JP2004281819A - Semiconductor device, electronic device, electronic apparatus, method for manufacturing semiconductor device, and method for manufacturing electronic device - Google Patents

Semiconductor device, electronic device, electronic apparatus, method for manufacturing semiconductor device, and method for manufacturing electronic device Download PDF

Info

Publication number
JP2004281819A
JP2004281819A JP2003072564A JP2003072564A JP2004281819A JP 2004281819 A JP2004281819 A JP 2004281819A JP 2003072564 A JP2003072564 A JP 2003072564A JP 2003072564 A JP2003072564 A JP 2003072564A JP 2004281819 A JP2004281819 A JP 2004281819A
Authority
JP
Japan
Prior art keywords
semiconductor chip
conductive layer
semiconductor
wiring layer
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003072564A
Other languages
Japanese (ja)
Inventor
Toshihiro Sawamoto
俊宏 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003072564A priority Critical patent/JP2004281819A/en
Publication of JP2004281819A publication Critical patent/JP2004281819A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Abstract

<P>PROBLEM TO BE SOLVED: To make the three-dimensional packaging structure of a semiconductor chip thin without being restricted by the size the semiconductor chip. <P>SOLUTION: Grooves 8a-8c are formed on side walls of semiconductor chips 1a-1c, respectively, and conductive films 7a-7c connected with electrode pads 2a-2c are formed in the grooves 8a-8c, respectively, through insulating films 6a-6c. The grooves 8a-8c of the semiconductor chips 1a-1c are wire bonded and lands 12 of an interposer substrate 11 are connected with the conductive films 7a-7c through wires 13a-13c. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置、電子デバイス、電子機器、半導体装置の製造方法および電子デバイスの製造方法に関し、特に、半導体チップの積層構造における層間接続方法に適用して好適なものである。
【0002】
【従来の技術】
従来の半導体装置では、半導体チップの3次元実装構造を実現するため、積層された半導体チップをワイヤボンド接続する方法があった。
図6は、従来の半導体装置の構成を示す断面図である。
図6において、半導体チップ41a〜41cが接着層42b、42cをそれぞれ介して積層され、半導体チップ41b、41cが積層された半導体チップ41aは、接着層42aを介してインターポーザ基板44上に実装されている。そして、半導体チップ41a〜41cは、ワイヤ43a〜43cをそれぞれ介してインターポーザ基板44上に設けられたランド45に接続されている。
【0003】
ここで、半導体チップ41a〜41cは、上層ほどサイズが小さくなっている。そして、半導体チップ41aのワイヤ43aの接続領域を避けるように、半導体チップ41bが半導体チップ41a上に積層され、半導体チップ41bのワイヤ43bの接続領域を避けるように、半導体チップ41cが半導体チップ41b上に積層されている。
【0004】
図7は、従来の半導体装置の構成を示す断面図である。
図7において、半導体チップ51a〜51cの間には、ミラーチップ53a、53bがそれぞれ設けられ、ミラーチップ53a、53bの両面には、接着層52b、52c、52d、52eがそれぞれ設けられている。そして、半導体チップ51a〜51cは、接着層52b、52c、52d、52eがそれぞれ設けられたミラーチップ53a、53bそれぞれ介して積層され、半導体チップ51b、51cが積層された半導体チップ51aは、接着層52aを介してインターポーザ基板55上に実装されている。そして、半導体チップ51a〜51cは、ワイヤ54a〜54cをそれぞれ介してインターポーザ基板55上に設けられたランド56に接続されている。
【0005】
ここで、ミラーチップ53a、53bを半導体チップ51a〜51cの間に設けることにより、半導体チップ51a〜51c間の間隔を増加させることができる。このため、半導体チップ51a〜51cのサイズが等しい場合においても、下層の半導体チップ51a〜51cに接続されるワイヤ54a〜54cが上層の半導体チップ51a〜51cに接触することを防止することができ、半導体チップ51a〜51cのサイズを上層ほど小さくする必要がなくなる。
【0006】
【発明が解決しようとする課題】
しかしながら、図6の半導体装置では、半導体チップ41a〜41cをワイヤボンド接続するために、上層ほどサイズを小さくする必要があり、半導体チップ41a〜41cのサイズに制約がかかるとともに、ワイヤ43a〜43cが半導体チップ41a〜41cの上方に張り出すため、半導体チップの3次元実装構造の高さが大きくなるという問題があった。
【0007】
また、図7の半導体装置では、半導体チップ51a〜51cのサイズを上層ほど小さくする必要がなくなるものの、半導体チップ51a〜51cの間にミラーチップ53a、53bを挿入する必要があり、半導体チップの3次元実装構造の高さが大きくなるという問題があった。
そこで、本発明の目的は、半導体チップのサイズに制約されることなく、半導体チップの3次元実装構造の薄型化を実現することが可能な半導体装置、電子デバイス、電子機器、半導体装置の製造方法および電子デバイスの製造方法を提供することである。
【0008】
【課題を解決するための手段】
上述した課題を解決するために、本発明の一態様に係る半導体装置によれば、半導体チップ上に形成された配線層と、前記配線層に接続され、前記半導体チップの側壁に形成された導電層と、前記導電層に接続されたワイヤとを備えることを特徴とする。
【0009】
これにより、半導体チップの側方からワイヤを引き出すことが可能となり、ワイヤが上方に張り出すことを防止することが可能となることから、高さの増大を抑制しつつ、半導体チップを実装することが可能となる。
また、本発明の一態様に係る半導体装置によれば、半導体チップ上に形成された配線層と、前記半導体チップを厚み方向に横切るようにして、前記半導体チップの切断面に形成された溝と、前記溝に形成された導電層と、前記導電層に接続されたワイヤとを備えることを特徴とする。
【0010】
これにより、半導体チップの側壁に導電層を安定して形成することが可能となり、半導体チップの側方からワイヤを容易に引き出すことが可能となる。このため、ワイヤが上方に張り出すことを防止することが可能となり、高さの増大を抑制しつつ、半導体チップを実装することが可能となる。
また、本発明の一態様に係る半導体装置によれば、第1半導体チップ上に形成された第1配線層と、前記第1配線層に接続され、前記第1半導体チップの側壁に形成された第1導電層と、前記第1半導体チップ上に積層された第2半導体チップと、前記第2半導体チップ上に形成された第2配線層と、前記第2配線層に接続され、前記第2半導体チップの側壁に形成された第2導電層と、前記第1導電層と前記第2導電層とを接続する第1ワイヤとを備えることを特徴とする。
【0011】
これにより、半導体チップの側方からワイヤを引き出すことが可能となり、ワイヤが上方に張り出すことを防止することが可能となるとともに、ワイヤを接合させる領域を半導体チップの表面に確保する必要がなくなる。このため、上層ほど半導体チップのサイズを小さくする必要がなくなり、積層される半導体チップのサイズの制約をなくすことが可能となるとともに、半導体チップの上下の間隔を減少させることを可能として、半導体チップの3次元実装構造の薄型化を実現することが可能となる。
【0012】
また、本発明の一態様に係る半導体装置によれば、第1半導体チップ上に形成された第1配線層と、前記第1半導体チップを厚み方向に横切るようにして、前記第1半導体チップの切断面に形成された第1溝と、前記第1溝に形成された第1導電層と、前記第1半導体チップ上に積層された第2半導体チップと、前記第2半導体チップ上に形成された第2配線層と、前記第2半導体チップを厚み方向に横切るようにして、前記第2半導体チップの切断面に形成された第2溝と、前記第2溝に形成された第2導電層と、前記第1導電層と前記第2導電層とを接続する第1ワイヤとを備えることを特徴とする。
【0013】
これにより、半導体チップの側壁に導電層を安定して形成することが可能となり、半導体チップの側方からワイヤを容易に引き出すことが可能となる。このため、ワイヤが上方に張り出すことを防止することが可能となるとともに、ワイヤを接合させる領域を半導体チップの表面に確保する必要がなくなり、半導体チップのサイズに制約されることなく、半導体チップの3次元実装構造の薄型化を実現することが可能となる。
【0014】
また、本発明の一態様に係る半導体装置によれば、前記第2半導体チップが積層された前記第1半導体チップを搭載するインターポーザ基板と、前記インターポーザ基板に設けられたランドと、前記ランドと前記第1導電層とを接続する第2ワイヤとを備えることを特徴とする。
これにより、ワイヤボンドを連続して行うことで、積層された半導体チップ同士を接続することが可能となるとともに、積層された半導体チップをインターポーザ基板に接続することが可能となり、実装工程の煩雑化を抑制しつつ、半導体チップを3次元実装することが可能となる。
【0015】
また、本発明の一態様に係る半導体装置によれば、前記第1半導体チップと前記第2半導体チップとは、サイズ、厚みまたは種類の少なくともいずれか1つが異なっていることを特徴とする。
これにより、半導体チップのワイヤボンド接続を行うことで、様々な機能を持たせることを可能としつつ、半導体チップの3次元実装構造の薄型化を図ることが可能となる。
【0016】
また、本発明の一態様に係る電子デバイスによれば、第1電子部品上に形成された第1配線層と、前記第1配線層に接続され、前記第1電子部品の側壁に形成された第1導電層と、前記第1電子部品上に積層された第2電子部品と、前記第2電子部品上に形成された第2配線層と、前記第2配線層に接続され、前記第2電子部品の側壁に形成された第2導電層と、前記第1導電層と前記第2導電層とを接続するワイヤとを備えることを特徴とする。
【0017】
これにより、電子部品の側方からワイヤを引き出すことが可能となり、ワイヤが上方に張り出すことを防止することが可能となるとともに、ワイヤを接合させる領域を電子部品の表面に確保する必要がなくなる。このため、上層ほど電子部品のサイズを小さくする必要がなくなり、積層される電子部品のサイズの制約をなくすことが可能となるとともに、電子部品の上下の間隔を減少させることを可能として、電子部品の3次元実装構造の薄型化を実現することが可能となる。
【0018】
また、本発明の一態様に係る電子機器によれば、第1半導体チップ上に形成された第1配線層と、前記第1配線層に接続され、前記第1半導体チップの側壁に形成された第1導電層と、前記第1半導体チップ上に積層された第2半導体チップと、前記第2半導体チップ上に形成された第2配線層と、前記第2配線層に接続され、前記第2半導体チップの側壁に形成された第2導電層と、前記第1導電層と前記第2導電層とを接続する第1ワイヤと、前記第2半導体チップが積層された前記第1半導体チップを搭載するインターポーザ基板と、前記インターポーザ基板に設けられたランドと、前記ランドと前記第1導電層とを接続する第2ワイヤとを備えることを特徴とする。
【0019】
これにより、半導体チップの側方からワイヤを引き出すことが可能となり、ワイヤが上方に張り出すことを防止することが可能となるとともに、ワイヤを接合させる領域を半導体チップの表面に確保する必要がなくなることから、半導体チップのサイズに制約されることなく、半導体チップの3次元実装構造の薄型化を実現することが可能となる。
【0020】
また、本発明の一態様に係る半導体装置の製造方法によれば、第1半導体チップ上に形成された第1配線層に接続された第1導電層を前記第1半導体チップの側壁に形成する工程と、第2半導体チップ上に形成された第2配線層に接続された第2導電層を前記第2半導体チップの側壁に形成する工程と、前記第1半導体チップ上に前記第2半導体チップを積層する工程と、前記側壁に形成された前記第1導電層と前記第2導電層とをワイヤボンド接続する工程とを備えることを特徴とする。
【0021】
これにより、半導体チップの側方からワイヤを引き出すことが可能となり、半導体チップのワイヤボンド接続を行うことで、半導体チップのサイズに制約されることなく、半導体チップの3次元実装構造の薄型化を実現することが可能となる。
また、本発明の一態様に係る半導体装置の製造方法によれば、電極パッドが形成された半導体ウェハの切断線上に貫通孔を形成する工程と、前記電極パッドの表面が露出されるようにして、前記貫通孔の表面に絶縁膜を形成する工程と、前記電極パッドに接続された導電膜を前記貫通孔内に形成する工程と、前記切断線に沿って前記半導体ウェハをチップ状に切断する工程と、前記チップ状に切断された半導体チップを積層する工程と、前記切断線に沿って分割された貫通孔内の導電層にワイヤボンドを行うことにより、前記積層された半導体チップを接続する工程とを備えることを特徴とする。
【0022】
これにより、フォトリソグラフィー技術およびエッチング技術を用いることで、複数の半導体チップの側壁に導電膜を一括形成することが可能となるとともに、半導体チップの側方からワイヤを引き出すことが可能となる。このため、半導体チップのサイズに制約されることなく、半導体チップのワイヤボンド接続を行うことが可能となり、製造工程の煩雑化を抑制しつつ、半導体チップの3次元実装構造の薄型化を実現することが可能となる。
【0023】
また、本発明の一態様に係る電子デバイスの製造方法によれば、第1電子部品上に形成された第1配線層に接続された第1導電層を前記第1電子部品の側壁に形成する工程と、第2電子部品上に形成された第2配線層に接続された第2導電層を前記第2電子部品プの側壁に形成する工程と、前記第1電子部品上に前記第2電子部品を積層する工程と、前記側壁に形成された前記第1導電層と前記第2導電層とをワイヤボンド接続する工程とを備えることを特徴とする。
【0024】
これにより、電子部品の側方からワイヤを引き出すことが可能となり、電子部品のサイズに制約されることなく、電子部品の3次元実装構造の薄型化を実現することが可能となる。
【0025】
【発明の実施の形態】
以下、本発明の実施形態に係る半導体装置およびその製造方法について図面を参照しながら説明する。
図1、3は、本発明の第1実施形態に係る半導体装置の製造方法を示す断面図、図2、4は、本発明の第1実施形態に係る半導体装置の製造方法を示す斜視図である。
【0026】
図1(a)および図2(a)において、半導体ウェハWはスクライブラインSLで区画され、各区画領域には素子形成領域9が設けられている。そして、図1(a)に示すように、半導体ウェハWには電極パッド2が形成されるとともに、電極パッド2上には絶縁膜3が形成され、絶縁膜3には電極パッド2の表面を露出させる開口部4が形成されている。
【0027】
次に、図1(b)に示すように、例えば、フォトリソグラフィー技術およびエッチング技術を用いることにより、スクライブラインSL上に配置された貫通孔5を半導体ウェハWに形成する。なお、貫通孔5を形成する場合、例えば、レーザ加工などを用いるようにしてもよい。
次に、図1(c)に示すように、例えば、CVDなどの方法により、貫通孔5内を含む半導体ウェハWの全面に絶縁膜6を形成する。そして、フォトリソグラフィー技術およびエッチング技術を用いて絶縁膜6をパターニングすることにより、電極パッド2の表面を露出させる。なお、絶縁膜6としては、例えば、シリコン酸化膜またはシリコン窒化膜などを用いることができる。
【0028】
次に、図1(d)および図2(a)に示すように、例えば、スパッタ、蒸着あるいはCVDなどの方法により、貫通孔5内を含む半導体ウェハWの全面に導電膜7を形成する。そして、フォトリソグラフィー技術およびエッチング技術を用いて導電膜7をパターニングすることにより、電極パッド2と貫通孔5とが各区画領域ごとに1対1に接続されるようにする。なお、導電膜7としては、例えば、Al、Cu、Au、Wなどを用いることができる。
【0029】
次に、図1(e)および図2(b)に示すように、スクライブラインSLに沿って半導体ウェハWをチップ状に切断することにより、半導体ウェハWから半導体チップ1を切り出すとともに、貫通孔5を縦方向に2分割し、半導体チップ1の側壁に溝8を形成する。
次に、図2(a)および図4(a)に示すように、同様の方法で形成された半導体チップ1a〜1cを、接着層10b、10cをそれぞれ介して積層するとともに、半導体チップ1b、1cが積層された半導体チップ1aを、接着層10aを介してインターポーザ基板11に実装する。なお、各半導体チップ1a〜1cには、電極パッド2a〜2cがそれぞれ形成されるとともに、電極パッド2a〜2cの表面が露出されるようにパターニングされた絶縁膜3a〜3cがそれぞれ形成されている。そして、各半導体チップ1a〜1cの側壁には溝8a〜8cがそれぞれ形成され、各溝8a〜8cには、絶縁膜6a〜6cをそれぞれ介し、電極パッド2a〜2cに接続された導電膜7a〜7cがそれぞれ形成されている。
【0030】
次に、図2(b)および図4(b)に示すように、各半導体チップ1a〜1cの溝8a〜8cにワイヤボンドを行うことにより、インターポーザ基板11のランド12および各導電膜7a〜7cをワイヤ13a〜13cでそれぞれ接続する。
これにより、半導体チップ1a〜1cの側方からワイヤ13a〜13cをそれぞれ引き出すことが可能となり、ワイヤ13a〜13cが上方に張り出すことを防止することが可能となるとともに、ワイヤ13a〜13cを接合させる領域を半導体チップ1a〜1cの表面に確保する必要がなくなる。このため、上層ほど半導体チップ1a〜1cのサイズを小さくする必要がなくなり、積層される半導体チップ1a〜1cのサイズの制約をなくすことが可能となるとともに、半導体チップ1a〜1cの上下の間隔を減少させることを可能として、半導体チップ1a〜1cの3次元実装構造の薄型化を実現することが可能となる。
【0031】
なお、上述した実施形態では、3層分の半導体チップ1a〜1cを積層する方法について説明したが、半導体チップは3層分に限られることなく、1層または2層でもよいし、4層以上でもよい。
図5は、本発明の第2実施形態に係る半導体装置の構成を示す断面図である。図5において、各半導体チップ21a〜21cには、電極パッド22a〜22cがそれぞれ形成されるとともに、電極パッド22a〜22c上には絶縁膜23a〜23cが形成され、絶縁膜23a〜23cには電極パッド22a〜22cの表面を露出させる開口部24a〜24cが形成されている。そして、各半導体チップ21a〜21cの側壁には溝28a〜28cがそれぞれ形成され、各溝28a〜28cには、絶縁膜26a〜26cをそれぞれ介し、電極パッド22a〜22cに接続された導電膜27a〜27cがそれぞれ形成されている。そして、半導体チップ21a〜21cが、接着層30b、30cをそれぞれ介して積層されるとともに、半導体チップ31b、31cが積層された半導体チップ31aは、接着層30aを介してインターポーザ基板31に実装されている。なお、半導体チップ21a〜21cのサイズは必ずしも一致している必要はなく、例えば、上層ほどサイズを小さくすることができる。ここで、サイズの異なる半導体チップ21a〜21cを積層する場合、電極パッド22a〜22cの配置領域を避けるように、半導体チップ21a〜21cを必ずしも配置する必要はなく、電極パッド22a〜22c上に半導体チップ21a〜21cが配置されていてもよい。
【0032】
そして、各半導体チップ21a〜21cの溝28a〜28cにワイヤボンドを行うことにより、インターポーザ基板31のランド32および各導電膜27a〜27cをワイヤ33a〜33cでそれぞれ接続する。
これにより、半導体チップ21a〜21cのサイズが異なる場合においても、ワイヤ33a〜33cが上方に張り出すことを防止しつつ、半導体チップ21a〜21cをワイヤボンド接続することが可能となり、様々な機能を持たせることを可能としつつ、半導体チップ21a〜21cの3次元実装構造の薄型化を図ることが可能となる。
【0033】
なお、上述した半導体装置および電子デバイスは、例えば、液晶表示装置、携帯電話、携帯情報端末、ビデオカメラ、デジタルカメラ、MD(Mini Disc)プレーヤなどの電子機器に適用することができ、電子機器の小型・軽量化を図ることが可能となる。
また、上述した実施形態では、半導体チップを積層する方法を例にとって説明したが、本発明は、必ずしも半導体チップを積層する方法に限定されることなく、例えば、弾性表面波(SAW)素子などのセラミック素子、光変調器や光スイッチなどの光学素子、磁気センサやバイオセンサなどの各種センサ類などを積層するようにしてもよい。
【図面の簡単な説明】
【図1】第1実施形態に係る半導体装置の製造方法を示す断面図。
【図2】第1実施形態に係る半導体装置の製造方法を示す斜視図。
【図3】第1実施形態に係る半導体装置の製造方法を示す断面図。
【図4】第1実施形態に係る半導体装置の製造方法を示す斜視図。
【図5】第2実施形態に係る半導体装置の構成を示す断面図。
【図6】従来の半導体装置の構成を示す断面図。
【図7】従来の半導体装置の構成を示す断面図。
【符号の説明】
W 半導体ウェハ 1、21a〜21c 半導体チップ、2、22a〜22c電極パッド、3、6、23a〜23c、26a〜26c 絶縁膜、4、24a〜24c 開口部、5 貫通孔、7、27a〜27c 再配置配線 8、28a〜28c 溝、9 素子形成領域 10a〜10c、30a〜30c 接着層、11、31 インターポーザ基板、12、32 ランド、13a〜13c、33a〜33c ワイヤ、SL スクライブライン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device, an electronic device, an electronic apparatus, a method for manufacturing a semiconductor device, and a method for manufacturing an electronic device, and is particularly suitable for application to an interlayer connection method in a stacked structure of semiconductor chips.
[0002]
[Prior art]
2. Description of the Related Art In a conventional semiconductor device, there has been a method in which stacked semiconductor chips are connected by wire bonding in order to realize a three-dimensional mounting structure of the semiconductor chips.
FIG. 6 is a cross-sectional view showing a configuration of a conventional semiconductor device.
In FIG. 6, semiconductor chips 41a to 41c are stacked via adhesive layers 42b and 42c, respectively. The semiconductor chip 41a on which the semiconductor chips 41b and 41c are stacked is mounted on an interposer substrate 44 via the adhesive layer 42a. I have. The semiconductor chips 41a to 41c are connected to lands 45 provided on the interposer substrate 44 via wires 43a to 43c, respectively.
[0003]
Here, the size of the semiconductor chips 41a to 41c is smaller in the upper layer. The semiconductor chip 41b is stacked on the semiconductor chip 41a so as to avoid the connection area of the wire 43a of the semiconductor chip 41a, and the semiconductor chip 41c is mounted on the semiconductor chip 41b so as to avoid the connection area of the wire 43b of the semiconductor chip 41b. Are laminated.
[0004]
FIG. 7 is a cross-sectional view showing a configuration of a conventional semiconductor device.
In FIG. 7, mirror chips 53a and 53b are provided between semiconductor chips 51a to 51c, respectively, and adhesive layers 52b, 52c, 52d and 52e are provided on both surfaces of the mirror chips 53a and 53b, respectively. The semiconductor chips 51a to 51c are stacked via mirror chips 53a and 53b provided with adhesive layers 52b, 52c, 52d and 52e, respectively. The semiconductor chip 51a on which the semiconductor chips 51b and 51c are stacked is an adhesive layer. It is mounted on the interposer board 55 via 52a. The semiconductor chips 51a to 51c are connected to lands 56 provided on the interposer substrate 55 via wires 54a to 54c, respectively.
[0005]
Here, by providing the mirror chips 53a and 53b between the semiconductor chips 51a to 51c, the interval between the semiconductor chips 51a to 51c can be increased. Therefore, even when the sizes of the semiconductor chips 51a to 51c are equal, it is possible to prevent the wires 54a to 54c connected to the lower semiconductor chips 51a to 51c from coming into contact with the upper semiconductor chips 51a to 51c. It is not necessary to reduce the size of the semiconductor chips 51a to 51c toward the upper layer.
[0006]
[Problems to be solved by the invention]
However, in the semiconductor device of FIG. 6, in order to wire-bond the semiconductor chips 41a to 41c, it is necessary to reduce the size in the upper layer, and the size of the semiconductor chips 41a to 41c is restricted, and the wires 43a to 43c are There is a problem that the height of the three-dimensional mounting structure of the semiconductor chip becomes large because the semiconductor chip 41a-41c projects above the semiconductor chip 41a-41c.
[0007]
Further, in the semiconductor device of FIG. 7, although it is not necessary to reduce the size of the semiconductor chips 51a to 51c toward the upper layer, mirror chips 53a and 53b need to be inserted between the semiconductor chips 51a to 51c. There is a problem that the height of the three-dimensional mounting structure is increased.
Therefore, an object of the present invention is to provide a semiconductor device, an electronic device, an electronic apparatus, and a method of manufacturing a semiconductor device that can realize a thin three-dimensional mounting structure of a semiconductor chip without being limited by the size of the semiconductor chip. And a method of manufacturing an electronic device.
[0008]
[Means for Solving the Problems]
According to one embodiment of the present invention, there is provided a semiconductor device including a wiring layer formed over a semiconductor chip, a conductive layer connected to the wiring layer, and formed on a sidewall of the semiconductor chip. And a wire connected to the conductive layer.
[0009]
As a result, the wires can be pulled out from the sides of the semiconductor chip, and the wires can be prevented from protruding upward, so that the semiconductor chip can be mounted while suppressing an increase in height. Becomes possible.
Further, according to the semiconductor device of one embodiment of the present invention, the wiring layer formed on the semiconductor chip, and the groove formed on the cut surface of the semiconductor chip so as to cross the semiconductor chip in the thickness direction. , A conductive layer formed in the groove, and a wire connected to the conductive layer.
[0010]
This makes it possible to stably form the conductive layer on the side wall of the semiconductor chip, and to easily pull out the wire from the side of the semiconductor chip. Therefore, it is possible to prevent the wires from projecting upward, and it is possible to mount the semiconductor chip while suppressing an increase in height.
Further, according to the semiconductor device of one embodiment of the present invention, the first wiring layer formed on the first semiconductor chip and the first wiring layer are connected to the first wiring layer and formed on the side wall of the first semiconductor chip. A first conductive layer, a second semiconductor chip stacked on the first semiconductor chip, a second wiring layer formed on the second semiconductor chip, and a second wiring layer connected to the second wiring layer; The semiconductor device includes a second conductive layer formed on a side wall of the semiconductor chip, and a first wire connecting the first conductive layer and the second conductive layer.
[0011]
As a result, the wires can be pulled out from the sides of the semiconductor chip, and it is possible to prevent the wires from extending upward, and it is not necessary to secure a region where the wires are joined on the surface of the semiconductor chip. . Therefore, it is not necessary to reduce the size of the semiconductor chip in the upper layer, and it is possible to eliminate the restriction on the size of the semiconductor chip to be stacked and to reduce the vertical distance between the semiconductor chips. It is possible to reduce the thickness of the three-dimensional mounting structure.
[0012]
Further, according to the semiconductor device of one embodiment of the present invention, the first wiring layer formed on the first semiconductor chip and the first semiconductor chip are formed so as to cross the first semiconductor chip in a thickness direction. A first groove formed in the cut surface, a first conductive layer formed in the first groove, a second semiconductor chip stacked on the first semiconductor chip, and formed on the second semiconductor chip. A second wiring layer, a second groove formed in a cut surface of the second semiconductor chip so as to cross the second semiconductor chip in a thickness direction, and a second conductive layer formed in the second groove. And a first wire connecting the first conductive layer and the second conductive layer.
[0013]
This makes it possible to stably form the conductive layer on the side wall of the semiconductor chip, and to easily pull out the wire from the side of the semiconductor chip. For this reason, it is possible to prevent the wires from projecting upward, and it is not necessary to secure a region for bonding the wires on the surface of the semiconductor chip, and the semiconductor chip is not restricted by the size of the semiconductor chip. It is possible to reduce the thickness of the three-dimensional mounting structure.
[0014]
Further, according to the semiconductor device of one embodiment of the present invention, an interposer substrate on which the first semiconductor chip on which the second semiconductor chip is stacked is mounted, a land provided on the interposer substrate, And a second wire connecting the first conductive layer.
This makes it possible to connect the stacked semiconductor chips to each other by performing the wire bonding continuously, and to connect the stacked semiconductor chips to the interposer substrate, which makes the mounting process complicated. It is possible to three-dimensionally mount the semiconductor chip while suppressing the above.
[0015]
Further, according to the semiconductor device of one embodiment of the present invention, the first semiconductor chip and the second semiconductor chip are different in at least one of size, thickness, and type.
Accordingly, by performing wire bond connection of the semiconductor chip, various functions can be provided, and the three-dimensional mounting structure of the semiconductor chip can be reduced in thickness.
[0016]
Further, according to the electronic device of one embodiment of the present invention, the first wiring layer is formed on the first electronic component, and the first wiring layer is connected to the first wiring layer and formed on the side wall of the first electronic component. A first conductive layer, a second electronic component laminated on the first electronic component, a second wiring layer formed on the second electronic component, and a second wiring layer connected to the second wiring layer; A second conductive layer formed on a side wall of the electronic component; and a wire connecting the first conductive layer and the second conductive layer.
[0017]
Thereby, the wire can be pulled out from the side of the electronic component, and it is possible to prevent the wire from projecting upward, and it is not necessary to secure a region for joining the wire on the surface of the electronic component. . For this reason, it is not necessary to reduce the size of the electronic component in the upper layer, and it is possible to eliminate the restriction on the size of the electronic component to be stacked, and it is possible to reduce the vertical interval of the electronic component. It is possible to reduce the thickness of the three-dimensional mounting structure.
[0018]
Further, according to the electronic device of one embodiment of the present invention, the first wiring layer formed on the first semiconductor chip and the first wiring layer are connected to the first wiring layer and formed on the side wall of the first semiconductor chip. A first conductive layer, a second semiconductor chip stacked on the first semiconductor chip, a second wiring layer formed on the second semiconductor chip, and a second wiring layer connected to the second wiring layer; A second conductive layer formed on a side wall of the semiconductor chip, a first wire connecting the first conductive layer and the second conductive layer, and the first semiconductor chip on which the second semiconductor chip is stacked are mounted. An interposer substrate, a land provided on the interposer substrate, and a second wire connecting the land to the first conductive layer.
[0019]
As a result, the wires can be pulled out from the sides of the semiconductor chip, and it is possible to prevent the wires from extending upward, and it is not necessary to secure a region where the wires are joined on the surface of the semiconductor chip. Therefore, it is possible to reduce the thickness of the three-dimensional mounting structure of the semiconductor chip without being limited by the size of the semiconductor chip.
[0020]
According to the method for manufacturing a semiconductor device of one embodiment of the present invention, the first conductive layer connected to the first wiring layer formed on the first semiconductor chip is formed on the side wall of the first semiconductor chip. Forming a second conductive layer connected to a second wiring layer formed on a second semiconductor chip on a side wall of the second semiconductor chip; and forming the second semiconductor chip on the first semiconductor chip And a step of wire-bonding the first conductive layer and the second conductive layer formed on the side wall.
[0021]
As a result, wires can be drawn out from the sides of the semiconductor chip, and by performing wire bond connection of the semiconductor chip, the thickness of the three-dimensional mounting structure of the semiconductor chip can be reduced without being limited by the size of the semiconductor chip. It can be realized.
According to the method for manufacturing a semiconductor device of one embodiment of the present invention, the step of forming a through-hole on a cutting line of a semiconductor wafer on which an electrode pad is formed, and the step of exposing a surface of the electrode pad Forming an insulating film on the surface of the through hole, forming a conductive film connected to the electrode pad in the through hole, and cutting the semiconductor wafer into chips along the cutting line. Connecting the stacked semiconductor chips by performing wire bonding to the conductive layer in the through-hole divided along the cutting line, and the step of stacking the semiconductor chips cut into the chip shape; and And a step.
[0022]
Thus, by using the photolithography technology and the etching technology, it is possible to collectively form the conductive film on the side walls of the plurality of semiconductor chips, and it is possible to draw out the wires from the sides of the semiconductor chip. For this reason, the semiconductor chip can be connected by wire bonding without being restricted by the size of the semiconductor chip, and the thickness of the three-dimensional mounting structure of the semiconductor chip can be reduced while suppressing the complexity of the manufacturing process. It becomes possible.
[0023]
Further, according to the method for manufacturing an electronic device according to one aspect of the present invention, the first conductive layer connected to the first wiring layer formed on the first electronic component is formed on the side wall of the first electronic component. Forming a second conductive layer connected to a second wiring layer formed on the second electronic component on a side wall of the second electronic component, and forming the second electronic layer on the first electronic component. The method further comprises a step of stacking components and a step of wire bonding connecting the first conductive layer and the second conductive layer formed on the side wall.
[0024]
As a result, the wires can be pulled out from the sides of the electronic component, and the three-dimensional mounting structure of the electronic component can be made thinner without being restricted by the size of the electronic component.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a semiconductor device and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings.
1 and 3 are cross-sectional views illustrating a method for manufacturing a semiconductor device according to the first embodiment of the present invention, and FIGS. 2 and 4 are perspective views illustrating a method for manufacturing the semiconductor device according to the first embodiment of the present invention. is there.
[0026]
1A and 2A, a semiconductor wafer W is partitioned by scribe lines SL, and an element forming region 9 is provided in each partitioned region. Then, as shown in FIG. 1A, an electrode pad 2 is formed on the semiconductor wafer W, an insulating film 3 is formed on the electrode pad 2, and the surface of the electrode pad 2 is formed on the insulating film 3. An opening 4 to be exposed is formed.
[0027]
Next, as shown in FIG. 1B, through holes 5 arranged on the scribe lines SL are formed in the semiconductor wafer W by using, for example, photolithography technology and etching technology. When the through holes 5 are formed, for example, laser processing or the like may be used.
Next, as shown in FIG. 1C, an insulating film 6 is formed on the entire surface of the semiconductor wafer W including the inside of the through hole 5 by a method such as CVD. Then, the surface of the electrode pad 2 is exposed by patterning the insulating film 6 using a photolithography technique and an etching technique. As the insulating film 6, for example, a silicon oxide film or a silicon nitride film can be used.
[0028]
Next, as shown in FIG. 1D and FIG. 2A, a conductive film 7 is formed on the entire surface of the semiconductor wafer W including the inside of the through hole 5 by a method such as sputtering, vapor deposition, or CVD. Then, by patterning the conductive film 7 using a photolithography technique and an etching technique, the electrode pad 2 and the through-hole 5 are connected one-to-one for each of the divided regions. As the conductive film 7, for example, Al, Cu, Au, W, or the like can be used.
[0029]
Next, as shown in FIGS. 1E and 2B, the semiconductor chip 1 is cut out from the semiconductor wafer W by cutting the semiconductor wafer W into chips along the scribe lines SL, and the through holes are formed. 5 is divided into two in the vertical direction, and a groove 8 is formed in the side wall of the semiconductor chip 1.
Next, as shown in FIG. 2A and FIG. 4A, the semiconductor chips 1a to 1c formed by the same method are stacked via adhesive layers 10b and 10c, respectively, and the semiconductor chips 1b and The semiconductor chip 1a on which the layers 1c are stacked is mounted on the interposer substrate 11 via the adhesive layer 10a. In addition, on each of the semiconductor chips 1a to 1c, electrode pads 2a to 2c are formed, respectively, and insulating films 3a to 3c patterned so that the surfaces of the electrode pads 2a to 2c are exposed are formed, respectively. . Grooves 8a to 8c are formed on the side walls of the semiconductor chips 1a to 1c, respectively, and the conductive films 7a connected to the electrode pads 2a to 2c via the insulating films 6a to 6c in the grooves 8a to 8c, respectively. To 7c are respectively formed.
[0030]
Next, as shown in FIGS. 2B and 4B, the lands 12 of the interposer substrate 11 and the conductive films 7a to 7c are formed by wire bonding to the grooves 8a to 8c of the semiconductor chips 1a to 1c. 7c are connected by wires 13a to 13c, respectively.
This makes it possible to pull out the wires 13a to 13c from the sides of the semiconductor chips 1a to 1c, respectively, to prevent the wires 13a to 13c from projecting upward, and to join the wires 13a to 13c. It is not necessary to secure a region to be formed on the surfaces of the semiconductor chips 1a to 1c. For this reason, it is not necessary to reduce the size of the semiconductor chips 1a to 1c in the upper layer, and it is possible to eliminate the restriction on the size of the semiconductor chips 1a to 1c to be stacked and to reduce the distance between the upper and lower semiconductor chips 1a to 1c. By making it possible to reduce the thickness, it is possible to realize a thin three-dimensional mounting structure of the semiconductor chips 1a to 1c.
[0031]
In the above-described embodiment, a method of stacking three layers of semiconductor chips 1a to 1c has been described. However, the number of semiconductor chips is not limited to three, and may be one or two, or four or more. May be.
FIG. 5 is a cross-sectional view illustrating a configuration of a semiconductor device according to a second embodiment of the present invention. In FIG. 5, electrode pads 22a to 22c are respectively formed on the semiconductor chips 21a to 21c, insulating films 23a to 23c are formed on the electrode pads 22a to 22c, and electrodes are formed on the insulating films 23a to 23c. Openings 24a to 24c that expose the surfaces of the pads 22a to 22c are formed. Grooves 28a to 28c are formed on the side walls of the semiconductor chips 21a to 21c, respectively. The conductive films 27a connected to the electrode pads 22a to 22c are formed in the grooves 28a to 28c via the insulating films 26a to 26c, respectively. To 27c are respectively formed. The semiconductor chips 21a to 21c are stacked via the adhesive layers 30b and 30c, respectively, and the semiconductor chip 31a on which the semiconductor chips 31b and 31c are stacked is mounted on the interposer substrate 31 via the adhesive layer 30a. I have. Note that the sizes of the semiconductor chips 21a to 21c do not necessarily have to be the same, and, for example, the size can be reduced in the upper layer. Here, when the semiconductor chips 21a to 21c having different sizes are stacked, the semiconductor chips 21a to 21c do not necessarily need to be arranged so as to avoid the area where the electrode pads 22a to 22c are arranged, and the semiconductor chips 21a to 21c are formed on the electrode pads 22a to 22c. The chips 21a to 21c may be arranged.
[0032]
Then, by bonding the wires to the grooves 28a to 28c of the semiconductor chips 21a to 21c, the lands 32 of the interposer substrate 31 and the conductive films 27a to 27c are connected by wires 33a to 33c, respectively.
Accordingly, even when the sizes of the semiconductor chips 21a to 21c are different, the semiconductor chips 21a to 21c can be wire-bonded while preventing the wires 33a to 33c from projecting upward. It is possible to reduce the thickness of the three-dimensional mounting structure of the semiconductor chips 21a to 21c while allowing the semiconductor chips 21a to 21c to be provided.
[0033]
Note that the above-described semiconductor device and electronic device can be applied to electronic devices such as a liquid crystal display device, a mobile phone, a personal digital assistant, a video camera, a digital camera, and an MD (Mini Disc) player. It is possible to reduce the size and weight.
Further, in the above-described embodiment, a method of stacking semiconductor chips has been described as an example. However, the present invention is not necessarily limited to a method of stacking semiconductor chips, and for example, a surface acoustic wave (SAW) element or the like may be used. Ceramic elements, optical elements such as optical modulators and optical switches, and various sensors such as magnetic sensors and biosensors may be stacked.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a method for manufacturing a semiconductor device according to a first embodiment.
FIG. 2 is a perspective view showing the method for manufacturing the semiconductor device according to the first embodiment.
FIG. 3 is a sectional view showing the method of manufacturing the semiconductor device according to the first embodiment.
FIG. 4 is a perspective view showing the method for manufacturing the semiconductor device according to the first embodiment.
FIG. 5 is a sectional view showing a configuration of a semiconductor device according to a second embodiment.
FIG. 6 is a cross-sectional view illustrating a configuration of a conventional semiconductor device.
FIG. 7 is a cross-sectional view illustrating a configuration of a conventional semiconductor device.
[Explanation of symbols]
W semiconductor wafer 1, 21a to 21c semiconductor chip, 2, 22a to 22c electrode pad, 3, 6, 23a to 23c, 26a to 26c insulating film, 4, 24a to 24c opening, 5 through hole, 7, 27a to 27c Relocation wiring 8, 28a-28c groove, 9 element formation region 10a-10c, 30a-30c adhesive layer, 11, 31 interposer substrate, 12, 32 land, 13a-13c, 33a-33c wire, SL scribe line

Claims (11)

半導体チップ上に形成された配線層と、
前記配線層に接続され、前記半導体チップの側壁に形成された導電層と、
前記導電層に接続されたワイヤとを備えることを特徴とする半導体装置。
A wiring layer formed on the semiconductor chip,
A conductive layer connected to the wiring layer and formed on a side wall of the semiconductor chip;
And a wire connected to the conductive layer.
半導体チップ上に形成された配線層と、
前記半導体チップを厚み方向に横切るようにして、前記半導体チップの切断面に形成された溝と、
前記溝に形成された導電層と、
前記導電層に接続されたワイヤとを備えることを特徴とする半導体装置。
A wiring layer formed on the semiconductor chip,
A groove formed on a cut surface of the semiconductor chip so as to cross the semiconductor chip in a thickness direction,
A conductive layer formed in the groove,
And a wire connected to the conductive layer.
第1半導体チップ上に形成された第1配線層と、
前記第1配線層に接続され、前記第1半導体チップの側壁に形成された第1導電層と、
前記第1半導体チップ上に積層された第2半導体チップと、
前記第2半導体チップ上に形成された第2配線層と、
前記第2配線層に接続され、前記第2半導体チップの側壁に形成された第2導電層と、
前記第1導電層と前記第2導電層とを接続する第1ワイヤとを備えることを特徴とする半導体装置。
A first wiring layer formed on the first semiconductor chip;
A first conductive layer connected to the first wiring layer and formed on a side wall of the first semiconductor chip;
A second semiconductor chip stacked on the first semiconductor chip;
A second wiring layer formed on the second semiconductor chip;
A second conductive layer connected to the second wiring layer and formed on a side wall of the second semiconductor chip;
A semiconductor device comprising: a first wire that connects the first conductive layer and the second conductive layer.
第1半導体チップ上に形成された第1配線層と、
前記第1半導体チップを厚み方向に横切るようにして、前記第1半導体チップの切断面に形成された第1溝と、
前記第1溝に形成された第1導電層と、
前記第1半導体チップ上に積層された第2半導体チップと、
前記第2半導体チップ上に形成された第2配線層と、
前記第2半導体チップを厚み方向に横切るようにして、前記第2半導体チップの切断面に形成された第2溝と、
前記第2溝に形成された第2導電層と、
前記第1導電層と前記第2導電層とを接続する第1ワイヤとを備えることを特徴とする半導体装置。
A first wiring layer formed on the first semiconductor chip;
A first groove formed in a cut surface of the first semiconductor chip so as to cross the first semiconductor chip in a thickness direction;
A first conductive layer formed in the first groove;
A second semiconductor chip stacked on the first semiconductor chip;
A second wiring layer formed on the second semiconductor chip;
A second groove formed in a cut surface of the second semiconductor chip so as to cross the second semiconductor chip in a thickness direction;
A second conductive layer formed in the second groove;
A semiconductor device comprising: a first wire that connects the first conductive layer and the second conductive layer.
前記第2半導体チップが積層された前記第1半導体チップを搭載するインターポーザ基板と、
前記インターポーザ基板に設けられたランドと、
前記ランドと前記第1導電層とを接続する第2ワイヤとを備えることを特徴とする請求項3または4記載の半導体装置。
An interposer substrate on which the first semiconductor chip on which the second semiconductor chip is stacked is mounted;
A land provided on the interposer substrate;
The semiconductor device according to claim 3, further comprising a second wire connecting the land and the first conductive layer.
前記第1半導体チップと前記第2半導体チップとは、サイズ、厚みまたは種類の少なくともいずれか1つが異なっていることを特徴とする請求項3〜5のいずれか1項記載の半導体装置。The semiconductor device according to claim 3, wherein the first semiconductor chip and the second semiconductor chip are different in at least one of size, thickness, and type. 第1電子部品上に形成された第1配線層と、
前記第1配線層に接続され、前記第1電子部品の側壁に形成された第1導電層と、
前記第1電子部品上に積層された第2電子部品と、
前記第2電子部品上に形成された第2配線層と、
前記第2配線層に接続され、前記第2電子部品の側壁に形成された第2導電層と、
前記第1導電層と前記第2導電層とを接続するワイヤとを備えることを特徴とする電子デバイス。
A first wiring layer formed on the first electronic component;
A first conductive layer connected to the first wiring layer and formed on a side wall of the first electronic component;
A second electronic component laminated on the first electronic component;
A second wiring layer formed on the second electronic component;
A second conductive layer connected to the second wiring layer and formed on a side wall of the second electronic component;
An electronic device, comprising: a wire connecting the first conductive layer and the second conductive layer.
第1半導体チップ上に形成された第1配線層と、
前記第1配線層に接続され、前記第1半導体チップの側壁に形成された第1導電層と、
前記第1半導体チップ上に積層された第2半導体チップと、
前記第2半導体チップ上に形成された第2配線層と、
前記第2配線層に接続され、前記第2半導体チップの側壁に形成された第2導電層と、
前記第1導電層と前記第2導電層とを接続する第1ワイヤと、
前記第2半導体チップが積層された前記第1半導体チップを搭載するインターポーザ基板と、
前記インターポーザ基板に設けられたランドと、
前記ランドと前記第1導電層とを接続する第2ワイヤとを備えることを特徴とする電子機器。
A first wiring layer formed on the first semiconductor chip;
A first conductive layer connected to the first wiring layer and formed on a side wall of the first semiconductor chip;
A second semiconductor chip stacked on the first semiconductor chip;
A second wiring layer formed on the second semiconductor chip;
A second conductive layer connected to the second wiring layer and formed on a side wall of the second semiconductor chip;
A first wire connecting the first conductive layer and the second conductive layer,
An interposer substrate on which the first semiconductor chip on which the second semiconductor chip is stacked is mounted;
A land provided on the interposer substrate;
An electronic device, comprising: a second wire connecting the land and the first conductive layer.
第1半導体チップ上に形成された第1配線層に接続された第1導電層を前記第1半導体チップの側壁に形成する工程と、
第2半導体チップ上に形成された第2配線層に接続された第2導電層を前記第2半導体チップの側壁に形成する工程と、
前記第1半導体チップ上に前記第2半導体チップを積層する工程と、
前記側壁に形成された前記第1導電層と前記第2導電層とをワイヤボンド接続する工程とを備えることを特徴とする半導体装置の製造方法。
Forming a first conductive layer connected to a first wiring layer formed on the first semiconductor chip on a side wall of the first semiconductor chip;
Forming a second conductive layer connected to a second wiring layer formed on the second semiconductor chip on a side wall of the second semiconductor chip;
Laminating the second semiconductor chip on the first semiconductor chip;
And a step of wire bonding connecting the first conductive layer and the second conductive layer formed on the side wall.
電極パッドが形成された半導体ウェハの切断線上に貫通孔を形成する工程と、
前記電極パッドの表面が露出されるようにして、前記貫通孔の表面に絶縁膜を形成する工程と、
前記電極パッドに接続された導電膜を前記貫通孔内に形成する工程と、
前記切断線に沿って前記半導体ウェハをチップ状に切断する工程と、
前記チップ状に切断された半導体チップを積層する工程と、
前記切断線に沿って分割された貫通孔内の導電層にワイヤボンドを行うことにより、前記積層された半導体チップを接続する工程とを備えることを特徴とする半導体装置の製造方法。
Forming a through hole on a cutting line of the semiconductor wafer on which the electrode pad is formed,
Forming an insulating film on the surface of the through hole so that the surface of the electrode pad is exposed;
Forming a conductive film connected to the electrode pad in the through hole;
Cutting the semiconductor wafer into chips along the cutting line;
Laminating the semiconductor chips cut into chips,
Connecting the stacked semiconductor chips by performing wire bonding on the conductive layer in the through hole divided along the cutting line, thereby manufacturing the semiconductor device.
第1電子部品上に形成された第1配線層に接続された第1導電層を前記第1電子部品の側壁に形成する工程と、
第2電子部品上に形成された第2配線層に接続された第2導電層を前記第2電子部品プの側壁に形成する工程と、
前記第1電子部品上に前記第2電子部品を積層する工程と、
前記側壁に形成された前記第1導電層と前記第2導電層とをワイヤボンド接続する工程とを備えることを特徴とする電子デバイスの製造方法。
Forming a first conductive layer connected to a first wiring layer formed on the first electronic component on a side wall of the first electronic component;
Forming a second conductive layer connected to a second wiring layer formed on the second electronic component on a side wall of the second electronic component;
Laminating the second electronic component on the first electronic component;
And a step of wire-bonding the first conductive layer and the second conductive layer formed on the side wall.
JP2003072564A 2003-03-17 2003-03-17 Semiconductor device, electronic device, electronic apparatus, method for manufacturing semiconductor device, and method for manufacturing electronic device Pending JP2004281819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072564A JP2004281819A (en) 2003-03-17 2003-03-17 Semiconductor device, electronic device, electronic apparatus, method for manufacturing semiconductor device, and method for manufacturing electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072564A JP2004281819A (en) 2003-03-17 2003-03-17 Semiconductor device, electronic device, electronic apparatus, method for manufacturing semiconductor device, and method for manufacturing electronic device

Publications (1)

Publication Number Publication Date
JP2004281819A true JP2004281819A (en) 2004-10-07

Family

ID=33288729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072564A Pending JP2004281819A (en) 2003-03-17 2003-03-17 Semiconductor device, electronic device, electronic apparatus, method for manufacturing semiconductor device, and method for manufacturing electronic device

Country Status (1)

Country Link
JP (1) JP2004281819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469184B2 (en) 2020-03-23 2022-10-11 Kioxia Corporation Semiconductor device and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469184B2 (en) 2020-03-23 2022-10-11 Kioxia Corporation Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US9355901B2 (en) Non-lithographic formation of three-dimensional conductive elements
JP5211396B2 (en) Method for manufacturing 3D electronic modules in an integrated manner
TWI527179B (en) Process for the vertical interconnection of 3d electronic modules by vias
JP2001223324A (en) Semiconductor device
JPH0945848A (en) End cap chip with electrical conductivity monolithic l connection for multichip stack and its preparation
JPH08213549A (en) Manufacture of integrated circuit
JP2004303992A (en) Semiconductor device, electronic device, electronic apparatus, and manufacturing method of semiconductor device
KR20080091980A (en) Chip stack package and method of fabricating the same
JP2001044357A (en) Semiconductor device and manufacture thereof
JP2005129888A (en) Sensor device and sensor system, and manufacturing method therefor
JP2001044197A (en) Semiconductor device and manufacture thereof
US10403510B2 (en) Method of fabricating a carrier-less silicon interposer using photo patterned polymer as substrate
TW202201713A (en) Integrated circuit device with stacked dies having mirrored circuitry
JP4047819B2 (en) Interconnection part using BGA solder ball and method for producing the same
JPH08306724A (en) Semiconductor device, manufacturing method and its mounting method
JP2004281819A (en) Semiconductor device, electronic device, electronic apparatus, method for manufacturing semiconductor device, and method for manufacturing electronic device
JP2006201158A (en) Sensor
JP2003142647A (en) Semiconductor device
JPH09270490A (en) Connecting construction, connecting method, and semiconductor device and its manufacture
WO2023050648A1 (en) Packaging structure and packaging method
JP2004063579A (en) Stacked semiconductor device
JP4183070B2 (en) Multi-chip module
JP2006210802A (en) Semiconductor device
JP2003224242A (en) Laminated semiconductor device and its manufacturing method
JPH0410649A (en) Manufacture of semiconductor substrate for three-dimensional packaging