JP2004281437A - Double-sided metal-clad laminated board with filled via hole and its manufacturing method - Google Patents
Double-sided metal-clad laminated board with filled via hole and its manufacturing method Download PDFInfo
- Publication number
- JP2004281437A JP2004281437A JP2003066665A JP2003066665A JP2004281437A JP 2004281437 A JP2004281437 A JP 2004281437A JP 2003066665 A JP2003066665 A JP 2003066665A JP 2003066665 A JP2003066665 A JP 2003066665A JP 2004281437 A JP2004281437 A JP 2004281437A
- Authority
- JP
- Japan
- Prior art keywords
- double
- sided metal
- clad laminate
- filled via
- filled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
Abstract
Description
【0001】
【発明が属する技術分野】
本発明は、電子機器の部品として用いられるプリント配線板用のフィルドビア付き両面金属張積層板及びその製造方法に関するものである。
【0002】
【従来の技術】
近年の電子機器の高密度化に伴い、プリント配線板もファイン化が進んでおり、その回路配線も高密度なのものが必要とされ用途も拡大している。
【0003】
従来のプリント配線板の素材である金属張積層板で、両面金属張積層板の場合、絶縁層とその両面に導電はくを積層した構成からなっている。
図1に一般の層間接続について、説明する為の断面図を示す。
一般には層間の電気的接続は両面金属張積層板にドリルやレーザなどで貫通孔を明けたあと、スルーホールめっきを施して電気的接続をおこなう。(図1−(a)〜(c))しかしこの方法では、めっきはスルーホール穴壁面だけではなく両面にある導電はくにも、めっきが形成されてしまい、導電はくの厚さが厚くなってしまう。(図1−(c)−4)そのため、ファインピッチの導体回路作製が歩留まりよく出来なくなるという問題がある。また貫通スルーホール穴部分には導体回路を設けることができず(図1−(e)−6)、回路設計上の制約が多くなる。またスルーホール部が多くなればなるほどスルーホール周囲に必要なスルーホールランドの面積も増えるため、部品の実装密度、及び回路密度を上げることができない(図1−(e)−7)。
【0004】
【非特許文献1】
沼倉 研史、「高密度フレキシブル基板入門」、初版、日刊工業新聞社、1998年12月24日、第117−135頁
【0005】
【発明が解決しようとする課題】
本発明は、プリント配線板用両面金属張積層板において、高密度化対応への問題を解決するためのもので、その目的とするところは、層間接続の信頼を確保しつつ、フィルドビア付き両面金属張積層板を製作することである。
【0006】
【課題を解決するための手段】
本発明は、
(1)絶縁層とその両面に導電はくを有した両面金属張積層板であって、下部導体上の絶縁層に形成された穴にめっきを施し、上部導体と電気的に接続された構造で、前記穴が導電体で埋められたフィルドビア構造を有し、フィルドビア形成時は両面導電はく面上へはめっきを施さない構造を有するフィルドビア付き両面金属張積層板、
(2)両面に導電はくを有した金属張積層板から導電はく層を保護フィルムでマスクする工程、穴あけをする工程、めっきによりフィルドビアを形成する工程、及び保護フィルムを剥離する工程を含むことを特徴とするフィルドビア付き両面金属張積層板の製造方法、
(3)2項記載の、フィルドビア付き両面金属張積層板の製造方法により得られることを特徴とするフィルドビア付き両面金属張積層板、
(4)1項または3項記載のフィルドビア付き両面金属張積層板を使用して得られたフィルドビア付き両面プリント配線板、
である。
【0007】
【発明の実施形態】
以下、本発明の実施形態について説明するが、これらは何ら限定されるものではない。
図2に本発明のフィルドビア付き両面金属張積層板を説明するための断面図を示す。
フィルドビア付き両面金属張積層板を加工する方法として、両面に導電はくを有した絶縁層にポリイミド、エポキシなどの樹脂を持つ両面金属張積層板を準備する(図2−(a))。両面金属張積層板で導電はく面を保護フィルムでマスクする。その際保護フィルムに使用する材料は、ドライフィルムレジストをラミネートするが、導電はく層にめっきが付かない効果を持たせれば、フィルムでなくインクなどの印刷により形成しても問題はない(図2−(b))。
次に保護フィルム表面より反対側の導電はく絶縁層面まで穴あけを行う。穴あけの工程にレーザ法を用いると開口部を容易に形成することができ、かつ小径もあけることができる(図2−(c))。次に、過マンガン酸カリウム水溶液や過マンガン酸ナトリウム水溶液などによるウエットデスミアやプラズマなどによるドライデスミアの方法により、穴に残存している樹脂や樹脂残渣を除去すると層間接続の信頼性が向上し好ましい。
次いでこの穴内にめっき処理を施して導通を取るが、この穴を埋めるために、穴が充填されるまでめっき処理を実施する(図2−(d))。その後,保護フィルムを剥離する。このフィルドビア付き両面金属張積層板を使用することで(図2−(e)、導電はく層が当初のままであり、薄い導電はくの状態のフィルドビア付き両面金属張積層板を用いることで微細な回路作成ができ、ビア上に部品搭載用のパッドを設けることで部品実装の高密度化が可能である(図2−(f))。
以上がフィルドビア付き両面金属張積層板の作成についてであるが、以下に実施例をあげる。
【0008】
【実施例】
(実施例1)
実施例として、フィルドビア付き両面金属張積層板の作成について述べる。
両面銅張積層板:NEX−23FE(25T)[三井化学(株)製]両面銅はく厚さ12μm、
ポリイミドフィルム厚さ25μmの銅はくに、保護フィルムとしてドライフィルムレジスト:HR140[東京応化工業(株)]をラミネートし銅はく面を保護し、保護フィルムの表面からUVレーザ
により径φ75μmの穴をあけ、ドライデスミア処理を実施した。穴を形成後、穴内を電解銅めっきにより銅が穴を充填するまで実施した。次いで保護フィルムを剥離処理してフィルドビア付き両面金属張積層板を得た。
【0009】
(実施例2)
両面銅張積層板:NEX−23FE(25T)[三井化学(株)製]両面銅はく厚さ12μmm
、ポリイミド厚さ25μmに、保護フィルムとして銅はく面をUV照射後剥離型キャリアシートでラミネートし、保護フィルムの表面からUVレーザにより径φ75μmの穴をあけ、ドライデスミア処理実施した。以降、実施例1と同等の工法で穴内を電解銅めっきにより銅が穴を充填するまで実施した。次いで保護フィルムをUV処理により剥離してフィルドビア付き両面金属張積層板を得た。
【0010】
(比較例)
図2−(b)−11に記載した保護フィルムを使用しないでめっきを行ない、両面にある導電はくにめっきが形成され、導電はくの厚さが厚くなること以外は、実施例1と同等の工法で得られたフィルドビア付き両面金属張積層板。
【0011】
なお、実施例及び比較例に従って得られた結果を表1に示す。
実施例1、2及び比較例のフィルドビア付き両面金属張積層板は、金属同士で層間接続部が確実に接合されており、温度サイクル試験では、断線不良の発生がなく、金属接合部の接合状態も良好で、温度サイクル試験後の導通抵抗も変化しなかった。また、熱衝撃試験:260℃オイル⇔常温オイルのサイクル100回以上断線なく、抵抗変化率10%未満であるため、接続部分の不良もなく接続することが出来た。
回路密度については、実施例1及び2において、フィルドビア付き両面金属張積層板は回路巾と回路間隔(以下L/S)が40μm、40μmμmで作成することができた。しかし比較例の場合、図2−(a)−1の銅はくにめっきが付き、めっき後の銅はく厚さが20μmになったことから、L/Sが100μm、100μmまでしかできず、実施例と比較して微細な回路加工はできなかった。
【0012】
【表1】
【0013】
【発明の効果】
本発明に従うと層間接続の信頼性を低下させることなく、回路と部品実装の高密度化に対応した、フィルドビア付き両面金属張積層板を提供することができる。
【図面の簡単な説明】
【図1】一般の層間接続について説明するための断面図をしめす。
【図2】本発明のフィルドビア付き両面金属張積層板を説明するための断面図をしめす。
【符号の説明】
1:導電はく
2:絶縁層
3:貫通穴
4:スルーホールめっき
5:ドライフィルムレジスト
6:スルーホールめっき穴
7:スルーホールランド
8:両面プリント回路基板
9:保護フィルム
10:フィルドビア用穴
11:フィルドビア
12:フィルドビア付き両面金属張積層板
13:フィルドビア付きプリント回路基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a double-sided metal-clad laminate with a filled via for a printed wiring board used as a component of an electronic device, and a method for manufacturing the same.
[0002]
[Prior art]
With the recent increase in the density of electronic devices, printed wiring boards have become finer, and high-density circuit wiring is required, and applications are expanding.
[0003]
In the case of a double-sided metal-clad laminate that is a metal-clad laminate that is a material of a conventional printed wiring board, the double-sided metal-clad laminate has a configuration in which an insulating layer and conductive foil are laminated on both surfaces thereof.
FIG. 1 is a cross-sectional view for explaining a general interlayer connection.
Generally, the electrical connection between the layers is made by drilling a through hole in the double-sided metal-clad laminate with a drill or a laser, and then performing through-hole plating to make the electrical connection. (FIGS. 1 (a) to 1 (c)) However, in this method, plating is formed not only on the wall surface of the through-hole hole but also on both surfaces, so that the thickness of the conductive foil increases. Would. (FIG. 1- (c) -4) Therefore, there is a problem that it is not possible to produce a fine pitch conductor circuit with good yield. In addition, a conductor circuit cannot be provided in the through-hole hole portion (FIG. 1- (e) -6), and restrictions on circuit design are increased. Also, as the number of through-holes increases, the area of the through-hole land required around the through-hole also increases, so that the component mounting density and the circuit density cannot be increased (FIG. 1- (e) -7).
[0004]
[Non-patent document 1]
Kenshi Numakura, "Introduction to High Density Flexible Substrates", First Edition, Nikkan Kogyo Shimbun, December 24, 1998, pp. 117-135.
[Problems to be solved by the invention]
The present invention is intended to solve the problem of high density in a double-sided metal-clad laminate for a printed wiring board. The object of the present invention is to secure double-sided metal with filled vias while ensuring the reliability of interlayer connection. To produce a laminated laminate.
[0006]
[Means for Solving the Problems]
The present invention
(1) A double-sided metal-clad laminate having an insulating layer and conductive foils on both sides thereof, wherein a hole formed in the insulating layer on the lower conductor is plated to be electrically connected to the upper conductor. In the double-sided metal-clad laminate with a filled via having a filled via structure in which the hole is filled with a conductor, and having no structure on the double-sided conductive foil when forming the filled via,
(2) a step of masking a conductive foil layer with a protective film from a metal-clad laminate having conductive foils on both sides, a step of drilling, a step of forming a filled via by plating, and a step of peeling off the protective film A method for manufacturing a double-sided metal-clad laminate with filled vias,
(3) A double-sided metal-clad laminate with filled vias, which is obtained by the method for producing a double-sided metal-clad laminate with filled vias according to (2).
(4) a double-sided printed wiring board with filled vias obtained by using the double-sided metal-clad laminate with filled vias according to
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but these are not limited at all.
FIG. 2 is a cross-sectional view illustrating a double-sided metal-clad laminate with filled vias of the present invention.
As a method for processing a double-sided metal-clad laminate with filled vias, a double-sided metal-clad laminate having a resin such as polyimide or epoxy on an insulating layer having conductive foils on both sides is prepared (FIG. 2- (a)). The conductive foil is masked with a protective film on the double-sided metal-clad laminate. In this case, the material used for the protective film is laminated with a dry film resist. However, as long as the conductive foil has an effect of not being plated, there is no problem if it is formed by printing with ink or the like instead of a film (see FIG. 2- (b)).
Next, a hole is drilled up to the conductive foil insulating layer surface on the opposite side from the protective film surface. When a laser method is used in the drilling step, an opening can be easily formed and a small diameter can be formed (FIG. 2- (c)). Next, it is preferable to remove the resin or resin residue remaining in the holes by a method of wet desmear using an aqueous potassium permanganate solution or an aqueous sodium permanganate solution or dry desmear using plasma, thereby improving the reliability of interlayer connection, which is preferable. .
Next, plating is applied to the inside of the hole to establish conduction. To fill the hole, plating is performed until the hole is filled (FIG. 2- (d)). Then, the protective film is peeled off. By using this double-sided metal-clad laminate with filled vias (FIG. 2- (e), the conductive foil layer is left as it was at the beginning, and the double-sided metal-clad laminate with filled vias in a thin conductive foil state is used. A fine circuit can be created, and the density of component mounting can be increased by providing a component mounting pad on the via (FIG. 2- (f)).
The above is the preparation of the double-sided metal-clad laminate with filled vias. Examples will be described below.
[0008]
【Example】
(Example 1)
As an example, preparation of a double-sided metal-clad laminate with filled vias will be described.
Double-sided copper-clad laminate: NEX-23FE (25T) [manufactured by Mitsui Chemicals, Inc.] Double-sided
A polyimide film having a thickness of 25 μm was laminated with a dry film resist: HR140 (Tokyo Ohka Kogyo Co., Ltd.) as a protective film to protect the copper foil, and a hole having a diameter of φ75 μm was formed from the surface of the protective film by a UV laser. Opening and dry desmear treatment were performed. After the hole was formed, the inside of the hole was subjected to electrolytic copper plating until copper filled the hole. Next, the protective film was peeled off to obtain a double-sided metal-clad laminate with filled vias.
[0009]
(Example 2)
Double-sided copper-clad laminate: NEX-23FE (25T) [manufactured by Mitsui Chemicals, Inc.] Double-sided
Then, a copper foil as a protective film was laminated on a peelable carrier sheet after UV irradiation on a polyimide film having a thickness of 25 μm, a hole having a diameter of φ75 μm was formed from the surface of the protective film by a UV laser, and dry desmear treatment was performed. Thereafter, the inside of the hole was subjected to electrolytic copper plating by the same method as in Example 1 until copper filled the hole. Next, the protective film was peeled off by UV treatment to obtain a double-sided metal-clad laminate with filled vias.
[0010]
(Comparative example)
Plating is performed without using the protective film described in FIG. 2- (b) -11, and the plating is formed on both sides of the conductive foil, and is the same as that of Example 1 except that the thickness of the conductive foil is increased. Double-sided metal-clad laminate with filled vias obtained by the method described above.
[0011]
Table 1 shows the results obtained according to Examples and Comparative Examples.
In the double-sided metal-clad laminates with filled vias of Examples 1 and 2 and Comparative Example, the metal-to-metal connection was reliably bonded at the interlayer connection portion. In the temperature cycle test, there was no disconnection failure and the metal bonding portion was bonded. And the conduction resistance after the temperature cycle test did not change. Thermal shock test: 260 ° C. oil / room temperature oil 100 cycles or more without disconnection and less than 10% change in resistance.
Regarding the circuit density, in Examples 1 and 2, the double-sided metal-clad laminate with filled vias could be formed with a circuit width and a circuit interval (L / S) of 40 μm and 40 μm μm. However, in the case of the comparative example, since the copper foil of FIG. Fine circuit processing could not be performed as compared with the example.
[0012]
[Table 1]
[0013]
【The invention's effect】
According to the present invention, it is possible to provide a double-sided metal-clad laminate with filled vias, which is compatible with high-density circuit and component mounting without lowering the reliability of interlayer connection.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining a general interlayer connection.
FIG. 2 is a cross-sectional view for explaining a double-sided metal-clad laminate with filled vias of the present invention.
[Explanation of symbols]
1: Conductive foil 2: Insulating layer 3: Through hole 4: Through hole plating 5: Dry film resist 6: Through hole plating hole 7: Through hole land 8: Double-sided printed circuit board 9: Protective film 10: Filled via hole 11 : Filled via 12: Double-sided metal-clad laminate with filled via 13: Printed circuit board with filled via
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003066665A JP2004281437A (en) | 2003-03-12 | 2003-03-12 | Double-sided metal-clad laminated board with filled via hole and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003066665A JP2004281437A (en) | 2003-03-12 | 2003-03-12 | Double-sided metal-clad laminated board with filled via hole and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004281437A true JP2004281437A (en) | 2004-10-07 |
Family
ID=33284500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003066665A Pending JP2004281437A (en) | 2003-03-12 | 2003-03-12 | Double-sided metal-clad laminated board with filled via hole and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004281437A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100784127B1 (en) | 2005-12-13 | 2007-12-12 | 전자부품연구원 | Method Of Fabricating Multiple-layer Printed Circuit Board |
US7825340B2 (en) | 2007-11-26 | 2010-11-02 | Sharp Kabushiki Kaisha | Double-sided wiring board, manufacturing method of double-sided wiring board, and mounting double-sided wiring board |
KR101761163B1 (en) * | 2014-02-21 | 2017-07-25 | 미쓰이금속광업주식회사 | Protective layer-equipped copper-clad laminate and multilayer printed wiring board |
US11197379B2 (en) * | 2017-03-31 | 2021-12-07 | Mitsubishi Gas Chemical Company, Inc. | Method for producing printed wiring board |
-
2003
- 2003-03-12 JP JP2003066665A patent/JP2004281437A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100784127B1 (en) | 2005-12-13 | 2007-12-12 | 전자부품연구원 | Method Of Fabricating Multiple-layer Printed Circuit Board |
US7825340B2 (en) | 2007-11-26 | 2010-11-02 | Sharp Kabushiki Kaisha | Double-sided wiring board, manufacturing method of double-sided wiring board, and mounting double-sided wiring board |
KR101761163B1 (en) * | 2014-02-21 | 2017-07-25 | 미쓰이금속광업주식회사 | Protective layer-equipped copper-clad laminate and multilayer printed wiring board |
KR20170086697A (en) * | 2014-02-21 | 2017-07-26 | 미쓰이금속광업주식회사 | Protective layer-equipped copper-clad laminate and multilayer printed wiring board |
US10244640B2 (en) | 2014-02-21 | 2019-03-26 | Mitsui Mining & Smelting Co., Ltd. | Copper clad laminate provided with protective layer and multilayered printed wiring board |
KR101975132B1 (en) * | 2014-02-21 | 2019-05-03 | 미쓰이금속광업주식회사 | Protective layer-equipped copper-clad laminate and multilayer printed wiring board |
US11197379B2 (en) * | 2017-03-31 | 2021-12-07 | Mitsubishi Gas Chemical Company, Inc. | Method for producing printed wiring board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4767269B2 (en) | Method for manufacturing printed circuit board | |
JP2007184568A (en) | Circuit board manufacturing method | |
KR100747022B1 (en) | Imbedded circuit board and fabricating method therefore | |
JP2010232249A (en) | Multilayer printed wiring board and manufacturing method of the same | |
KR100965341B1 (en) | Method of Fabricating Printed Circuit Board | |
KR101055558B1 (en) | Heat radiation board and its manufacturing method | |
JP4485975B2 (en) | Manufacturing method of multilayer flexible circuit wiring board | |
JP2006287007A (en) | Multilayer printed circuit board and its manufacturing method | |
JP2004281437A (en) | Double-sided metal-clad laminated board with filled via hole and its manufacturing method | |
JP2013187458A (en) | Method for manufacturing multilayer printed wiring board and multilayer printed wiring board | |
KR20100109699A (en) | Method of manufacturing a printed circuit board | |
JP2006165242A (en) | Printed-wiring board and its manufacturing method | |
JP2008016805A (en) | Printed circuit board, and method of manufacturing the same | |
JP2007207897A (en) | Printed circuit board including end surface through-hole | |
JPH10261854A (en) | Printed wiring board and manufacturing method thereof | |
JP4802402B2 (en) | High-density multilayer build-up wiring board and manufacturing method thereof | |
JP3905802B2 (en) | Printed wiring board and manufacturing method thereof | |
JP2924194B2 (en) | Multilayer printed wiring board | |
JP2004047587A (en) | Method for manufacturing wiring circuit board, and wiring circuit board | |
JP4347143B2 (en) | Circuit board and manufacturing method thereof | |
CN101641461A (en) | Multilayer printed wiring boards with copper filled through-holes | |
KR100632579B1 (en) | How to Form Via Holes in Printed Circuit Boards | |
KR20170098239A (en) | Hole plug for thin laminate | |
JP4302045B2 (en) | Multilayer flexible circuit wiring board and manufacturing method thereof | |
JP2002043741A (en) | Manufacturing method of printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20051108 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20070423 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070508 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070704 |
|
A02 | Decision of refusal |
Effective date: 20070731 Free format text: JAPANESE INTERMEDIATE CODE: A02 |
|
A521 | Written amendment |
Effective date: 20070920 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071126 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Effective date: 20071130 Free format text: JAPANESE INTERMEDIATE CODE: A911 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20080208 Free format text: JAPANESE INTERMEDIATE CODE: A912 |