JP3423172B2 - Electric refrigerator - Google Patents

Electric refrigerator

Info

Publication number
JP3423172B2
JP3423172B2 JP35085396A JP35085396A JP3423172B2 JP 3423172 B2 JP3423172 B2 JP 3423172B2 JP 35085396 A JP35085396 A JP 35085396A JP 35085396 A JP35085396 A JP 35085396A JP 3423172 B2 JP3423172 B2 JP 3423172B2
Authority
JP
Japan
Prior art keywords
heat
refrigerator
temperature
power
peltier element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35085396A
Other languages
Japanese (ja)
Other versions
JPH10197124A (en
Inventor
日出男 渡辺
文一 木谷
克博 都能
Original Assignee
株式会社エコ・トゥエンティーワン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコ・トゥエンティーワン filed Critical 株式会社エコ・トゥエンティーワン
Priority to JP35085396A priority Critical patent/JP3423172B2/en
Priority to EP97204106A priority patent/EP0851186B1/en
Priority to US08/997,817 priority patent/US5845497A/en
Priority to DE69722160T priority patent/DE69722160T2/en
Priority to AU49338/97A priority patent/AU743658B2/en
Priority to CN97126350A priority patent/CN1186215A/en
Publication of JPH10197124A publication Critical patent/JPH10197124A/en
Application granted granted Critical
Publication of JP3423172B2 publication Critical patent/JP3423172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • H10N19/101Multiple thermocouples connected in a cascade arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、一般家庭用および
業務用の電気冷蔵庫などの調温庫に係り、特にペルチェ
素子を用いた調温を要する食品保存庫に関する。 【0002】 【従来の技術】従来の電気冷蔵庫は、フロン系の冷媒を
用いて気化潜熱を利用し、庫内を低温に保持していた
が、フロンによるオゾン層の破壊が問題視され、フロン
冷媒方式に変わる冷却システムとしてペルチェ素子を用
いた冷蔵庫、冷凍庫、保冷庫などの研究、開発が盛んに
行なわれている。 【0003】ペルチェ素子を用いたこの種の冷却システ
ムは、フロンガスを用いないため環境破壊がなく、冷却
性能面でも優れており、ガス漏れの心配がなく、コンプ
レッサーを使用しないから振動や騒音がなく、主体は半
導体であるから長寿命で小型化できるなどの優れた特長
を有している。 【0004】図13は、コンプレッサー式冷蔵庫の温度
制御(庫内設定温度+2.5℃ 曲線X)とペルチェ素
子を用いた冷蔵庫の温度制御(庫内設定温度−0.2℃
曲線Y)の特性パターンを示す図である。 【0005】この図から明らかなように、コンプレッサ
ー式冷蔵庫は温度制御を開始してから設定温度に到達す
るまでにかなりの時間を要し、その間に庫内の温度が大
きく上下にばらついている。これに対してペルチェ素子
を用いた冷蔵庫は、温度制御を開始して短時間のうちに
設定温度に到達し、その後の庫内の温度はほぼ一定に保
持され、コンプレッサー式冷蔵庫に比較して温度コント
ロールの精度が極めて良好で、設定した庫内温度を正確
に維持できるという特長を有している。 【0006】従来のペルチェ素子を用いた冷蔵庫の設計
にあたっては、周囲温度、庫内設定温度、庫内の内側寸
法、断熱材の熱伝導率、断熱材の厚さ、ペルチェ素子1
個の吸熱量などを基に、庫内の設定温度と周囲温度から
決まる温度差を基にして冷蔵庫としての必要な吸熱量を
計算し、それに合わせてペルチェ素子の設置数を決めて
いた(「『熱電変換システム技術総覧』第4節 冷蔵・
温蔵」87〜88ページ リアライズ社発行参照)。 【0007】 【発明が解決しようとする課題】従来のペルチェ素子を
用いた冷蔵庫の設計にあたっては前述のような手順がと
られていたが、冷蔵庫の断熱扉を開閉したときに生じる
庫内の温度上昇をどの位の時間で、しかも投入電力が少
なく経済的に低下させるかということについては配慮さ
れていない。 【0008】そのため断熱扉の開閉後に庫内設定温度に
冷却するまでに時間を要し、庫内に保管されている食材
などの品質低下を招いたり、あるいは反対に投入電力が
必要以上に多くなりランニングコストが高くつき不経済
であるなどの諸種の問題がある。 【0009】本発明の目的は、前記従来技術の欠点を解
消し、断熱扉を開閉しても短時間のうちにしかも経済的
に設定温度まで冷却することのできる電気冷蔵庫を提供
することにある。 【0010】 【課題を解決するための手段】前記目的を達成するた
め、本発明は、断熱層で形成されたケーシングと、その
ケーシングの開口部を開閉する断熱扉と、前記ケーシン
グ内に設置されて、ケーシング内の庫内空間に対向した
伝熱面を有する熱導体と、その熱導体と熱的に導通して
いるペルチェ素子と、そのペルチェ素子に電力を供給す
る素子電源部とを備え、前記断熱扉開閉後12分以内に
庫内設定温度まで冷却するために、外気30℃において
断熱扉を閉じた状態で前記ケーシングの庫内設定温度を
維持するのに必要な定常電力に対して1.3〜2倍の範
囲に規制された電力を、前記素子電源部から前記ペルチ
ェ素子に投入するように構成されていることを特徴とす
るものである。 【0011】 【発明の実施の形態】本発明は前述のように、断熱扉を
閉じた状態で庫内設定温度を維持するために必要な定常
電力に対して1.3〜2倍の範囲に規制された電力を、
素子電源部からペルチェ素子に投入するように構成され
ている。このようにすれば後述のように、断熱扉を開閉
しても短時間のうちにしかも経済的に設定温度まで冷却
することができる。 【0012】図3は、75リットルの容積を有する冷蔵
庫にペルチェ素子を取り付けた場合の庫内設定温度と扉
開閉時の温度変化を示す温度特性図である。庫内設定温
度は3.0℃で、その時の投入電力は48Wである。な
お、本発明の明細書において、外気30℃において、断
熱扉の開閉なしで庫内の温度を庫内設定温度に維持する
ために必要なペルチェ素子への入力電力を定常電力と定
義しており、この場合の投入電力48Wが定常電力に相
当する。 【0013】同図から明らかなように、定常電力の48
Wを投入しているため断熱扉の開く前(の時点)庫内
の温度は庫内設定温度の3.0℃に正確に維持されてい
るが、断熱扉を開くことにより(の時点)庫内の温度
は急激に上昇する。10秒後に断熱扉を閉じると庫内の
温度は下がるが、投入電力が48Wであるため約5分経
過後からは温度低下の勾配が極めて緩やかになり60分
経過後(の時点)でも庫内の温度は庫内設定温度の
3.0℃には到達しない。 【0014】このように定常電力のままで冷蔵庫を駆動
すると、ペルチェ素子を用いても断熱扉の開閉により急
激に庫内の温度が上昇した後の対応が十分にとれず、庫
内設定温度まで冷却するのに長時間を要し、その間に冷
蔵庫内に保管されている食材などに悪影響を及ぼす心配
がある。 【0015】図1は、投入電力を60W、70W、12
0W、200Wにした他は前述と同じ条件で断熱扉を開
閉したときの温度変化を示す特性図である。前述のよう
に定常電力は48Wであるから、投入電力60Wは定常
電力の1.25倍、投入電力70Wは約1.5倍、投入
電力120Wは2.5倍、投入電力200Wは約4.2
倍に相当する。 【0016】この図から明らかなように、投入電力が6
0Wの場合は断熱扉の開閉後15分以上経たないと庫内
温度が庫内設定温度まで下がらず、食品の品質維持の観
点から規定されている冷蔵庫に関する日本工業規格(J
IS C9607)の条件(断熱扉開閉後、12分以内
に庫内設定温度まで冷却すること)をクリアすることは
できない。これに対して投入電力を70Wにすることに
より断熱扉開閉後、12分以内に庫内設定温度まで冷却
することができ、さらに投入電力を120W、200W
と増やすことにより早く庫内設定温度に到達することが
できる。 【0017】図2は、庫内設定温度を−1℃(チルド温
度域)、定常電力を70Wとし、投入電力を90W、1
05W、120Wにした他は前述と同じ条件で断熱扉を
開閉したときの温度変化を示す特性図である。この場合
の定常電力は70Wであるから、投入電力90Wは定常
電力の1.3倍、投入電力105Wは1.5倍、投入電
力120Wは約1.7倍に相当する。 【0018】図1ならびに図2から明らかなように、庫
内設定温度を変えても投入電力を定常電力の1.3倍以
上にすることにより、断熱扉開閉後、12分以内にすな
わち食材等の品質にほとんど悪影響を及ぼさない程度の
短時間にうちに庫内設定温度まで冷却することができ
る。 【0019】図4は、ペルチェ素子に流す電流とペルチ
ェ素子の吸熱量ならびにCOPとの関係を示す図であ
る。この図から明らかなように、ペルチェ素子の吸熱量
は温度差が一定の場合、電流を増やしていくとそれに応
じて吸熱量は増大する。そして或る電流値で吸熱量は最
大となり(Qmax)、従ってCOPも最大となり、そ
れ以上電流を増やすと吸熱量(COP)は逆に減少する
という特性を有している。本発明の明細書において、前
記最大吸熱量Qmaxが得られるときにペルチェ素子へ
流がしている電流値を最大電流値Imaxと定義する。 【0020】図5は、ペルチェ素子ヘの投入電力と庫内
の最低到達温度との関係を示す特性図である。ここでこ
のペルチェ素子のImaxは400Wであり、庫内の最
低到達温度はすでに270W付近で頭打ちになってい
る。すなわち庫内の最低到達温度はImaxの動作条件
(この実験例では400W)よりもはるかに少ない投入
電力(この実験例では270W付近)でほぼ到達し、そ
れ以上の電力の投入は無駄であることが分かる。また他
の実験によれば、庫内設定温度を−7℃、定常電力を1
30Wにしたとき、断熱扉開閉後、12分以内に庫内設
定温度まで冷却するには240Wの電力を投入すればよ
いことが確認されており、その場合の投入電力/定常電
力は240/130=1.8である。 【0021】図6は、庫内設定温度と定常電力をそれぞ
れ変えた場合の投入電力/定常電力と断熱扉開閉後に庫
内設定温度への戻り時間との関係を示す特性図である。
図中の曲線Aは庫内設定温度が+3℃で定常電力が48
W、曲線Bは庫内設定温度が−1℃で定常電力が70
W、曲線Cは庫内設定温度が−4.7℃で定常電力が1
00W、曲線Dは庫内設定温度が−7℃で定常電力が1
30Wの実験例を示している。 【0022】この図から明らかなように、各条件のもの
においても断熱扉開閉後、12分以内に庫内設定温度ま
で冷却するには投入電力/定常電力を1.3倍以上にし
なければならないが、投入電力を余り増やしても戻り時
間はさほど短縮されず、また戻り時間が12分以内であ
れば食材の品質には実質的に影響せず、かえって投入電
力を増やすことはランニングコストが高くなり不経済で
あることから、投入電力/定常電力は2以内に抑える必
要がある。このようなことから、本発明では投入電力/
定常電力を1.3〜2の範囲に規制している。 【0023】次に本発明に係る冷蔵庫の具体的な構造に
ついて図面とともに説明する。図7はコンビネーション
装置の正面図、図8はそのコンビネーション装置の平面
図、図9はそのコンビネーション装置の切断側面図、図
10はそのコンビネーション装置の一部を構成する冷蔵
保存室ならびに氷温室の平面図、図11はそのコンビネ
ーション装置に使用するケーブル収納ケースの一部拡大
斜視図、図12はそのコンビネーション装置に使用する
熱移動媒体循環ジャケットの拡大断面図である。 【0024】この実施の形態に係るコンビネーション装
置は急速冷凍室1と解凍室2と冷蔵保存室3と氷温室4
とに分かれ、各室1〜4は独立しており個別に温度制御
される。そして各室1〜4は調理テーブル5の内側に2
段重ねで一体に組み込まれて据え置き式になっている。 【0025】急速冷凍室1と解凍室2は調理がし易いよ
うテーブル5に対して引き出し式になっており、冷蔵保
存室3と氷温室4はテーブル5に組み込まれている。 【0026】急速冷凍室1(解凍室2)は図9に示すよ
うに上方に向けて開口した箱形の断熱ケーシング6と、
それの開口を開閉する断熱蓋7を有し、断熱蓋7の左右
端に開閉用取手8が取付けられている。また断熱ケーシ
ング6の前面には、引出し用取手9が設けられている。 【0027】図9に示すように前記断熱ケーシング6の
内側には、例えばアルミニウムなどからなる箱状の第1
熱導体10が設置され、それの底部裏面には複数個のブ
ロック状の例えばアルミニウムなどからなる第2熱導体
11を介してカスケードペルチェ素子12が密着し、そ
の外側に熱移動媒体循環ジャケット13が接合されてい
る。カスケードペルチェ素子12に接続されている給電
用コード14ならびに循環ジャケット13に接続されて
いるホース15は、屈曲可能な細長いケーブル収納ケー
ス16に収納されて(図11参照)第2放熱部17側に
接続されている(図8,図9参照)。 【0028】従って図9に示すように、調理テーブル5
から冷凍室1を引き出した状態ではケーブル収納ケース
16は延びており、冷凍室1を押し込むことによりケー
ブル収納ケース16は2点鎖線で示すように冷凍室1の
後方で屈曲する。なお、給電用コード14は、第2放熱
部17の近くに設置されている冷凍用電源コントローラ
18に接続されている。 【0029】本具体例の場合、冷凍室1と解凍室2は冷
蔵保存室3ならびに氷温室4に比べて容量が小さいこと
から両室1,2のホース15は1つの第2放熱部17に
接続されているが、電源コントローラは別で、冷凍室1
に接続されている給電用コード14は冷凍用電源コント
ローラ18に、解凍室2に接続されている給電用コード
14は解凍用電源コントローラ(図示せず)に、それぞ
れ接続されている。 【0030】図12は、熱移動媒体循環ジャケット13
付近の詳細な構造を示す図である。この循環ジャケット
13は、ペルチェ素子12の放熱側と接合された板状の
熱交換基体21を有し、それの周辺部から第2熱導体1
1側に向けて第1枠体22が伸びている。この第1枠体
22は上方ならびに下方が開口した中空状のもので、基
端部23とその基端部23から上方に向けて延びた延設
部24を有し断面形状がほぼ階段状をしている。基端部
23は、例えば接着剤あるいはOリングと接着剤の併用
などにより熱交換基体21の上面周辺部に液密に接合さ
れている。 【0031】図に示すように前記延設部24は第2熱導
体11の周面とほぼ平行に対向しており、両者の間に接
着剤25が注入されて、第2熱導体11と第1枠体22
が一体に接合されている。 【0032】第2熱導体11の周面と前記延設部24の
間に複数本の位置決めピン82が挿通されて、接着剤2
5が完全に硬化する前の第2熱導体11と第1枠体22
の相対的な位置ずれを防止している。延設部24の外側
に基端部23側に延びた補強リブ27が一体に複数個
(本実施の形態では4個)設けられ、第1枠体22の剛
直性を維持している。 【0033】また、基端部23と延設部24の間を階段
状、すなわち非直線状にすることにより、第1枠体22
の第2熱導体11から熱交換基体21までの沿面距離を
長く確保して、第1枠体22を伝わっての熱の戻りを少
くしている。 【0034】前記熱交換基体21の下面周辺部には、下
方がほぼ塞がれ上方が開口した中空状の第2枠体28が
Oリング29を介して液密に接着されている。第2枠体
28のほぼ中央部に給水管部30が、周縁近くに排水管
部31が設けられている。 【0035】第2枠体28の中空部に設置された分散部
材32は、周壁33と、周壁33の上端に連設した上壁
34と、上壁34から熱交換基体21側に延びた多数本
のノズル部35とが設けられ、ノズル部35に噴射孔3
6が形成されている。 【0036】分散部材32を第2枠体28内に固定する
ことにより、分散部材32の給水管部30側に扁平状の
第1空間37が形成され、分散部材32の熱交換基体2
1側に扁平状の第2空間38が形成されるとともに、第
2空間38と排水管部31を連通する排水路39が形成
される。 【0037】同図に示すように純水あるいは不凍液など
からなる熱移動媒体(本具体例では純水を使用)40を
中央の給水管部30から供給すると第1空間部37で一
斉に拡がり、各ノズル部35(噴射孔36)から熱交換
基体21の下面に向けてほぼ垂直方向に勢いよく噴射す
る。熱交換基体21に衝突してそれの熱を奪った熱移動
媒体40は隙間の狭い第2空間部38で素早く拡散し、
排水路39を経て排水管部31から系外へ排出される。
排出された熱移動媒体40は、図11に示すホース15
を通り、図9に示す第2放熱部17内に設けられている
ラジェータ(図示せず)で強制空冷され、図示しないポ
ンプにより再び循環ジャケット13側に送られる。図1
2中の41は、この熱移動媒体循環ジャケット13付近
に充填された断熱材層である。 【0038】冷蔵保存室3(氷温室4)は、前方側面が
開口した箱型の断熱ケーシング51を有し、それの側面
開口を開閉するように断熱扉52が設けられている。断
熱ケーシング51の内壁に密着するように箱状の第1熱
導体53が配置され、その第1熱導体53の前記開口と
対向する面部、すなわち第1熱導体53の奥側壁部のほ
ぼ中央裏側にブロック状の第2熱導体54が設置され、
それの後側にカスケードペルチェ素子55を介して熱移
動媒体循環ジャケット56が密着している。熱移動媒体
循環ジャケット56の構造ならびに機能は図12で説明
したものと同様であるので、説明は省略する。 【0039】冷蔵保存室3内の庫内空気A(図9、図1
0参照)を矢印で示すように、第1熱導体53の上側周
壁53aに沿わせてペルチェ素子55が設置されている
奥側壁53bに衝突させ、さらに奥側壁53bに沿って
下降させるために、庫内ファン57と、多数平行に延び
たガイド溝付の吸熱フィン58が、前記上側周壁53a
の内側に設けられている。さらに、その上側周壁53a
と奥側壁53bの厚さが第1熱導体53の他の壁部の厚
さよりも若干厚くなっている。 【0040】このように庫内ファン57とガイド溝付の
吸熱フィン58の働きにより、上側周壁53aから奥側
壁53bの表面に沿って庫内の空気Aを流動させれば、
高い冷却効率が得られる。 【0041】本具体例の場合、急速冷凍室1と解凍室2
は必要な物だけを冷凍したり解凍するのに利用するだけ
であるから、両室1,2の容量は例えば7リッター程度
と比較的小さい。これに対して冷蔵保存室3や氷温室4
は収納・保存用に使用するため、両室3,4の容量は例
えば30リッター程度と比較的大きい。両室3,4の容
量が大きいことと、収納・保存している食品などの品質
を一定に保持するために厳密な庫内温度の管理が必要な
ことから、図8に示す如く冷蔵保存室3にはそれ専用の
第1放熱部59が、氷温室4にはそれ専用の第3放熱部
60が、それぞれ個別に設けられて、外乱を可及的に少
なくしている。 【0042】図7に示すように、ペルチェ素子55は素
子電源部61からの給電によって駆動され、庫内ファン
57はファン電源部62からの給電によって駆動され、
この素子電源部61ならびにファン電源部62は制御部
63からの信号によってコントロールされている。ま
た、ペルチェ素子55が設置されている付近の第1熱導
体53の表面には温度センサー64が設けられ、それか
らの検出信号が制御部63に入力されている。 【0043】この冷蔵保存室3において断熱扉52を開
けたり、あるいは食品などの被冷却物を庫内に入れた場
合、庫内温度が急激に高くなるから、それを前記温度セ
ンサー64で検出し、その検出信号に基づいて制御部6
3から素子電源部61を介してペルチェ素子55に多量
の電力が投入される。 【0044】これにより特に第1熱導体53のペルチェ
素子55が設置されている付近では温度が急激に下が
り、水が凍結する温度以下になろうとするので、温度セ
ンサー64の検出信号を監視しながら、水が凍結する温
度になる少し前の時点で庫内ファン57への電力を増加
させる。このことにより、庫内空気Aの線速度が速くな
り、第1熱導体53での熱コンダクタンスが高くなり、
第1熱導体53の表面での水の凍結が無くなり、そのた
めに庫内の湿度を高く維持することができる。 【0045】なお、庫内ファン57の高速回転は連続的
でも断続的でもよいが、余り長時間高速回転させると電
力が無駄となるとともに、野菜などの保存に悪影響を及
ばすから、温度と湿度が所望の値に維持できる程度に制
限して、その後はまた定格運転に移れるような制御モー
ドにしておく必要がある。 【0046】具体例を示せば次の通りである。 庫内容積…………30リッター 断熱材……………二液混合ノンフロンタイプ発泡樹脂
厚み80mm ペルチェ素子……一辺が1.4mmの正方形で厚み1.
6mmの半導体チップ142個使用 二段カスケード構
造 6セット搭載 吸熱系……………アルミニウム製第1熱導体に庫内ファ
ンと吸熱フィンを装備庫内ファン使用電圧6〜12V
(定格電圧6V) 放熱系……………熱移動媒体として純水を使用した循環
式 最終放熱はラジェーターにより外気に放熱 冷蔵保存室の庫内設定温度……3.5℃ 外気温度…………………………30℃ 前記実施の形態では一般家庭の電気冷蔵庫の場合につい
て説明したが、本発明はこれに限定されるものではな
く、例えば宅配ボックスなどと称されている保管用ボッ
クス装置にも適用できる。例えば戸建住宅、マンション
などの集合住宅などに保管用ボックス装置を設置し、宅
配業者が受取人宅を訪れて不在のとき、荷物を保管用ボ
ックス装置に預けるとともに、伝票を受取人宅の郵便受
けなどに投入し、受取人が帰宅してその伝票から不在の
ときに荷物が配送されたことを知り、保管用ボックス装
置内の荷物を受け取るシステムがある。この保管用ボッ
クス装置として、例えば肉類や魚類などの生物を保管す
る冷蔵あるいは冷凍機能を有する保管庫として本願発明
のものを適用することができる。 【0047】 【発明の効果】本発明は前述のように、断熱扉を閉じた
状態で庫内設定温度を維持するために必要な定常電力に
対して1.3〜2倍の範囲に規制された電力を、素子電
源部からペルチェ素子に投入するように構成されてい
る。このようにすれば前述のように、断熱扉を開閉して
も短時間のうちにしかも経済的に設定温度まで冷却する
ことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control cabinet such as an electric refrigerator for general household use and business use, and more particularly to a food preservation which requires temperature control using a Peltier device. About the warehouse. 2. Description of the Related Art A conventional electric refrigerator uses a refrigerant of a Freon type to utilize the latent heat of vaporization to maintain the inside of the refrigerator at a low temperature. However, destruction of the ozone layer by Freon is regarded as a problem. Research and development of a refrigerator, a freezer, a cooler, etc. using a Peltier element as a cooling system replacing the refrigerant system have been actively conducted. [0003] This type of cooling system using a Peltier element has no environmental destruction because it does not use chlorofluorocarbon gas, has excellent cooling performance, has no fear of gas leakage, and has no vibration or noise because it does not use a compressor. Since the main component is a semiconductor, it has excellent features such as long life and miniaturization. FIG. 13 shows temperature control of a compressor type refrigerator (set temperature in a refrigerator + 2.5 ° C. curve X) and temperature control of a refrigerator using a Peltier element (set temperature in a refrigerator−0.2 ° C.).
It is a figure showing the characteristic pattern of curve Y). [0005] As is apparent from this figure, the compressor-type refrigerator takes a considerable time from the start of temperature control until it reaches the set temperature, during which time the temperature in the refrigerator fluctuates greatly up and down. In contrast, refrigerators using a Peltier element start temperature control and reach a set temperature within a short time, after which the temperature inside the refrigerator is kept almost constant, and the temperature is lower than that of a compressor refrigerator. The control accuracy is very good, and it has the feature that the set internal temperature can be accurately maintained. In designing a refrigerator using a conventional Peltier device, the ambient temperature, the set temperature in the refrigerator, the inside dimensions of the refrigerator, the thermal conductivity of the heat insulating material, the thickness of the heat insulating material, the Peltier device 1
Based on the amount of heat absorbed by each unit, the required amount of heat absorbed as a refrigerator was calculated based on the temperature difference determined from the set temperature in the refrigerator and the ambient temperature, and the number of Peltier devices to be installed was determined accordingly (""Overview of Thermoelectric Conversion System Technology" Section 4 Refrigeration
Izumi, ”pp. 87-88, published by Realize. [0007] In designing a refrigerator using a conventional Peltier element, the above-described procedure was taken. However, the temperature inside the refrigerator generated when the heat insulating door of the refrigerator was opened and closed. No consideration is given as to how long the rise will take, and the amount of power input will be low to reduce economically. [0008] Therefore, it takes time to cool down to the set temperature in the refrigerator after opening and closing the heat-insulating door, resulting in deterioration of the quality of foodstuffs stored in the refrigerator, or conversely, the input power becomes more than necessary. There are various problems such as high running cost and uneconomical. SUMMARY OF THE INVENTION It is an object of the present invention to provide an electric refrigerator which can solve the above-mentioned drawbacks of the prior art and can cool down to a set temperature economically in a short time even if an insulated door is opened and closed. . [0010] In order to achieve the above object, the present invention provides a casing formed of a heat insulating layer, a heat insulating door for opening and closing an opening of the casing, and a heat insulating door installed in the casing. A heat conductor having a heat transfer surface facing the internal space in the casing, a Peltier element thermally conductive with the heat conductor, and an element power supply unit for supplying power to the Peltier element, Within 12 minutes after opening and closing the insulated door
To cool until the internal set temperature, 1.3 to 2-fold with closed <br/> insulating door at the outside air 30 ° C. for the required steady state power for maintaining the internal temperature setting of the casing The electric power regulated to the range described above is supplied from the element power supply section to the Peltier element. DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, according to the present invention, the steady-state power required to maintain a set temperature in a refrigerator with the heat-insulating door closed is 1.3 to 2 times the steady-state power. Regulated power,
The Peltier device is configured to be supplied from the device power supply unit. In this way, as described later, even if the heat-insulating door is opened and closed, it can be economically cooled to the set temperature in a short time. FIG. 3 is a temperature characteristic diagram showing a set temperature in the refrigerator and a temperature change when the door is opened and closed when a Peltier element is mounted on a refrigerator having a capacity of 75 liters. The temperature set in the refrigerator is 3.0 ° C., and the input power at that time is 48 W. Note that, in the specification of the present invention, the input power to the Peltier element required to maintain the temperature in the refrigerator at the set temperature in the refrigerator without opening and closing the heat insulating door at 30 ° C. in the outside air is defined as steady power. In this case, the input power of 48 W corresponds to the steady power. As is apparent from FIG.
Before the heat-insulating door is opened (at the time), the temperature in the refrigerator is accurately maintained at the preset temperature of 3.0 ° C., but the heat-insulating door is opened (at the time). The temperature inside rises sharply. When the heat-insulating door is closed 10 seconds later, the temperature inside the refrigerator drops, but the input power is 48 W, so the gradient of the temperature drop becomes very gentle after about 5 minutes and even after 60 minutes (at the time). Does not reach the internal setting temperature of 3.0 ° C. When the refrigerator is driven with the steady power as described above, even if the Peltier element is used, it is not possible to sufficiently cope with a sudden rise in the internal temperature due to the opening and closing of the heat insulating door, and the internal temperature reaches the set internal temperature. It takes a long time to cool, and during that time, there is a concern that foods stored in the refrigerator may be adversely affected. FIG. 1 shows that the input power is 60W, 70W, 12W.
FIG. 9 is a characteristic diagram showing a temperature change when the heat insulating door is opened and closed under the same conditions as described above except that 0 W and 200 W are set. As described above, since the steady power is 48 W, the input power 60 W is 1.25 times the steady power, the input power 70 W is about 1.5 times, the input power 120 W is 2.5 times, and the input power 200 W is about 4. 2
Equivalent to double. As is apparent from FIG.
In the case of 0 W, the temperature in the refrigerator does not drop to the preset temperature in the refrigerator until 15 minutes or more have passed since the opening and closing of the heat insulating door, and the Japanese Industrial Standards for refrigerators (J
(IS C9607) (cooling to the set temperature in the refrigerator within 12 minutes after opening and closing the heat insulating door) cannot be satisfied. On the other hand, by setting the input power to 70 W, after opening and closing the heat-insulating door, it can be cooled to the set temperature in the refrigerator within 12 minutes, and the input power is further reduced to 120 W and 200 W.
With the increase, it is possible to quickly reach the in-chamber set temperature. FIG. 2 shows that the set temperature in the refrigerator is -1 ° C. (chilled temperature range), the steady power is 70 W, the input power is 90 W,
FIG. 10 is a characteristic diagram showing a temperature change when the heat insulating door is opened and closed under the same conditions as described above except that the temperature is set to 05 W and 120 W. In this case, the steady power is 70 W, so that the input power 90 W is 1.3 times the steady power, the input power 105 W is 1.5 times, and the input power 120 W is about 1.7 times. As is clear from FIG. 1 and FIG. 2, the input power is set to be 1.3 times or more of the steady power even when the set temperature in the refrigerator is changed. Can be cooled down to the set temperature in the refrigerator within a short time that has almost no adverse effect on the quality of the product. FIG. 4 is a diagram showing the relationship between the current flowing through the Peltier element, the amount of heat absorbed by the Peltier element, and the COP. As is clear from this figure, when the temperature difference is constant, the amount of heat absorbed by the Peltier element increases as the current is increased. At a certain current value, the amount of heat absorption becomes maximum (Qmax), and therefore, the COP also becomes maximum. When the current is further increased, the amount of heat absorption (COP) decreases on the contrary. In the specification of the present invention, a current value flowing to the Peltier element when the maximum heat absorption Qmax is obtained is defined as a maximum current value Imax. FIG. 5 is a characteristic diagram showing the relationship between the electric power supplied to the Peltier element and the lowest temperature reached in the refrigerator. Here, the Imax of the Peltier element is 400 W, and the lowest temperature reached in the refrigerator has already reached a plateau at around 270 W. That is, the lowest temperature reached in the refrigerator is almost reached with input power (around 270 W in this experimental example) far less than the operating condition of Imax (400 W in this experimental example), and input of more power is useless. I understand. According to another experiment, the set temperature in the refrigerator was -7 ° C and the steady power was 1
At 30 W, it has been confirmed that 240 W of electric power should be supplied to cool to the in-compartment set temperature within 12 minutes after opening and closing the adiabatic door. In this case, the supplied power / stationary power is 240/130. = 1.8. FIG. 6 is a characteristic diagram showing the relationship between the input power / steady power and the return time to the set temperature in the refrigerator after opening and closing the adiabatic door when the set temperature in the refrigerator and the steady power are respectively changed.
Curve A in the figure indicates that the set temperature in the refrigerator is + 3 ° C. and the steady power is 48.
W and curve B show that the set temperature in the refrigerator is -1 ° C and the steady power is 70.
W and curve C show that the set temperature in the refrigerator is -4.7 ° C and the steady power is 1
00W, Curve D shows that the set temperature in the refrigerator is -7 ° C and the steady power is 1
An experimental example of 30 W is shown. As is apparent from this figure, even under each condition, the input power / steady power must be at least 1.3 times in order to cool to the set temperature in the refrigerator within 12 minutes after opening and closing the heat insulating door. However, even if the input power is increased too much, the return time is not shortened much, and if the return time is within 12 minutes, it does not substantially affect the quality of the foodstuff, and increasing the input power rather increases the running cost. Since it is uneconomical, it is necessary to keep the input power / stationary power within two. Therefore, in the present invention, the input power /
The steady power is regulated in the range of 1.3 to 2. Next, a specific structure of the refrigerator according to the present invention will be described with reference to the drawings. 7 is a front view of the combination device, FIG. 8 is a plan view of the combination device, FIG. 9 is a cut-away side view of the combination device, and FIG. 10 is a plan view of a refrigeration storage room and an ice greenhouse that constitute a part of the combination device. FIG. 11 is a partially enlarged perspective view of a cable storage case used in the combination device, and FIG. 12 is an enlarged sectional view of a heat transfer medium circulation jacket used in the combination device. The combination apparatus according to this embodiment includes a quick freezing room 1, a thawing room 2, a refrigerated storage room 3, and an ice temperature room 4.
And each of the chambers 1 to 4 is independent and individually temperature-controlled. Each of the rooms 1 to 4 has 2 inside the cooking table 5.
It is a stationary type that is integrated into a single layer. The quick freezing room 1 and the thawing room 2 are of a drawer type with respect to a table 5 for easy cooking, and the refrigerated storage room 3 and the ice temperature room 4 are incorporated in the table 5. The quick freezing chamber 1 (thawing chamber 2) has a box-shaped heat insulating casing 6 opened upward as shown in FIG.
It has a heat-insulating lid 7 for opening and closing its opening, and a handle 8 for opening and closing is attached to the left and right ends of the heat-insulating lid 7. A drawer handle 9 is provided on the front surface of the heat insulating casing 6. As shown in FIG. 9, a box-shaped first box made of, for example, aluminum is provided inside the heat insulating casing 6.
A heat conductor 10 is provided, and a cascade Peltier element 12 is adhered to a bottom back surface thereof through a plurality of block-shaped second heat conductors 11 made of, for example, aluminum, and a heat transfer medium circulation jacket 13 is provided outside the cascade Peltier element. Are joined. The power supply cord 14 connected to the cascade Peltier element 12 and the hose 15 connected to the circulation jacket 13 are housed in a bendable elongated cable housing case 16 (see FIG. 11) and are provided on the second heat radiating section 17 side. They are connected (see FIGS. 8 and 9). Therefore, as shown in FIG.
The cable storage case 16 extends when the freezer compartment 1 is pulled out of the freezer compartment 1, and when the freezer compartment 1 is pushed in, the cable storage case 16 bends behind the freezer compartment 1 as shown by a two-dot chain line. Note that the power supply cord 14 is connected to a refrigeration power supply controller 18 installed near the second heat radiating unit 17. In the case of this embodiment, since the freezing room 1 and the thawing room 2 have smaller capacities than the refrigerated storage room 3 and the ice temperature room 4, the hoses 15 of the two rooms 1 and 2 are connected to one second radiator 17. Connected, but with a separate power supply controller.
The power supply cord 14 connected to the thawing chamber 2 is connected to a refrigeration power supply controller 18 and the power supply cord 14 connected to the thawing chamber 2 is connected to a thawing power supply controller (not shown). FIG. 12 shows a heat transfer medium circulation jacket 13.
It is a figure which shows the detailed structure of the vicinity. The circulation jacket 13 has a plate-like heat exchange base 21 joined to the heat radiation side of the Peltier element 12, and the second heat conductor 1
The first frame 22 extends toward one side. The first frame 22 has a hollow shape with an open top and a bottom, and has a base end 23 and an extending portion 24 extending upward from the base end 23, and has a substantially stepped cross section. are doing. The base end portion 23 is liquid-tightly joined to a peripheral portion of the upper surface of the heat exchange base 21 by, for example, an adhesive or a combination of an O-ring and an adhesive. As shown in the figure, the extending portion 24 faces substantially in parallel with the peripheral surface of the second heat conductor 11, and an adhesive 25 is injected between the two to form the second heat conductor 11 and the second heat conductor 11. 1 frame 22
Are joined together. A plurality of positioning pins 82 are inserted between the peripheral surface of the second heat conductor 11 and the extending portion 24, and the adhesive 2
The second heat conductor 11 and the first frame 22 before the complete curing of
Are prevented from being displaced relative to each other. A plurality of (four in the present embodiment) reinforcing ribs 27 extending toward the base end 23 are provided outside the extending portion 24 to maintain the rigidity of the first frame 22. The first frame 22 is formed by making the space between the base end 23 and the extending portion 24 step-like, that is, non-linear.
The creepage distance from the second heat conductor 11 to the heat exchange base 21 is long, and the return of heat transmitted through the first frame 22 is reduced. At the periphery of the lower surface of the heat exchange base 21, a hollow second frame 28 substantially closed at the bottom and open at the top is bonded in a liquid-tight manner via an O-ring 29. A water supply pipe section 30 is provided substantially at the center of the second frame 28, and a drain pipe section 31 is provided near the periphery. The dispersion member 32 installed in the hollow portion of the second frame 28 includes a peripheral wall 33, an upper wall 34 connected to the upper end of the peripheral wall 33, and a large number of members extending from the upper wall 34 to the heat exchange base 21 side. And the nozzle portion 35 is provided.
6 are formed. By fixing the dispersion member 32 in the second frame 28, a flat first space 37 is formed on the water supply pipe 30 side of the dispersion member 32, and the heat exchange base 2 of the dispersion member 32 is formed.
A flat second space 38 is formed on one side, and a drain passage 39 that connects the second space 38 and the drain pipe portion 31 is formed. As shown in FIG. 3, when a heat transfer medium 40 (pure water is used in this embodiment) made of pure water or antifreeze is supplied from the central water supply pipe section 30, it spreads all at once in the first space section 37, Each nozzle portion 35 (injection hole 36) squirts in a substantially vertical direction toward the lower surface of the heat exchange base 21. The heat transfer medium 40 colliding with the heat exchange base 21 and removing the heat thereof quickly diffuses in the second space 38 having a narrow gap,
The water is discharged from the drain pipe section 31 to the outside of the system via the drain passage 39.
The discharged heat transfer medium 40 is connected to the hose 15 shown in FIG.
, Is forcibly air-cooled by a radiator (not shown) provided in the second heat radiating section 17 shown in FIG. 9, and is again sent to the circulation jacket 13 side by a pump (not shown). FIG.
Reference numeral 41 in 2 denotes a heat insulating material layer filled around the heat transfer medium circulation jacket 13. The refrigerated storage room 3 (ice temperature room 4) has a box-shaped heat insulating casing 51 having an open front side surface, and a heat insulating door 52 is provided to open and close the side opening. A box-shaped first heat conductor 53 is disposed so as to be in close contact with the inner wall of the heat insulating casing 51, and a surface portion of the first heat conductor 53 facing the opening, that is, a substantially central rear side of a back wall portion of the first heat conductor 53. A block-shaped second heat conductor 54 is installed in
A heat transfer medium circulation jacket 56 is in close contact with the rear side of the heat transfer medium via a cascade Peltier element 55. The structure and function of the heat transfer medium circulation jacket 56 are the same as those described with reference to FIG. The air A inside the refrigerator storage room 3 (FIGS. 9 and 1)
0) as indicated by the arrow, along the upper peripheral wall 53a of the first heat conductor 53 to collide with the inner side wall 53b on which the Peltier element 55 is installed, and further descend along the inner side wall 53b. The internal fan 57 and a plurality of heat absorbing fins 58 with guide grooves extending in parallel form the upper peripheral wall 53a.
It is provided inside. Furthermore, the upper peripheral wall 53a
And the thickness of the rear side wall 53 b is slightly larger than the thickness of the other wall of the first heat conductor 53. As described above, if the inside air 57 flows from the upper peripheral wall 53a along the surface of the inner side wall 53b by the function of the internal fan 57 and the heat absorbing fins 58 with guide grooves,
High cooling efficiency can be obtained. In the case of this specific example, the quick freezing room 1 and the thawing room 2
Is used only for freezing or thawing only necessary materials, so that the capacity of both chambers 1 and 2 is relatively small, for example, about 7 liters. In contrast, refrigerated storage room 3 and ice greenhouse 4
Is used for storage and preservation, the capacity of both chambers 3, 4 is relatively large, for example, about 30 liters. Since the capacity of both chambers 3 and 4 is large, and strict control of the temperature in the refrigerator is required to keep the quality of the stored foods and the like constant, as shown in FIG. 3 is provided with a first heat radiating section 59 dedicated thereto, and the ice greenhouse 4 is provided with a third heat radiating section 60 dedicated thereto, so that disturbance is reduced as much as possible. As shown in FIG. 7, the Peltier element 55 is driven by power supply from the element power supply section 61, and the internal fan 57 is driven by power supply from the fan power supply section 62.
The element power supply unit 61 and the fan power supply unit 62 are controlled by a signal from the control unit 63. A temperature sensor 64 is provided on the surface of the first heat conductor 53 near the Peltier element 55, and a detection signal from the temperature sensor 64 is input to the control unit 63. When the heat-insulating door 52 is opened in the refrigerated storage room 3 or when an object to be cooled such as food is put in the refrigerator, the temperature in the refrigerator suddenly rises. , The control unit 6 based on the detection signal.
A large amount of power is supplied to the Peltier element 55 from 3 via the element power supply unit 61. As a result, the temperature of the first heat conductor 53 is rapidly lowered particularly near the Peltier element 55, and tends to be lower than the temperature at which water freezes. The power to the internal fan 57 is increased shortly before the temperature at which the water freezes. As a result, the linear velocity of the internal air A increases, and the thermal conductance at the first heat conductor 53 increases,
The freezing of water on the surface of the first heat conductor 53 is eliminated, so that the humidity in the refrigerator can be kept high. The high-speed rotation of the internal fan 57 may be continuous or intermittent. However, if the high-speed rotation is performed for an excessively long time, electric power is wasted and the storage of vegetables and the like is adversely affected. Must be limited to a level that can maintain the desired value, and then the control mode must be set so that the operation can return to the rated operation. A specific example is as follows. Internal volume: 30 liter insulation material: Two-component non-fluorocarbon foam resin
80 mm thick Peltier element: square with a side of 1.4 mm and thickness 1.
Uses 142 semiconductor chips of 6 mm. Two-stage cascade structure. 6 sets of heat absorption system .............. Equipped with aluminum internal first heat conductor and internal fan and heat absorbing fin.
(Rated voltage 6V) Heat dissipation system ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ··································· 30 ° C. In the above-described embodiment, the case of an electric refrigerator in a general home has been described. However, the present invention is not limited to this. For example, a storage box called a home delivery box or the like Applicable to devices. For example, a storage box device is installed in a detached house, condominium, etc., and when a courier visits the recipient's home and is absent, deposit the luggage in the storage box device and send a slip to the recipient's mail box. There is a system for receiving a package in a storage box device, knowing that the package has been delivered when the recipient goes home and is absent from the slip. As the storage box device, for example, the storage device having a refrigeration or freezing function for storing living things such as meat and fish can be applied to the storage device of the present invention. As described above, the present invention is restricted to a range of 1.3 to 2 times the steady-state power required to maintain the set temperature in the refrigerator with the heat-insulating door closed. The power is supplied to the Peltier device from the device power supply unit. In this way, as described above, even if the heat-insulating door is opened and closed, it can be cooled to the set temperature in a short time and economically.

【図面の簡単な説明】 【図1】冷蔵庫における庫内設定温度と扉開閉時の庫内
温度変化を示す温度特性図である。 【図2】冷蔵庫における庫内設定温度と扉開閉時の庫内
温度変化を示す温度特性図である。 【図3】冷蔵庫における庫内設定温度と扉開閉時の庫内
温度変化を示す温度特性図である。 【図4】ペルチェ素子への供給電流と吸熱量との関係を
示す特性図である。 【図5】ペルチェ素子への投入電力と庫内温度との関係
を示す特性図である。 【図6】投入電力/定常電力と設定温度への戻り時間と
の関係を示す特性図である。 【図7】本発明の実施の形態に係るコンビネーション装
置の正面図である。 【図8】そのコンビネーション装置の平面図である。 【図9】そのコンビネーション装置の切断側面図であ
る。 【図10】そのコンビネーション装置の一部を構成する
冷蔵保存室ならびに氷温室の平面図である。 【図11】そのコンビネーション装置に使用するケーブ
ル収納ケースの一部拡大斜視図である。 【図12】そのコンビネーション装置に使用する熱移動
媒体循環ジャケットの拡大断面図である。 【図13】コンプレッサー式冷蔵庫の温度制御とペルチ
ェ素子を用いた冷蔵庫の温度制御の特性パターンを示す
図である。 【符号の説明】 51 断熱ケーシング 52 断熱扉 53 第1熱導体 54 第2熱導体 55 カスケードペルチェ素子 56 熱移動媒体循環ジャケット 57 庫内ファン 58 吸熱フィン 59 第1放熱部 60 第3放熱部 61 素子電源部 62 ファン電源部 63 制御部 64 温度センサ A 庫内空気
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a temperature characteristic diagram showing a set temperature in a refrigerator and a temperature change in the refrigerator when a door is opened and closed. FIG. 2 is a temperature characteristic diagram showing a set temperature in a refrigerator and a temperature change in the refrigerator when a door is opened and closed. FIG. 3 is a temperature characteristic diagram showing a set temperature in a refrigerator and a temperature change in the refrigerator when a door is opened and closed. FIG. 4 is a characteristic diagram showing a relationship between a current supplied to a Peltier element and a heat absorption amount. FIG. 5 is a characteristic diagram showing a relationship between electric power supplied to a Peltier element and a temperature in a refrigerator. FIG. 6 is a characteristic diagram showing a relationship between input power / stationary power and a return time to a set temperature. FIG. 7 is a front view of the combination device according to the embodiment of the present invention. FIG. 8 is a plan view of the combination device. FIG. 9 is a cut-away side view of the combination device. FIG. 10 is a plan view of a refrigeration storage room and an ice greenhouse that constitute a part of the combination device. FIG. 11 is a partially enlarged perspective view of a cable storage case used for the combination device. FIG. 12 is an enlarged sectional view of a heat transfer medium circulation jacket used for the combination device. FIG. 13 is a diagram showing characteristic patterns of temperature control of a compressor-type refrigerator and temperature control of a refrigerator using a Peltier element. DESCRIPTION OF SYMBOLS 51 Insulated casing 52 Insulated door 53 First heat conductor 54 Second heat conductor 55 Cascade Peltier element 56 Heat transfer medium circulation jacket 57 Internal fan 58 Heat absorption fin 59 First heat radiating section 60 Third heat radiating section 61 Element Power supply unit 62 Fan power supply unit 63 Control unit 64 Temperature sensor A Inside air

───────────────────────────────────────────────────── フロントページの続き (72)発明者 都能 克博 神奈川県川崎市川崎区塩浜1丁目7番7 号 株式会社サーモボニック内 (56)参考文献 特開 平6−207771(JP,A) 実開 昭62−120172(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25D 11/00 F25B 21/02 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Katsuhiro Tono 1-7-7 Shiohama, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Thermobonic Co., Ltd. (56) References JP-A-6-207771 (JP, A) 62-120172 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25D 11/00 F25B 21/02

Claims (1)

(57)【特許請求の範囲】 【請求項1】 断熱層で形成されたケーシングと、 そのケーシングの開口部を開閉する断熱扉と、 前記ケーシング内に設置されて、ケーシング内の庫内空
間に対向した伝熱面を有する熱導体と、 その熱導体と熱的に導通しているペルチェ素子と、 そのペルチェ素子に電力を供給する素子電源部とを備
え、前記断熱扉開閉後12分以内に庫内設定温度まで冷却す
るために、外気30℃において 断熱扉を閉じた状態で前
記ケーシングの庫内設定温度を維持するのに必要な定常
電力に対して1.3〜2倍の範囲に規制された電力を、
前記素子電源部から前記ペルチェ素子に投入するように
構成されていることを特徴とする電気冷蔵庫。
(57) [Claims 1] A casing formed of a heat insulating layer, a heat insulating door for opening and closing an opening of the casing, A heat conductor having an opposing heat transfer surface, a Peltier element thermally in communication with the heat conductor, and an element power supply unit for supplying power to the Peltier element, and within 12 minutes after opening and closing the heat insulating door. Cool down to the set temperature in the refrigerator
In order to maintain the in- compartment set temperature of the casing in a state in which the heat-insulating door is closed at 30 ° C. in outside air , power regulated to a range of 1.3 to 2 times the steady power required for maintaining
An electric refrigerator configured to be supplied to the Peltier device from the device power supply unit.
JP35085396A 1996-12-27 1996-12-27 Electric refrigerator Expired - Fee Related JP3423172B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP35085396A JP3423172B2 (en) 1996-12-27 1996-12-27 Electric refrigerator
EP97204106A EP0851186B1 (en) 1996-12-27 1997-12-24 Electric refrigerator
US08/997,817 US5845497A (en) 1996-12-27 1997-12-24 Thermoelectric refrigerator with control of power based upon sensed temperature
DE69722160T DE69722160T2 (en) 1996-12-27 1997-12-24 Electric refrigerator
AU49338/97A AU743658B2 (en) 1996-12-27 1997-12-24 Electric refrigerator
CN97126350A CN1186215A (en) 1996-12-27 1997-12-29 Electric refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35085396A JP3423172B2 (en) 1996-12-27 1996-12-27 Electric refrigerator

Publications (2)

Publication Number Publication Date
JPH10197124A JPH10197124A (en) 1998-07-31
JP3423172B2 true JP3423172B2 (en) 2003-07-07

Family

ID=18413339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35085396A Expired - Fee Related JP3423172B2 (en) 1996-12-27 1996-12-27 Electric refrigerator

Country Status (6)

Country Link
US (1) US5845497A (en)
EP (1) EP0851186B1 (en)
JP (1) JP3423172B2 (en)
CN (1) CN1186215A (en)
AU (1) AU743658B2 (en)
DE (1) DE69722160T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521272A (en) * 2012-05-07 2015-07-27 フォノニック デバイセズ、インク System and method for thermoelectric heat exchange system
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737923A (en) * 1995-10-17 1998-04-14 Marlow Industries, Inc. Thermoelectric device with evaporating/condensing heat exchanger
ES2159218B1 (en) * 1998-05-14 2002-04-01 Consejo Superior Investigacion DOMESTIC REFRIGERATOR WITH PELTIER EFFECT, THERMAL ACCUMULATORS AND EVAPORATIVE THERMOSIFONS.
US6612116B2 (en) 1999-02-26 2003-09-02 Maytag Corporation Thermoelectric temperature controlled refrigerator food storage compartment
US7348522B1 (en) 2005-01-25 2008-03-25 Lance Criscuolo Apparatus for thawing frozen food items
US20070101737A1 (en) 2005-11-09 2007-05-10 Masao Akei Refrigeration system including thermoelectric heat recovery and actuation
US7310953B2 (en) 2005-11-09 2007-12-25 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
US20090031733A1 (en) * 2007-07-31 2009-02-05 General Electric Company Thermotunneling refrigeration system
ITMO20090164A1 (en) * 2009-06-22 2010-12-23 Cram Srl ACTIVE WEARABLE REFRIGERATOR
CN102313437B (en) * 2011-04-26 2013-05-22 合肥美的荣事达电冰箱有限公司 Combined refrigeration equipment and noise reducing method for same
JP2013033895A (en) * 2011-07-07 2013-02-14 Nfs Co Ltd Electric cooling unit
JP2014178106A (en) * 2013-02-18 2014-09-25 Cbc Est Co Ltd Temperature-controlled conveyance box
DE102020002820B4 (en) 2020-05-12 2021-12-09 Patrick-Anastasios Krystallas Rapid cooling device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660419B1 (en) * 1990-04-02 1992-08-14 Girard Patrick WINE CELLAR FORMED OF MODULAR ELEMENTS.
SE469488B (en) * 1991-10-04 1993-07-12 Christer Tennstedt THERMO-ELECTRIC COOLING ELEMENT WITH FLEXIBLE CONDUCTIVE ELEMENT
DE4242841C2 (en) * 1992-12-17 1995-05-11 Litef Gmbh Method and control device for temperature control for a Peltier-operated temperature control device
JPH0791796A (en) * 1993-09-28 1995-04-04 Fuji Electric Co Ltd Electronic refrigeration type cold storage box
KR0138049B1 (en) * 1994-03-31 1998-07-01 김광호 Control method of compressor running velocity for a refrigerator
US5689957A (en) * 1996-07-12 1997-11-25 Thermotek, Inc. Temperature controller for low voltage thermoelectric cooling or warming boxes and method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521272A (en) * 2012-05-07 2015-07-27 フォノニック デバイセズ、インク System and method for thermoelectric heat exchange system
US10012417B2 (en) 2012-05-07 2018-07-03 Phononic, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
JP6378464B1 (en) * 2012-05-07 2018-08-22 フォノニック デバイセズ、インク System and method for thermoelectric heat exchange system
JP2018159540A (en) * 2012-05-07 2018-10-11 フォノニック デバイセズ、インク System and method about thermoelectric heat exchange system
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module

Also Published As

Publication number Publication date
DE69722160D1 (en) 2003-06-26
EP0851186A2 (en) 1998-07-01
EP0851186A3 (en) 1999-01-13
AU743658B2 (en) 2002-01-31
AU4933897A (en) 1998-07-02
US5845497A (en) 1998-12-08
DE69722160T2 (en) 2003-12-11
JPH10197124A (en) 1998-07-31
CN1186215A (en) 1998-07-01
EP0851186B1 (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP3372792B2 (en) Electronic refrigerator
JP3423172B2 (en) Electric refrigerator
US6003319A (en) Thermoelectric refrigerator with evaporating/condensing heat exchanger
US9052127B2 (en) Refrigerator having auxiliary cooling device
JP2002323281A (en) Storage box utilizing thermoelectric element
KR20180087618A (en) Container and Refrigerator including the same
WO1998034075A1 (en) Cold storage apparatus
JP2000320942A (en) Refrigerator
WO2022262378A1 (en) Refrigerator and food material treatment device thereof
KR100483919B1 (en) Refrigerator Having Temperature-Controlled Chamber Utlizing Thermoelectric Module
JP2006189209A (en) Cooling storage
KR100845152B1 (en) Refrigerator or heating cabinet for vehicle
JP2000097546A (en) Cooling storehouse
JP3202604B2 (en) Temperature treatment device
JP2000274917A (en) Cooling storage chamber
KR102212284B1 (en) cabinet for both heating and cooling usingthermo-element
JP2004278890A (en) Refrigerator-freezer
CN211084549U (en) Refrigerator with a door
JP2002107080A (en) Thermal storage device and refrigerator using the same
JP2005083666A (en) Storage
JP2008170032A (en) Condenser, cooling system and refrigerator
KR20040026463A (en) Device for heating and cooling apparatus of useing thermoelectic degauss
JP2006138552A (en) Cooling storage
JP5315788B2 (en) refrigerator
JP2001116416A (en) Warm and cold storage cabinet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees