JP4183070B2 - Multi-chip module - Google Patents

Multi-chip module Download PDF

Info

Publication number
JP4183070B2
JP4183070B2 JP2003011214A JP2003011214A JP4183070B2 JP 4183070 B2 JP4183070 B2 JP 4183070B2 JP 2003011214 A JP2003011214 A JP 2003011214A JP 2003011214 A JP2003011214 A JP 2003011214A JP 4183070 B2 JP4183070 B2 JP 4183070B2
Authority
JP
Japan
Prior art keywords
semiconductor element
connection terminal
semiconductor
semiconductor elements
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003011214A
Other languages
Japanese (ja)
Other versions
JP2004228142A (en
Inventor
正司 竹中
史郎 要田
智 菊地
秀夫 佐藤
秀和 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2003011214A priority Critical patent/JP4183070B2/en
Publication of JP2004228142A publication Critical patent/JP2004228142A/en
Application granted granted Critical
Publication of JP4183070B2 publication Critical patent/JP4183070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
複数の半導体素子を接続して構成するマルチチップパッケージに係わり、特に半導体素子およびマルチチップパッケージの構造に関する。
【0002】
【従来の技術】
電子機器の高性能化、小型化に伴い一つのパッケージ内に複数の半導体チップを配置してマルチチップパッケージとすることにより、半導体装置の高性能化と小型化とが図れている。そして、マルチチップパッケージには、複数の半導体素子を実装基板上に平面に並べたタイプ(例えば、特許文献1参照。)、複数の半導体素子を厚み方向(実装基板に対して垂直方向)に積層するタイプがある。
【0003】
平面に並べたマルチチップパッケージは、広い実装面積を必要とするため、電子機器の小型化への寄与には限界がある。
垂直方向に積層したマルチチップパッケージには、複数の半導体素子の外形寸法の大きさにしたがってピラミッド状に積層し、各半導体チップの端子電極をワイヤボンディングによつて接続する構造や、同一形状の半導体素子の表裏を配線して素子間をバンプ接続する構造のものがある。
【0004】
【特許文献1】
特開平8−8392号公報
【0005】
【発明が解決しようとする課題】
ところが、従来構造のマルチチップパッケージでは、積層する順位がチップサイズにより規制されてしまい、積層の自由度が少なく、また、チップ間の端子電極の接合にワイヤボンディングを利用して行うため端子間の距離が一定せず、ボンディング長さに起因する電気特性の劣化が生じる問題がある(図11参照。図中、1は半導体素子、13は実装基板、14はボンディングワイヤを示す。)。
【0006】
また、積層型のマルチチップパッケージでは、横方向(水平方向)への展開が困難であった(図12参照。図中、1は半導体素子、11はハンダバンプ、13は実装基板、15はコンタクト用のスルーホールを示す。)。
【0007】
【課題を解決するための手段】
第一の発明は、半導体素子の周縁部を素子部の基板厚さよりも薄く加工し、前記周縁部上に接続端子を形成し、素子部と配線する。
異なる半導体素子の前記接続端子同士を対面接続すると、接続端子は素子部の基板厚さよりも薄く形成されているので、貼り合わせ後の厚さは素子部の基板厚さの2倍より薄くなる。例えば、周縁部の基板厚さを素子部の基板の略半分に形成した場合、貼り合わせ後の厚さは略素子部の基板厚さと同じになる。
【0008】
第二の発明は、前記半導体素子を複数用い、実装基板上で互いに対面するように接続する。
複数の半導体素子を前記接続端子で次々と貼り合わせて、水平方向に1列で半導体素子が貼り合わされて行き、貼り合わせ後のマルチチップパッケージの厚みは半導体素子の厚さである。
【0009】
第三の発明は、半導体素子が、素子部と同一平面上に設けられた第1の接続端子と、周縁部の表面に設けられた第2の接続端子と、周縁部の裏面に設けられた第3の接続端子からなり、第2の接続端子と第3の接続端子が半導体基板の側面を経由して配線されたものである。
接続端子を3箇所有することにより、横隣、上、下の各半導体素子と接続が可能となる。
【0010】
第四の発明は、半導体素子が、素子部と同一平面上に設けられた第1の接続端子と、周縁部の表面に設けられた第2の接続端子と、周縁部の裏面に設けられた第3の接続端子からなり、第2の接続端子と第3の接続端子が周縁部の半導体基板を貫通するスルーホールで配線されたものである。
接続端子を3箇所有することにより、横隣、上、下の各半導体素子と接続が可能となる。
