JP2004278890A - Refrigerator-freezer - Google Patents

Refrigerator-freezer Download PDF

Info

Publication number
JP2004278890A
JP2004278890A JP2003070006A JP2003070006A JP2004278890A JP 2004278890 A JP2004278890 A JP 2004278890A JP 2003070006 A JP2003070006 A JP 2003070006A JP 2003070006 A JP2003070006 A JP 2003070006A JP 2004278890 A JP2004278890 A JP 2004278890A
Authority
JP
Japan
Prior art keywords
refrigerator
compartment
temperature
cooler
thermoelectric module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003070006A
Other languages
Japanese (ja)
Inventor
Takahiro Ueno
孝浩 上野
Osao Kido
長生 木戸
Mitsunori Taniguchi
光▲のり▼ 谷口
Takahito Shibayama
卓人 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003070006A priority Critical patent/JP2004278890A/en
Publication of JP2004278890A publication Critical patent/JP2004278890A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a refrigerator-freezer using a thermoelectric module capable of reducing the assembling man-hour with a simple constitution. <P>SOLUTION: This refrigerator-freezer comprises a refrigerating compartment 6 having a cooler 23 for the refrigerating compartment and a blower 10 for circulating the cold air cooled by the cooler 23 in the compartment, a freezing compartment 7 separated from the refrigerating compartment 6, and having a cooler 24 for the freezing compartment at least on a bottom face to directly cool the compartment, and a thermoelectric module 20 having a heat absorbing face and a heat radiating face, and cooling the heat absorbing face and heating the heat radiating face by electrifying in the specific direction. The cooler 23 for the refrigerating compartment and the cooler 24 for the freezing compartment are directly or indirectly connected with the heat absorbing face of the thermoelectric module 20 in a heat conductive state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ペルチェ効果を応用した熱電モジュールを使って庫内を冷却する冷凍冷蔵庫に関するものである。
【0002】
【従来の技術】
近年、フロンガスの大気放出によるオゾン層破壊や温暖化が地球的な問題となり、フロンガスを使用しない冷凍冷蔵庫の開発が急がれている。そしてフロンガスを使用しない方式の一つとして、熱電モジュールを使用した冷凍冷蔵機器が注目されている。
【0003】
従来の熱電モジュールを使用した冷凍冷蔵機器としては、特許文献1に開示されたものがある。
【0004】
以下、図面を参照しながら上記従来の冷凍冷蔵機器を説明する。図12は、従来の冷凍冷蔵機器の断面図を示している。
【0005】
図12に示すように、冷蔵室101は、断熱材料からなる外壁102と冷却器として用いられるアルミニウム製の内壁103から構成されている。第1熱電モジュール104は、吸熱面が内壁103と接しており、内壁103を介して冷蔵室101を冷却している。放熱器105は、第1熱電モジュール104の放熱面からの熱を雰囲気空気に放出している。つまり、第1熱電モジュール104と内壁103と放熱器105により第1の冷却ユニットを形成している。冷蔵室冷却用送風ファン106は、冷蔵室101内の空気を強制循環させ、冷却効果を高めている。
【0006】
冷凍室107は、冷蔵室101と同様に断熱材料からなる外壁102と冷却器として用いられるアルミニウム製の内壁108から構成されている。第2熱電モジュール109は、吸熱面が内壁108と接しており、内壁108を介して冷凍室107を冷却している。放熱器110は、冷蔵室101内に納められており、第2熱電モジュール109の放熱面からの熱を冷蔵室101内の空気に放出している。つまり、第2熱電モジュール109と内壁108と放熱器110により第2の冷却ユニットを形成している。
【0007】
以上のように構成された従来の冷凍冷蔵機器について、以下その動作を説明する。
【0008】
第1熱電モジュール104と第2熱電モジュール109に通電すると、冷蔵室101内の送風ファン106により循環している空気や被冷却物は内壁103を介して第1熱電モジュール104に吸熱され、冷蔵室101内が冷却される。
【0009】
このとき、第1熱電モジュール104に吸熱された熱量と通電により発生する熱量は、放熱面から放熱器105を介して雰囲気空気に放出される。
【0010】
また、第2熱電モジュール109でも第1熱電モジュール104と同様に冷凍室107内の空気や被冷却物は内壁108を介して第2熱電モジュール109に吸熱され、冷凍室107内が冷却される。
【0011】
このとき、第2熱電モジュール109に吸熱された熱量と通電により発生する熱量は、放熱面から放熱器110を介して冷蔵室101内の空気に放出される。
【0012】
この際、雰囲気温度と比較して、大幅に温度が低い冷蔵室101内の空気で第2熱電モジュール109の放熱を行うため、第2熱電モジュール109の吸熱面の温度が下がり、冷凍が行える。
【0013】
【特許文献1】
特開平7−332829号公報
【0014】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、第2熱電モジュール109から発生する熱量は冷蔵室101内の空気を介して熱交換が行われるため、放熱側の熱交換効率が悪く、第2熱電モジュール109の吸熱面温度の下がりが悪く、冷却スピードが低下するという欠点があった。
【0015】
また、冷蔵室101の冷却ユニットと冷凍室109の冷却ユニットの構成が分離しているため、組立工数が大きくなり、安価に冷凍冷蔵庫を提供できないという欠点があった。
【0016】
本発明は、熱電モジュールを用いた冷凍冷蔵庫を、構成が簡単で、組み立て工数を削減でき、安価に提供できるようにすることを目的とする。
【0017】
【課題を解決するための手段】
発明の請求項1に記載の冷凍冷蔵庫の発明は、冷蔵室用冷却器と前記冷蔵室用冷却器で冷却された冷気を室内で循環させる送風ファンとを有する冷蔵室と、前記冷蔵室から独立した室で少なくとも底面に室内を直接冷却する冷凍室用冷却器を有する冷凍室と、吸熱面と放熱面とを有し所定方向の電流を流すことにより前記吸熱面が冷却され放熱面が加熱する熱電モジュールとを備え、前記冷蔵室用冷却器および前記冷凍室用冷却器を、直接もしくは間接的に、前記熱電モジュールの前記吸熱面と熱伝導可能に接続したものである。
【0018】
上記構成において、熱電モジュールに通電すると、熱電モジュールの吸熱面に設けられた冷蔵室用冷却器が吸熱され、冷蔵室用冷却器に熱伝導可能に接続された冷凍室用冷却器も吸熱される。その際、冷蔵室は、冷蔵室用冷却器と冷蔵室に設けられた送風ファンにより、間接的に安定した温度に冷却され、冷凍室は、底面が直接吸熱面である冷凍室用冷却器により製氷等が可能な直接冷却作用で冷凍温度まで冷却される。
【0019】
本発明の冷凍冷蔵庫では、一つの熱電モジュールを用い、冷凍および冷蔵を可能としたものであり、冷蔵室を冷却する冷蔵室用冷却器と冷凍室を冷却する冷凍室用冷却器が熱伝導可能に接続されている為、冷却器を一体化、ユニット化できるので、冷凍冷蔵庫への組み込みが容易になるという作用を有する。
【0020】
請求項2に記載の冷凍冷蔵庫の発明は、請求項1に記載の発明における冷蔵室用冷却器と冷凍室用冷却器とを、互いに熱伝導可能に一体化したものであり、冷蔵室用冷却器と冷凍室用冷却器が一体構造のため、各冷却器間の熱抵抗が小さくでき効率のよい熱搬送が可能となり、冷凍冷蔵庫として冷却性能の向上および消費電力の向上が図れると共に冷蔵室用冷却器と冷凍室用冷却器の組立工数を削減できるという作用を有する。
【0021】
請求項3に記載の冷凍冷蔵庫の発明は、請求項1または2に記載の発明における冷蔵室用冷却器と冷凍室用冷却器と熱電モジュールが、一体にユニット化されたものであり、それにより冷凍冷蔵庫への組み込みが容易になり、組み込み工数、サービスエ数が向上するという作用を有する。
【0022】
請求項4に記載の冷凍冷蔵庫の発明は、請求項1から3に記載の発明における熱電モジュールが、冷蔵室用冷却器における冷凍室用冷却器寄りに設けられたものであり、冷蔵室に対しさらに低温が要求される冷凍室を冷却する冷凍室用冷却器に短時間で効率よく熱電モジュールの熱搬送が図れるため、冷凍冷蔵庫として消費電力の向上が図れるという作用を有する。
【0023】
請求項5に記載の冷凍冷蔵庫の発明は、請求項1から4に記載の発明における冷蔵室用冷却器は、少なくとも熱電モジュールからの吸熱を熱伝導するベース部と前記ベース部の吸熱を冷蔵室内に効率よく拡散するためのフィン部を有し、冷凍室用冷却器は、少なくとも熱電モジュールからの吸熱を熱伝導するベース部を有し、前記冷蔵室用冷却器のベース部の厚さ及び前記冷凍室冷却器のベース部の厚さは、前記冷蔵室用冷却器のベース部と冷凍室用冷却器のベース部の接続部で最も厚く、前記接続部より離れるに従い薄くなるものであり、それにより熱電モジュールからの吸熱を冷蔵室冷却器と冷凍室冷却器に均一に熱搬送できるため冷凍冷蔵庫として消費電力の向上が図れるとともに冷蔵室冷却器と冷凍室冷却器の最適形状設計による材料費の削減ができるという作用を有する。
【0024】
請求項6に記載の冷凍冷蔵庫の発明は、請求項1から5に記載の発明における冷凍室用冷却器は、冷凍室を直接冷却する冷却面と冷蔵室用冷却器との接続面を除き断熱材で覆われているものであり、それにより冷凍室冷却器の熱電モジュールからの吸熱を、冷凍室にのみ使用するため、冷凍室の冷却が効率よく行われ、冷凍冷蔵庫として消費電力の向上が図れるという作用を有する。
【0025】
請求項7に記載の冷凍冷蔵庫の発明は、請求項1から6のいずれか一項に記載の発明における送風ファンを、冷蔵室用冷却器に固定したものであり、送風ファンを冷蔵室用冷却器に固定することにより、冷蔵室用冷却器の最も温度の低い箇所に直接送風することが可能になり、冷蔵室用冷却器の熱交換性能が向上するという作用を有する。さらに送風ファンと冷蔵室用冷却器と冷凍室用冷却器と熱電モジュールとを一体化、ユニット化できるので、冷凍冷蔵庫への組み込みがより容易になり、組み込み工数、サービスエ数がより向上するという作用を有する。
【0026】
請求項8に記載の冷凍冷蔵庫の発明は、請求項1から7のいずれか一項に記載の発明に、さらに、冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍杢内の温度を検知する冷凍宝温度検知手段と、前記冷蔵室温度検知手段により検知した前記冷蔵室内の温度と冷蔵室設定温度との比較結果と前記冷凍室温度倹知手段により検知した前記冷凍室内の温度と冷凍室設定温度との比較結果とに基づいて以下のように送風ファンの回転数と熱電モジュールに流す電流の大きさを制御する温度制御手段とを備えたものである。
【0027】
すなわち、前記温度制御手段は、前記冷蔵室内の温度が前記冷蔵室設定温度より高く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より高い場合に、前記送風ファンの回転数を高くすると共に前記熱電モジュールに流す電流を大きくし、前記冷蔵室内の温度が前記冷蔵室設定温度より低く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より低い場合に、前記送風ファンの回転数を低くすると共に前記熱電モジュールに流す電流を小さくし、前記冷蔵室内の温度が前記冷蔵室設定温度より高く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より低い場合に、前記送風ファンの回転数を高くすると共に前記熱電モジュールに流す電流を小さくし、前記冷蔵室内の温度が前記冷蔵室設定温度より低く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より高い場合に、前記送風ファンの回転数を低くすると共に前記熱電モジュールに流す電流を大きくすることを特徴とする冷凍冷蔵庫であり、冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍室内の温度を検知する冷凍室温度検知手段と、前記冷蔵室温度検知手段により検知した前記冷蔵室内の温度と冷蔵室設定温度との比較結果と前記冷凍室温度検知手段により検知した前記冷凍室内の温度と冷凍室設定温度との比較結果とに基づいて送風ファンの回転数と熱電モジュールに流す電流の大きさを制御するものであり、冷蔵室温度と冷凍室温度をそれぞれの庫内の温度上昇や過冷却を防止し、比較的安価な温度制御手段で、不必要な電力消費を無くすことで、冷蔵室および冷凍室を安定温度で、効率よく冷却することができるという作用を有する。
【0028】
請求項9に記載の冷凍冷蔵庫の発明は、請求項1から7のいずれか一項に記載の発明に、さらに、冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍室内の温度を検知する冷凍室温度検知手段と、前記冷蔵室内の温度が冷蔵室設定温度となり前記冷凍室内の温度が冷凍室設定温度となるように以下のように送風ファンの回転数と熱電モジュールに流す電流の大きさを制御する温度制御手段とを備えたものである。
【0029】
すなわち、前記冷蔵室温度検冗手段により倹知した前記冷蔵室内の温度と前記冷蔵室設定温度との比較結果と前記冷凍室温度検知手段により検知した前記冷凍室内の温度と前記冷凍室設定温度との比較結果とに基づいて、前記熱電モジュールによる吸熱量を大きくする必要があると判断した場合には、前記熱電モジュールに流す電流を大きくし、逆に、前記熱電モジュールによる吸熱量を小さくする必要があると判断した場合には、前記熱電モジュールに流す電流を小さくし、前記冷蔵室よりも前記冷凍室を優先して冷却する必要があると判断した場合には、前記送風ファンの回転数を低くし、逆に、前記冷凍室よりも前記冷蔵室を優先して冷却する必要があると判断した場合には、送風ファンの回転数を高くする。
【0030】
本発明の冷凍冷蔵庫では、熱電モジュールに流れる電流を大きくすると、熱電モジュールの吸熱量(冷却能力)が大きくなり、熱電モジュールに流れる電流を小さくすると、熱電モジュールの吸熱量(冷却能力)が小さくなる。
【0031】
また、送風ファンの回転数を高くすると、冷蔵室用冷却器と熱交換する冷蔵室内の空気の量が増えて、熱電モジュールの冷却能力が冷蔵室の冷却に使われる割合が増え冷凍室の冷却に使われる割合が減る。逆に、送風ファンの回転数を低くすると、冷蔵室用冷却器と熱交換する冷蔵室内の空気の量が減って、熱電モジュールの冷却能力が冷蔵室の冷却に使われる割合が減って冷凍室の冷却に使われる割合が増える。
【0032】
したがって、冷蔵室温度検知手段により検知した冷蔵室内の温度と冷蔵室設定温度との比較結果と冷凍室温度検知手段により検知した冷凍室内の温度と冷凍室設定温度との比較結果とに基づいて、熱電モジュールによる吸熱量を大きくする必要があると判断した場合に、熱電モジュールに流す電流を大きくし、逆に、熱電モジュールによる吸熱量を小さくする必要があると判断した場合に、熱電モジュールに流す電流を小さくし、冷蔵室よりも冷凍室を優先して冷却する必要があると判断した場合に、送風ファンの回転数を低くし、逆に、冷凍室よりも冷蔵室を優先して冷却する必要があると判断した場合に、送風ファンの回転数を高くすることにより、冷蔵室と冷凍室とをそれぞれの設定温度の範囲で、繊密な温度制御が可能となりさらに効率よく冷却することができるという作用を有する。
【0033】
【発明の実施の形態】
以下さらに本発明の冷凍冷蔵庫の実施の形態について説明する。
【0034】
(実施の形態1)
図1は、本発明の実施の形態の冷凍冷蔵庫の斜視図である。図2は、同実施の形態の冷凍冷蔵庫の縦断面図である。図3は、同実施の形態の冷凍冷蔵庫の冷却を司る熱電モジュールを内臓した熱電装置の縦断面図である。
【0035】
図1、図2において、冷凍冷蔵庫1は、前面に開口部を設けた箱体からなる本体部2と本体部2の開口部を開閉する扉3を有し、これらはいずれも内部にウレタン樹脂や真空断熱材等の断熱材料からなる外壁4,5で構成されている。
【0036】
また、冷凍冷蔵庫1は、冷蔵室6と冷凍室7に、たとえばプラスチックや断熱材料等の熱伝導率が小さいものからなる隔壁8により独立している。そして、冷蔵室6の背面側の外壁4を貫通して冷凍冷蔵庫1の冷却を司る冷却装置9が取り付けられている。
【0037】
また、庫内ファン10は、冷蔵室6内に配設され、冷蔵室6内の空気を循環させるものであり、たとえば熱電装置9の冷蔵室用冷却器23に固定されており、庫外ファン11は、庫外室12の下部に配設され外気の空気を庫外室12に取り入れ熱電装置9の放熱器26の熱交換を行うものである。
【0038】
電源制御装置14は、庫外室12の上部に位置に、熱電モジュール20および庫内ファン10、庫外ファン11等に電力を供給する電源と、庫内の冷蔵室6および冷凍室7の温度を検知して熱電モジュール20への通電制御や庫内ファン10への回転数制御を行う温度制御手段からなる。
【0039】
図3における熱電装置9についてその構造を説明する。熱電モジュール20は、吸熱面21と放熱面22を有し所定方向に電流を流すことにより吸熱面21が冷却され、放熱面22が加熱されるものである。
【0040】
冷蔵室6を冷却する冷蔵室冷却器23は、熱電モジュール20からの冷温を熱伝導するベース部23aとベース部23aの表面に設けられたフィン部23bからなり、ベース部23aは冷凍室7を冷却する冷凍室冷却器24のベース部24aと熱伝導可能に接続されている。
【0041】
また、冷蔵室冷却器23は、熱電モジュール20の吸熱面21と接し熱電モジュール20の冷温を熱伝導する熱伝導部材25とも接続されている。放熱器26は、熱電モジュール20の放熱面22に熱伝導可能に接続されている。
【0042】
また、プラスチック等の熱伝導率の小さい材料からなる箱体27は、内部に熱電モジュール20と熱伝導部材25を配設し、端部に冷蔵室冷却器23と他の端部に放熱器26を配設させ、熱電装置9を一体構造としている。
【0043】
このように、同実施の形態の冷凍冷蔵庫の冷却を司る熱電装置9は、熱電モジュール20に熱伝導可能に接続された冷蔵室冷却器23と冷凍室冷却器24と熱伝導部材25と放熱器26と箱体27と冷蔵室冷却器23に固定された庫内ファン10により一体にユニット化された構造となっている。
【0044】
以下、図面を参照しながら同実施の形態の冷凍冷蔵庫についてその動作を説明する。
【0045】
電源制御装置14から熱電モジュール20に所定の方向に通電されると、熱電モジュール20の吸熱面21は冷却され、放熱面22は加熱される。そして吸熱面21の冷温は、熱伝導部材25を介して熱伝導され、冷蔵室6内の冷蔵室冷却器23のベース部23a及びフィン部23bが冷却される。
【0046】
そして冷蔵室冷却器23に固定された庫内ファン10により、冷蔵室8内の空気を冷却し、冷蔵室8内を冷蔵雰囲気にする。同時に冷蔵室冷却器23のベース部23aと熱伝導可能に接続されたベース部24aを有する冷凍室冷却器24は冷却される。
【0047】
冷凍室9内は、冷凍冷蔵庫1の設置状態に対して底面に室内を直接冷却する冷凍冷却器24のベース部24aが、水平に配置され、ベース部24aの上部に置かれた製氷皿28等が製氷されると同時に、冷凍雰囲気になる。
【0048】
一方、放熱面22の温熱は、直接的に放熱器26に伝わり、庫外ファン11により外部に放出される。
【0049】
このように本実施の形態の冷凍冷蔵庫1では、一つの熱電モジュールを用いて冷凍と冷蔵を一つの冷却ユニットで可能にしたものであり、所定方向に電流を流すと吸熱面21が冷却され放熱面22が加熱する熱電モジュール20と吸熱面21に熱伝導部材25を介して熱伝導可能に接続された冷蔵室冷却器23と該冷蔵室冷却器23に熱伝導可能に接続された冷凍室冷却器24と、放熱面22に熱伝導可能に接続された放熱器26とそれらを一体固定する箱体27と冷蔵室冷却器23に固定された庫内ファン10によりユニット化された熱電装置9を冷凍冷蔵庫1の背面の外壁4に挿入し設置するため、組込が容易である。
【0050】
なお、本実施の形態では放熱器26と熱電モジュール20の放熱面22を直接接触させて、放熱を行っているが、図4に示すように熱電モジュール20の放熱面22に熱交換部30を設け、該熱交換部30と液溜め用チャンバ31と放熱器32とを配管33でつないで循環経路を構成し、水やプロピレングリコール水溶液等の熱伝達率が大きい液冷媒を循環させて間接的に熱電モジュール20から放熱を行う方式でも良い。
【0051】
また、図3における熱電装置9の構造として、冷蔵室用冷却器23と冷凍室用冷却器24が互いに熱伝導可能に例えば押し出し成型などで一体化されている。
【0052】
これにより、冷蔵室用冷却器23のベース部23aと冷凍室用冷却器24のベース部24a間の熱抵抗を小さくすることができるため、熱電モジュール20の吸熱面21からの冷温は、熱伝導部材25を介して、冷蔵室冷却器23のベース部23aと熱伝導可能に接続された冷凍室冷却器24のベース部24aに効率のよい熱搬送行いことができ、冷凍冷蔵庫1として冷却性能の向上および消費電力の向上が図れるとともに冷蔵室用冷却器23と冷凍室用冷却器24の組立工数を削減できる。
【0053】
また、図5における熱電装置9の構造として、冷蔵室用冷却器23のベース部23aに熱伝導可能に接続される熱電モジュール20の吸熱面21に熱伝導可能に接続された熱伝導部材25は、冷蔵室用冷却器23のベース部23aと冷凍室用冷却器24のベース部24aの接続部40近傍に設けられたものである。
【0054】
それにより熱電モジュール20の吸熱面21の冷温は、熱伝導部材25から冷蔵室用冷却器23のベース部23aを介して冷凍室用冷却器24のベース部24aを短時間で冷却する。
【0055】
このように、冷蔵室用冷却器23に熱伝導される熱電モジュール20の冷温が、冷凍室用冷却器24の近傍に設けられることにより、冷蔵室に対しさらに低温が要求される冷凍室を冷却する冷凍室用冷却器24に短時間で効率よく熱電モジュール20の熱搬送が行われるため、冷凍冷蔵庫1として消費電力の向上が図れる。
【0056】
また、図6における熱電装置9の構造として、冷蔵室用冷却器23のベース部23aの厚さ及び冷凍室用冷却器24のベース部24aの厚さは、冷蔵室用冷却器23のベース部23aと冷凍室用冷却器24のベース部24aの接続部41で最も厚く、接続部41より離れるに従い冷蔵室用冷却器23のベース部23aの厚さ及び冷凍室用冷却器24のベース部24aの厚さは薄くなるものである。
【0057】
それにより熱電モジュール20の吸熱面21の冷温は、熱伝導部材25を介して冷蔵室用冷却器23のベース部23aとそれに熱伝導可能に接続された冷凍室用冷却器24のベース部24aを冷却する。
【0058】
その際、ベース部の厚さの大きい個所では、熱抵抗が小さいため、効率よく熱搬送が行われるため、冷蔵室用冷却器23のベース部23aから冷凍室用冷却器24のベース部24aへ効率よく冷却され、同時に冷蔵室用冷却器23と冷凍室用冷却器24は均温化が図られる。
【0059】
このように、冷蔵室用冷却器23のベース部23aの厚さ及び冷凍室冷却器24のベース部24aの厚さは、冷蔵室用冷却器23のベース部23aと冷凍室用冷却器24のベース部24aの接続部41で最も厚く、接続部41より離れるに従い薄くすることにより、熱電モジュール20からの吸熱を冷蔵室冷却器23と冷凍室用冷却器24に均一に効率よく熱搬送できるため、冷凍冷蔵庫1として消費電力の向上が図れるとともに冷蔵室用冷却器23と冷凍室用冷却器の最適形状設計による材料費の削減ができる。
【0060】
また、図7における熱電装置9の構造として、冷凍室用冷却器24は、冷凍室7を直接冷却する冷却面42と冷蔵室用冷却器23との接続面43を除き断熱材44で覆われている。
【0061】
それにより熱電モジュール20の吸熱面21の冷温は、熱伝導部材25を介して冷蔵室用冷却器23のベース部23aとそれに熱伝導可能に接続された冷凍室用冷却器24のベース部24aを冷却する。
【0062】
その際、冷凍室用冷却器24のベース部24aの冷凍室7を直接冷却する冷却面42は、断熱材44により冷蔵室6への熱ロスがなく低温状態となる。
【0063】
それにより冷凍室冷却器24の熱電モジュール20からの吸熱を、冷凍室7にのみ使用するため、冷凍室7の冷却が効率よく行われ、冷凍冷蔵庫1として消費電力の向上が図れる。
【0064】
(実施の形態2)
図8は、本発明の実施の形態の冷凍冷載庫の制御袈置のブロック図であり、図9は、同実施の形態の冷凍冷蔵庫の制御装置の動作を説明するためのフローチャートである。
【0065】
図8において、冷蔵センサー50は冷凍冷蔵庫1の冷蔵室6内に設けられ、冷凍センサー51は冷凍室7内の冷凍室冷却器24に設けられている。冷蔵室温度検知手段52は冷蔵センサー50により冷蔵室温度を検出するものであり、冷凍室温度検知手段53は冷蔵センサー51により冷凍室温度を検出するものである。冷蔵室温度設定手段54は、冷蔵室温度を所定の温度に設定するものであり、、冷凍室温度設定手段55は、冷凍室温度を所定の温度に設定するものである。
【0066】
温度制御手段60は、冷蔵室温度検知手段52と冷蔵室温度設定手段54により設定された所定の温度との温度差および冷凍室温度検知手段53と冷凍室温度設定手段55により設定された所定の温度との温度差を演算する温度差演算手段56と、温度差演算手段56により演算された温度差に合わせて熱電モジュール20への印加電圧を制御する熱電モジュール通電制御手段57と、温度差演算手段56により演算された温度差に合わせて印加電圧の増加により回転数が増加する庫内ファン10への印加電圧を制御する庫内ファン回転数制御手段58からなる。
【0067】
以上のように構成された冷凍冷蔵庫の制御装置について、図8、図9を用いてその動作を説明する。
【0068】
図9において、まず冷蔵室温度検知手段52は冷蔵センサー50により冷蔵室温度Tpを検出し(Step1)、温度差演算手段56により冷蔵室温度Tpと冷蔵室温度設定手段54により設定された所定の温度Trefとの温度差△T1(=Tp−Tref)を演算する(Step2)。
【0069】
△T1が正つまり冷蔵室温度が冷蔵室設定温度よりも高い時、冷凍室温度検知手段53は冷凍センサー51により冷凍室温度Tfを検出し(Step3)、温度差演算手段56により冷凍室温度Tfと冷凍室温度設定手段55により設定された所定の温度Ticeとの温度差△T2(=Tf−Tice)を演算し(Step4)、△T2が正つまり冷凍室温度が冷凍室設定温度よりも高い時は、熱電モジュール通電制御手段57により熱電モジュール20の印加電圧を大きく、庫内ファン回転数制御手段58により庫内ファン10の印加電圧を大きくする(Step5)。
【0070】
また、△T2が負つまり冷凍室温度が冷凍室設定温度よりも低い時は、熱電モジュール通電制御手段57により熱電モジュール20の印加電圧を小さく、庫内ファン回転数制御手段58により庫内ファン10の印加電圧を大きくする(Step6)。
【0071】
次に、△T1が負つまり冷蔵室温度が冷蔵室設定温度よりも低い時、冷凍室温度検知手段53は冷凍センサー51により冷凍室温度Tfを検出し(Step7)、温度差演算手段56により冷凍室温度Tfと冷凍室温度設定手段55により設定された所定の温度Ticeとの温度差△T2(=Tf−Tice)を演算し(Step8)、△T2が正つまり冷凍室温度が冷凍室設定温度よりも高い時は、熱電モジュール通電制御手段57により熱電モジュール20の印加電圧を大きく、庫内ファン回転数制御手段58により庫内ファン10の印加電圧を小さくする(Step9)。
【0072】
また、△T2が負つまり冷凍室温度が冷凍室設定温度よりも低い時は、熱電モジュール通電制御手段57により熱電モジュール20の印加電圧を小さく、庫内ファン回転数制御手段58により庫内ファン10の印加電圧を小さくする(Step10)。
【0073】
このような制御装置を備えた冷凍冷蔵庫は、冷蔵室温度と冷凍室温度をそれぞれの庫内の温度上昇や過冷却を防止し、比較的安価な温度制御手段で、不必要な電力消費を無くすことで、冷蔵室および冷凍室を安定温度で、効率よく冷却することができる。
【0074】
尚、冷凍室の冷凍センサー51は冷凍冷却器24に設置したが、冷凍室内の他の場所に設定してもよい。
【0075】
また、庫内ファン10は、印加電圧の増加により回転数が増加する電圧制御型のものを使用したが、周波数により回転数が可変する周波数制御型のものを使用しても同様の効果が得られる。
【0076】
また、熱電モジュール通電制御手段57による熱電モジュールの印加電圧の可変および、庫内ファン回転数制御手段58による庫内ファンの印加電圧の可変は、ON/OFF制御または段階(たとえば強、中、弱のような)制御またはリニア制御による可変とするものであり、ON/OFFによる制御は、制御装置を安価とする効果があり、段階による制御は比較的制御装置を安価にできかつ熱電モジュール20に与える熱ストレスの減少させる効果があり、リニアによる制御は、熱電モジュール20に与える熱ストレスの減少を招き、高寿命、高効率(消費電力小)の制御装置を備えた冷凍冷蔵庫を提供できる。
【0077】
(実施の形態3)
図10は、本発明の実施の形態の冷凍冷蔵庫の制御装置のブロック図であり、図11は、同実施の形態の冷凍冷蔵庫の制御装置の動作を説明するためのフローチャートである。
【0078】
図10において、冷蔵センサー70は冷蔵庫本体の冷蔵室6内に設けられ、冷凍センサー71は冷凍室7内の冷凍室冷却器24に設けられている。冷蔵室温度検知手段72は冷蔵センサー70により冷蔵室温度を検出するものであり、冷凍室輩検知手段73は冷蔵センサー71により冷凍室温度を検出するものである。
【0079】
冷蔵室温度設定手段74は、冷蔵室温度を所定の温度に設定するものであり、冷凍室温度設定手段75は、冷凍室温度を所定の温度に設定するものである。
【0080】
温度制御手段80は、冷蔵室温度検知手段72と冷蔵室温度設定手段74により設定された所定の温度との温度差および冷凍室温度検知手段73と冷凍室温度設定手段75により設定された所定の温度との温度差の演算及び冷蔵室6と冷凍室7の冷却負荷を演算する運転制御手段76と、運転制御手段76により演算された冷却負荷に合わせて熱電モジュール20への印加電圧を制御する熱電モジュール通電制御手段77と、運転制御手段76により演算された冷却負荷に合わせて印加電圧の増加により回転数が増加する庫内ファン10への印加電圧を制御する庫内ファン回転数制御手段78からなる。
【0081】
以上のように構成された冷凍冷蔵庫の制御装置について、図10、図11を用いてその動作を説明する。
【0082】
図11において、まず冷蔵室温度検知手段72は冷蔵センサー70により冷蔵室温度Tpを検出し、冷凍室温度検知手段73は冷凍センサー71により冷凍室温度Tfを検出する(Step1)。次に運転制御手段76により冷蔵室温度Tpと冷蔵室温度設定手段74により設定された所定の温度Trefとの温度差△T1(=T1p−Tref)と冷凍室温曳Tfと冷凍室温曳設定手段75により設定された所定の温度Ticeとの温度差△T2(=Tf−Tice)を演算し冷蔵室6の冷蔵冷却負荷Qpと冷凍室7の冷凍冷却負荷Qfを演算を行い(Step2)、冷凍冷蔵庫として冷却能力を高める必要があるかどうかの判断を行う(Step3)。
【0083】
運転制御手段76により冷却能力を高める必要があると判断した場合、熱電モジュール通電制御手段77により、熱電モジュール20の印加電圧を大きくし(Step4)、逆に冷却能力を高める必要がないと判断した場合、熱電モジュール通電制御手段77により、熱電モジュール20の印加電圧を小さくする(Step5)。
【0084】
次に、運転制御手段76により冷蔵室6の冷蔵冷却負荷Qpと冷凍室7の冷凍冷却負荷Qfの負荷量を比較し(Step6)、冷蔵冷却負荷Qpが冷凍冷却負荷Qfよりも大きいとき(Qp>Qf)は、庫内ファン回転数制御手段78により庫内ファン印加電圧を大きくし(Step7)、庫内ファン10の回転数を上げ、冷蔵室6内の熱交換率を向上させることにより冷蔵室6を冷却させ、冷蔵冷却負荷Qpが冷凍冷却負荷Qfよりも小さいとき(Qp<Qf)は、庫内ファン回転数制御手段78により庫内ファン印加電圧を小さくし(Step8)、庫内ファン10の回転数を下げ、冷凍室6内の冷凍冷却器24の温度を下げることにより冷凍室7を冷却させる。
【0085】
尚図11には記載していないが、冷蔵冷却負荷Qpと冷凍冷却負荷Qfが同等のとき(Q=Qf)は、庫内ファン回転数制御手段78により庫内ファン印加電圧は変化なしとする。
【0086】
このような制御装置を備えた冷凍冷蔵庫は、熱電モジュールに流れる電流を大きくすると、熱電モジュールの吸熱量(冷却能力)が大きくなり、熱電モジュールに流れる電流を小さくすると、熱電モジュールの吸熱量(冷却能力)が小さくなる。
【0087】
また、送風ファンの回転数を高くすると、冷蔵室用冷却器と熱交換する冷蔵室内の空気の量が増えて、熱電モジュールの冷却能力が冷蔵室の冷却に使われる割合が増え冷凍室の冷却に使われる割合が減る。逆に、送風ファンの回転数を低くすると、冷蔵室用冷却器と熱交換する冷蔵案内の空気の量が減って、熱電モジュールの冷却能力が冷蔵室の冷却に便われる割合が減って冷凍室の冷却に使われる割合が増える。
【0088】
そのため、冷蔵室と冷凍室とをそれぞれの設定温度の範囲で、緻密な温度制御が可能となりさらに効率よく冷却することができる。
【0089】
尚、冷凍室の冷凍センサー71は冷凍冷却器24に設置したが、冷凍室内の他の場所に設定してもよい。
【0090】
また、庫内ファン10は、印加電圧の増加により回転数が増加する電圧制御型のものを使用したが、周波数により回転数が可変する周波数制御型のものを使用しても同様の効果が得られる。
【0091】
また、熱電モジュール通電制御手段77による熱電モジュールの印加電圧の可変および、庫内ファン回転数制御手段78による庫内ファンの印加電圧の可変は、ON/OFF制御または段階(たとえば強、中、弱のような)制御またはリニア制御による可変とするものであり、ON/OFFによる制御は、制御装置を安価とする効果があり、段階による制御は比較的制御装置を安価にできかつ熱電モジュール20に与える熱ストレスの減少させる効果があり、リニアによる制御は、熱電モジュール20に与える熱ストレスの減少を招き、高寿命、高効率(消費電力小)の制御装置を備えた冷凍冷蔵庫を提供できる。
【0092】
【発明の効果】
以上説明したように請求項1に記載の冷凍冷蔵庫は、冷蔵室用冷却器と前記冷蔵室用冷却器で冷却された冷気を室内で循環させる送風ファンとを有する冷蔵室と、前記冷蔵室から独立した室で少なくとも底面に室内を直接冷却する冷凍室用冷却器を有する冷凍室と、吸熱面と放熱面とを有し所定方向の電流を流すことにより前記吸熱面が冷却され放熱面が加熱する熱電モジュールとを備え、前記冷蔵室用冷却器および前記冷凍室用冷却器は、直接もしくは間接的に、前記熱電モジュールの前記吸熱面と熱伝導可能に接続されているものであり、1つの熱電モジュールを用い、冷凍および冷蔵を可能とし、更に冷蔵室を冷却する冷蔵室用冷却器と冷凍室を冷却する冷凍冷却器が熱伝導可能に接続されている為、冷却器を一体化、ユニット化できるので、冷凍冷蔵庫への組み込みが容易になる。
【0093】
また、請求項2に記載の冷凍冷蔵庫は、請求項1に記載の発明における冷蔵室用冷却器と冷凍室用冷却器が、互いに熱伝導可能に一体化されているものであり、冷蔵室用冷却器と冷凍室用冷却器が一体構造のため、各冷却器間の熱抵抗が小さく、効率のよい熱搬送が可能となり、冷凍冷蔵庫として冷却性能の向上および消費電力の向上がある。
【0094】
また、請求項3に記載の冷凍冷蔵庫は、請求項1または2に記載の発明における冷蔵室用冷却器と冷凍室用冷却器と熱電モジュールが、一体にユニット化されているものであり、それにより冷却器と熱電モジュールを一体化、ユニット化できるので、冷凍冷蔵庫への組み込みが容易になり、組み込み工数、サービスエ数が向上する。
【0095】
また、請求項4に記載の冷凍冷蔵庫は、請求項1から3のいずれか一項に記載の発明における熱電モジュールが、冷蔵室用冷却器における冷凍室用冷却器寄りに設けられるものであり、冷蔵室に対しさらに低温が要求される冷凍室を冷却する冷凍室用冷却器に短時間で効率よく熱電モジュールの熱搬送が図れるため、冷凍冷蔵庫として消費電力の向上が図れる。
【0096】
また、請求項5に記載の冷凍冷蔵庫は、請求項1から4に記載のいずれか一項に記載の発明における冷蔵室用冷却器が、少なくとも熱電モジュールからの吸熱を熱伝導するベース部と前記ベース部の吸熱を冷蔵室内に効率よく拡散するためのフィン部を有し、冷凍室用冷却器が、少なくとも熱電モジュールからの吸熱を熱伝導するベース部を有し、前記冷蔵室用冷却器のベース部の厚さ及び前記冷凍室冷却器のベース部の厚さが、前記冷蔵室用冷却器のベース部と冷凍室用冷却器のベース部の接続部で最も厚く、前記接続部より離れるに従い薄くなるものであり、それにより熱電モジュールからの吸熱を冷蔵室冷却器と冷凍室冷却器に均一に熱搬送できるため冷凍冷蔵庫として消費電力の向上が図れるとともに冷蔵室冷却器と冷凍室冷却器の最適形状設計による材料費の削減ができる。
【0097】
また、請求項6に記載の冷凍冷蔵庫は、請求項1から5のいずれか一項に記載の発明における冷凍室用冷却器が、冷凍室を直接冷却する冷却面と冷蔵室用冷却器との接続面を除き断熱材で覆われているものであり、それにより冷凍室冷却器の熱電モジュールからの吸熱を、冷凍室にのみ使用するため、冷凍室の冷却が効率よく行われ、冷凍冷蔵庫として消費電力の向上が図れる。
【0098】
また、請求項7に記載の冷凍冷蔵庫は、請求項1から請求項6のいずれか一項に記載の発明における送風ファンが、冷蔵室用冷却器に固定されているものであり、それにより冷蔵室用冷却器の最も温度の低い箇所に直接送風することにより冷蔵室用冷却器の熱交換性能が向上すると共にさらに送風ファンが冷蔵用冷却器と冷凍用冷却器と熱電モジュールとを一体化、ユニット化できるので、冷凍冷蔵庫への組み込みがより容易になり、組み込み工数、サービスエ数がより向上する。
【0099】
また、請求項8に記載の冷凍冷蔵庫は、請求項1から請求項7のいずれか一項に記載の発明に、さらに、冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍室内の温度を検知する冷凍室温度検知手段と、前記冷蔵室温度検知手段により検知した前記冷蔵室内の温度と冷蔵室設定温度との比較結果と前記冷凍室温度検知手段により検知した前記冷凍室内の温度と冷凍室設定温度との比較結果とに基づいて送風ファンの回転数と熱電モジュールに流す電流の大きさを制御する温度制御手段とを備え、前記温度制御手段は、前記冷蔵室内の温度が前記冷蔵室設定温度より高く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より高い場合に、前記送風ファンの回転数を高くすると共に前記熱電モジュールに流す電流を大きくし、前記冷蔵室内の温度が前記冷蔵室設定温度より低く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より低い場合に、前記送風ファンの回転数を低くすると共に前記熱電モジュールに流す電流を小さくし、前記冷蔵室内の温度が前記冷蔵室設定温度より高く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より低い場合に、前記送風ファンの回転数を高くすると共に前記熱電モジュールに流す電流を小さくし、前記冷蔵室内の温度が前記冷蔵室設定温度より低く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より高い場合に、前記送風ファンの回転数を低くすると共に前記熱電モジュールに流す電流を大きくするものであり、冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍室内の温度を検知する冷凍室温度検知手段と、前記冷蔵室温度検知手段により検知した前記冷蔵室内の温度と冷蔵室設定温度との比較結果と前記冷凍案温度検知手段により検知した前記冷凍室内の温度と冷凍室畿定温度との比較結果とに基づいて送風ファンの回転数と熱電モジュールに流す電流の大きさを制御する温度制御手段を用いることにより、比較的安価な制御装置で冷蔵室と冷凍室の庫内の温度上昇や過冷却を防止し、不必要な電力消費を無くすことで、冷蔵室および冷凍室を安定温度で、効率よく冷却することができる。
【0100】
また、請求項9に記載の冷凍冷蔵庫は、請求項1から請求項7のいずれか一項に記載の発明に、さらに、冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍室内の温度を検知する冷凍室温度検知手段と、前記冷蔵室内の温度が冷蔵室設定温度となり前記冷凍室内の温度が冷凍室設定温度となるように送風ファンの回転数と熱電モジュールに流す電流の大きさを制御する温度制御手段とを備え、前記温度制御手段は、前記冷蔵室温度検知手段により検知した前記冷蔵室内の温度と前記冷蔵室設定温度との比較結果と前記冷凍室温度検知手段により検知した前記冷凍室内の温度と前記冷凍室設定温度との比較結果とに基づいて、前記熱電モジュールによる吸熱量を大きくする必要があると判断した場合には、前記熱電モジュールに流す電流を大きくし、逆に、前記熱電モジュールによる吸熱量を小さくする必要があると判断した場合には、前記熱電モジュールに流す電流を小さくし、前記冷蔵室よりも前記冷凍室を優先して冷却する必要があると判断した場合には、前記送風ファンの回転数を低くし、逆に、前記冷凍室よりも前記冷蔵室を優先して冷却する必要があると判断した場合には、送風ファンの回転数を高くするものであり、冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍室内の温度を検知する冷凍室温度検知手段と、前記冷蔵室温度検知手段により検知した前記冷蔵室内の温度と冷蔵室設定温度との比較結果と前記冷凍室温度検知手段により検知した前記冷凍室内の温度と冷凍室設定温度との比較結果とに基づいて送風ファンの回転数と熱電モジュールに流す電流の大きさを制御する温度制御手段にを用いることにより、冷蔵室と冷凍室の庫内の温度上昇や過冷却を防止し、不必要な電力消費を無くすことで、冷蔵宝および冷凍室を緻密な温度制御により、さらに効率のよい冷却運転を可能とすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の冷凍冷蔵庫の斜視図
【図2】本発明の実施の形態1の冷凍冷蔵庫の縦断面図
【図3】本発明の実施の形態1の冷凍冷蔵庫に搭載された熱電装置の縦断面図
【図4】本発明の実施の形態1の冷凍冷蔵庫の放熱部を変えた縦断面図
【図5】本発明の実施の形態1の冷凍冷蔵庫に搭載された熱電装置の熱電モジュールの位置を変えた例の縦断面図
【図6】本発明の実施の形態1の冷凍冷蔵庫に搭載された熱電装置の冷蔵室用冷却器と冷凍室用冷却器を変えた例の縦断面図
【図7】本発明の実施の形態1の冷凍冷蔵庫に搭載された熱電装置の冷凍室用冷却器に断熱材を追加した例の縦断面図
【図8】本発明の実施の形態2の冷凍冷蔵庫の制御装置のブロック図
【図9】本発明の実施の形態2の冷凍冷蔵庫の制御装置の動作を説明するためのフローチャート
【図10】本発明の実施の形態3の冷凍冷蔵庫の制御装置のブロック図
【図11】本発明の実施の形態3の冷凍冷蔵庫の制御装置の動作を説明するためのフローチャート
【図12】従来の冷凍冷蔵機器の断面図
【符号の説明】
1 冷凍冷蔵庫
6 冷蔵室
7 冷凍室
9 熱電装置
10 庫内ファン
11 庫外ファン
20 熱電モジュール
23 冷蔵室用冷却器
24 冷凍室用冷却器
26 放熱器
50 冷蔵室温度センサー
51 冷凍室温度センサー
52 冷蔵室温度検知手段
53 冷凍室温度検知手段
54 冷蔵室温度設定手段
55 冷凍室温度設定手段
56 温度差演算手段
57 熱電モジュール通電制御手段
58 庫内ファン回転数制御手段
60 温度制御手段
70 冷蔵室温度センサー
71 冷凍室温度センサー
72 冷蔵室温度検知手段
73 冷凍室温度検知手段
74 冷蔵室温度設定手段
75 冷凍室温度設定手段
76 運転制御手段
77 熱電モジュール通電制御手段
78 庫内ファン回転数制御手段
80 温度制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator that cools the inside of a refrigerator using a thermoelectric module to which the Peltier effect is applied.
[0002]
[Prior art]
In recent years, destruction of the ozone layer and global warming due to the emission of CFCs into the atmosphere have become global problems, and the development of refrigerators that do not use CFCs has been urgently required. As one of the systems that do not use Freon gas, refrigeration equipment using a thermoelectric module has attracted attention.
[0003]
As a conventional refrigerating and refrigeration equipment using a thermoelectric module, there is one disclosed in Patent Document 1.
[0004]
Hereinafter, the above-mentioned conventional refrigeration equipment will be described with reference to the drawings. FIG. 12 shows a cross-sectional view of a conventional refrigerator-freezer.
[0005]
As shown in FIG. 12, the refrigerator compartment 101 includes an outer wall 102 made of a heat insulating material and an aluminum inner wall 103 used as a cooler. The first thermoelectric module 104 has a heat absorbing surface in contact with the inner wall 103, and cools the refrigerator compartment 101 via the inner wall 103. The radiator 105 emits heat from the heat radiation surface of the first thermoelectric module 104 to the atmosphere air. That is, the first thermoelectric module 104, the inner wall 103, and the radiator 105 form a first cooling unit. The refrigerating compartment cooling blower fan 106 forcibly circulates the air in the refrigerating compartment 101 to enhance the cooling effect.
[0006]
The freezer compartment 107 is composed of an outer wall 102 made of a heat insulating material and an aluminum inner wall 108 used as a cooler, like the refrigerating compartment 101. The second thermoelectric module 109 has a heat absorbing surface in contact with the inner wall 108 and cools the freezing room 107 via the inner wall 108. The radiator 110 is housed in the refrigerator compartment 101, and radiates heat from the radiation surface of the second thermoelectric module 109 to the air in the refrigerator compartment 101. That is, the second cooling unit is formed by the second thermoelectric module 109, the inner wall 108, and the radiator 110.
[0007]
The operation of the conventional refrigeration equipment configured as described above will be described below.
[0008]
When the first thermoelectric module 104 and the second thermoelectric module 109 are energized, the air and the object to be cooled circulated by the blower fan 106 in the refrigerator compartment 101 are absorbed by the first thermoelectric module 104 via the inner wall 103, and are cooled. The inside of 101 is cooled.
[0009]
At this time, the amount of heat absorbed by the first thermoelectric module 104 and the amount of heat generated by energization are released from the heat dissipation surface to the atmosphere air via the radiator 105.
[0010]
Also in the second thermoelectric module 109, similarly to the first thermoelectric module 104, the air and the object to be cooled in the freezing room 107 are absorbed by the second thermoelectric module 109 via the inner wall 108, and the inside of the freezing room 107 is cooled.
[0011]
At this time, the amount of heat absorbed by the second thermoelectric module 109 and the amount of heat generated by energization are released from the heat dissipation surface to the air in the refrigerator compartment 101 via the radiator 110.
[0012]
At this time, since the heat in the second thermoelectric module 109 is radiated by the air in the refrigerator compartment 101 whose temperature is significantly lower than the ambient temperature, the temperature of the heat absorbing surface of the second thermoelectric module 109 decreases, and freezing can be performed.
[0013]
[Patent Document 1]
JP-A-7-332829
[0014]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the amount of heat generated from the second thermoelectric module 109 is exchanged through the air in the refrigerator compartment 101, so that the heat exchange efficiency on the heat radiation side is poor, and the heat absorption of the second thermoelectric module 109 is reduced. There is a drawback that the surface temperature is not easily lowered and the cooling speed is lowered.
[0015]
Further, since the configuration of the cooling unit of the refrigerator compartment 101 and the configuration of the cooling unit of the freezing compartment 109 are separated, the number of assembling steps is increased, and there is a disadvantage that a refrigerator cannot be provided at low cost.
[0016]
An object of the present invention is to provide a refrigerator-freezer using a thermoelectric module with a simple configuration, a reduced number of assembly steps, and a low cost.
[0017]
[Means for Solving the Problems]
The invention of the refrigerator-freezer according to claim 1 of the present invention is independent of the refrigerator compartment having a refrigerator compartment cooler and a blower fan for circulating the cool air cooled by the refrigerator compartment cooler in the room, and being independent of the refrigerator compartment. A freezer compartment having a freezer compartment cooler that directly cools the interior of the room at least on the bottom surface, and a heat sink surface is cooled by passing a current in a predetermined direction having a heat absorbing surface and a heat radiating surface to heat the heat radiating surface. A thermoelectric module, wherein the refrigerator cooler and the freezer cooler are directly or indirectly connected to the heat absorbing surface of the thermoelectric module in a heat conductive manner.
[0018]
In the above configuration, when power is supplied to the thermoelectric module, the refrigerator cooler provided on the heat absorbing surface of the thermoelectric module absorbs heat, and the refrigerator cooler connected to the refrigerator cooler so as to be thermally conductive also absorbs heat. . At that time, the refrigerator compartment is indirectly cooled to a stable temperature by a refrigerator cooler and a blower fan provided in the refrigerator compartment, and the freezer compartment is cooled by a refrigerator cooler whose bottom surface is a direct heat absorbing surface. It is cooled down to the freezing temperature by a direct cooling action capable of making ice and the like.
[0019]
In the refrigerator-freezer of the present invention, freezing and refrigeration are enabled by using one thermoelectric module, and the refrigerator-cooler for cooling the refrigerator and the refrigerator-cooler for cooling the refrigerator can conduct heat. Since it is connected to the refrigerator, the cooler can be integrated and unitized, so that it has an effect that the incorporation into a refrigerator-freezer becomes easy.
[0020]
According to a second aspect of the present invention, a refrigerator for a refrigerator and a refrigerator for a freezer according to the first aspect of the present invention are integrated so as to be thermally conductive with each other. The refrigerator and refrigerator cooler have an integrated structure, which reduces the thermal resistance between the coolers and enables efficient heat transfer, improving the cooling performance and power consumption of the refrigerator as well as for the refrigerator compartment. This has the effect of reducing the number of assembling steps of the cooler and the freezer cooler.
[0021]
According to a third aspect of the present invention, a refrigerator for a refrigerator, a refrigerator for a freezer, and a thermoelectric module according to the first or second aspect of the present invention are integrally unitized. This has the effect of facilitating incorporation into a freezer-refrigerator and improving the number of man-hours for assembling and service.
[0022]
According to a fourth aspect of the present invention, the thermoelectric module according to any one of the first to third aspects of the present invention is provided near the freezer compartment cooler in the refrigerator compartment cooler. Furthermore, since the heat transfer of the thermoelectric module can be efficiently performed in a short time in the freezer compartment cooler that cools the freezer compartment requiring a low temperature, the refrigerator has the effect of improving the power consumption as a refrigerator.
[0023]
According to a fifth aspect of the present invention, there is provided a refrigerator for a refrigerator according to any one of the first to fourth aspects of the present invention, wherein at least a base portion for thermally conducting heat absorbed from the thermoelectric module and heat absorbed by the base portion are stored in the refrigerator compartment. A fin portion for efficiently diffusing the refrigeration compartment, the refrigerator for the freezer compartment has a base portion for conducting heat absorption at least from the thermoelectric module, the thickness of the base portion of the refrigerator for the refrigerator compartment and the The thickness of the base of the freezer compartment cooler is the largest at the connection between the base of the refrigerator compartment cooler and the base of the freezer compartment cooler, and becomes thinner as the distance from the connection increases. The heat absorption from the thermoelectric module can be evenly transferred to the refrigerator cooler and freezer cooler, so that the power consumption can be improved as a freezer and refrigerator, and the material by the optimal shape design of the cooler and freezer cooler It has the effect of being able to reduce the cost.
[0024]
According to a sixth aspect of the present invention, the refrigerator for a freezer compartment according to any one of the first to fifth aspects is insulated except for a connection surface between a cooling surface for directly cooling the freezer compartment and a refrigerator compartment refrigerator. Since the heat absorption from the thermoelectric module of the freezer compartment cooler is used only for the freezer compartment, the freezer compartment is cooled efficiently and the power consumption of the refrigerator is improved. It has the effect that it can be achieved.
[0025]
According to a seventh aspect of the present invention, there is provided a refrigerator according to any one of the first to sixth aspects, wherein the blower fan according to any one of the first to sixth aspects is fixed to a refrigerator compartment cooler. By fixing to the cooler, it is possible to blow air directly to the coldest part of the cooler for the refrigerator, thereby improving the heat exchange performance of the cooler for the refrigerator. In addition, the blower fan, refrigerator cooler, freezer cooler, and thermoelectric module can be integrated and unitized, making it easier to incorporate them into refrigerators and refrigerators. Has an action.
[0026]
The invention of the refrigerator-freezer according to claim 8 is the invention according to any one of claims 1 to 7, further comprising a refrigerator-room temperature detecting means for detecting a temperature in the refrigerator, and a refrigerator-freezer cooler. A freezing treasure temperature detecting means for detecting the temperature or the temperature in the freezer, a comparison result between the temperature in the refrigerator and the refrigerator temperature set by the refrigerator temperature detecting means, and a temperature in the freezing chamber detected by the freezer temperature free means. It is provided with temperature control means for controlling the rotation speed of the blower fan and the magnitude of the current flowing through the thermoelectric module based on the comparison result between the freezer compartment temperature and the freezer compartment set temperature as follows.
[0027]
That is, when the temperature in the refrigerator compartment is higher than the refrigerator compartment set temperature, and the temperature in the freezer compartment is higher than the freezer compartment set temperature, the temperature control means increases the rotation speed of the blower fan. Increase the current flowing through the thermoelectric module, the temperature in the refrigerator compartment is lower than the refrigerator compartment set temperature, and, when the temperature in the freezer compartment is lower than the freezer compartment set temperature, lower the rotation speed of the blower fan When the temperature in the refrigerator compartment is higher than the refrigerator compartment set temperature and the temperature in the freezer compartment is lower than the freezer compartment set temperature, the rotation speed of the blower fan is reduced. And the current flowing through the thermoelectric module is reduced, the temperature in the refrigerator compartment is lower than the refrigerator compartment set temperature, and the temperature in the freezer compartment is When the temperature is higher than the freezing room set temperature, the refrigerator is characterized in that the number of rotations of the blower fan is reduced and the current flowing through the thermoelectric module is increased, and a refrigerator temperature detecting means for detecting a temperature in the refrigerator compartment. A freezer compartment temperature detector for detecting the temperature of the freezer compartment cooler or the temperature in the freezer compartment; a comparison result between the refrigerator compartment temperature detected by the refrigerator compartment temperature detector and the refrigerator compartment set temperature; It controls the rotation speed of the blower fan and the magnitude of the current flowing through the thermoelectric module based on the comparison result between the temperature in the freezer compartment and the freezer compartment set temperature detected by the room temperature detecting means. The freezer compartment temperature is prevented from rising or overcooling in each compartment, and unnecessary power consumption is eliminated by comparatively inexpensive temperature control means to keep the refrigerator compartment and freezer compartment at a stable temperature. In, an effect that can be efficiently cooled.
[0028]
The refrigeration refrigerator according to the ninth aspect of the present invention is the refrigerator according to any one of the first to seventh aspects, further comprising: a refrigerator compartment temperature detecting means for detecting a temperature in the refrigerator compartment; A freezing room temperature detecting means for detecting the temperature or the temperature in the freezing room; and the number of rotations of the blower fan as described below so that the temperature in the freezing room becomes the refrigerator temperature and the temperature in the freezing room becomes the freezing room set temperature. And temperature control means for controlling the magnitude of the current flowing through the thermoelectric module.
[0029]
That is, a comparison result between the temperature in the refrigerator compartment and the refrigerator temperature set by the refrigerator temperature detector and the temperature in the refrigerator and the refrigerator set temperature detected by the refrigerator temperature detector. If it is determined based on the comparison result that it is necessary to increase the amount of heat absorbed by the thermoelectric module, it is necessary to increase the current flowing through the thermoelectric module, and conversely, reduce the amount of heat absorbed by the thermoelectric module. When it is determined that there is, the current flowing through the thermoelectric module is reduced, and when it is determined that the freezing room needs to be preferentially cooled over the refrigerating room, the rotation speed of the blower fan is reduced. On the other hand, if it is determined that the refrigerating compartment needs to be cooled with priority over the freezing compartment, the rotation speed of the blower fan is increased.
[0030]
In the refrigerator of the present invention, when the current flowing through the thermoelectric module is increased, the heat absorption (cooling capacity) of the thermoelectric module is increased, and when the current flowing through the thermoelectric module is reduced, the heat absorption (cooling capacity) of the thermoelectric module is reduced. .
[0031]
Also, when the rotation speed of the blower fan is increased, the amount of air in the refrigerator compartment that exchanges heat with the refrigerator compartment cooler increases, and the cooling capacity of the thermoelectric module increases the rate of use for cooling the refrigerator compartment, thereby increasing the cooling of the refrigerator compartment. The percentage used for Conversely, when the rotation speed of the blower fan is reduced, the amount of air in the refrigerator compartment that exchanges heat with the refrigerator compartment cooler decreases, and the cooling capacity of the thermoelectric module decreases in the proportion used for cooling the refrigerator compartment. The percentage used to cool the garbage increases.
[0032]
Therefore, based on the comparison result between the refrigerator compartment temperature and the refrigerator compartment set temperature detected by the refrigerator compartment temperature detector and the comparison result between the freezer compartment temperature and the freezer compartment set temperature detected by the freezer compartment temperature detector, When it is determined that the amount of heat absorbed by the thermoelectric module needs to be increased, the current flowing through the thermoelectric module should be increased. Conversely, when it is determined that the amount of heat absorbed by the thermoelectric module needs to be reduced, the current should flow through the thermoelectric module. If it is determined that it is necessary to reduce the current and prioritize cooling of the freezer compartment over the refrigerating compartment, lower the rotation speed of the blower fan and conversely cool the refrigerating compartment over the freezer compartment. When it is determined that it is necessary, by increasing the rotation speed of the blower fan, it is possible to perform delicate temperature control of the refrigerator compartment and the freezer compartment within the respective set temperature ranges. It has an effect that it is possible to rate better cooling.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the refrigerator according to the present invention will be described.
[0034]
(Embodiment 1)
FIG. 1 is a perspective view of a refrigerator according to an embodiment of the present invention. FIG. 2 is a vertical sectional view of the refrigerator-freezer according to the embodiment. FIG. 3 is a vertical cross-sectional view of a thermoelectric device including a thermoelectric module for cooling the refrigerator-freezer of the embodiment.
[0035]
1 and 2, the refrigerator 1 includes a main body 2 formed of a box having an opening on the front surface and a door 3 for opening and closing the opening of the main body 2. And outer walls 4 and 5 made of a heat insulating material such as a vacuum heat insulating material.
[0036]
Further, the refrigerator 1 is independent of the refrigerator compartment 6 and the refrigerator compartment 7 by a partition wall 8 made of a material having a low thermal conductivity, such as plastic or a heat insulating material. A cooling device 9 that penetrates the outer wall 4 on the rear side of the refrigerator compartment 6 and controls the cooling of the refrigerator 1 is attached.
[0037]
The in-compartment fan 10 is disposed in the refrigerating compartment 6 and circulates the air in the refrigerating compartment 6. For example, the in-compartment fan 10 is fixed to the refrigerating compartment cooler 23 of the thermoelectric device 9. Numeral 11 is provided below the outside chamber 12 to take in outside air into the outside chamber 12 and exchange heat with the radiator 26 of the thermoelectric device 9.
[0038]
The power supply control device 14 is provided at a position above the outside compartment 12 to supply power to the thermoelectric module 20, the inside fan 10, the outside fan 11, and the like, and the temperature of the refrigerator compartment 6 and the freezing compartment 7 inside the compartment. And temperature control means for controlling the energization of the thermoelectric module 20 and controlling the rotation speed of the fan 10 in the refrigerator.
[0039]
The structure of the thermoelectric device 9 in FIG. 3 will be described. The thermoelectric module 20 has a heat-absorbing surface 21 and a heat-dissipating surface 22, and the heat-absorbing surface 21 is cooled by flowing a current in a predetermined direction, and the heat-dissipating surface 22 is heated.
[0040]
The refrigerating compartment cooler 23 for cooling the refrigerating compartment 6 includes a base portion 23a that conducts heat from the thermoelectric module 20 and a fin portion 23b provided on the surface of the base portion 23a. It is connected to the base portion 24a of the freezer compartment cooler 24 for cooling so as to conduct heat.
[0041]
Further, the refrigerator compartment cooler 23 is also connected to a heat conducting member 25 that is in contact with the heat absorbing surface 21 of the thermoelectric module 20 and that conducts the heat of the thermoelectric module 20 at a low temperature. The radiator 26 is connected to the heat radiation surface 22 of the thermoelectric module 20 so as to be able to conduct heat.
[0042]
A box 27 made of a material having a low thermal conductivity such as plastic has a thermoelectric module 20 and a heat conducting member 25 disposed therein, and has a refrigerator compartment cooler 23 at one end and a radiator 26 at the other end. And the thermoelectric device 9 has an integral structure.
[0043]
Thus, the thermoelectric device 9 that controls the cooling of the refrigerator-freezer of the embodiment includes a refrigerator compartment cooler 23, a refrigerator compartment cooler 24, a heat conduction member 25, and a radiator connected to the thermoelectric module 20 so as to be able to conduct heat. 26, a box body 27, and an internal fan 10 fixed to the refrigerator compartment cooler 23.
[0044]
Hereinafter, the operation of the refrigerator-freezer of the embodiment will be described with reference to the drawings.
[0045]
When power is supplied from the power supply control device 14 to the thermoelectric module 20 in a predetermined direction, the heat absorbing surface 21 of the thermoelectric module 20 is cooled, and the heat radiation surface 22 is heated. The cold temperature of the heat absorbing surface 21 is thermally conducted through the heat conducting member 25, and the base 23a and the fin 23b of the refrigerator compartment cooler 23 in the refrigerator 6 are cooled.
[0046]
Then, the air in the refrigerator compartment 8 is cooled by the in-compartment fan 10 fixed to the refrigerator compartment cooler 23, and the refrigerator compartment 8 is brought into a refrigerator atmosphere. At the same time, the freezer compartment cooler 24 having the base portion 24a connected to the base portion 23a of the refrigerator compartment cooler 23 so as to be able to conduct heat is cooled.
[0047]
In the freezer compartment 9, a base portion 24 a of a refrigerator / freezer 24 that directly cools the inside of the refrigerator compartment 1 on the bottom surface with respect to the installation state of the refrigerator 1 is horizontally arranged, and an ice tray 28 placed above the base portion 24 a is provided. As soon as ice is made, the atmosphere becomes frozen.
[0048]
On the other hand, the heat of the heat radiating surface 22 is directly transmitted to the radiator 26 and is released to the outside by the external fan 11.
[0049]
As described above, in the refrigerator-freezer 1 of the present embodiment, freezing and refrigeration can be performed by one cooling unit using one thermoelectric module. When a current is supplied in a predetermined direction, the heat absorbing surface 21 is cooled to release heat. Refrigerator cooler 23 connected to the thermoelectric module 20 to be heated by the surface 22 and the heat absorbing surface 21 through a heat conductive member 25 so as to be able to conduct heat, and freezer compartment cooling connected to the cooler cooler 23 so as to be able to conduct heat. The thermoelectric device 9 unitized by a radiator 24, a radiator 26 connected to the heat radiating surface 22 so as to be able to conduct heat, a box 27 for integrally fixing them, and an internal fan 10 fixed to a refrigerator compartment cooler 23. Since it is inserted into and installed on the outer wall 4 on the back of the refrigerator 1, it is easy to assemble.
[0050]
In the present embodiment, heat is radiated by directly contacting the radiator 26 and the heat radiating surface 22 of the thermoelectric module 20. However, as shown in FIG. The heat exchange unit 30, the reservoir chamber 31, and the radiator 32 are connected by a pipe 33 to form a circulation path, and a liquid refrigerant having a large heat transfer coefficient such as water or an aqueous propylene glycol solution is circulated to indirectly circulate the liquid. Alternatively, a method of dissipating heat from the thermoelectric module 20 may be used.
[0051]
In addition, as a structure of the thermoelectric device 9 in FIG. 3, the refrigerator cooler 23 and the refrigerator cooler 24 are integrated by heat molding, for example, by extrusion molding.
[0052]
Thereby, the thermal resistance between the base portion 23a of the refrigerator compartment cooler 23 and the base portion 24a of the refrigerator compartment cooler 24 can be reduced, so that the cold temperature from the heat absorbing surface 21 of the thermoelectric module 20 is reduced by the heat conduction. Through the member 25, efficient heat transfer can be performed to the base portion 24a of the freezer compartment cooler 24, which is thermally conductively connected to the base portion 23a of the refrigerator compartment cooler 23. As a result, the number of assembling steps of the refrigerator cooler 23 and the freezer cooler 24 can be reduced.
[0053]
In addition, as a structure of the thermoelectric device 9 in FIG. 5, a heat conductive member 25 that is thermally conductively connected to the heat absorbing surface 21 of the thermoelectric module 20 that is thermally conductively connected to the base 23 a of the refrigerator cooler 23 is provided. , Provided near the connecting portion 40 between the base 23a of the refrigerator cooler 23 and the base 24a of the refrigerator cooler 24.
[0054]
As a result, the cool temperature of the heat absorbing surface 21 of the thermoelectric module 20 cools the base 24a of the cooler for the freezer compartment 24 from the heat conducting member 25 via the base 23a of the cooler for the refrigerator compartment 23 in a short time.
[0055]
As described above, since the cold temperature of the thermoelectric module 20 that is thermally conducted to the refrigerator compartment cooler 23 is provided in the vicinity of the refrigerator compartment cooler 24, the refrigerator compartment that requires a lower temperature for the refrigerator compartment is cooled. Since the heat transfer of the thermoelectric module 20 is efficiently performed in a short time in the freezer compartment cooler 24, the power consumption of the refrigerator 1 can be improved.
[0056]
6, the thickness of the base portion 23a of the refrigerator compartment cooler 23 and the thickness of the base portion 24a of the freezer compartment cooler 24 are the same as those of the refrigerator compartment cooler 23. The thickness of the base portion 23a of the refrigerator compartment cooler 23 and the thickness of the base portion 24a of the refrigerator compartment cooler 24 become greater at the connecting portion 41 between the base portion 23a and the base portion 24a of the freezer compartment cooler 24. Is thinner.
[0057]
Thereby, the cooling temperature of the heat absorbing surface 21 of the thermoelectric module 20 is controlled by the base portion 23a of the refrigerator compartment cooler 23 via the heat conducting member 25 and the base portion 24a of the freezer compartment cooler 24 which is thermally conductively connected thereto. Cooling.
[0058]
At this time, since heat transfer is efficiently performed at a portion where the thickness of the base portion is large, heat transfer is performed efficiently, and therefore, from the base portion 23a of the refrigerator cooler 23 to the base portion 24a of the refrigerator cooler 24. The cooling is efficiently performed, and at the same time, the temperature of the refrigerator cooler 23 and the refrigerator cooler 24 is equalized.
[0059]
As described above, the thickness of the base portion 23a of the refrigerator compartment cooler 23 and the thickness of the base portion 24a of the freezer compartment cooler 24 are different from those of the base portion 23a of the refrigerator compartment cooler 23 and the freezer compartment cooler 24. Heat absorption from the thermoelectric module 20 can be uniformly and efficiently transferred to the refrigerator cooler 23 and the refrigerator cooler 24 by making the connection part 41 of the base part 24a thickest and thinning away from the connection part 41. In addition, the power consumption of the refrigerator 1 can be improved, and material costs can be reduced by optimally designing the refrigerator cooler 23 and the refrigerator cooler.
[0060]
As a structure of the thermoelectric device 9 in FIG. 7, the refrigerator cooler 24 is covered with a heat insulating material 44 except for a connection surface 43 between the cooling surface 42 for directly cooling the refrigerator 7 and the refrigerator cooler 23. ing.
[0061]
Thereby, the cooling temperature of the heat absorbing surface 21 of the thermoelectric module 20 is controlled by the base portion 23a of the refrigerator compartment cooler 23 via the heat conducting member 25 and the base portion 24a of the freezer compartment cooler 24 which is thermally conductively connected thereto. Cooling.
[0062]
At this time, the cooling surface 42 of the base portion 24a of the freezer compartment cooler 24 for directly cooling the freezer compartment 7 is in a low temperature state without heat loss to the refrigerator compartment 6 due to the heat insulating material 44.
[0063]
Thereby, since the heat absorption from the thermoelectric module 20 of the freezer compartment cooler 24 is used only for the freezer compartment 7, the freezing compartment 7 is efficiently cooled, and the power consumption of the refrigerator 1 can be improved.
[0064]
(Embodiment 2)
FIG. 8 is a block diagram of a control device of the refrigerator-freezer according to the embodiment of the present invention, and FIG. 9 is a flowchart for explaining an operation of the control device of the refrigerator-freezer of the embodiment.
[0065]
In FIG. 8, the refrigerator sensor 50 is provided in the refrigerator room 6 of the refrigerator 1, and the refrigerator sensor 51 is provided in the refrigerator cooler 24 in the refrigerator room 7. The refrigerating compartment temperature detecting means 52 detects the refrigerating compartment temperature with the refrigerating sensor 50, and the freezing compartment temperature detecting means 53 detects the refrigerating compartment temperature with the refrigerating sensor 51. The refrigerating compartment temperature setting means 54 sets the refrigerating compartment temperature to a predetermined temperature, and the freezing compartment temperature setting means 55 sets the freezing compartment temperature to a predetermined temperature.
[0066]
The temperature control means 60 includes a temperature difference between a predetermined temperature set by the refrigerator temperature detecting means 52 and a predetermined temperature set by the refrigerator temperature setting means 54 and a predetermined temperature set by the freezing room temperature detecting means 53 and the freezing room temperature setting means 55. A temperature difference calculating means 56 for calculating a temperature difference from the temperature; a thermoelectric module energization control means 57 for controlling an applied voltage to the thermoelectric module 20 in accordance with the temperature difference calculated by the temperature difference calculating means 56; The internal fan rotation speed control means 58 controls the voltage applied to the internal fan 10 whose rotation speed increases with an increase in the applied voltage in accordance with the temperature difference calculated by the means 56.
[0067]
The operation of the control device for a refrigerator-freezer configured as described above will be described with reference to FIGS.
[0068]
9, first, the refrigerator compartment temperature detecting means 52 detects the refrigerator compartment temperature Tp by the refrigerator sensor 50 (Step 1), and the predetermined temperature set by the refrigerator compartment temperature Tp and the refrigerator compartment temperature setting means 54 by the temperature difference calculating means 56. A temperature difference ΔT1 (= Tp−Tref) from the temperature Tref is calculated (Step 2).
[0069]
When ΔT1 is positive, that is, when the refrigerator compartment temperature is higher than the refrigerator compartment set temperature, the freezer compartment temperature detecting means 53 detects the freezer compartment temperature Tf by the freezing sensor 51 (Step 3), and the freezer compartment temperature Tf by the temperature difference calculating means 56. And a predetermined temperature Tice set by the freezing room temperature setting means 55, ΔT2 (= Tf−Tice) is calculated (Step 4), and ΔT2 is positive, that is, the freezing room temperature is higher than the freezing room set temperature. At this time, the applied voltage of the thermoelectric module 20 is increased by the thermoelectric module energization control means 57, and the applied voltage of the internal fan 10 is increased by the internal fan rotation speed control means 58 (Step 5).
[0070]
When ΔT2 is negative, that is, when the freezing room temperature is lower than the freezing room set temperature, the voltage applied to the thermoelectric module 20 is reduced by the thermoelectric module conduction control means 57, and the internal fan rotation speed control means 58 controls the internal fan 10 Is increased (Step 6).
[0071]
Next, when ΔT1 is negative, that is, when the refrigerator compartment temperature is lower than the refrigerator compartment set temperature, the freezer compartment temperature detecting means 53 detects the freezing compartment temperature Tf by the freezing sensor 51 (Step 7), and the freezing compartment temperature is calculated by the temperature difference calculating means 56. A temperature difference ΔT2 (= Tf−Tice) between the room temperature Tf and the predetermined temperature Tice set by the freezing room temperature setting means 55 is calculated (Step 8), and ΔT2 is positive, that is, the freezing room temperature is the freezing room set temperature. If it is higher, the applied voltage of the thermoelectric module 20 is increased by the thermoelectric module energization control means 57, and the applied voltage of the internal fan 10 is reduced by the internal fan rotation speed control means 58 (Step 9).
[0072]
When ΔT2 is negative, that is, when the freezing room temperature is lower than the freezing room set temperature, the voltage applied to the thermoelectric module 20 is reduced by the thermoelectric module conduction control means 57, and the internal fan rotation speed control means 58 controls the internal fan 10 Is reduced (Step 10).
[0073]
The refrigerator-freezer equipped with such a control device prevents the temperature of the refrigerator compartment and the temperature of the freezer compartment from rising or overcooling in the respective refrigerators, and eliminates unnecessary power consumption by relatively inexpensive temperature control means. Thus, the refrigerator compartment and the freezer compartment can be efficiently cooled at a stable temperature.
[0074]
Although the freezing sensor 51 of the freezing room is installed in the freezing cooler 24, it may be set at another place in the freezing room.
[0075]
The internal fan 10 is of a voltage control type in which the number of revolutions increases with an increase in the applied voltage. However, the same effect can be obtained by using a frequency control type in which the number of revolutions varies with the frequency. Can be
[0076]
The variation of the applied voltage of the thermoelectric module by the thermoelectric module energization control means 57 and the variation of the applied voltage of the internal fan by the internal fan rotation speed control means 58 are controlled by ON / OFF control or in steps (for example, strong, medium, and weak). The control by ON / OFF has the effect of making the control device inexpensive, and the stepwise control can make the control device relatively inexpensive and the thermoelectric module 20 There is an effect of reducing the applied thermal stress, and the linear control causes a reduction in the thermal stress applied to the thermoelectric module 20, and it is possible to provide a refrigerator having a long-life, high-efficiency (low power consumption) control device.
[0077]
(Embodiment 3)
FIG. 10 is a block diagram of the control device of the refrigerator according to the embodiment of the present invention, and FIG. 11 is a flowchart for explaining the operation of the control device of the refrigerator of the embodiment.
[0078]
In FIG. 10, a refrigerator sensor 70 is provided in the refrigerator room 6 of the refrigerator main body, and a freezing sensor 71 is provided in the refrigerator cooler 24 in the refrigerator room 7. The refrigerating compartment temperature detecting means 72 detects the refrigerating compartment temperature by the refrigerating sensor 70, and the freezing compartment detecting means 73 detects the refrigerating compartment temperature by the refrigerating sensor 71.
[0079]
The refrigerator compartment temperature setting means 74 sets the refrigerator compartment temperature to a predetermined temperature, and the freezer compartment temperature setting means 75 sets the freezer compartment temperature to a predetermined temperature.
[0080]
The temperature control means 80 includes a temperature difference between a predetermined temperature set by the refrigerator temperature detecting means 72 and a predetermined temperature set by the refrigerator temperature setting means 74 and a predetermined temperature set by the freezing room temperature detecting means 73 and the freezing room temperature setting means 75. An operation control means 76 for calculating the temperature difference from the temperature and for calculating the cooling load of the refrigerator compartment 6 and the freezing room 7, and controlling the voltage applied to the thermoelectric module 20 in accordance with the cooling load calculated by the operation control means 76. Thermoelectric module energization control means 77 and in-compartment fan rotation speed control means 78 for controlling the applied voltage to the in-compartment fan 10 whose rotation speed increases by increasing the applied voltage in accordance with the cooling load calculated by the operation control means 76 Consists of
[0081]
The operation of the control device for a refrigerator-freezer configured as described above will be described with reference to FIGS.
[0082]
11, first, the refrigerator temperature detecting means 72 detects the refrigerator temperature Tp by the refrigerator sensor 70, and the freezing room temperature detecting means 73 detects the freezing room temperature Tf by the freezing sensor 71 (Step 1). Next, the temperature difference ΔT1 (= T1p−Tref) between the refrigerator compartment temperature Tp by the operation control means 76 and the predetermined temperature Tref set by the refrigerator compartment temperature setting means 74, the freezing room temperature setting Tf, and the freezing room temperature setting means 75 Is calculated by calculating the temperature difference ΔT2 (= Tf−Tice) from the predetermined temperature Tice set by the above (Step 2), and calculating the refrigeration cooling load Qp of the refrigeration room 6 and the refrigeration cooling load Qf of the freezing room 7 (Step 2). It is determined whether it is necessary to increase the cooling capacity (Step 3).
[0083]
When the operation control means 76 determines that the cooling capacity needs to be increased, the thermoelectric module energization control means 77 increases the applied voltage of the thermoelectric module 20 (Step 4), and conversely determines that the cooling capacity does not need to be increased. In this case, the voltage applied to the thermoelectric module 20 is reduced by the thermoelectric module energization control unit 77 (Step 5).
[0084]
Next, the operation control means 76 compares the refrigeration cooling load Qp of the refrigerator compartment 6 with the refrigeration cooling load Qf of the freezer compartment 7 (Step 6), and when the refrigeration cooling load Qp is larger than the refrigeration cooling load Qf (Qp). > Qf), the internal fan rotation speed control means 78 increases the internal fan application voltage (Step 7), increases the number of rotations of the internal fan 10, and improves the heat exchange rate in the refrigerator compartment 6 to cool the refrigerator. When the chamber 6 is cooled and the refrigeration cooling load Qp is smaller than the refrigeration cooling load Qf (Qp <Qf), the in-compartment fan rotation control means 78 reduces the in-compartment fan applied voltage (Step 8), and the in-compartment fan By lowering the rotation speed of 10 and lowering the temperature of the freezing cooler 24 in the freezing room 6, the freezing room 7 is cooled.
[0085]
Although not shown in FIG. 11, when the refrigeration cooling load Qp and the refrigeration cooling load Qf are equal (Q = Qf), the in-compartment fan rotation control means 78 determines that the applied voltage to the in-compartment fan does not change. .
[0086]
In a refrigerator including such a control device, when the current flowing through the thermoelectric module is increased, the heat absorption (cooling capacity) of the thermoelectric module is increased, and when the current flowing through the thermoelectric module is reduced, the heat absorption (cooling) of the thermoelectric module is reduced. Ability).
[0087]
Also, when the rotation speed of the blower fan is increased, the amount of air in the refrigerator compartment that exchanges heat with the refrigerator compartment cooler increases, and the cooling capacity of the thermoelectric module increases the rate of use for cooling the refrigerator compartment, thereby increasing the cooling of the refrigerator compartment. The percentage used for Conversely, when the number of rotations of the blower fan is reduced, the amount of air in the refrigeration guide that exchanges heat with the chiller for the refrigeration compartment is reduced, and the cooling capacity of the thermoelectric module is reduced in the ratio of the cooling capacity of the refrigeration compartment. The percentage used to cool the garbage increases.
[0088]
Therefore, the temperature of the refrigerating compartment and the freezing compartment can be precisely controlled within the respective set temperature ranges, and the cooling can be more efficiently performed.
[0089]
Although the freezing sensor 71 in the freezing room is installed in the freezing cooler 24, it may be set at another place in the freezing room.
[0090]
The internal fan 10 is of a voltage control type in which the number of revolutions increases with an increase in the applied voltage. However, the same effect can be obtained by using a frequency control type in which the number of revolutions varies with the frequency. Can be
[0091]
The variation of the applied voltage of the thermoelectric module by the thermoelectric module energization control unit 77 and the variation of the applied voltage of the internal fan by the internal fan rotation speed control unit 78 are controlled by ON / OFF control or steps (for example, strong, medium, and weak). The control by ON / OFF has the effect of making the control device inexpensive, and the stepwise control can make the control device relatively inexpensive and the thermoelectric module 20 There is an effect of reducing the applied thermal stress, and the linear control causes a reduction in the thermal stress applied to the thermoelectric module 20, and it is possible to provide a refrigerator having a long-life, high-efficiency (low power consumption) control device.
[0092]
【The invention's effect】
As described above, the refrigerator-freezer according to claim 1 has a refrigerator compartment having a refrigerator compartment cooler and a blower fan for circulating the cool air cooled by the refrigerator compartment cooler in the room, and the refrigerator compartment comprises: A freezing compartment having a freezer compartment cooler for directly cooling the interior of the compartment at least on the bottom surface of the independent compartment, and having a heat absorbing surface and a heat dissipating surface, and applying a current in a predetermined direction to cool the heat absorbing surface and heat the heat dissipating surface. The refrigerator compartment cooler and the freezer compartment cooler are directly or indirectly connected to the heat absorbing surface of the thermoelectric module so as to be able to conduct heat. Using a thermoelectric module, it enables freezing and refrigeration, and furthermore, a refrigerator cooler for cooling the refrigerator compartment and a refrigeration cooler for cooling the refrigerator compartment are connected so as to conduct heat. Can be Because, it is easy to integration into the refrigerator.
[0093]
A refrigerator according to a second aspect of the present invention is the refrigerator according to the first aspect of the present invention, wherein the refrigerator cooler and the refrigerator cooler are integrated so as to be thermally conductive with each other. Since the cooler and the cooler for the freezer compartment have an integral structure, the heat resistance between the coolers is small, efficient heat transfer is possible, and the refrigerator has improved cooling performance and improved power consumption.
[0094]
A refrigerator according to a third aspect of the present invention is the refrigerator according to the first or second aspect, wherein the refrigerator cooler, the refrigerator cooler, and the thermoelectric module are integrally unitized. As a result, the cooler and the thermoelectric module can be integrated and unitized, so that it is easy to incorporate the refrigerator and the refrigerator, and the man-hour for assembling and the number of services are improved.
[0095]
A refrigerator according to a fourth aspect of the present invention is the refrigerator according to any one of the first to third aspects, wherein the thermoelectric module according to any one of the first to third aspects is provided closer to the freezer compartment cooler in the refrigerator compartment cooler, Since the heat transfer of the thermoelectric module can be efficiently performed in a short time in the freezer compartment cooler that cools the freezer compartment that requires a lower temperature than the refrigerating compartment, the power consumption of the refrigerator can be improved.
[0096]
Further, in the refrigerator-freezer according to claim 5, the refrigerator for the refrigerator compartment according to any one of claims 1 to 4, wherein the refrigerator for the refrigerator compartment has at least a base portion that conducts heat absorption from a thermoelectric module and the base unit. A fin portion for efficiently diffusing heat absorption of the base portion into the refrigerator compartment; a refrigerator for the freezer compartment having a base portion for thermally conducting heat absorption from at least the thermoelectric module; The thickness of the base part and the thickness of the base part of the freezer compartment cooler are the thickest at the connection part between the base part of the refrigerator compartment cooler and the base part of the freezer compartment cooler, and as the distance from the connection part increases. This allows the heat absorption from the thermoelectric module to be uniformly transferred to the refrigerator cooler and freezer cooler, thereby improving the power consumption of the refrigerator and improving the refrigerator cooler and freezer cooler. It can reduce material costs through proper shape design.
[0097]
A refrigerator according to a sixth aspect of the present invention is the refrigerator according to any one of the first to fifth aspects, wherein the cooler for a freezer compartment includes a cooling surface for directly cooling a freezer compartment and a cooler for a refrigerator compartment. Except for the connection surface, it is covered with heat insulating material, so that the heat absorption from the thermoelectric module of the freezer compartment cooler is used only for the freezer compartment, so that the freezer compartment can be cooled efficiently and used as a refrigerator-freezer. The power consumption can be improved.
[0098]
According to a seventh aspect of the present invention, there is provided a refrigerator according to any one of the first to sixth aspects, wherein the blower fan according to any one of the first to sixth aspects is fixed to a refrigerator cooler. By directly blowing air to the lowest temperature part of the room cooler, the heat exchange performance of the refrigerator cooler is improved, and the blower fan further integrates the refrigerator cooler, the refrigerator cooler and the thermoelectric module, Since it can be made into a unit, it can be more easily incorporated into a refrigerator, and the number of man-hours for assembling and the number of services can be further improved.
[0099]
The refrigerator-freezer according to claim 8 is the refrigerator according to any one of claims 1 to 7, further comprising: a refrigerator-room temperature detecting means for detecting a temperature in the refrigerator compartment; Freezer compartment temperature detecting means for detecting the temperature of the refrigerator or the temperature in the freezer compartment; a comparison result of the temperature in the refrigerator compartment detected by the refrigerator compartment temperature detecting means with the set temperature of the refrigerator compartment; and detection by the freezer compartment temperature detecting means. Temperature control means for controlling the number of rotations of the blower fan and the magnitude of the current flowing through the thermoelectric module based on the comparison result between the temperature in the freezer compartment and the set temperature of the freezer compartment. When the temperature in the refrigerator compartment is higher than the preset temperature in the refrigerator compartment and the temperature in the freezer compartment is higher than the preset temperature in the freezer compartment, the rotation speed of the blower fan is increased and the heat is supplied to the thermoelectric module. When the temperature in the refrigerator compartment is lower than the refrigerator compartment set temperature and the temperature in the freezer compartment is lower than the freezer compartment set temperature, the rotation speed of the blower fan is reduced and the thermoelectric module is increased. Reduce the current flowing to the, the temperature in the refrigerator compartment is higher than the refrigerator compartment set temperature, and, when the temperature in the freezer compartment is lower than the freezer compartment set temperature, while increasing the rotation speed of the blower fan and The current flowing through the thermoelectric module is reduced, and when the temperature in the refrigerator compartment is lower than the refrigerator compartment set temperature and the temperature in the freezer compartment is higher than the freezer compartment set temperature, the rotation speed of the blower fan is reduced. And a current flowing through the thermoelectric module to increase the temperature of the refrigerator compartment for detecting the temperature in the refrigerator compartment; Temperature of the freezer compartment detecting the temperature of the freezer compartment, a comparison result between the temperature of the refrigerator compartment detected by the refrigerator compartment temperature detector and the set temperature of the refrigerator compartment, and the temperature of the freezer compartment detected by the freezer draft temperature detector. By using temperature control means for controlling the number of rotations of the blower fan and the magnitude of the current flowing through the thermoelectric module based on a comparison result between the temperature of the refrigerator compartment and the temperature of the freezer compartment, a relatively inexpensive controller can be used to control the refrigerator compartment and the freezer compartment. By preventing a rise in temperature and overcooling in the compartment and eliminating unnecessary power consumption, the refrigerator compartment and the freezer compartment can be efficiently cooled at a stable temperature.
[0100]
A refrigerator according to a ninth aspect of the present invention is the refrigerator according to any one of the first to seventh aspects, further comprising: a refrigerator compartment temperature detecting means for detecting a temperature in the refrigerator compartment; A freezing room temperature detecting means for detecting the temperature of the refrigerator or the temperature in the freezing room; Temperature control means for controlling the magnitude of the current flowing through the module, wherein the temperature control means compares the result of comparison between the temperature in the refrigerator compartment detected by the refrigerator compartment temperature detector with the refrigerator compartment set temperature and the freezing temperature. If it is determined that it is necessary to increase the amount of heat absorbed by the thermoelectric module based on a comparison result between the freezer compartment temperature detected by the room temperature detecting means and the freezer compartment set temperature, If it is determined that it is necessary to reduce the amount of heat absorbed by the thermoelectric module, the current flowing through the thermoelectric module should be reduced, and the current flowing through the thermoelectric module should be reduced. If it is determined that it is necessary to prioritize cooling, the rotational speed of the blower fan is lowered, and conversely, if it is determined that the refrigerating room needs to be preferentially cooled over the freezing room, Is for increasing the rotation speed of the blower fan, a refrigerator temperature detecting means for detecting the temperature in the refrigerator, a freezer temperature detecting means for detecting the temperature of the freezer cooler or the temperature in the freezer, A comparison result of the comparison between the temperature in the refrigerator compartment detected by the refrigerator compartment temperature detecting means and the refrigerator compartment set temperature, and the comparison between the temperature in the freezer compartment detected by the freezer compartment temperature detecting means and the freezer compartment set temperature. Temperature control means that controls the number of rotations of the blower fan and the amount of current flowing through the thermoelectric module based on the By eliminating high power consumption, more efficient cooling operation can be made possible by precise temperature control of the refrigerated treasure and the freezer compartment.
[Brief description of the drawings]
FIG. 1 is a perspective view of a refrigerator-freezer according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the refrigerator-freezer according to the first embodiment of the present invention.
FIG. 3 is a longitudinal sectional view of a thermoelectric device mounted on the refrigerator-freezer according to the first embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of the refrigerator-freezer according to the first embodiment of the present invention, in which a heat radiating portion is changed.
FIG. 5 is a longitudinal sectional view of an example in which the position of the thermoelectric module of the thermoelectric device mounted on the refrigerator-freezer of the first embodiment of the present invention is changed.
FIG. 6 is a longitudinal sectional view of an example in which the refrigerator cooler and the refrigerator cooler of the thermoelectric device mounted on the refrigerator according to the first embodiment of the present invention are changed.
FIG. 7 is a longitudinal sectional view of an example in which a heat insulating material is added to a refrigerator for a freezing room of the thermoelectric device mounted on the refrigerator of the first embodiment of the present invention.
FIG. 8 is a block diagram of a control device for a refrigerator-freezer according to a second embodiment of the present invention.
FIG. 9 is a flowchart illustrating the operation of the control device for the refrigerator-freezer according to the second embodiment of the present invention.
FIG. 10 is a block diagram of a control device for a refrigerator-freezer according to a third embodiment of the present invention.
FIG. 11 is a flowchart for explaining the operation of the control device for the refrigerator-freezer according to the third embodiment of the present invention.
FIG. 12 is a cross-sectional view of a conventional refrigeration equipment.
[Explanation of symbols]
1 Freezer refrigerator
6 refrigerator room
7 Freezer compartment
9 Thermoelectric devices
10 Inside fan
11 Outside fan
20 Thermoelectric module
23 Refrigerator cooler
24 Freezer cooler
26 radiator
50 Refrigerator temperature sensor
51 Freezer compartment temperature sensor
52 Refrigerator temperature detection means
53 Freezer compartment temperature detection means
54 Refrigerator room temperature setting means
55 Freezer temperature setting means
56 Temperature difference calculation means
57 Thermoelectric module energization control means
58 Internal fan rotation speed control means
60 Temperature control means
70 Refrigerator temperature sensor
71 Freezer temperature sensor
72 Refrigerator room temperature detection means
73 Freezer compartment temperature detection means
74 Refrigerator room temperature setting means
75 Freezer temperature setting means
76 Operation control means
77 Thermoelectric module energization control means
78 Internal fan rotation speed control means
80 Temperature control means

Claims (9)

冷蔵室用冷却器と前記冷蔵室用冷却器で冷却された冷気を室内で循環させる送風ファンとを有する冷蔵室と、前記冷蔵室から独立した室で少なくとも底面に室内を直接冷却する冷凍室用冷却器を有する冷凍室と、吸熱面と放熱面とを有し所定方向の電流を流すことにより前記吸熱面が冷却され放熱面が加熱する熱電モジュールとを備え、
前記冷蔵室用冷却器および前記冷凍室用冷却器は、直接もしくは間接的に、前記熱電モジュールの前記吸熱面と熱伝導可能に接続されていることを特徴とする冷凍冷蔵庫。
For a refrigerator having a refrigerator cooler and a blower fan for circulating the cool air cooled by the refrigerator cooler in the room, and a refrigerator independent of the refrigerator for directly cooling the room at least on the bottom surface. A freezer compartment having a cooler, comprising a thermoelectric module having a heat absorbing surface and a heat radiating surface, and having the heat absorbing surface cooled by passing a current in a predetermined direction and heating the heat radiating surface.
The refrigerator-freezer according to claim 1, wherein the refrigerator cooler and the refrigerator cooler are directly or indirectly connected to the heat absorbing surface of the thermoelectric module so as to be able to conduct heat.
冷蔵室用冷却器と冷凍室用冷却器は、互いに熱伝導可能に一体化されていることを特徴とする請求項1記載の冷凍冷蔵庫。The refrigerator according to claim 1, wherein the refrigerator cooler and the refrigerator cooler are integrated so as to be able to conduct heat to each other. 冷蔵室用冷却器と冷凍室用冷却器と熱電モジュールは、一体にユニット化されていることを特徴とする請求項1または2に記載の冷凍冷蔵庫。The refrigerator according to claim 1 or 2, wherein the refrigerator cooler, the refrigerator cooler, and the thermoelectric module are integrally unitized. 熱電モジュールは、冷蔵室用冷却器における冷凍室用冷却器寄りに設けられていることを特徴とする請求項1から3のいずれか一項に記載の冷凍冷蔵庫。The refrigerator according to any one of claims 1 to 3, wherein the thermoelectric module is provided near the refrigerator freezer in the refrigerator cooler. 冷蔵室用冷却器は、少なくとも熱電モジュールからの吸熱を熱伝導するベース部と前記ベース部の吸熱を冷蔵室内に効率よく拡散するためのフィン部を有し、冷凍室用冷却器は、少なくとも熱電モジュールからの吸熱を熱伝導するベース部を有し、前記冷蔵室用冷却器のベース部の厚さ及び前記冷凍室冷却器のベース部の厚さは、前記冷蔵室用冷却器のベース部と冷凍室用冷却器のベース部の接続部で最も厚く、前記接続部より離れるに従い薄くなることを特徴とする請求項1から4のいずれか一項に記載の冷凍冷蔵庫。The refrigerator compartment cooler has a base portion that conducts heat absorption at least from the thermoelectric module and a fin portion that efficiently diffuses the heat absorption of the base portion into the refrigerator compartment, and the refrigerator compartment cooler has at least a thermoelectric module. It has a base portion that conducts heat absorption from the module, and the thickness of the base portion of the refrigerator compartment cooler and the thickness of the base portion of the freezer compartment cooler are the same as the base portion of the refrigerator compartment cooler. The refrigerator according to any one of claims 1 to 4, wherein the thickness of the refrigerator is largest at a connecting portion of a base portion of the freezer compartment, and becomes thinner as the distance from the connecting portion increases. 冷凍室用冷却器は、冷凍室を直接冷却する冷却面と冷蔵室用冷却器との接続面を除き断熱材で覆われていることを特徴とする請求項1から5のいずれか一項に記載の冷凍冷蔵庫。The refrigerator according to any one of claims 1 to 5, wherein the freezer compartment cooler is covered with a heat insulating material except for a cooling surface that directly cools the freezer compartment and a connection surface of the refrigerator compartment cooler. A refrigerator as described. 送風ファンは、冷蔵室用冷却器に固定されていることを特徴とする請求項1から6のいずれか一項に記載の冷凍冷蔵庫。The refrigerator according to any one of claims 1 to 6, wherein the blower fan is fixed to the refrigerator cooler. 冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍室内の温度を検知する冷凍室温度検知手段と、前記冷蔵室温度検知手段により検知した前記冷蔵室内の温度と冷蔵室設定温度との比較結果と前記冷凍室温度検知手段により検知した前記冷凍室内の温度と冷凍室設定温度との比較結果とに基づいて送風ファンの回転数と熱電モジュールに流す電流の大きさを制御する温度制御手段とを備え、
前記温度制御手段は、前記冷蔵室内の温度が前記冷蔵室設定温度より高く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より高い場合に、前記送風ファンの回転数を高くすると共に前記熱電モジュールに流す電流を大きくし、前記冷蔵室内の温度が前記冷蔵室設定温度より低く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より低い場合に、前記送風ファンの回転数を低くすると共に前記熱電モジュールに流す電流を小さくし、前記冷蔵室内の温度が前記冷蔵室設定温度より高く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より低い場合に、前記送風ファンの回転数を高くすると共に前記熱電モジュールに流す電流を小さくし、前記冷蔵室内の温度が前記冷蔵室設定温度より低く、かつ、前記冷凍室内の温度が前記冷凍室設定温度より高い場合に、前記送風ファンの回転数を低くすると共に前記熱電モジュールに流す電流を大きくすることを特徴とする請求項1から7のいずれか一項に記載の冷凍冷蔵庫。
A refrigerator compartment temperature detector for detecting the temperature in the refrigerator compartment, a refrigerator compartment temperature detector for detecting the temperature of the freezer compartment cooler or the temperature of the refrigerator compartment, and a temperature in the refrigerator compartment detected by the refrigerator compartment temperature detector. And the magnitude of the current flowing through the thermoelectric module based on the comparison result between the temperature of the freezer compartment and the set temperature of the freezer compartment detected by the freezer compartment temperature detecting means and the comparison result between the freezer compartment temperature and the freezer compartment set temperature. Temperature control means for controlling the
When the temperature in the refrigerator compartment is higher than the refrigerator compartment set temperature and the temperature in the freezer compartment is higher than the freezer compartment set temperature, the temperature control means increases the rotation speed of the blower fan and increases the thermoelectric power. Increase the current flowing to the module, the temperature in the refrigerator compartment is lower than the refrigerator compartment set temperature, and, when the temperature in the freezer compartment is lower than the freezer compartment set temperature, while lowering the rotation speed of the blower fan Reduce the current flowing through the thermoelectric module, the temperature in the refrigerator compartment is higher than the refrigerator compartment set temperature, and, when the temperature in the freezer compartment is lower than the freezer compartment set temperature, increase the rotation speed of the blower fan At the same time, the current flowing through the thermoelectric module is reduced, the temperature in the refrigerator compartment is lower than the refrigerator compartment set temperature, and the temperature in the freezer compartment is set in the freezer compartment. If higher degrees, refrigerator according to any one of claims 1 to 7, characterized in that to increase the current flowing in the thermoelectric module as well as lowering the rotation speed of the blower fan.
冷蔵室内の温度を検知する冷蔵室温度検知手段と、冷凍室用冷却器の温度もしくは冷凍室内の温度を検知する冷凍室温度検知手段と、前記冷蔵室内の温度が冷蔵室設定温度となり前記冷凍室内の温度が冷凍室設定温度となるように送風ファンの回転数と熱電モジュールに流す電流の大きさを制御する温度制御手段とを備え、
前記温度制御手段は、前記冷蔵室温度検知手段により検知した前記冷蔵室内の温度と前記冷蔵室設定温度との比較結果と前記冷凍室温度検知手段により検知した前記冷凍室内の温度と前記冷凍室設定温度との比較結果とに基づいて、前記熱電モジュールによる吸熱量を大きくする必要があると判断した場合には、前記熱電モジュールに流す電流を人きくし、逆に、前記熱電モジュールによる吸熱量を小さくする必要があると判断した場合には、前記熱電モジュールに流す電流を小さくし、前記冷蔵室よりも前記冷凍室を優先して冷却する必要があると判断した場合には、前記送風ファンの回転数を低くし、逆に、前記冷凍室よりも前記冷蔵室を優先して冷却する必要があると判断した場合には、送風ファンの回転数を高くすることを特徴とする請求項1から7のいずれか一項に記載の冷凍冷蔵庫。
A refrigerating compartment temperature detecting means for detecting the temperature in the refrigerating compartment, a freezing compartment temperature detecting means for detecting the temperature of the freezer compartment cooler or the temperature in the refrigerating compartment, and the temperature in the refrigerating compartment becomes the refrigerating compartment set temperature and the freezing compartment becomes Temperature control means for controlling the number of rotations of the blower fan and the magnitude of the current flowing through the thermoelectric module so that the temperature of the freezer compartment becomes the set temperature,
The temperature control means includes a comparison result between the refrigerator compartment temperature detected by the refrigerator compartment temperature detection means and the refrigerator compartment set temperature, the freezer compartment temperature detected by the freezer compartment temperature detection means, and the freezer compartment setting. Based on the comparison result with the temperature, if it is determined that it is necessary to increase the amount of heat absorbed by the thermoelectric module, the current flowing through the thermoelectric module is increased, and conversely, the amount of heat absorbed by the thermoelectric module is reduced. If it is determined that it is necessary to reduce the current flowing through the thermoelectric module, and if it is determined that it is necessary to cool the freezer compartment over the refrigerator compartment, the rotation of the blower fan is determined. If it is determined that it is necessary to cool the refrigerating compartment in preference to the freezing compartment, the number of rotations of the blower fan is increased. Refrigerator according to any one of claims 1 to 7.
JP2003070006A 2003-03-14 2003-03-14 Refrigerator-freezer Pending JP2004278890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070006A JP2004278890A (en) 2003-03-14 2003-03-14 Refrigerator-freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070006A JP2004278890A (en) 2003-03-14 2003-03-14 Refrigerator-freezer

Publications (1)

Publication Number Publication Date
JP2004278890A true JP2004278890A (en) 2004-10-07

Family

ID=33286866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070006A Pending JP2004278890A (en) 2003-03-14 2003-03-14 Refrigerator-freezer

Country Status (1)

Country Link
JP (1) JP2004278890A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503757A (en) * 2008-09-25 2012-02-09 ビーイー・エアロスペース・インコーポレーテッド Cooling system and method for coupling a cooling system to a liquid cooling system of a vehicle
JP2012251765A (en) * 2011-05-31 2012-12-20 Lg Electronics Inc Refrigerator
EP3637020A1 (en) * 2016-09-02 2020-04-15 LG Electronics Inc. Heat conduction unit and refrigerator including the same
CN113490825A (en) * 2019-02-28 2021-10-08 Lg电子株式会社 Control method of refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503757A (en) * 2008-09-25 2012-02-09 ビーイー・エアロスペース・インコーポレーテッド Cooling system and method for coupling a cooling system to a liquid cooling system of a vehicle
JP2012251765A (en) * 2011-05-31 2012-12-20 Lg Electronics Inc Refrigerator
US9464825B2 (en) 2011-05-31 2016-10-11 Lg Electronics Inc. Refrigerator
US9845976B2 (en) 2011-05-31 2017-12-19 Lg Electronics Inc. Refrigerator
EP3637020A1 (en) * 2016-09-02 2020-04-15 LG Electronics Inc. Heat conduction unit and refrigerator including the same
US10808983B2 (en) 2016-09-02 2020-10-20 Lg Electronics Inc. Refrigerator
CN113490825A (en) * 2019-02-28 2021-10-08 Lg电子株式会社 Control method of refrigerator
CN113490825B (en) * 2019-02-28 2024-01-02 Lg电子株式会社 Control method of refrigerator

Similar Documents

Publication Publication Date Title
JP2002323281A (en) Storage box utilizing thermoelectric element
JP2013061089A (en) Refrigerator
JPH0642852A (en) Thermoelectric type cold storage/warm storage combination device utilizing thermoelectric semiconductor element
KR20120066212A (en) Cooling and heating box of vehicle
JP3423172B2 (en) Electric refrigerator
KR0164175B1 (en) A cooling and warming apparatus for a car using thermoelement
CN211084550U (en) Refrigerator with a door
KR20020019787A (en) High efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
JP2004278890A (en) Refrigerator-freezer
KR19990016782A (en) Refrigeration unit with thermoelectric cooler
JP2004278893A (en) Cooling device and refrigerator-freezer comprising the same
JP2002062021A (en) Stirling refrigerator
JP2000274913A (en) Storage chamber
CN210220360U (en) Refrigerator with a door
KR100302887B1 (en) Airconditioner with thermoelectric module and other systems with it
JP2001263898A (en) Silent refrigerator
JP2004333091A (en) Refrigerator
JP2002013863A (en) Refrigerating storage cabinet
CN216111184U (en) Compressor cabin heat dissipation mechanism and refrigerator
JP2000274917A (en) Cooling storage chamber
JP3796505B2 (en) Refrigerator
KR20040026463A (en) Device for heating and cooling apparatus of useing thermoelectic degauss
KR20060093599A (en) Cooling structure of a storage chamber with peltier element
KR100407049B1 (en) Refrigerator Utilizing Peltier Element
KR0150771B1 (en) Refrigerator