JP2004281427A - Three-dimensional circuit board and method of manufacturing the same - Google Patents

Three-dimensional circuit board and method of manufacturing the same Download PDF

Info

Publication number
JP2004281427A
JP2004281427A JP2003066511A JP2003066511A JP2004281427A JP 2004281427 A JP2004281427 A JP 2004281427A JP 2003066511 A JP2003066511 A JP 2003066511A JP 2003066511 A JP2003066511 A JP 2003066511A JP 2004281427 A JP2004281427 A JP 2004281427A
Authority
JP
Japan
Prior art keywords
groove
circuit board
dielectric substrate
conductive layer
dimensional circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003066511A
Other languages
Japanese (ja)
Inventor
Naoshi Yamada
直志 山田
Osamu Murakami
治 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003066511A priority Critical patent/JP2004281427A/en
Publication of JP2004281427A publication Critical patent/JP2004281427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely obtain a desired circuit pattern and, in addition, to reduce the transmission loss of high-frequency electric signals while the manufacturing process of a three-dimensional circuit board is simplified and the manufacturing cost of the circuit board is reduced. <P>SOLUTION: A dielectric substrate 1 having grooves 5 along both sides of a prescribed surface portion 1a on its main surface 1A is formed by injection molding a synthetic resin material by using metal molds, and a resin mask 2 composed of a hydrolytic macromolecular material is formed to expose the prescribed surface portion 1a and side walls 5a and bottom edges 5b of the grooves 5 formed continuously from the portion 1a and to cover the other surface of the substrate 1. Successively, the resin mask 2 is coated with a conductive layer 3 and the resin mask 2 is removed together with the conductive film 3 coating the surface of the mask 2. Consequently, the manufacturing process of a three-dimensional circuit board can be simplified and the manufacturing cost of the board can be reduced, because the formation of the wiring 3a and the removal of the mask 2 can be performed in the same step. In addition, the transmission loss of the high-frequency electric signals caused by the interference of electric fields can be reduced, because two adjacent wiring 3a are certainly insulated from each other by the grooves 5 at the time of transmitting the signals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば携帯電話等の移動通信装置、GPS装置、ITS装置、無線LANに使用される誘電体アンテナ等のような立体回路基板の製造方法及び立体回路基板に関する。
【0002】
【従来の技術】
従来から合成樹脂の立体成形品である誘電体基体の表面上に、導電性材料からなる所定パターンの導電層(配線)を形成する種々の方法が提案されている。例えば特許文献1の図2では、誘電体基体材料に無電解めっきに対する触媒をあらかじめ混入しておき、誘電体基体を成形した後、導電層が形成されるべき表面部分を露出させ、これ以外の表面部分を覆うように加水分解性高分子材料の樹脂マスクを形成し、この樹脂マスク及びこの樹脂マスクから露出している誘電体基体の全表面を粗面化処理し、粗面化した表面に導電層を無電解めっきにより形成した後、樹脂マスクを除去する方法が提示されている。この方法では、触媒処理を不要にして製造工程を簡略化し、環境問題の発生を予防している。また、特許文献2では、合成樹脂を射出成形して得られた(一次モールド工程)立体成形品の表面に導電膜を被覆した後、所定のパターン配線が形成されるべき箇所にエッチングレジストとなるアルカリ可溶の合成樹脂を金型を用いて射出成形し(二次モールド工程)、この合成樹脂をマスクとして導電層の不要な部分をエッチングにより除去し、その後、レジストをアルカリ溶解液で溶解除去することで、立体成形品にパターン配線を形成する方法が提示されている。この方法では、立体回路の低コスト化と配線密度の向上を図っている。
【0003】
【特許文献1】
特開2001−308497号公報(図2)
【特許文献2】
特開平11−307909号公報(図1)
【0004】
【発明が解決しようとする課題】
しかしながら、特許文献1に示す立体回路基板の製造方法では、導電層の形成が無電解めっきに限定され、誘電体基体の材料に無電解めっきに対する触媒を混入する必要があるため、基板の高周波数領域における誘電特性などの電気特性が低下したり、パラジウム等の高価な触媒を使うため材料コストが高くなるという課題があった。また、導電層と誘電体基体との密着力にばらつきがあり、樹脂マスクを除去する際にパターン配線の一部が剥がれてしまい、所定のパターンが得られなくなるという課題があった。一方、特許文献2に示す立体回路基板の製造方法では、一次モールド工程にて成形された誘電体基体表面に導電膜を被覆した後二次モールド工程を行うため、二次モールド工程において十分な位置決め精度が得られなかったり、導電膜が損傷したり、工程が複雑になるという課題があった。
【0005】
本発明は、上記のような問題点を解消するためになされたもので、立体回路基板の製造工程の簡略化、低コスト化を図りながら、所望の回路パターンを確実に得ることを目的とする。
【0006】
また、誘電体基体と回路パターンの密着力が強く、さらに高周波数の電気信号を伝送する際の伝送損失の低減が可能な立体回路基板を得ることを目的とする。
【0007】
【課題を解決するための手段】
本発明に係わる立体回路基板の製造方法は、主表面上の所定表面部分の少なくとも一側に沿って溝部を有する誘電体基体を、合成樹脂材料により金型を用いて射出形成する第1の工程と、所定表面部分と、この所定表面部分に続く溝部の溝側壁とこの溝側壁に続く溝底縁とを露出させ、それ以外の前記溝部と主表面を覆うように加水分解性高分子材料の樹脂マスクを被着する第2の工程と、所定表面部分と溝側壁と溝底縁および樹脂マスクの表面に導電層を被覆する第3の工程と、樹脂マスクをその表面に被覆した導電層とともに除去する第4の工程とを含んだ立体回路基板の製造方法である。
この発明の立体回路基板の製造方法によれば、所定パターンの導電層の形成と樹脂マスクの除去を同一工程(第4の工程)で実施することができ、製造工程の簡略化及び低コスト化が図られる。また、所定表面部分と溝側壁、溝底縁にまたがる導電層は誘電体基体と強く密着しているので、第4の工程において樹脂マスクをその表面に被覆した導電層とともに除去する際に所定表面部分の導電層が剥離するのを防ぐことができ、所望の回路パターンを確実に得ることができる。
【0008】
また、本発明に係わる立体回路基板は、合成樹脂材料からなる誘電体基体の主表面上に、導電性材料からなる所定パターンの導電層が形成された立体回路基板において、主表面には、その所定表面部分の少なくとも一側に溝部が形成され、導電層が所定表面部分と、この所定表面部分に続く溝部の溝側壁と、この溝側壁に続く溝底縁とを覆うように形成された導電条を含んだものである。
この発明の立体回路基板では、この所定表面部分と溝側壁、溝底縁にまたがる導電条は誘電体基体との密着力が強く、信頼性の高いものである。また、隣接する導電条の相互間に溝部がある場合、各導電条の絶縁が確実となり、高周波数の電気信号を伝送する際に電界の干渉による伝送損失を低減することが可能である。
【0009】
【発明の実施の形態】
実施の形態1.
以下に、本発明の実施の形態を図面に基づいて説明する。図1は、本発明の実施の形態1による立体回路基板をその製造工程に従って示す断面図である。まず、第1の工程として、図1(a)に示すように、上側の主表面1A上の所定表面部分1aの両側に沿って溝部5を有する誘電体基体1を合成樹脂材料により金型を用いて射出成形する(一次モールド工程)。この誘電体基体1の材料である合成樹脂は熱可塑性材料から選択され、例えば、低誘電損失、低誘電率特性に優れるシクロオレフィン系ポリマー(商品名:ゼオネックス、日本ゼオン株式会社製)が用いられる。本実施の形態では、溝部5は、誘電体基体1の主表面1Aのうち、後に所定パターンの導電条(配線)3a(図1(d)参照)が形成されるべき所定表面部分1aの両側に沿って設けられ、その寸法は幅w0.01〜1.0mm、深さd0.01〜3.0mmとする。
【0010】
次に、第2の工程として、図1(b)に示すように、誘電体基体1の表面のうち、所定表面部分1aと、この所定表面部分1aに続く溝部5の溝側壁5aとこの溝側壁5aに続く溝底縁5bとを露出させ、それ以外の溝部5と主表面1Aを含む誘電体基体1の全表面部分を覆うように樹脂マスク2を形成する(二次モールド工程)。この樹脂マスク2の材料としては、例えば水溶性高分子材料であるポリビニルアルコール樹脂(商品名:クラレポバールCP、株式会社クラレ製)が用いられ、金型を用いた射出成形により所定の形状に成形される。
続いて、第3の工程として、図1(c)に示すように、イオンプレーティングによって所定表面部分1aと溝側壁5aと溝底縁5b、および樹脂マスク2の表面に、例えば銅からなる導電層3を被覆する(導電層被覆工程)。なお、イオンプレーティングを行う前に、誘電体基体1及び樹脂マスク2の表面にアルゴン等の不活性ガス雰囲気下でプラズマ処理を行うことによって、導電層3と誘電体基体1の密着力を向上することができる。
【0011】
最後に、第4の工程として、図1(d)に示すように、樹脂マスク2および導電層3に覆われた誘電体基体1を20℃〜95℃の水に1〜240分間浸漬することにより、誘電体基体1から水溶性の樹脂マスク2をその表面に被覆した導電層3とともに除去する(回路パターン形成工程)。この際、超音波を当てることによって誘電体基体1から樹脂マスク2を速やかに除去することができる。これにより、樹脂マスク2を覆う導電層3は、樹脂マスク2の溶解とともに誘電体基体1から除去され、誘電体基体1の主表面1A上に所定パターンを持った導電層3が形成される。この導電層3は、図1の例では、2つの隣接する導電条3aを含み、この各導電条3aは所定表面部分1aと、それに続く溝部5の溝側壁5aと、この溝側壁5aに続く溝底縁5bを直接被覆している。すなわち、導電条3aは、誘電体基体1の所定表面部分1aとその両側の溝側壁5aおよび溝底縁5bにまたがって形成されており、言い換えれば溝部5の底部より突出した凸部を完全に覆うように設けられている。この導電条3aは、立体回路の配線を構成する。
【0012】
以上のように、実施の形態1では、主表面1A上の所定表面部分1aの両側に沿って溝部5を有する誘電体基体1を、合成樹脂材料により金型を用いて射出形成する第1の工程と、所定表面部分1aとこの所定表面部分1aに続く溝部5の溝側壁5aとこの溝側壁5aに続く溝底縁5bとを露出させ、それ以外の溝部5と少なくとも主表面1Aを覆うように加水分解性高分子材料の樹脂マスク2を被着する第2の工程と、所定表面部分1aと溝側壁5aと溝底縁5bおよび樹脂マスク2の表面に導電層3を被覆する第3の工程と、樹脂マスク2をその表面に被覆した導電層3とともに除去する第4の工程とを含むことを特徴とする。
この実施の形態1の製造方法において、所定パターンの導電層3の形成と樹脂マスク2の除去を同じ第4の工程で実施することができ、高価な触媒を混入する必要もないため、従来方式よりも製造工程の簡略化及び低コスト化が図られる。また、導電条(配線)3aは、誘電体基体1の所定表面部分1aとその両側の溝側壁5aおよび底縁5bにまたがって形成されているため、誘電体基体1との密着力が強く、第4の工程において樹脂マスク2とともに不要な導電層3を除去する際にも配線3a部分が剥離するのを防ぐことができ、所望の回路パターンを確実に得ることができる。また、誘電体基体1は、熱可塑性材料から選択されたものであるため、金型を用いた射出形成により所望の形状の誘電体基体1を容易に作成することができる。さらに、樹脂マスク2として、ポリビニルアルコール樹脂を用いることにより、第4の工程において誘電体基体1を20℃〜95℃の水に1〜240分間浸漬するという簡単な作業で誘電体基体1から樹脂マスク2をその表面に被覆した導電層3とともに容易に除去することができる。
【0013】
さらに、実施の形態1の製造方法によって得られる立体回路基板は、合成樹脂材料からなる誘電体基体1の主表面1A上に導電性材料からなる所定パターンの導電層が形成された立体回路基板において、主表面1Aには、その所定表面部分1aの両側に溝部5が形成され、所定パターンの導電層が所定表面部分1aと、この所定表面部分1aに続く溝部5の溝側壁5aと、この溝側壁5aに続く溝底縁5bとを覆うように形成された導電条3aを含んでいるので、誘電体基体1と導電条3aの密着力が強く信頼性の高い立体回路基板が得られる。また、所定パターンの配線3aが少なくとも2つの隣接する配線3aを含み、幅0.01〜1.0mm、深さ0.01〜3.0mmを有する溝部5が少なくともこの2つの配線3aの相互間に設けられているので、例えば0.1〜100GHzの高周波数の電気信号を伝送する際に、2つの隣接する配線3a間の比誘電率=1と小さくすることができ、絶縁が確実となり、電界の干渉による伝送損失を低減できる。
【0014】
実施の形態2.
図2は、本発明の実施の形態2による立体回路基板をその製造工程に従って示す断面図である。まず、第1の工程として、図2(a)に示すように、主表面1A上の所定表面部分1aの両側に沿って溝部5を有する誘電体基体1を合成樹脂材料により金型を用いて射出成形する(一次モールド工程)。この誘電体基体1の材料である合成樹脂としては例えば、耐熱性、強度に優れる熱可塑性の液晶ポリマー(商品名:ベクトラ、ポリプラスチックス株式会社製)が用いられる。溝部5は、誘電体基体1の主表面1Aのうち、後に所定パターンの導電条(配線)3a(図2(e)参照)が形成されるべき所定表面部分1aの両側に沿って設けられ、その寸法は幅w0.01〜1.0mm、深さd0.01〜3.0mmとする。
次に、第2の工程として、図2(b)に示すように、誘電体基体1の表面のうち、所定表面部分1aと、この所定表面部分1aに続く溝部5の溝側壁5aとこの溝側壁5aに続く溝底縁5bとを露出させ、それ以外の溝部5と、主表面1Aを含む誘電体基体1の全表面を覆うように樹脂マスク2を形成する(二次モールド工程)。この樹脂マスク2の材料としては、例えば水溶性高分子材料であるポリビニルアルコール樹脂(商品名:クラレポバールCP、株式会社クラレ製)が用いられ、金型を用いた射出成形により所定の形状に成形される。
【0015】
続いて、第3の工程として、図2(c)に示すように、後の第4の工程で形成される導電層3の成膜前処理を行う。樹脂マスク2から露出した誘電体基体1の表面部分及び樹脂マスク2の表面にシラン系カップリング剤よりなるプライマー4を1〜10μmの厚さで塗布する。なお、プライマー4としてはシラン系カップリング剤の他に、ウレタンポリマー、イソシアネート、ニトロフェノール、塩素化ポリマー等を使用できる。次に、第4の工程として、図2(d)に示すように、イオンプレーティングによってプライマー4の表面に例えば銅からなる導電層3を被覆する(導電層被覆工程)。
最後に、第5の工程として、図2(e)に示すように、樹脂マスク2、プライマー4および導電層3に覆われた誘電体基体1を20℃〜95℃の水に1〜240分間浸漬することにより、誘電体基体1から水溶性の樹脂マスク2をその表面に被覆した導電層3とともに除去する(回路パターン形成工程)。この際、超音波を当てることによって誘電体基体1から樹脂マスク2を速やかに除去することができる。これにより、樹脂マスク2を覆う導電層3は樹脂マスク2の溶解とともに誘電体基体1から除去され、誘電体基体1の所定表面部分1aと溝側壁5aと溝底縁5bを直接被覆しているプライマー4の部分4aおよび導電層3により形成された所定パターンの導電条(配線)3aが誘電体基体1表面に残る。
以上のように、実施の形態2によれば、上記実施の形態1と同様の効果に加え、プライマー4を塗布することにより誘電体基体1の導電条(配線)3aの密着力をさらに向上することができる。
【0016】
実施の形態3.
図3は、本発明の実施の形態3による立体回路基板をその製造工程に従って示す断面図である。まず、第1の工程として、図3(a)に示すように、主表面1A上の所定表面部分1aの両側に沿って溝部5を有する誘電体基体1を合成樹脂材料により金型を用いて射出成形する(一次モールド工程)。この誘電体基体1の材料である合成樹脂としては、例えばシクロオレフィン系ポリマー(商品名:ゼオネックス、日本ゼオン株式会社製)のめっきグレードが用いられる。溝部5は、誘電体基体1の主表面1Aのうち、後に所定パターンの導電条(配線)3a(図3(e)参照)が形成されるべき所定表面部分1aの両側に沿って設けられ、その寸法は幅w0.01〜1.0mm、深さd0.01〜3.0mmとする。
次に、第2の工程として、図3(b)に示すように、誘電体基体1の表面のうち、所定表面部分1aと、この所定表面部分1aに続く溝部5の溝側壁5aとこの溝側壁5aに続く溝底縁5bとを露出させ、それ以外の溝部5と、主表面1Aを含む誘電体基体1の全表面を覆うように樹脂マスク2を形成する(二次モールド工程)。この樹脂マスク2の材料としては、例えば水溶性高分子材料であるポリビニルアルコール樹脂(商品名:クラレポバールCP、株式会社クラレ製)が用いられ、金型を用いた射出成形により所定の形状に成形される。
【0017】
続いて、第3の工程として、図3(c)に示すように、樹脂マスク2より露出している誘電体基体1および樹脂マスク2の表面に粗面化処理層6を形成する(化学エッチング工程)。この粗面化処理層6は、例えばエッチング液として、クロム酸/硫酸混合溶液(混合比1:5)を用い、このエッチング液に、樹脂マスク2が形成された誘電体基体1を浸漬することにより形成される。次に、第4の工程として、図3(d)に示すように、粗面化処理層6を形成した所定表面部分1aと溝側壁5aと溝底縁5bおよび樹脂マスク2の表面にめっき触媒(パラジウム塩)を塗布し、無電解めっきによって銅からなる導電層3を被覆する(導電層被覆工程)。最後に、第5の工程として、図3(e)に示すように、樹脂マスク2および導電層3に覆われた誘電体基体1を20℃〜95℃の水に1〜240分間浸漬することにより、誘電体基体1から水溶性の樹脂マスク2をその表面に被覆した導電層3とともに除去する(回路パターン形成工程)。この際、超音波を当てることによって誘電体基体1から樹脂マスク2を速やかに除去することができる。これにより、樹脂マスク2を覆う導電層3は樹脂マスク2の溶解とともに誘電体基体1から除去され、粗面化処理層6の部分6a上に形成した所定表面部分1aと溝側壁5aと溝底縁5bを直接被覆している導電条(配線)3aが誘電体基体1表面に残る。
【0018】
以上のように、実施の形態3においても、所定の回路パターンの形成と樹脂マスク2の除去を同一工程で実施することができ、また、上記実施の形態1および実施の形態2と同様に溝部5が設けられているため、誘電体基体1と配線3aの密着力が強く信頼性の高い立体回路基板が得られ、高周波数の電気信号を伝送する際の伝送損失を低減できる。また、本発明によれば、上記実施の形態1〜実施の形態3に示すように、導電層3の形成方法としてイオンプレーティングや無電解めっきを選択することができ、いずれの場合も溝部5の効果により不要な導電層3を樹脂マスク2とともに除去する際に、導電層(配線)3aが剥離するのを防ぐことができるので、所望の回路パターンが確実に得られる。
【0019】
なお、上記実施の形態1〜実施の形態3では、誘電体基体1の主表面1Aにおいて、その所定表面部分1aの両側に溝部5を形成したが、溝部5を所定表面部分1aの両側に設けることが困難な場合は、所定表面部分1aの一側に形成しても良い。この場合でも誘電体基体1と導電条(配線)3aの密着力向上の効果は得られる。ただし、高周波数の電気信号を伝送する際の伝送損失の低減を図るためには、2つの隣接する導電条(配線)3aの相互間に溝部5を設ける必要がある。また、誘電体基体1の材料としては、シクロオレフィン系ポリマーや液晶ポリマーの他に、シンジオタクティックポリスチレン、ポリフェニルサルファイド樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂等を用いてもよい。
【0020】
【発明の効果】
以上のように、本発明の立体回路基板の製造方法によれば、所定パターンの導電層の形成と樹脂マスクの除去を同一工程で実施することができ、製造工程の簡略化及び低コスト化を図ることができる。また、所定表面部分の導電層は溝側壁と溝底縁によって誘電体基体と強く密着しているので、樹脂マスクをその表面に被覆した導電層とともに除去する際に所定表面部分の導電層が剥離するのを防ぐことができ、所望の回路パターンを確実に得ることができる。
【0021】
また、本発明の立体回路基板によれば、誘電体基体と所定表面部分の導電層との密着力が溝側壁と溝底縁により強化され、信頼性の高い立体回路基板が得られる。さらに、溝部により隣接する導電条相互間の絶縁が確実となり、高周波数の電気信号を伝送する際に電界の干渉による伝送損失を低減することが可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態1である立体回路基板をその製造工程に従って示す断面図である。
【図2】本発明の実施の形態2である立体回路基板をその製造工程に従って示す断面図である。
【図3】本発明の実施の形態3である立体回路基板をその製造工程に従って示す断面図である。
【符号の説明】
1 誘電体基体、1A 主面、1a 所定表面部分、2 樹脂マスク、3 導電層、3a 所定パターンの導電条(配線)、4 プライマー、5 溝部、
5a 溝側壁、5b 溝底縁、6 粗面化処理層。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a three-dimensional circuit board such as a mobile communication device such as a mobile phone, a GPS device, an ITS device, and a dielectric antenna used for a wireless LAN, and a three-dimensional circuit board.
[0002]
[Prior art]
Conventionally, various methods have been proposed for forming a conductive layer (wiring) of a predetermined pattern made of a conductive material on the surface of a dielectric substrate which is a three-dimensional molded product of a synthetic resin. For example, in FIG. 2 of Patent Document 1, a catalyst for electroless plating is previously mixed into a dielectric substrate material, and after the dielectric substrate is molded, a surface portion where a conductive layer is to be formed is exposed. A resin mask of a hydrolyzable polymer material is formed so as to cover the surface portion, and the entire surface of the resin mask and the dielectric substrate exposed from the resin mask is subjected to a surface roughening treatment. A method of removing a resin mask after forming a conductive layer by electroless plating has been proposed. This method simplifies the manufacturing process by eliminating the need for a catalyst treatment, thereby preventing the occurrence of environmental problems. Further, in Patent Document 2, after a conductive film is coated on the surface of a three-dimensional molded product obtained by injection molding of a synthetic resin (primary molding step), an etching resist is formed at a position where a predetermined pattern wiring is to be formed. An alkali-soluble synthetic resin is injection-molded using a mold (second molding step), and unnecessary portions of the conductive layer are removed by etching using the synthetic resin as a mask, and then the resist is dissolved and removed with an alkaline solution. Thus, a method of forming a pattern wiring on a three-dimensional molded product has been proposed. In this method, the cost of the three-dimensional circuit is reduced and the wiring density is improved.
[0003]
[Patent Document 1]
JP 2001-308497 A (FIG. 2)
[Patent Document 2]
JP-A-11-307909 (FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in the method of manufacturing a three-dimensional circuit board disclosed in Patent Document 1, the formation of the conductive layer is limited to electroless plating, and it is necessary to mix a catalyst for electroless plating into the material of the dielectric substrate. There have been problems in that electric characteristics such as dielectric characteristics in the region are reduced, and material costs are increased due to the use of expensive catalysts such as palladium. In addition, there is a problem in that the adhesion between the conductive layer and the dielectric substrate varies, and when the resin mask is removed, a part of the pattern wiring is peeled off, and a predetermined pattern cannot be obtained. On the other hand, in the method for manufacturing a three-dimensional circuit board disclosed in Patent Document 2, since a conductive film is coated on the surface of the dielectric substrate formed in the primary molding step, the secondary molding step is performed, so that sufficient positioning is performed in the secondary molding step. There were problems that accuracy could not be obtained, the conductive film was damaged, and the process became complicated.
[0005]
The present invention has been made in order to solve the above problems, and has as its object to reliably obtain a desired circuit pattern while simplifying the manufacturing process of a three-dimensional circuit board and reducing the cost. .
[0006]
It is another object of the present invention to provide a three-dimensional circuit board having a strong adhesion between a dielectric substrate and a circuit pattern and capable of reducing transmission loss when transmitting a high-frequency electric signal.
[0007]
[Means for Solving the Problems]
A method of manufacturing a three-dimensional circuit board according to the present invention includes a first step of injection-forming a dielectric substrate having a groove along at least one side of a predetermined surface portion on a main surface using a synthetic resin material by using a mold. A predetermined surface portion, a groove side wall of the groove portion following the predetermined surface portion, and a groove bottom edge following the groove side wall are exposed, and the other hydrolyzable polymer material is covered so as to cover the groove portion and the main surface. A second step of applying a resin mask, a third step of coating a predetermined surface portion, a groove side wall, a groove bottom edge, and a surface of the resin mask with a conductive layer, and a conductive layer having the resin mask coated on the surface. And a fourth step of removing the three-dimensional circuit board.
According to the method of manufacturing a three-dimensional circuit board of the present invention, formation of a conductive layer having a predetermined pattern and removal of a resin mask can be performed in the same step (fourth step), thereby simplifying the manufacturing steps and reducing costs. Is achieved. In addition, since the conductive layer straddling the predetermined surface portion, the groove side wall, and the groove bottom edge is strongly adhered to the dielectric substrate, the resin mask is removed together with the conductive layer covering the surface in the fourth step. A portion of the conductive layer can be prevented from peeling off, and a desired circuit pattern can be reliably obtained.
[0008]
Further, the three-dimensional circuit board according to the present invention is a three-dimensional circuit board in which a conductive layer of a predetermined pattern made of a conductive material is formed on a main surface of a dielectric base made of a synthetic resin material. A groove is formed on at least one side of the predetermined surface portion, and a conductive layer is formed so as to cover the predetermined surface portion, the groove side wall of the groove portion following the predetermined surface portion, and the groove bottom edge following the groove side wall. Articles are included.
In the three-dimensional circuit board according to the present invention, the conductive strip extending over the predetermined surface portion, the groove side wall, and the groove bottom edge has high adhesion to the dielectric substrate and is highly reliable. When there is a groove between adjacent conductive strips, insulation of each conductive strip is ensured, and transmission loss due to electric field interference when transmitting a high-frequency electric signal can be reduced.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a three-dimensional circuit board according to a first embodiment of the present invention in accordance with the manufacturing process. First, as a first step, as shown in FIG. 1A, a dielectric substrate 1 having grooves 5 along both sides of a predetermined surface portion 1a on an upper main surface 1A is molded by a synthetic resin material. And injection molding (primary molding step). The synthetic resin that is the material of the dielectric substrate 1 is selected from thermoplastic materials. For example, a cycloolefin-based polymer (trade name: ZEONEX, manufactured by Zeon Corporation) having excellent low dielectric loss and low dielectric constant characteristics is used. . In the present embodiment, grooves 5 are formed on both sides of predetermined surface portion 1a of main surface 1A of dielectric substrate 1 on which conductive stripes (wirings) 3a having a predetermined pattern are to be formed later (see FIG. 1D). The dimensions are width w0.01 to 1.0 mm and depth d0.01 to 3.0 mm.
[0010]
Next, as a second step, as shown in FIG. 1B, a predetermined surface portion 1a, a groove side wall 5a of the groove portion 5 following the predetermined surface portion 1a, and the groove The resin mask 2 is formed so as to expose the groove bottom edge 5b following the side wall 5a and to cover the other surface of the dielectric substrate 1 including the groove 5 and the main surface 1A (secondary molding step). As a material of the resin mask 2, for example, a polyvinyl alcohol resin (trade name: Kuraray Poval CP, manufactured by Kuraray Co., Ltd.) which is a water-soluble polymer material is used, and is formed into a predetermined shape by injection molding using a mold. Is done.
Subsequently, as shown in FIG. 1 (c), as shown in FIG. 1 (c), the predetermined surface portion 1a, the groove side wall 5a, the groove bottom edge 5b, and the surface of the resin mask 2 are formed by ion plating. The layer 3 is coated (conductive layer coating step). Before the ion plating, the adhesion between the conductive layer 3 and the dielectric substrate 1 is improved by performing a plasma treatment on the surfaces of the dielectric substrate 1 and the resin mask 2 in an atmosphere of an inert gas such as argon. can do.
[0011]
Finally, as a fourth step, as shown in FIG. 1D, the dielectric substrate 1 covered with the resin mask 2 and the conductive layer 3 is immersed in water at 20 ° C. to 95 ° C. for 1 to 240 minutes. As a result, the water-soluble resin mask 2 is removed from the dielectric substrate 1 together with the conductive layer 3 covering the surface thereof (circuit pattern forming step). At this time, the resin mask 2 can be quickly removed from the dielectric substrate 1 by applying ultrasonic waves. As a result, the conductive layer 3 covering the resin mask 2 is removed from the dielectric substrate 1 along with the dissolution of the resin mask 2, and the conductive layer 3 having a predetermined pattern is formed on the main surface 1A of the dielectric substrate 1. In the example of FIG. 1, the conductive layer 3 includes two adjacent conductive strips 3a, each conductive strip 3a having a predetermined surface portion 1a, a groove side wall 5a of a groove portion 5 following the predetermined surface portion 1a, and a groove side wall 5a. The groove bottom edge 5b is directly covered. That is, the conductive strip 3a is formed over the predetermined surface portion 1a of the dielectric substrate 1 and the groove side walls 5a and the groove bottom edge 5b on both sides thereof. In other words, the protrusion protruding from the bottom of the groove 5 is completely formed. It is provided to cover. The conductive strip 3a forms a wiring of the three-dimensional circuit.
[0012]
As described above, in the first embodiment, the dielectric substrate 1 having the grooves 5 along both sides of the predetermined surface portion 1a on the main surface 1A is formed by injection molding the synthetic resin material using the mold. A step of exposing a predetermined surface portion 1a, a groove side wall 5a of the groove portion 5 following the predetermined surface portion 1a, and a groove bottom edge 5b following the groove side wall 5a, and covering the other groove portions 5 and at least the main surface 1A. A second step of applying a resin mask 2 of a hydrolyzable polymer material to the surface, a third step of coating the conductive layer 3 on the predetermined surface portion 1a, the groove side wall 5a, the groove bottom edge 5b, and the surface of the resin mask 2. And a fourth step of removing the resin mask 2 together with the conductive layer 3 covering the surface thereof.
In the manufacturing method of the first embodiment, the formation of the conductive layer 3 having a predetermined pattern and the removal of the resin mask 2 can be performed in the same fourth step, and it is not necessary to mix an expensive catalyst. This simplifies the manufacturing process and reduces the cost. Further, since the conductive strips (wirings) 3a are formed over the predetermined surface portion 1a of the dielectric substrate 1 and the groove side walls 5a and the bottom edge 5b on both sides thereof, the adhesive force with the dielectric substrate 1 is strong, Even when the unnecessary conductive layer 3 is removed together with the resin mask 2 in the fourth step, the wiring 3a can be prevented from peeling off, and a desired circuit pattern can be reliably obtained. Further, since the dielectric substrate 1 is selected from a thermoplastic material, the dielectric substrate 1 having a desired shape can be easily formed by injection molding using a mold. Further, by using a polyvinyl alcohol resin as the resin mask 2, the dielectric substrate 1 is immersed in water at 20 ° C. to 95 ° C. for 1 to 240 minutes in the fourth step. The mask 2 can be easily removed together with the conductive layer 3 covering the surface.
[0013]
Further, the three-dimensional circuit board obtained by the manufacturing method of the first embodiment is a three-dimensional circuit board in which a conductive layer of a predetermined pattern made of a conductive material is formed on main surface 1A of dielectric substrate 1 made of a synthetic resin material. On the main surface 1A, grooves 5 are formed on both sides of the predetermined surface portion 1a. A conductive layer having a predetermined pattern has a predetermined surface portion 1a, a groove side wall 5a of the groove portion 5 following the predetermined surface portion 1a, and a groove. Since the conductive strip 3a is formed so as to cover the groove bottom edge 5b following the side wall 5a, a highly reliable three-dimensional circuit board having strong adhesion between the dielectric substrate 1 and the conductive strip 3a can be obtained. Further, the wiring 3a of the predetermined pattern includes at least two adjacent wirings 3a, and a groove 5 having a width of 0.01 to 1.0 mm and a depth of 0.01 to 3.0 mm is formed at least between the two wirings 3a. Therefore, when transmitting a high-frequency electric signal of, for example, 0.1 to 100 GHz, the relative dielectric constant between two adjacent wirings 3a can be reduced to 1, and insulation is ensured. Transmission loss due to electric field interference can be reduced.
[0014]
Embodiment 2 FIG.
FIG. 2 is a sectional view showing a three-dimensional circuit board according to a second embodiment of the present invention in accordance with the manufacturing process. First, as a first step, as shown in FIG. 2A, a dielectric substrate 1 having grooves 5 along both sides of a predetermined surface portion 1a on a main surface 1A is formed using a synthetic resin material by using a mold. Injection molding (primary molding step). As a synthetic resin as a material of the dielectric substrate 1, for example, a thermoplastic liquid crystal polymer (trade name: Vectra, manufactured by Polyplastics Co., Ltd.) having excellent heat resistance and strength is used. The grooves 5 are provided along both sides of a predetermined surface portion 1a on which a conductive strip (wiring) 3a (see FIG. 2E) of a predetermined pattern is to be formed later on the main surface 1A of the dielectric substrate 1, The dimensions are 0.01 to 1.0 mm in width w and 0.01 to 3.0 mm in depth d.
Next, as a second step, as shown in FIG. 2B, a predetermined surface portion 1a, a groove side wall 5a of the groove portion 5 following the predetermined surface portion 1a, and a groove The resin mask 2 is formed so as to expose the groove bottom edge 5b following the side wall 5a, and to cover the other grooves 5 and the entire surface of the dielectric substrate 1 including the main surface 1A (secondary molding step). As a material of the resin mask 2, for example, a polyvinyl alcohol resin (trade name: Kuraray Poval CP, manufactured by Kuraray Co., Ltd.) which is a water-soluble polymer material is used, and is formed into a predetermined shape by injection molding using a mold. Is done.
[0015]
Subsequently, as a third step, as shown in FIG. 2C, a pre-deposition treatment of the conductive layer 3 formed in the subsequent fourth step is performed. A primer 4 made of a silane coupling agent is applied in a thickness of 1 to 10 μm on the surface of the dielectric substrate 1 exposed from the resin mask 2 and on the surface of the resin mask 2. As the primer 4, besides the silane coupling agent, a urethane polymer, an isocyanate, a nitrophenol, a chlorinated polymer or the like can be used. Next, as a fourth step, as shown in FIG. 2D, the surface of the primer 4 is coated with a conductive layer 3 made of, for example, copper by ion plating (conductive layer coating step).
Finally, as a fifth step, as shown in FIG. 2E, the dielectric substrate 1 covered with the resin mask 2, the primer 4, and the conductive layer 3 is immersed in water at 20 ° C. to 95 ° C. for 1 to 240 minutes. By immersion, the water-soluble resin mask 2 is removed from the dielectric substrate 1 together with the conductive layer 3 covering the surface thereof (circuit pattern forming step). At this time, the resin mask 2 can be quickly removed from the dielectric substrate 1 by applying ultrasonic waves. As a result, the conductive layer 3 covering the resin mask 2 is removed from the dielectric substrate 1 with the dissolution of the resin mask 2, and directly covers the predetermined surface portion 1a, the groove side wall 5a, and the groove bottom edge 5b of the dielectric substrate 1. A conductive pattern (wiring) 3a of a predetermined pattern formed by the portion 4a of the primer 4 and the conductive layer 3 remains on the surface of the dielectric substrate 1.
As described above, according to the second embodiment, in addition to the same effect as in the first embodiment, the adhesion of the conductive strip (wiring) 3a of the dielectric substrate 1 is further improved by applying the primer 4. be able to.
[0016]
Embodiment 3 FIG.
FIG. 3 is a sectional view showing a three-dimensional circuit board according to a third embodiment of the present invention in accordance with the manufacturing process. First, as a first step, as shown in FIG. 3A, a dielectric substrate 1 having grooves 5 along both sides of a predetermined surface portion 1a on a main surface 1A is formed using a synthetic resin material by using a mold. Injection molding (primary molding step). As a synthetic resin as a material of the dielectric substrate 1, for example, a plating grade of a cycloolefin-based polymer (trade name: ZEONEX, manufactured by Zeon Corporation) is used. The grooves 5 are provided along both sides of a predetermined surface portion 1a on which a conductive strip (wiring) 3a (see FIG. 3E) of a predetermined pattern is to be formed later on the main surface 1A of the dielectric substrate 1, The dimensions are 0.01 to 1.0 mm in width w and 0.01 to 3.0 mm in depth d.
Next, as a second step, as shown in FIG. 3B, a predetermined surface portion 1a, a groove side wall 5a of the groove portion 5 following the predetermined surface portion 1a, and the groove The resin mask 2 is formed so as to expose the groove bottom edge 5b following the side wall 5a, and to cover the other grooves 5 and the entire surface of the dielectric substrate 1 including the main surface 1A (secondary molding step). As a material of the resin mask 2, for example, a polyvinyl alcohol resin (trade name: Kuraray Poval CP, manufactured by Kuraray Co., Ltd.) which is a water-soluble polymer material is used, and is formed into a predetermined shape by injection molding using a mold. Is done.
[0017]
Subsequently, as a third step, as shown in FIG. 3C, a surface roughening treatment layer 6 is formed on the surface of the dielectric substrate 1 and the resin mask 2 exposed from the resin mask 2 (chemical etching). Process). The roughening layer 6 is formed, for example, by using a mixed solution of chromic acid / sulfuric acid (mixing ratio 1: 5) as an etching solution, and immersing the dielectric substrate 1 on which the resin mask 2 is formed in the etching solution. Formed by Next, as a fourth step, as shown in FIG. 3D, a plating catalyst is formed on the surface of the predetermined surface portion 1a on which the surface roughening layer 6 is formed, the groove side wall 5a, the groove bottom edge 5b and the surface of the resin mask 2. (Palladium salt) is applied, and the conductive layer 3 made of copper is coated by electroless plating (conductive layer coating step). Finally, as a fifth step, as shown in FIG. 3E, the dielectric substrate 1 covered with the resin mask 2 and the conductive layer 3 is immersed in water at 20 ° C. to 95 ° C. for 1 to 240 minutes. As a result, the water-soluble resin mask 2 is removed from the dielectric substrate 1 together with the conductive layer 3 covering the surface thereof (circuit pattern forming step). At this time, the resin mask 2 can be quickly removed from the dielectric substrate 1 by applying ultrasonic waves. As a result, the conductive layer 3 covering the resin mask 2 is removed from the dielectric substrate 1 along with the dissolution of the resin mask 2, and the predetermined surface portion 1a formed on the portion 6a of the surface roughening treatment layer 6, the groove side wall 5a and the groove bottom are formed. The conductive strip (wiring) 3a directly covering the edge 5b remains on the surface of the dielectric substrate 1.
[0018]
As described above, also in the third embodiment, the formation of a predetermined circuit pattern and the removal of the resin mask 2 can be performed in the same step, and the groove portion is formed in the same manner as in the first and second embodiments. Since the circuit board 5 is provided, a highly reliable three-dimensional circuit board having strong adhesion between the dielectric substrate 1 and the wiring 3a can be obtained, and transmission loss when transmitting a high-frequency electric signal can be reduced. According to the present invention, as described in the first to third embodiments, ion plating or electroless plating can be selected as a method for forming the conductive layer 3. When the unnecessary conductive layer 3 is removed together with the resin mask 2 by the effect of the above, the conductive layer (wiring) 3a can be prevented from peeling off, so that a desired circuit pattern can be reliably obtained.
[0019]
In the first to third embodiments, the grooves 5 are formed on both sides of the predetermined surface portion 1a on the main surface 1A of the dielectric substrate 1, but the grooves 5 are provided on both sides of the predetermined surface portion 1a. If it is difficult, it may be formed on one side of the predetermined surface portion 1a. Even in this case, the effect of improving the adhesion between the dielectric substrate 1 and the conductive strip (wiring) 3a can be obtained. However, in order to reduce transmission loss when transmitting a high-frequency electric signal, it is necessary to provide a groove 5 between two adjacent conductive strips (wirings) 3a. Further, as a material of the dielectric substrate 1, a syndiotactic polystyrene, a polyphenyl sulfide resin, a polyether sulfone resin, a polyamide imide resin, or the like may be used in addition to the cycloolefin-based polymer and the liquid crystal polymer.
[0020]
【The invention's effect】
As described above, according to the method for manufacturing a three-dimensional circuit board of the present invention, the formation of the conductive layer having the predetermined pattern and the removal of the resin mask can be performed in the same step, thereby simplifying the manufacturing steps and reducing the cost. Can be planned. In addition, the conductive layer on the predetermined surface portion is strongly adhered to the dielectric substrate by the groove side wall and the groove bottom edge, so that when the resin mask is removed together with the conductive layer covering the surface, the conductive layer on the predetermined surface portion peels off. Can be prevented, and a desired circuit pattern can be reliably obtained.
[0021]
Further, according to the three-dimensional circuit board of the present invention, the adhesion between the dielectric substrate and the conductive layer on the predetermined surface portion is strengthened by the groove side wall and the groove bottom edge, and a highly reliable three-dimensional circuit board can be obtained. Furthermore, the insulation between adjacent conductive strips is ensured by the grooves, and it is possible to reduce transmission loss due to electric field interference when transmitting a high-frequency electric signal.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a three-dimensional circuit board according to a first embodiment of the present invention according to its manufacturing process.
FIG. 2 is a cross-sectional view showing a three-dimensional circuit board according to a second embodiment of the present invention according to its manufacturing process.
FIG. 3 is a cross-sectional view showing a three-dimensional circuit board according to a third embodiment of the present invention in accordance with the manufacturing process.
[Explanation of symbols]
Reference Signs List 1 dielectric substrate, 1A main surface, 1a predetermined surface portion, 2 resin mask, 3 conductive layer, 3a conductive strip (wiring) of predetermined pattern, 4 primer, 5 groove portion,
5a groove side wall, 5b groove bottom edge, 6 roughened layer.

Claims (6)

主表面上の所定表面部分の少なくとも一側に沿って溝部を有する誘電体基体を、合成樹脂材料により金型を用いて射出形成する第1の工程、前記所定表面部分と、この所定表面部分に続く前記溝部の溝側壁とこの溝側壁に続く溝底縁とを露出させ、それ以外の前記溝部と主表面を覆うように加水分解性高分子材料の樹脂マスクを被着する第2の工程、前記所定表面部分と前記溝側壁と溝底縁および前記樹脂マスクの表面に導電層を被覆する第3の工程、および前記樹脂マスクをその表面に被覆した前記導電層とともに除去する第4の工程とを含むことを特徴とする立体回路基板の製造方法。A first step of injecting and forming a dielectric substrate having a groove along at least one side of a predetermined surface portion on the main surface by using a mold with a synthetic resin material; A second step of exposing a groove side wall of the subsequent groove portion and a groove bottom edge following the groove side wall, and applying a resin mask of a hydrolyzable polymer material so as to cover the other groove portions and the main surface; A third step of coating the conductive layer on the predetermined surface portion, the groove side wall, the groove bottom edge, and the surface of the resin mask; and a fourth step of removing the resin mask together with the conductive layer coated on the surface. A method for manufacturing a three-dimensional circuit board, comprising: 請求項1に記載の立体回路基板の製造方法であって、前記誘電体基体は、熱可塑性材料から選択されたものであることを特徴とする立体回路基板の製造方法。The method for manufacturing a three-dimensional circuit board according to claim 1, wherein the dielectric substrate is selected from a thermoplastic material. 請求項1に記載の立体回路基板の製造方法であって、前記樹脂マスクとして、ポリビニルアルコール樹脂を用いたことを特徴とする立体回路基板の製造方法。The method for manufacturing a three-dimensional circuit board according to claim 1, wherein a polyvinyl alcohol resin is used as the resin mask. 合成樹脂材料からなる誘電体基体の主表面上に、導電性材料からなる所定パターンの導電層が形成された立体回路基板において、前記主表面には、その所定表面部分の少なくとも一側に溝部が形成され、前記導電層が前記所定表面部分と、この所定表面部分に続く前記溝部の溝側壁と、この溝側壁に続く溝底縁とを覆うように形成された導電条を含んでいることを特徴とする立体回路基板。In a three-dimensional circuit board in which a conductive layer of a predetermined pattern made of a conductive material is formed on a main surface of a dielectric substrate made of a synthetic resin material, the main surface has a groove on at least one side of the predetermined surface portion. And the conductive layer includes a conductive strip formed to cover the predetermined surface portion, a groove side wall of the groove portion following the predetermined surface portion, and a groove bottom edge following the groove side wall. Characterized three-dimensional circuit board. 請求項4に記載の立体回路基板であって、前記所定パターンの導電層が少なくとも2つの隣接する導電条を含み、前記溝部が少なくとも前記2つの導電条の相互間に設けられていることを特徴とする立体回路基板。The three-dimensional circuit board according to claim 4, wherein the conductive layer of the predetermined pattern includes at least two adjacent conductive strips, and the groove is provided between at least the two conductive strips. Three-dimensional circuit board. 請求項4に記載の立体回路基板であって、前記溝部が、幅0.01〜1.0mm、深さ0.01〜3.0mmを有することを特徴とする立体回路基板。The three-dimensional circuit board according to claim 4, wherein the groove has a width of 0.01 to 1.0 mm and a depth of 0.01 to 3.0 mm.
JP2003066511A 2003-03-12 2003-03-12 Three-dimensional circuit board and method of manufacturing the same Pending JP2004281427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066511A JP2004281427A (en) 2003-03-12 2003-03-12 Three-dimensional circuit board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066511A JP2004281427A (en) 2003-03-12 2003-03-12 Three-dimensional circuit board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004281427A true JP2004281427A (en) 2004-10-07

Family

ID=33284387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066511A Pending JP2004281427A (en) 2003-03-12 2003-03-12 Three-dimensional circuit board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004281427A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064602A1 (en) * 2008-12-02 2010-06-10 パナソニック電工株式会社 Method for manufacturing circuit board, and circuit board obtained using the manufacturing method
JP2010135768A (en) * 2008-12-02 2010-06-17 Panasonic Electric Works Co Ltd Method of manufacturing circuit board and circuit board obtained by the manufacturing method
WO2011052207A1 (en) * 2009-10-30 2011-05-05 パナソニック電工株式会社 Circuit board and manufacturing method thereof
JP2011096947A (en) * 2009-10-30 2011-05-12 Panasonic Electric Works Co Ltd Circuit board and manufacturing method thereof
US8240036B2 (en) 2008-04-30 2012-08-14 Panasonic Corporation Method of producing a circuit board
US8272126B2 (en) 2008-04-30 2012-09-25 Panasonic Corporation Method of producing circuit board
KR101238966B1 (en) 2008-12-02 2013-03-04 파나소닉 주식회사 Method for manufacturing circuit board, and circuit board obtained using the manufacturing method
JP2013247177A (en) * 2012-05-24 2013-12-09 Goo Chemical Co Ltd Resist agent for lift-off method
US8698003B2 (en) 2008-12-02 2014-04-15 Panasonic Corporation Method of producing circuit board, and circuit board obtained using the manufacturing method
US8929092B2 (en) 2009-10-30 2015-01-06 Panasonic Corporation Circuit board, and semiconductor device having component mounted on circuit board
JP2015103624A (en) * 2013-11-22 2015-06-04 帝国通信工業株式会社 Structure for fixing base of flexible circuit board
US9082438B2 (en) 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
US9332642B2 (en) 2009-10-30 2016-05-03 Panasonic Corporation Circuit board
US11800640B1 (en) 2023-03-28 2023-10-24 Infinitum Electric, Inc. Printed circuit board dielectric molding and electrolytic metallization
US12004306B1 (en) 2023-03-28 2024-06-04 Infinitum Electric Inc. Method of printed circuit board dielectric molding and electrolytic metallization

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240036B2 (en) 2008-04-30 2012-08-14 Panasonic Corporation Method of producing a circuit board
US9332650B2 (en) 2008-04-30 2016-05-03 Panasonic Corporation Method of producing multilayer circuit board
US8272126B2 (en) 2008-04-30 2012-09-25 Panasonic Corporation Method of producing circuit board
US9082438B2 (en) 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
JP2010135768A (en) * 2008-12-02 2010-06-17 Panasonic Electric Works Co Ltd Method of manufacturing circuit board and circuit board obtained by the manufacturing method
WO2010064602A1 (en) * 2008-12-02 2010-06-10 パナソニック電工株式会社 Method for manufacturing circuit board, and circuit board obtained using the manufacturing method
KR101238966B1 (en) 2008-12-02 2013-03-04 파나소닉 주식회사 Method for manufacturing circuit board, and circuit board obtained using the manufacturing method
TWI400018B (en) * 2008-12-02 2013-06-21 Panasonic Corp A circuit board manufacturing method, and a circuit board manufactured by the manufacturing method
US8698003B2 (en) 2008-12-02 2014-04-15 Panasonic Corporation Method of producing circuit board, and circuit board obtained using the manufacturing method
US8929092B2 (en) 2009-10-30 2015-01-06 Panasonic Corporation Circuit board, and semiconductor device having component mounted on circuit board
WO2011052207A1 (en) * 2009-10-30 2011-05-05 パナソニック電工株式会社 Circuit board and manufacturing method thereof
JP2011096947A (en) * 2009-10-30 2011-05-12 Panasonic Electric Works Co Ltd Circuit board and manufacturing method thereof
US9332642B2 (en) 2009-10-30 2016-05-03 Panasonic Corporation Circuit board
US9351402B2 (en) 2009-10-30 2016-05-24 Panasonic Corporation Circuit board, and semiconductor device having component mounted on circuit board
JP2013247177A (en) * 2012-05-24 2013-12-09 Goo Chemical Co Ltd Resist agent for lift-off method
JP2015103624A (en) * 2013-11-22 2015-06-04 帝国通信工業株式会社 Structure for fixing base of flexible circuit board
US11800640B1 (en) 2023-03-28 2023-10-24 Infinitum Electric, Inc. Printed circuit board dielectric molding and electrolytic metallization
US12004306B1 (en) 2023-03-28 2024-06-04 Infinitum Electric Inc. Method of printed circuit board dielectric molding and electrolytic metallization

Similar Documents

Publication Publication Date Title
JP2004281427A (en) Three-dimensional circuit board and method of manufacturing the same
US8453321B2 (en) Method for manufacturing multilayer flexible printed circuit board
US7581312B2 (en) Method for manufacturing multilayer flexible printed circuit board
EP1613135A1 (en) Printed circuit board and method for manufacturing printed circuit board
US7404908B2 (en) Printed wiring board manufacturing method
US9374886B2 (en) Signal line path and manufacturing method therefor
US20130084405A1 (en) Method for forming circuits on housing by spraying and laser engraving
US11690178B2 (en) Multilayer printed wiring board and method of manufacturing the same
CN103702519A (en) Method of manufacturing rigid flexible printed circuit board
KR20010051541A (en) Method for manufacturing wiring circuit boards with bumps and method for forming bumps
EP1926358B1 (en) Molding circuit component and process for producing the same
US20050115066A1 (en) Production method of wired circuit board
JPH05299815A (en) Circuit component and fabrication thereof
CN110062538B (en) Manufacturing method of PCB (printed circuit board) with lead at bottom of stepped groove and PCB
CN113380529A (en) Processing technology of single-layer wireless charging coil carrier plate
US3880723A (en) Method of making substrates for microwave microstrip circuits
JPH0779191B2 (en) Manufacturing method of three-dimensional wiring board
JP2002290010A (en) Printed wiring board and its manufacturing method
JP4426690B2 (en) 3D circuit board manufacturing method and 3D circuit board
JP3958639B2 (en) Flexible circuit board and manufacturing method thereof
JP3662892B2 (en) Printed wiring board manufacturing method and printed wiring board
JPH08264988A (en) Microwave circuit substrate and its manufacturing method
JP4359991B2 (en) Film carrier manufacturing method
WO2014142475A1 (en) Built-in antenna production method
JP4359990B2 (en) Film carrier manufacturing method