【0011】
第五の発明は、前記第2の接続端子同士を対面接続して、横隣の半導体素子と貼り合わせ、上下の半導体素子との貼り合わせには、第1の接続端子あるいは第3の接続端子同士を対面接続あるいは背面接続する。
前記第2の接続端子同士を対面接続すると、第二の発明の様に、水平方向1列に半導体素子を並べられる。水平方向に並んだ1つの半導体素子の列と、上下を逆にして貼り合わせた別の一つの半導体の列を作り、これを先に作った一つの半導体素子の列の上に重ねて貼り合わせる。この時、第3の接続端子同士、あるいは第1の接続端子同士が背面あるいは対面で接続することになる。同様にして水平方向に並んだ一つの半導体素子の列を積み上げて行くと、水平方向の列と垂直方向の列からなる、半導体素子の垂直二次元配列からなるマルチチップパッケージが得られる。
【0012】
【発明の実施の形態】
(実施例1)
本発明の第一の実施形態を示す。図1は、半導体素子の構造を示す図である。上図は半導体素子の斜視図、下図は断面図である。図中、1は半導体素子、2は素子部、3は周縁部、4は接続端子、5は絶縁膜、6は配線、7はコンタクトホール、8は内部配線パッドである。
【0013】
以下に、本発明の半導体素子の作製方法について述べる。半導体素子1の内部配線パッド8および素子部2に回路機能を作り込んだ厚さ約700μmのウェハを用い、
1−1)厚さ400μmまで裏面研削する。(必要に応じて、バックコンタクトを形成する。)
1−2)先端断面が台形形状のブレードを有するダイサで、半導体素子の周縁部3を深さ200μm切削する。
1−3)ウェハ全面にポリイミド樹脂を塗布し、キュアする。
1−4)内部配線パッド部8のポリイミド(絶縁膜5)にコンタクトホール7を形成する。
1−5)Alを蒸着して、周縁部3の接続端子4−2と配線6を形成する。
1−6)周縁部3の接続端子4−2に(必要に応じ、コンタクトホール上の接続端子にも)ハンダ層9を形成する。(ボンディング用の端子とする場合は、ハンダ層を形成しない。)
1−7)ダイサでチップ切断する。
【0014】
図2は、図1に示す半導体素子A,B,Cの3つを平面的に配置したものである。図中、11はハンダバンプ、12はメタルパターン、13は実装基板、14はボンディングワイヤである。上図は実装基板にボンディングする場合を示している。半導体素子A,Cの素子部面を上向きに、半導体素子Bの素子部面を下向きにし、各半導体素子の周縁部の接続端子4−2同士をその上に設けたハンダ層9で接続して実装基板上に接着剤で固定する。そして、半導体素子A,Cの接続端子4−2と実装基板のメタルパターンをボンディングする。
【0015】
下図は、上述したと同様に半導体素子A,B,Cを各々その周縁部の接続端子4−2で互いに接続する。半導体素子Aの左側、Cの右側のコンタクトホール7の上に設けた接続端子4−1に周縁部3の接続端子4−2に設けたハンダ層より融点の低いハンダ層を設ける。接続を完了した半導体素子A,B,Cが一体化したものを上下逆にして、接続端子4−1を実装基板上13に設けた融点の低いハンダバンプ上に合わせて載せ、融着してマルチチップパッケージとする。
(実施例2)
次に、本発明の第二の実施形態を示す。図3は半導体素子の構造を示す。周縁部が略200μm素子部よりも低く形成された一つの半導体素子1に対し、
2−1)素子全面にポリイミド樹脂5を塗布し、キュアする。
2−2)内部配線パッド部のポリイミドにコンタクトホール7を形成する。
2−3)全面にAlを蒸着する。
2−4)内部配線パッド部の上の接続端子4−1、周縁部の表面の接続端子4−2、その裏面の接続端子4−3と配線をエッチングで形成する。
2−5)各接続端子上にハンダ層9を形成する。
2−6)ダイサでチップ切断する。
【0016】
本半導体素子を用いて、立体的に複数の半導体素子を実装する例を図4に示す。図中、番号および名称は図2で用いたものと同じである。第一の実施形態で示したように、平面的に複数の半導体素子A,B,Cを接続する。そして、この平面的に配列されたものを、上下反転して積み上げ、さらに、もう一度上下反転したものを積み上げるようにして、多段に積層することが可能である。図4から判るように、水平方向にはA,B,Cの半導体素子が、垂直方向には4段半導体素子を積み重ねた立体的に配置されたマルチチップパッケージを作製できる。
(実施例3)
次に、本発明の第三の実施形態を示す。図5は半導体素子の構造を示す。第一の実施形態で述べたのと同様に、1−2)の工程まで進め、次に、
3−3)周縁部の接続端子4−2を形成する位置に異方性のドライエッチングによりシリコン基板に約80μmのスルーホール15を形成する。
3−4)ウェハの表裏の全面にポリイミド樹脂5を塗布する。(スルーホールはポリイミド樹脂で埋め込まれる。)
3−5)埋め込まれたポリイミド樹脂をレーザで焼き切り、側壁にポリイミドを残し、中央に再びスルーホールを形成する。
3−6)スルーホールを埋め込み、スルーホールの周囲を銅メッキする。
3−7)表裏面にAlを蒸着する。
3−8)コンタクトホール上の接続端子4−1、周縁部の接続端子4−2、配線パターンのエッチングを行なう。また、裏面の接続端子4−3のパターンをエッチング形成する。
3−9)各接続端子上にハンダ層9を形成する。
3−10)ダイサでチップ切断する。
【0017】
本半導体素子を用いて、立体的に複数の半導体素子を実装する例を図6に示す。図中の番号および名称は図2で用いたものと同じである。組み上げ方法は実施例2と同様である。
(変形例1)
本発明の請求項3に記載する半導体素子は、素子部に隣接した周縁部を掘り下げた構造となっているが、逆に裏面側から掘り下げる構造としても良い。図7にその構造を示す。この構造により、半導体素子面積に対する素子部の面積比率を大きくできる。
(変形例2)
半導体素子の周辺部の4辺に段差を設け、更に、半導体素子の4隅を切断する。具体的には、図8に示す様な形状となる。
(変形例3)
図8に示す半導体素子を用いて、平面上に複数の半導体素子を配置する。その実装例を図9に示す。
(変形例4)
図9に示す平面的に配列した複数の半導体素子と、前記複数の半導体素子を上下反転して配置した複数の半導体素子とを上下に重ね合わせる。更に、同様の上下反転して配置した複数の半導体素子を重ね合わせることによって三次元的に配列のマルチチップパッケージが得られる。その構造を図10に示す。
【0018】
以上、本発明の内容をまとめると、
(付記1)回路機能を形成した素子部と外部接続のための接続端子を形成した周縁部を有する半導体素子において、周縁部が素子部の基板厚さよりも薄く形成され、かつ素子部と接続端子を配線したことを特徴とする半導体素子。
(付記2)実装基板上に、付記1記載の半導体素子を対面接続して水平方向に一列に配置したことを特徴とするマルチチップパッケージ。
【0019】
(付記3)半導体素子の素子部と同一平面上に第1の接続端子を設け、周縁部に第2の接続端子を設け、前記第1および第2の接続端子を経由して前記半導体素子の側面から裏面に設けた第3の接続端子へ配線されていることを特徴とする付記1記載の半導体素子。
(付記4)半導体素子の素子部と同一平面上に第1の接続端子を設け、周縁部に第2の接続端子を設け、前記第1および第2の接続端子を経由して前記半導体素子の基板に設けたスルーホールから裏面に設けた第3の接続端子へ配線されていることを特徴とする付記1記載の半導体素子。
【0020】
(付記5)付記3または4記載の複数の半導体素子を表面に設けた第2の接続端子同士で対面接続して平面的に配置し、さらに裏面に設けた第3および表面の第1の接続端子同士で背面および対面接続して、前記半導体素子を水平方向の列と垂直方向の列からなる垂直二次元配置したことを特徴とするマルチチップパッケージ。
【0021】
(付記6)半導体素子の周辺部の4辺の基板厚さを素子部の基板厚さよりも薄く形成し、かつ、半導体素子の4隅を素子部の外側でかつ段差部より内側で切断したことを特徴とする付記3または4記載の半導体素子。
(付記7)付記6記載の半導体素子を複数用い、交互に上下逆転して前記第2の接続端子で貼り合わせ、二次元平面に配列したことを特徴とするマルチチップパッケージ。
【0022】
(付記8)付記6記載の二次元平面に配列された半導体素子と、上下が逆転して二次元平面に配列された半導体素子を積み重ね、前記第1の接続端子または第3の接続端子で貼り合わせて三次元に配列したことを特徴とするマルチチップパッケージ。
(付記9)半導体素子の接続端子にはハンダ層が設けられ、前記第2の接続端子のハンダの融点が、前記第1および3の接続端子のハンダ融点よりも高いことを特徴とする付記3、4、6記載の半導体素子。
【0023】
【発明の効果】
本発明の半導体素子を平面的に配列したマルチチップパッケージは、半導体素子の基板厚さよりも薄く形成した段差部の接続端子同士で貼り合わせるため、半導体素子2つ分のより薄く実装できる。
半導体素子の4辺に段差を設け、4隅を切断したことによって、二次元平面に半導体素子を配置でき、さらに、それを積み重ねることで、三次元的な配置も可能である。
【0024】
この結果、従来には無い実装密度の高いマルチチップパッケージを作製できる。
【図面の簡単な説明】
【図1】 本発明の半導体素子の構造を示す図
【図2】 半導体素子を水平一列に配列したマルチチップパッケージを示す図
【図3】 3つの接続端子を有し、半導体素子の側面を配線した本発明の半導体素子の構造を示す図
【図4】 半導体素子を水平方向と垂直方向の垂直二次元に配置したマルチチップパッケージの構造を示す図
【図5】 3つの接続端子を有し、半導体素子の基板に設けたスルーホールを経由して配線した本発明の半導体素子の構造を示す図
【図6】 半導体素子を水平方向と垂直方向の垂直二次元に配置したマルチチップパッケージの構造を示す図
【図7】 半導体素子の裏面側に段差を設けた本発明の半導体素子の変形例を示す図
【図8】 四辺に段差を設け、4隅を切り取った半導体素子の構造を示す図
【図9】 半導体素子を二次元平面に配列したマルチチップパッケージの構造を示す図
【図10】 半導体素子を三次元配列したマルチチップパッケージの構造を示す図
【図11】 異種半導体素子を積み上げ実装した従来例
【図12】 同種半導体素子を積み上げ実装した従来例
【符号の説明】
1 半導体素子
2 素子部
3 周縁部
4 接続端子
5 絶縁膜
6 配線
7 コンタクトホール
8 内部配線パッド
9 ハンダ層
11 ハンダバンプ
12 メタルパターン
13 実装基板
14 ボンディングワイヤ
15 コンタクト用のスルーホール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multichip package configured by connecting a plurality of semiconductor elements, and more particularly to a structure of a semiconductor element and a multichip package.
[0002]
[Prior art]
With the increase in performance and size of electronic devices, a plurality of semiconductor chips are arranged in one package to form a multi-chip package, thereby improving the performance and size of the semiconductor device. In the multichip package, a plurality of semiconductor elements are arranged in a plane on a mounting substrate (see, for example, Patent Document 1), and a plurality of semiconductor elements are stacked in a thickness direction (perpendicular to the mounting substrate). There is a type to do.
[0003]
Multi-chip packages arranged in a plane require a large mounting area, and thus there is a limit to the contribution to downsizing of electronic devices.
Multi-chip packages stacked in the vertical direction are stacked in a pyramid shape according to the size of the external dimensions of a plurality of semiconductor elements, and the terminal electrodes of each semiconductor chip are connected by wire bonding, or semiconductors of the same shape There is a structure in which the front and back of the element are wired and the elements are bump-connected.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-8392
[Problems to be solved by the invention]
However, in the multi-chip package having the conventional structure, the stacking order is restricted by the chip size, and the degree of freedom of stacking is small. Further, since the bonding of the terminal electrodes between the chips is performed by using wire bonding, the terminals are not connected. There is a problem in that the distance is not constant and electrical characteristics are deteriorated due to the bonding length (see FIG. 11. In the figure, 1 is a semiconductor element, 13 is a mounting substrate, and 14 is a bonding wire).
[0006]
Further, in the multi-chip package of the stacked type, it is difficult to develop in the lateral direction (horizontal direction) (see FIG. 12. In the figure, 1 is a semiconductor element, 11 is a solder bump, 13 is a mounting substrate, and 15 is for contact. Shows a through hole.)
[0007]
[Means for Solving the Problems]
In the first invention, the peripheral portion of the semiconductor element is processed to be thinner than the substrate thickness of the element portion, a connection terminal is formed on the peripheral portion, and the element portion is wired.
When the connection terminals of different semiconductor elements are face-to-face connected, the connection terminals are formed thinner than the substrate thickness of the element portion, so that the thickness after bonding is less than twice the substrate thickness of the element portion. For example, when the substrate thickness of the peripheral portion is formed to be approximately half of the substrate of the element portion, the thickness after bonding is substantially the same as the substrate thickness of the element portion.
[0008]
A second invention uses a plurality of the semiconductor elements and connects them so as to face each other on a mounting substrate.
A plurality of semiconductor elements are bonded together one after another at the connection terminals, and the semiconductor elements are bonded in a row in the horizontal direction, and the thickness of the multi-chip package after the bonding is the thickness of the semiconductor elements.
[0009]
According to a third aspect of the invention, the semiconductor element is provided on the first connection terminal provided on the same plane as the element part, the second connection terminal provided on the surface of the peripheral part, and the back surface of the peripheral part. It consists of a third connection terminal, and the second connection terminal and the third connection terminal are wired via the side surface of the semiconductor substrate.
By having three connection terminals, it is possible to connect to the semiconductor elements on the side, top, and bottom.
[0010]
In a fourth aspect of the invention, the semiconductor element is provided on the first connection terminal provided on the same plane as the element part, the second connection terminal provided on the surface of the peripheral part, and the back surface of the peripheral part. It consists of a third connection terminal, and the second connection terminal and the third connection terminal are wired by through-holes penetrating the peripheral semiconductor substrate.
By having three connection terminals, it is possible to connect to the semiconductor elements on the side, top, and bottom.
[0011]
According to a fifth aspect of the present invention, the second connection terminals are connected face-to-face and bonded to the adjacent semiconductor element, and the first connection terminal or the third connection terminal is used for bonding to the upper and lower semiconductor elements. Connect each other face-to-face or back.
When the second connection terminals are connected face-to-face, the semiconductor elements are arranged in one horizontal row as in the second invention. Make a row of semiconductor elements aligned in the horizontal direction and another row of semiconductors pasted upside down, and stack them on top of the one row of semiconductor elements created earlier. . At this time, the third connection terminals or the first connection terminals are connected to each other on the back surface or the face-to-face. Similarly, by stacking one row of semiconductor elements arranged in the horizontal direction, a multi-chip package comprising a vertical two-dimensional array of semiconductor elements, which is composed of a horizontal row and a vertical row, is obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(Example 1)
1 shows a first embodiment of the present invention. FIG. 1 is a diagram showing a structure of a semiconductor element. The upper figure is a perspective view of the semiconductor element, and the lower figure is a sectional view. In the figure, 1 is a semiconductor element, 2 is an element portion, 3 is a peripheral portion, 4 is a connection terminal, 5 is an insulating film, 6 is a wiring, 7 is a contact hole, and 8 is an internal wiring pad.
[0013]
Hereinafter, a method for manufacturing the semiconductor element of the present invention will be described. Using a wafer having a thickness of about 700 μm in which a circuit function is built in the internal wiring pad 8 and the element portion 2 of the semiconductor element 1,
1-1) The back surface is ground to a thickness of 400 μm. (If necessary, back contact is formed.)
1-2) A peripheral portion 3 of the semiconductor element is cut to a depth of 200 μm with a dicer having a blade having a trapezoidal cross section at the tip.
1-3) A polyimide resin is applied to the entire surface of the wafer and cured.
1-4) A contact hole 7 is formed in the polyimide (insulating film 5) of the internal wiring pad portion 8.
1-5) Al is vapor-deposited to form the connection terminals 4-2 and wirings 6 of the peripheral edge 3.
1-6) The solder layer 9 is formed on the connection terminal 4-2 of the peripheral edge 3 (also on the connection terminal on the contact hole, if necessary). (If a bonding terminal is used, no solder layer is formed.)
1-7) The chip is cut with a dicer.
[0014]
FIG. 2 is a plan view of three semiconductor elements A, B, and C shown in FIG. In the figure, 11 is a solder bump, 12 is a metal pattern, 13 is a mounting substrate, and 14 is a bonding wire. The upper figure shows the case of bonding to the mounting substrate. The element surfaces of the semiconductor elements A and C are faced upward, the element part face of the semiconductor element B is faced down, and the connection terminals 4-2 at the periphery of each semiconductor element are connected to each other by a solder layer 9 provided thereon. Fix on the mounting board with adhesive. Then, the connection terminals 4-2 of the semiconductor elements A and C and the metal pattern of the mounting substrate are bonded.
[0015]
In the figure below, the semiconductor elements A, B, and C are connected to each other at the peripheral connection terminals 4-2 in the same manner as described above. A solder layer having a melting point lower than that of the solder layer provided on the connection terminal 4-2 of the peripheral edge 3 is provided on the connection terminal 4-1 provided on the contact hole 7 on the left side of the semiconductor element A and on the right side of C. The integrated semiconductor elements A, B, and C, which have been connected, are turned upside down, and the connection terminals 4-1 are placed on solder bumps having a low melting point provided on the mounting substrate 13, and fused to form a multi-chip. Chip package.
(Example 2)
Next, a second embodiment of the present invention is shown. FIG. 3 shows the structure of the semiconductor element. For one semiconductor element 1 whose peripheral part is formed lower than the element part of about 200 μm,
2-1) A polyimide resin 5 is applied to the entire surface of the device and cured.
2-2) A contact hole 7 is formed in the polyimide of the internal wiring pad portion.
2-3) Al is vapor-deposited on the entire surface.
2-4) The connection terminal 4-1 on the internal wiring pad portion, the connection terminal 4-2 on the front surface of the peripheral portion, and the connection terminal 4-3 on the back surface thereof are formed by etching.
2-5) A solder layer 9 is formed on each connection terminal.
2-6) Cutting the chip with a dicer.
[0016]
FIG. 4 shows an example in which a plurality of semiconductor elements are mounted three-dimensionally using this semiconductor element. In the figure, the numbers and names are the same as those used in FIG. As shown in the first embodiment, a plurality of semiconductor elements A, B, and C are connected in a plane. Then, it is possible to stack the multi-layered structure in such a manner that the two-dimensionally arranged ones are turned upside down and stacked, and the ones turned upside down once again are stacked. As can be seen from FIG. 4, a multichip package in which A, B, and C semiconductor elements are horizontally arranged and four-stage semiconductor elements are stacked in the vertical direction can be manufactured.
(Example 3)
Next, a third embodiment of the present invention will be shown. FIG. 5 shows the structure of the semiconductor element. In the same manner as described in the first embodiment, the process proceeds to step 1-2).
3-3) A through hole 15 of about 80 μm is formed in the silicon substrate by anisotropic dry etching at the position where the connection terminal 4-2 is formed at the peripheral edge.
3-4) The polyimide resin 5 is applied to the entire front and back surfaces of the wafer. (Through holes are filled with polyimide resin.)
3-5) The embedded polyimide resin is burned off with a laser, leaving the polyimide on the side wall, and forming a through hole in the center again.
3-6) The through hole is filled and the periphery of the through hole is plated with copper.
3-7) Al is vapor-deposited on the front and back surfaces.
3-8) Etching of the connection terminal 4-1 on the contact hole, the connection terminal 4-2 on the periphery, and the wiring pattern. Further, the pattern of the connection terminal 4-3 on the back surface is formed by etching.
3-9) A solder layer 9 is formed on each connection terminal.
3-10) Cutting the chip with a dicer.
[0017]
An example of mounting a plurality of semiconductor elements in three dimensions using this semiconductor element is shown in FIG. The numbers and names in the figure are the same as those used in FIG. The assembly method is the same as in the second embodiment.
(Modification 1)
The semiconductor element according to claim 3 of the present invention has a structure in which the peripheral edge adjacent to the element part is dug down, but conversely, a structure in which it is dug down from the back side may be used. FIG. 7 shows the structure. With this structure, the area ratio of the element portion to the semiconductor element area can be increased.
(Modification 2)
Steps are provided on the four sides of the periphery of the semiconductor element, and four corners of the semiconductor element are cut. Specifically, the shape is as shown in FIG.
(Modification 3)
A plurality of semiconductor elements are arranged on a plane using the semiconductor element shown in FIG. An example of the implementation is shown in FIG.
(Modification 4)
A plurality of semiconductor elements arranged in a plan view shown in FIG. 9 and a plurality of semiconductor elements in which the plurality of semiconductor elements are arranged upside down are superposed one above the other. Furthermore, a multi-chip package having a three-dimensional arrangement can be obtained by superposing a plurality of semiconductor elements arranged in the same manner upside down. The structure is shown in FIG.
[0018]
The contents of the present invention are summarized as follows.
(Supplementary note 1) In a semiconductor element having an element portion in which a circuit function is formed and a peripheral portion in which a connection terminal for external connection is formed, the peripheral portion is formed thinner than the substrate thickness of the element portion, and the element portion and the connection terminal A semiconductor element characterized by wiring.
(Appendix 2) A multi-chip package, wherein the semiconductor elements described in Appendix 1 are face-to-face connected and arranged in a row in a horizontal direction on a mounting substrate.
[0019]
(Supplementary Note 3) A first connection terminal is provided on the same plane as the element portion of the semiconductor element, a second connection terminal is provided at the peripheral portion, and the semiconductor element is connected to the semiconductor element via the first and second connection terminals. The semiconductor device according to appendix 1, wherein the semiconductor element is wired from a side surface to a third connection terminal provided on the back surface.
(Supplementary Note 4) A first connection terminal is provided on the same plane as the element portion of the semiconductor element, a second connection terminal is provided at the peripheral portion, and the semiconductor element is connected to the semiconductor element via the first and second connection terminals. The semiconductor element according to appendix 1, wherein wiring is performed from a through hole provided in the substrate to a third connection terminal provided on the back surface.
[0020]
(Supplementary Note 5) A plurality of semiconductor elements described in Supplementary Note 3 or 4 are arranged in a plane in a face-to-face connection with the second connection terminals provided on the front surface, and third and front surface first connections provided on the back surface. A multichip package characterized in that the semiconductor elements are arranged two-dimensionally in a vertical direction consisting of a horizontal row and a vertical row, with the terminals connected to each other at the back and face to face.
[0021]
(Appendix 6) The thickness of the substrate on the four sides of the peripheral portion of the semiconductor element is formed thinner than the substrate thickness of the element portion, and the four corners of the semiconductor element are cut outside the element portion and inside the step portion. The semiconductor element according to appendix 3 or 4, characterized by:
(Supplementary note 7) A multichip package comprising a plurality of semiconductor elements according to supplementary note 6, which are alternately turned upside down and bonded together at the second connection terminals, and arranged in a two-dimensional plane.
[0022]
(Appendix 8) The semiconductor elements arranged in the two-dimensional plane according to appendix 6 and the semiconductor elements arranged in the two-dimensional plane with the top and bottom reversed are stacked and pasted with the first connection terminal or the third connection terminal. Multi-chip package characterized by being arranged in three dimensions.
(Supplementary Note 9) The connection terminal of the semiconductor element is provided with a solder layer, and the melting point of the solder of the second connection terminal is higher than the solder melting point of the first and third connection terminals. 4. The semiconductor device according to 4, 6.
[0023]
【The invention's effect】
Since the multichip package in which the semiconductor elements of the present invention are arranged in a plane is bonded to the connection terminals of the step portions formed thinner than the substrate thickness of the semiconductor elements, it can be mounted thinner than two semiconductor elements.
By providing steps on four sides of the semiconductor element and cutting the four corners, the semiconductor element can be arranged on a two-dimensional plane, and further, three-dimensional arrangement is possible by stacking them.
[0024]
As a result, a multi-chip package with a high mounting density that is not available in the past can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of a semiconductor device according to the present invention. FIG. 2 is a diagram showing a multi-chip package in which semiconductor devices are arranged in a horizontal row. FIG. FIG. 4 is a diagram showing the structure of a semiconductor device according to the present invention. FIG. 4 is a diagram showing the structure of a multichip package in which semiconductor devices are arranged two-dimensionally in a horizontal direction and a vertical direction. FIG. The figure which shows the structure of the semiconductor element of this invention wired via the through hole provided in the board | substrate of a semiconductor element. FIG. 6: The structure of the multichip package which has arrange | positioned the semiconductor element in the vertical two dimensions of a horizontal direction and a perpendicular direction. FIG. 7 is a diagram showing a modification of the semiconductor element of the present invention in which a step is provided on the back side of the semiconductor element. FIG. 8 is a diagram showing a structure of the semiconductor element in which a step is provided on four sides and four corners are cut off. Fig. 9 Semiconductor element FIG. 10 is a diagram showing the structure of a multi-chip package in which semiconductor elements are arranged in a two-dimensional plane. FIG. 10 is a diagram showing the structure of a multi-chip package in which semiconductor elements are arranged in three dimensions. ] Conventional example of stacking and mounting the same kind of semiconductor elements [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Element part 3 Peripheral part 4 Connection terminal 5 Insulating film 6 Wiring 7 Contact hole 8 Internal wiring pad 9 Solder layer 11 Solder bump 12 Metal pattern 13 Mounting board 14 Bonding wire 15 Through hole for contact

Claims (4)

実装基板上に、複数の半導体素子が搭載されたマルチチップモジュールにおいて、
前記半導体素子を構成する基板は、中央部に平坦な平坦部及び前記平坦部より低く形成された平坦面からなる周縁部を有する主面と、平坦な基板裏面とを有し、
前記半導体素子は、前記平坦部に形成された外部接続用の第1の接続端子と、前記第1の接続端子と導通する前記周縁部に形成された外部接続用の第2の接続端子とを有し、
前記実装基板上に、前記主面を上向きに間隔を設けて一列に搭載された複数の第1の前記半導体素子と、
隣接する第1の前記半導体素子の前記第2の接続端子間を架橋するように第1の前記半導体素子間に配置され、前記第2の接続端子を介して前記隣接する第1の前記半導体素子と互いに前記周縁部を対向させて接続された第2の前記半導体素子とを有することを特徴とするマルチチップモジュール。
In a multichip module in which a plurality of semiconductor elements are mounted on a mounting board,
The substrate constituting the semiconductor element has a main surface having a flat portion at the center and a peripheral portion made of a flat surface formed lower than the flat portion, and a flat substrate back surface,
The semiconductor element includes a first connection terminal for external connection formed in the flat portion, and a second connection terminal for external connection formed in the peripheral portion that is electrically connected to the first connection terminal. Have
A plurality of the first semiconductor elements mounted in a row on the mounting substrate with the main surface facing upwards; and
The first semiconductor element that is disposed between the first semiconductor elements so as to bridge between the second connection terminals of the adjacent first semiconductor elements, and that is adjacent to the first semiconductor element via the second connection terminals. And a second semiconductor element connected with the peripheral edge facing each other. A multi-chip module comprising:
実装基板上に、複数の半導体素子が搭載されたマルチチップモジュールにおいて、
前記半導体素子を構成する基板は、中央部に平坦な平坦部及び前記平坦部より低く形成された平坦面からなる周縁部を有する主面と、平坦な基板裏面とを有し、
前記半導体素子は、前記平坦部に形成された外部接続用の第1の接続端子と、前記第1の接続端子と導通する前記周縁部に形成された外部接続用の第2の接続端子と、前記第2の接続端子と導通する前記基板裏面に形成された外部接続用の第3の接続端子とを有し、
前記実装基板上に、前記主面を上向きに間隔を設けて一列に搭載された複数の第1の前記半導体素子と、
隣接する第1の前記半導体素子の前記第2の接続端子間を架橋するように第1の前記半導体素子間に配置され、前記第2の接続端子を介して前記隣接する第1の前記半導体素子と互いに前記周縁部を対向させて接続された第2の前記半導体素子と、
第2の前記半導体素子上に互いに裏面を対向させて搭載され、前記第3の接続端子を介して接続された第3の前記半導体素子と、
第1の前記半導体素子上に互いに前記平坦部を対向させ、かつ、第3の前記半導体素子と前記周縁部を対向させて搭載された第4の前記半導体素子とを有し、
第4の前記半導体素子は、前記第1の接続端子を介して第1の前記半導体素子に接続され、かつ、前記第2の接続端子を介して第3の前記半導体素子に接続されていることを特徴とするマルチチップモジュール。
In a multichip module in which a plurality of semiconductor elements are mounted on a mounting board,
The substrate constituting the semiconductor element has a main surface having a flat portion at the center and a peripheral portion made of a flat surface formed lower than the flat portion, and a flat substrate back surface,
The semiconductor element includes a first connection terminal for external connection formed on the flat portion, a second connection terminal for external connection formed on the peripheral edge portion that is electrically connected to the first connection terminal, A third connection terminal for external connection formed on the back surface of the substrate that is electrically connected to the second connection terminal;
A plurality of the first semiconductor elements mounted in a row on the mounting substrate with the main surface facing upwards; and
The first semiconductor element that is disposed between the first semiconductor elements so as to bridge between the second connection terminals of the adjacent first semiconductor elements, and that is adjacent to the first semiconductor element via the second connection terminals. And the second semiconductor element connected with the peripheral edge facing each other,
A third semiconductor element mounted on the second semiconductor element with the back surfaces facing each other and connected via the third connection terminal;
And the fourth semiconductor element mounted on the first semiconductor element with the flat portions facing each other and with the third semiconductor element and the peripheral edge facing each other.
The fourth semiconductor element is connected to the first semiconductor element through the first connection terminal, and is connected to the third semiconductor element through the second connection terminal. Multi-chip module characterized by
前記平坦部に、前記第1の接続端子に導通する回路機能が形成されていることを特徴とする請求項1又は2記載のマルチチップモジュール。  3. The multichip module according to claim 1, wherein a circuit function that conducts to the first connection terminal is formed in the flat portion. 4. 前記平坦部に、前記第3の接続端子に導通する回路機能が形成されていることを特徴とする請求項1又は2記載のマルチチップモジュール。  3. The multichip module according to claim 1, wherein a circuit function that conducts to the third connection terminal is formed in the flat portion. 4.
JP2003011214A 2003-01-20 2003-01-20 Multi-chip module Expired - Fee Related JP4183070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011214A JP4183070B2 (en) 2003-01-20 2003-01-20 Multi-chip module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011214A JP4183070B2 (en) 2003-01-20 2003-01-20 Multi-chip module

Publications (2)

Publication Number Publication Date
JP2004228142A JP2004228142A (en) 2004-08-12
JP4183070B2 true JP4183070B2 (en) 2008-11-19

Family

ID=32900185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011214A Expired - Fee Related JP4183070B2 (en) 2003-01-20 2003-01-20 Multi-chip module

Country Status (1)

Country Link
JP (1) JP4183070B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849210B1 (en) 2006-12-22 2008-07-31 삼성전자주식회사 Semiconductor Package on Package configured with plug and socket wire connection between package and package
JP5087995B2 (en) * 2007-05-30 2012-12-05 ソニー株式会社 Semiconductor device and manufacturing method thereof
KR100945504B1 (en) * 2007-06-26 2010-03-09 주식회사 하이닉스반도체 Stack package and method for manufacturing of the same
JP2009026884A (en) * 2007-07-18 2009-02-05 Elpida Memory Inc Circuit module and electric component
EP3291991B1 (en) * 2015-10-12 2021-12-01 Hewlett-Packard Development Company, L.P. Printhead

Also Published As

Publication number Publication date
JP2004228142A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP4441328B2 (en) Semiconductor device and manufacturing method thereof
TWI408795B (en) Semiconductor device and manufacturing method thereof
US7915084B2 (en) Method for making a stacked package semiconductor module having packages stacked in a cavity in the module substrate
US8786070B2 (en) Microelectronic package with stacked microelectronic elements and method for manufacture thereof
KR101412718B1 (en) Semiconductor package and stacked layer type semiconductor package
US8110910B2 (en) Stack package
US9875955B2 (en) Low cost hybrid high density package
JP2002050737A (en) Semiconductor element laminate and method of manufacturing the same, and semiconductor device
JP2012253392A (en) Stack package manufactured using molded reconfigured wafer, and method for manufacturing the same
KR102517464B1 (en) Semiconductor package include bridge die spaced apart semiconductor die
JP2002076057A5 (en)
WO2012145201A1 (en) Flip-chip, face-up and face-down centerbond memory wirebond assemblies
KR101245454B1 (en) Multipackage module having stacked packages with asymmetrically arranged die and molding
US20070267738A1 (en) Stack-type semiconductor device having cooling path on its bottom surface
TWI538118B (en) Reconstituted wafer-level package dram
US6972243B2 (en) Fabrication of semiconductor dies with micro-pins and structures produced therewith
US11367709B2 (en) Semiconductor chip stack arrangement and semiconductor chip for producing such a semiconductor chip stack arrangement
CN111354647B (en) Multi-chip stacking packaging structure and manufacturing method thereof
WO2011021364A1 (en) Semiconductor device and manufacturing method therefor
JP4183070B2 (en) Multi-chip module
TWI797701B (en) Semiconductor device and manufacturing method thereof
JP3685185B2 (en) Manufacturing method of semiconductor device
US8569878B2 (en) Semiconductor substrate, laminated chip package, semiconductor plate and method of manufacturing the same
KR100988403B1 (en) Semiconductor package and wafer level fabrication method therefor
JP2005175260A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees