... Magnetic piece , 6 ... Annular magnetic body, 7 ... Fin, 8 ... Shaft.

Claims (11)

回転子鉄心に永久磁石を埋設して回転子磁極を形成し永久磁石回転電機を構成する永久磁石回転子において、前記永久磁石回転電機の定格回転数から、前記定格回転数の110%ないし125%の回転数範囲において前記永久磁石回転電機の発電端電圧および電流の変動がそれぞれ20%の範囲内にあることを特徴とする永久磁石回転子。In a permanent magnet rotor constituting a permanent magnet rotating electric machine by embedding a permanent magnet in a rotor core to form a rotor magnetic pole, 110% to 125% of the rated rotation speed based on the rated rotation speed of the permanent magnet rotating electric machine. Wherein the fluctuations in the voltage at the power generating end and the current of the permanent magnet rotating electric machine are within 20% in the range of the number of rotations of the permanent magnet rotating electric machine. 前記回転子磁極1極あたり2個の平板状の永久磁石が対向して設けられ、磁石極の極弧が92%以上であり、前記2個の永久磁石のなす角度が75°から105°の範囲にあることを特徴とする請求項1記載の永久磁石回転子。Two flat permanent magnets are provided facing each other for each rotor magnetic pole, the arc of the magnet poles is 92% or more, and the angle between the two permanent magnets is 75 ° to 105 °. 2. The permanent magnet rotor according to claim 1, wherein the permanent magnet rotor is in a range. 前記回転子磁極1極あたり2個の平板状の永久磁石が対向して設けられ、磁石極の極弧が70%から92%の範囲であり、前記2個の永久磁石のなす角度が60°から90°の範囲にあることを特徴とする請求項1記載の永久磁石回転子。Two flat permanent magnets are provided facing each other for each rotor magnetic pole, the arc of the magnet poles ranges from 70% to 92%, and the angle between the two permanent magnets is 60 °. 2. The permanent magnet rotor according to claim 1, wherein the angle is in a range of from 90 to 90 degrees. 前記回転子磁極1極あたり2個の平板状の永久磁石が対向して設けられ、磁石極の極弧が85%から92%の範囲であり、前記2個の永久磁石のなす角度が60°から90°の範囲にあり、前記永久磁石の前面の回転子鉄心に、前記永久磁石と平行な辺を持つ扇形の窓が形成されていることを特徴とする請求項1記載の永久磁石回転子。Two flat permanent magnets are provided facing each other for each rotor magnetic pole, the arc of the magnet poles is in the range of 85% to 92%, and the angle formed by the two permanent magnets is 60 °. The permanent magnet rotor according to claim 1, wherein a fan-shaped window having a side parallel to the permanent magnet is formed in a rotor core in a range of from 90 to 90 ° and in front of the permanent magnet. . 前記扇形の窓に、扇形の中空或いは中実形状の磁性片が装着されていることを特徴とする請求項4記載の永久磁石回転子。The permanent magnet rotor according to claim 4, wherein a fan-shaped hollow or solid magnetic piece is mounted on the fan-shaped window. 前記回転子磁極1極あたり2個の平板状の永久磁石が対向して設けられ、磁石極の極弧が85%から92%の範囲であり、前記2個の永久磁石のなす角度が60°から90°の範囲にあり、前記永久磁石の前面の回転子鉄心に溝を形成し、空隙長を大きくしたことを特徴とする請求項1記載の永久磁石回転子。Two flat permanent magnets are provided facing each other for each rotor magnetic pole, the arc of the magnet poles is in the range of 85% to 92%, and the angle formed by the two permanent magnets is 60 °. 2. The permanent magnet rotor according to claim 1, wherein a groove is formed in the rotor core on the front surface of the permanent magnet to increase a gap length. 前記永久磁石は円弧状をなして回転鉄子鉄心の外周部に埋設され、磁石極の極弧が65%から80%の範囲であることを特徴とする請求項1記載の永久磁石回転子。2. The permanent magnet rotor according to claim 1, wherein the permanent magnet is formed in an arc shape and is buried in an outer peripheral portion of the rotary iron core, and a pole arc of a magnet pole is in a range of 65% to 80%. 前記永久磁石はカマボコ形をなして回転鉄子鉄心の外周部に埋設され、磁石極の極弧が65%から80%の範囲であることを特徴とする請求項1記載の永久磁石回転子。2. The permanent magnet rotor according to claim 1, wherein the permanent magnet is embedded in the outer periphery of a rotary iron core in the shape of a crevice, and an arc of a magnet pole is in a range of 65% to 80%. 前記永久磁石の前面に環状の磁性体が設けられていることを特徴とする請求項7または8記載の永久磁石回転子。9. The permanent magnet rotor according to claim 7, wherein an annular magnetic body is provided on a front surface of the permanent magnet. 前記環状の磁性体は隣り合う回転子磁極間において回転子鉄心に係合する継手部を有し、この継手部が軸方向に伸展する冷却用フィンが設けられていることを特徴とする請求項9記載の永久磁石回転子。The said annular magnetic body has a joint part which engages with a rotor core between the adjacent rotor magnetic poles, and this joint part is provided with the cooling fin which extends in the axial direction. 9. The permanent magnet rotor according to item 9. 回転子鉄心に永久磁石を埋設して回転子磁極を形成した永久磁石回転子を備え、定格回転数から、前記定格回転数の110%ないし125%の回転数範囲において発電端電圧および電流の変動がそれぞれ20%の範囲内にあることを特徴とする風力発電機。A permanent magnet rotor in which a permanent magnet is formed by burying a permanent magnet in a rotor core, and a fluctuation of a power generation terminal voltage and a current in a rotation speed range of 110% to 125% of the rated rotation speed from a rated rotation speed. Are each in the range of 20%.
JP2003070262A 2003-03-14 2003-03-14 Wind power generator Expired - Fee Related JP4357856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070262A JP4357856B2 (en) 2003-03-14 2003-03-14 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070262A JP4357856B2 (en) 2003-03-14 2003-03-14 Wind power generator

Publications (2)

Publication Number Publication Date
JP2004282889A true JP2004282889A (en) 2004-10-07
JP4357856B2 JP4357856B2 (en) 2009-11-04

Family

ID=33287056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070262A Expired - Fee Related JP4357856B2 (en) 2003-03-14 2003-03-14 Wind power generator

Country Status (1)

Country Link
JP (1) JP4357856B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254629A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Rotor of rotating electric machine, rotating electric machine, and vehicle driving apparatus
JP2009219327A (en) * 2008-03-12 2009-09-24 Yasuhide Kouchi Power generator
JP4771010B1 (en) * 2011-01-20 2011-09-14 株式会社安川電機 Rotating electric machine and wind power generation system
JP4771011B1 (en) * 2011-01-20 2011-09-14 株式会社安川電機 Rotating electric machine and wind power generation system
JP2012115070A (en) * 2010-11-25 2012-06-14 Yaskawa Electric Corp Rotary electric machine
DE102012219174A1 (en) 2011-10-27 2013-05-02 Suzuki Motor Corp. Rotating electrical machine
US8937417B2 (en) 2011-01-20 2015-01-20 Kabushiki Kaisha Yaskawa Denki Rotating electric machine and wind power generation system
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254629A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Rotor of rotating electric machine, rotating electric machine, and vehicle driving apparatus
JP2009219327A (en) * 2008-03-12 2009-09-24 Yasuhide Kouchi Power generator
JP2012115070A (en) * 2010-11-25 2012-06-14 Yaskawa Electric Corp Rotary electric machine
JP4771010B1 (en) * 2011-01-20 2011-09-14 株式会社安川電機 Rotating electric machine and wind power generation system
JP4771011B1 (en) * 2011-01-20 2011-09-14 株式会社安川電機 Rotating electric machine and wind power generation system
JP2012152054A (en) * 2011-01-20 2012-08-09 Yaskawa Electric Corp Rotary electric machine and wind power generation system
US8937417B2 (en) 2011-01-20 2015-01-20 Kabushiki Kaisha Yaskawa Denki Rotating electric machine and wind power generation system
DE102012219174A1 (en) 2011-10-27 2013-05-02 Suzuki Motor Corp. Rotating electrical machine
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors

Also Published As

Publication number Publication date
JP4357856B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP5060546B2 (en) Permanent magnet generator and wind power generator using it
JP4311643B2 (en) Method for manufacturing permanent magnet type rotating electric machine and method for manufacturing permanent magnet type synchronous generator for wind power generation
Wu et al. A low speed, high-torque, direct-drive permanent magnet generator for wind turbines
Binder et al. Permanent magnet synchronous generators for regenerative energy conversion-a survey
Mueller Design and performance of a 20 kW, 100 rpm, switched reluctance generator for a direct drive wind energy converter
Muljadi et al. Cogging torque reduction in a permanent magnet wind turbine generator
EP2647111B1 (en) Electric generator
US8461730B2 (en) Radial flux permanent magnet alternator with dielectric stator block
CN105680652A (en) Hybrid magnetic circuit double-stator weak-magnetic speed multiplying solid rotor permanent magnet synchronous motor and method thereof
KR20140050568A (en) Nd-fe-b permanent magnet without dysprosium, rotor assembly, electromechanical transducer, wind turbine
US20110049902A1 (en) Air cooled brushless wind alternator
CN110224514B (en) Permanent magnet axial magnetic flux electric compensation pulse generator
JP4357856B2 (en) Wind power generator
CN105763009A (en) Hybrid magnetic circuit low harmonic wave multi-stator flux-weakening speed extension permanent magnet synchronous motor, and method thereof
JP6244598B2 (en) Wind turbine generator having variable magnetic flux field type synchronous generator
CN101183804A (en) Three-phase external rotor electric excitation biconvex pole wind power generator
US10122307B2 (en) Doubly stator-fed synchronous generator
Sani et al. The Influence of Rotor Shape and Air Gap Position on the Characteristics of the Three-phase Axial Flux Permanent Magnet Generator
Ocak et al. Performance aspects and verifications of in-runner and out-runner permanent magnet synchronous generator designs of the same magnet structure for low speed wind systems
Arafat et al. Design and performance analysis of a modified outer rotor permanent magnet alternator for low-speed wind turbine
Wu et al. Design of a large commercial pmsg-based wind generator
CN208445460U (en) A kind of spoke type for electric vehicle interlocks rotor permanent magnet synchronous motor
Wang et al. Design of a multi-power-terminals permanent magnet machine with magnetic field modulation
Oshiumi et al. Embedded PM magnetic-geared generator
CN208489784U (en) A kind of multistage spoke for electric vehicle interlocks rotor permanent magnet synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees