JP2004277453A - Granular carbonized material and method for producing the same - Google Patents

Granular carbonized material and method for producing the same Download PDF

Info

Publication number
JP2004277453A
JP2004277453A JP2003066819A JP2003066819A JP2004277453A JP 2004277453 A JP2004277453 A JP 2004277453A JP 2003066819 A JP2003066819 A JP 2003066819A JP 2003066819 A JP2003066819 A JP 2003066819A JP 2004277453 A JP2004277453 A JP 2004277453A
Authority
JP
Japan
Prior art keywords
pitch
carbide
powder
granular
powdery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066819A
Other languages
Japanese (ja)
Other versions
JP4199028B2 (en
Inventor
Ikuo Seo
郁夫 瀬尾
Hiroyuki Fukuda
弘之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUREHA KANKYO KK
Kureha Corp
Original Assignee
KUREHA KANKYO KK
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUREHA KANKYO KK, Kureha Corp filed Critical KUREHA KANKYO KK
Priority to JP2003066819A priority Critical patent/JP4199028B2/en
Publication of JP2004277453A publication Critical patent/JP2004277453A/en
Application granted granted Critical
Publication of JP4199028B2 publication Critical patent/JP4199028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently provide a granular carbonized material useful as active carbon, etc., and having good sphericity. <P>SOLUTION: The granular carbonized material is produced as follows. A wood substrate granule and a pitch granule are introduced into a rotating furnace and the pitch granule is melted under rotation. The wood substrate granule is impregnated and coated with the molten pitch. The resultant pitch-impregnated/coated wood substrate granule is integrally carbonized and, as necessary, further subjected to an activation treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、活性炭等として有用な粉粒状炭化物ならびにその効率的な製造方法に関する。
【0002】
【従来の技術】
石油系もしくは石炭系ピッチあるいは廃プラスチックの加熱分解残渣等からなるピッチ(すなわち、室温で固体の主として重質炭化水素からなる残渣)が、例えば600〜1200℃の高温に付すことにより炭化されることは広く知られている。この際の炭化収率は、約40〜60質量%とかなり高い。しかしながら、これらピッチは、300℃程度までの加熱により、液状化してしまうために、単独で炭化して炭化物を得ることは、実験室規模では行われていても工業的には一部を除いて殆んど行われていない。
【0003】
特公昭50−18879号公報には、原料ピッチを造粒し、球状の活性炭を製造する技術が開示されているが、この技術は、炭化・賦活工程においてピッチ造粒物を融着させないために、不融化工程(造粒物に酸素架橋を付与する工程)を導入することによって初めて実用になったものである。
【0004】
他方、それ自体は炭化収率が10質量%程度と低い木粉(特開昭61−220727号公報)あるいはコーヒー豆残渣(特開平6−9207号公報)等の木質基材粉に対し、タール、ピッチをバインダーとして加えて、成形したのち、炭化することが提案されている。更に、特開平6−9207号公報には、石炭、やし殻、木炭等を炭素質材料とし、少量のアルミナ、塩化アルミニウム、酸化銅等の粘結防止剤と共に、タール、ピッチを用いて形成し、炭化、賦活する活性炭の製造方法が従来技術として紹介されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これら従来技術において、木質基材粉とともに用いられるピッチは、本質的にバインダーであるため、炭化前に成形する工程が必要となり、またより微粒の活性炭を得るためには、炭化物を改めて粉砕するという非効率な製造方法になっている。
【0006】
従って、本発明の主要な目的は、木質基材とピッチにより効率的に製造した粉粒状炭化物ならびにその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の粉粒状炭化物は、上述の目的の達成のために開発されたものであり、木質基材粉粒体および被覆ピッチとが一体的に炭化されてなることを特徴とするものである。
【0008】
また、本発明の粉粒状炭化物の製造方法は、木質基材粉粒体と、ピッチ粉粒体とを、回転炉中に導入し、回転下に該ピッチ粉粒体を溶融させて木質基材粉粒体を含浸・被覆し、得られたピッチ被覆木質基材粉粒体を一体的に炭化することを特徴とするものである。
【0009】
本発明の粉粒状炭化物の製造方法は、木質基材粉粒体とピッチ粉粒体とを、回転炉中で、回転下に、室温から600〜1200℃まで加熱すると、途中300℃程度というピッチの溶融温度域を通過するにも拘わらず、粒子の過度の凝集あるいはブロック化が本質的に起らずに、本質的に木質基材粉粒体の炭化骨格を基本とする、すなわち実質的に単核の被覆炭化粒子からなる、球状性の良い粉粒状炭化物が得られるとの知見に基づく。この現象は、未だ充分に解明されたわけではないが、炭化のための加熱下におけるピッチの挙動と、製品炭化物の用途に応じて調整された粒度の木質基材粉粒体の相互作用から、以下のように説明される。
【0010】
すなわち、木質基材粉粒体とピッチ粉粒体とを、回転炉中に導入して、回転下に加熱すると、300℃以上でピッチ粉粒体は、溶融を開始するが、併存する木質基材粉粒体が多孔質であるため、初期の溶融物は木質基材粉粒体の空隙あるいは表層近傍の細孔に吸収・含浸されて過度の粘着性を失うために、回転剪断力の作用もあってピッチで被覆された木質基材粉粒体の過度の凝集あるいはブロック化が防止される。更に温度上昇が続くにつれて、ピッチは本来なら更に粘度低下を起すが、木質基材粉粒体中に適度に存在する酸素あるいは必要に応じて導入する雰囲気中の酸素によって、約120℃以上の温度領域で酸化によるピッチの不融化が起るため、木質基材粉粒体を被覆するピッチの溶融粘着力の増大が相殺される。従って、ピッチ被覆木質基材粉粒体は、300℃以上のピッチ溶融域において、過度の凝集あるいはブロック化を招くような粘性の過度の発現を起すことなく通過し、600〜1200℃あるいはそれ以上の温度で一体的に炭化される。また途中、隣接する粒状体間で小面積で接合した異常凝集が起っても、回転炉の与える回転剪断力により、凝集破壊が起る。以上の作用の総合結果として、木質基材粉粒体と被覆ピッチとが一体的に炭化された、粒径の均一度と球状性の良好な、実質的に単核の被覆炭化粒子からなる本発明の粉粒状炭化物が形成されると考えられる。
【0011】
【発明の実施の形態】
以下、本発明の粉粒状炭化物を、その製造方法における工程に従って順次説明する。
【0012】
(木質基材粉粒体)
本発明の粉粒状炭化物の原料の第一は、木質基材粉粒体である。
【0013】
本発明においては、各種産業廃棄物あるいは生活廃棄物が好適な木質基材粉粒体として用いられる。
【0014】
その好適な例としては、コーヒー抽出残渣、木材の大鋸屑、ビール滓、穀物の殻(麦殻、籾殻 )、木材チップ、竹、廃紙、廃パルプ、汚泥、緑茶および紅茶残渣、糠等の含酸素化合物が挙げられる。なかでもコーヒー抽出残渣、大鋸屑、ビール滓、穀物の殻(麦殻、籾殻)、緑茶および紅茶残渣は、粒径が一定で安定しており、本質的に木質基材粉粒体の不均一な凝集を防止しつつ被覆ピッチとともに一体に炭化させるという本発明の粉粒状炭化物の製造方法における主原料として極めて好適である。
【0015】
上記の例示物を含めて、本発明で用いる木質基材粉粒体の平均粒径(フルイ目開きを基準とする50質量%累積粒径、以下特に断わらない限り同様)は、5mm以下、特に0.1〜4mmの範囲、が好ましく、原料粒径分布範囲としても同様の範囲が好ましい。
【0016】
また、木質基材粉粒体は、炭化収率(窒素雰囲気中、800℃、0.5時間での炭化収率、以下、同様)が5%以上、特に10〜30%のものが好ましく用いられる。
【0017】
(ピッチ粉粒体)
本発明の粉粒状炭化物の製造方法における第2の原料であるピッチ粉粒体の好適な例は、石油もしくは石炭系ピッチあるいは廃プラスチックの加熱分解残渣等からなるピッチ(先にも触れたように、ここでは室温で固体の主として重質炭化水素からなる残渣を意味する)の粉粒体が挙げられる。特に本発明においては軟化点が150〜250℃のものが好ましく用いられる。室温で固体であることが必要であるが、加熱の初期において、軟化ないし液状化しても多孔質の木質基材粉粒体に吸収されて、その粘着性が効果的に抑制されるので、比較的低軟化点のものも好適に用いられる。
【0018】
ピッチは、また、H/C原子比が0.5〜1.5程度まで重質化しており、40%以上、特に50〜70%、の炭化収率を示すものが好ましい。
【0019】
ピッチ粉粒体は、本発明の製造方法において、炭化のための加熱段階の比較的初期において軟化ないし液状化するため、粉粒体が好ましい。その平均粒径は、好ましくは0.05〜2mmである。
【0020】
本発明の粉粒状炭化物およびその製造方法の好ましい実施態様は、それを廃プラスチックの処理プロセスと共働的に運用することである。すなわち、環境対策の重要性への認識が高まるにつれ、大量に発生する廃プラスチックを単に燃料として消費することは資源の浪費ばかりでなく、温室ガスである炭酸ガスの大量発生につながり、好ましくない。この観点で、炭酸ガスの発生量の少ない廃プラスチックの熱分解がより望ましく、本発明で使用するピッチ粉粒体の好ましい一態様は、廃プラスチックの熱分解残渣からなるピッチ粉粒体である。特に、塩化ビニル樹脂の300〜400℃程度の温度での脱塩化水素プロセスは、軟化点が150〜250℃程度のピッチを高収率で与えるものであり、本発明のピッチ粉粒体を与えるのに、特に好適である。また、本発明の製造方法を通じて得られる粉粒状炭化物(特に賦活後の活性炭)は、廃棄物の焼却プロセスにおいて発生し得る有害物としてのダイオキシンの吸収剤として使用するのに適している。
【0021】
本発明においては、木質基材粉粒体100質量部に対して、このようなピッチ粉粒体を、10〜50質量部、特に20〜40質量部の割合で用いることが好ましい。
【0022】
本発明の粉粒状炭化物の製造方法に従い、上記した木質基材粉粒体とピッチ粉粒体とを、回転炉中で、炭化のための加熱に付す。
【0023】
この過程で、ピッチ粉粒体の溶融が起り、木質基材粉粒体表層を含浸しつつ表面被覆する。
【0024】
引き続き、ピッチ被覆木質基材粉粒体を回転炉中で600〜1200℃、好ましくは650〜850℃まで加熱し、この温度で10分以上、好ましくは0.2〜0.5時間保持して炭化する。
【0025】
好ましい態様に従えば、上記で得られた粉粒状炭化物は更に賦活処理される。すなわち、700℃以上、好ましくは700〜850℃の賦活温度で、スチーム、炭酸ガスあるいは希釈酸素等の存在下に、約0.5〜3時間保持して、賦活処理する。
【0026】
上記炭化(および好ましくは更に賦活)処理物を冷却することにより、本発明の粉粒状炭化物(および好ましくは活性炭)が得られる。
【0027】
上記一連の処理は、概ね水平な回転軸を有する回転炉中での回分処理として、あるいは水平から僅かに傾斜した回転軸を有する連続流通式の回転炉(いわゆるロータリーキルン)を用いて連続処理として、行われる。連続処理の場合、賦活処理のみを別炉中で行うことも可能である。
【0028】
上記のようにして得られる本発明の粉粒状炭化物(好ましくは活性炭)の代表的な性状を挙げると、平均粒径が0.05〜5mm、特に0.1〜4mm、短径/長径比(例えば顕微鏡観察により、任意に選んだ10粒子についての平均値)が0.5以上であり、粒子断面形状に角がないことで代表される良好な球状性、嵩密度0.2〜0.4g/cm、ならびに活性炭におけるBET比表面積500〜1000m/gなどである。
【0029】
得られた炭化物は、各種気体および水処理用の活性炭として、特にダイオキシン類の吸着除去に適する活性炭として、好適に用いられる。また土壌改質材としても好適に用いられる。
【0030】
〔実施例〕
以下、本発明を、実施例および比較例により更に具体的に説明する。
【0031】
なお、以下の実施例を含む本願明細書中に記載の粉粒状炭化物の代表的な物性は、以下の方法により測定したものである。
【0032】
(1)平均粒(子直)径
粉粒状炭化物について、JIS K 1474に準じて質量基準の粒度累積線図を作成する。平均粒子径は、粒度累積線図において、横軸50%の点の垂直線と粒度累積線との交点から、横軸に水平線を引いて交点の示すふるいの目開き(mm)を求めて、平均粒子径とする。
【0033】
(2)カサ密度
試料である粉粒状炭化物を115℃に調節した乾燥器中で3時間乾燥した後、デシケーター中で放冷する。乾燥した粉粒状炭化物試料を、充てん密度測定容器(JIS K 1474−5.7の図8に示された容器)にその容器の容積の1/5容量まで入れる。前記粉粒状炭化物試料の上面が一定の高さになるまで、ゴム板上で静かにたたき、更に同量の粉粒状炭化物試料を加えて静かにたたく。このたたき充填操作を繰り返し、容器の上端まで粉粒状炭化物試料を充填し、容器上部の筒を抜き取り、ステンレステチール製直定規を用いて盛り上がった部分を削り取り、粉粒状炭化物試料の上面を水平にする。前記容器内の粉粒状炭化物試料の質量を0.1gの桁まで測定する。続いて、カサ密度(L)は次の式によって算出する。
【0034】
【数1】
L=S/M
ここで、Sは粉粒状炭化物試料の質量(g)であり、Mは充てん密度測定容器の容積(ml)である。
【0035】
(3)比表面積
連続流通式のガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「Flow Sorb II 2300」)を用いて、粉粒状炭化物試料のガス吸着量を測定し、BETの式により比表面積を計算することができる。具体的には、試料である粉粒状炭化物を試料管に充填し、その試料管に窒素30容量%を含有するヘリウムガスを流しながら以下の操作を行い、粉粒状炭化物試料への窒素吸着量を求める。すなわち、試料管を−196℃に冷却し、粉粒状炭化物試料に窒素を吸着させる。次に、試料管を室温に戻す。このとき粉粒状炭化物試料から脱離してくる窒素量を熱伝導型検出器で測定し、吸着ガス量(v)とする。
【0036】
BETの式から誘導された近似式:v=1/(v・(1−x))を用いて液体窒素温度における、窒素吸着による一点法(相対圧力x=0.3)によりvを求め、次式:比表面積=4.35×v(m/g)により試料の比表面積を計算する。前記の各計算式で、vは試料表面に単分子量を形成するのに必要な吸着量(cm/g)であり、vは実測された吸着量(cm/g)であり、xは相対圧力である。
【0037】
(4)カラメル脱色性能
粉粒炭化物について活性炭としての吸着能を評価するために、JIS K 1474に準じて、試料150mgにカラメル試験液(サッカロースの規定濃度硫酸による炭化により得られたカラメル原液の20倍水希釈液50ml)を加え、振とう機で振とうした後濾過し、濾液の吸光度E´とカラメル試験液の吸光度E(いずれも波長430nmにおける)からカラメル脱色力(=(1−E/E´)×100(%))を求める。
【0038】
(実施例1)
塩化ビニル樹脂を窒素気流中で450℃まで5時間かけて昇温して脱塩素化することにより得られた軟化点が180℃、H/C原子比が0.7であるピッチ状物質の粉砕物(平均粒径0.1mm)をピッチ粉粒体として用いた。
【0039】
このピッチ粉粒体100gと、コーヒー抽出残渣の乾燥品(平均粒径0.4mm)400gとを、内径270mm、長さ420mmの水平に保持した回転内筒(内部に収容転動物の流下を防止する堰を設けてある)と、固定外筒と、を有する回分型の回転炉中の該内筒(空気雰囲気)にほぼ密閉状態で収容し、該内筒を3回転/分の速度で回転させつつ、内筒外の外筒との空間に燃焼ガスを導入して、内筒の加熱を行った。
【0040】
室温から300℃まで約10分間、その後更に820℃まで30分間かけて昇温し、この温度で30分間保持して、内容物の炭化を行った。
【0041】
その後引き続き、内筒内温度を820℃に維持した状態で、スチームを5g/分の割合で導入し20分間の賦活処理を行った。
【0042】
その後、加熱を停止し、強制冷却し、300℃でスチームの導入を停止し、ほぼ室温まで冷却後、内容物を回収して、本発明の粉粒状炭化物を得た。該炭化物の外観は、原料であるコーヒー抽出残渣の形状をほぼ残した、実質的に単核の被覆炭化粒子からなる均一な黒色炭化物であった。
【0043】
粉粒状炭化物の回収量は、70gであり、ピッチおよびコーヒー抽出残渣粉砕物の合計量に対する収率は、14質量%であった。
【0044】
得られた粉粒状炭化物についての物性測定結果を、以下の実施例および比較例についての結果とまとめて、後記表1に記す。
【0045】
(実施例2)
原料として、ピッチ粉粒体162gとコーヒー抽出残渣325gを用いる以外は、実施例1と同様の処理を行うことにより、粉粒状炭化物87gを得た。
【0046】
物性測定結果を表1に示す。ピッチ配合量を増加したことに伴ない、炭化収率は18質量%と向上したが、粗粒および微粉はやや増加した。
【0047】
(比較例1)
原料として、コーヒー抽出残渣500gのみを用いる以外は、実施例1と同様にして粉粒状炭化物を得たが、微粉の増加が目立った。また炭化収率は8質量%と、実施例1および2に比べて低いレベルに止まった。
【0048】
上記実施例および比較例の結果をまとめて、下記表1に記す。
【表1】

Figure 2004277453
【発明の効果】
上述したように、本発明によれば、脆くて粉化し易い木質基材粉粒体の単独炭化物に比べて、ピッチ含浸・被覆炭化物であるので、機械的強度が高く、かつ粒状ならびに球状性の良い粉粒状炭化物を、木質基材粉粒体の単独炭化に比べて著しく高い収率で得られ、しかも中間ペレット化あるいは炭化物の粉砕等の工程を要することなく効率的に製造できる。得られた粉粒状炭化物を賦活することにより、木質基材粉体単独の炭化賦活物と殆ど遜色のない性能の活性炭が、高い収率で得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a powdery and granular carbide useful as activated carbon and the like and an efficient production method thereof.
[0002]
[Prior art]
Petroleum-based or coal-based pitch or pitch composed of pyrolysis residue of waste plastic (that is, residue composed mainly of heavy hydrocarbons which is solid at room temperature) is carbonized by subjecting it to a high temperature of, for example, 600 to 1200 ° C. Is widely known. The carbonization yield at this time is as high as about 40 to 60% by mass. However, since these pitches are liquefied by heating to about 300 ° C., it is industrially except for a part that even if it is performed on a laboratory scale, it is industrialized to obtain a carbide by carbonizing alone. Almost not done.
[0003]
Japanese Patent Publication No. 50-18879 discloses a technique of granulating a raw material pitch to produce a spherical activated carbon. However, this technique is intended to prevent the pitch granulated material from being fused in a carbonization / activation step. It has only become practical for the first time by introducing an infusibilizing step (a step of imparting oxygen crosslinking to the granulated product).
[0004]
On the other hand, the woody base powder such as wood flour (Japanese Unexamined Patent Publication (Kokai) No. 61-220727) or coffee bean residue (Japanese Unexamined Patent Publication (Kokai) No. 6-9207), which itself has a low carbonization yield of about 10% by mass, It has been proposed that pitch is added as a binder, molded, and then carbonized. Further, Japanese Patent Application Laid-Open No. 6-9207 discloses that coal, coconut shell, charcoal and the like are used as a carbonaceous material, and are formed using tar and pitch together with a small amount of an anti-caking agent such as alumina, aluminum chloride and copper oxide. A method for producing activated carbon that is carbonized and activated is introduced as a conventional technique.
[0005]
[Problems to be solved by the invention]
However, in these conventional techniques, the pitch used together with the wood base powder is essentially a binder, so that a step of molding before carbonization is required, and in order to obtain finer activated carbon, the carbide is pulverized again. This is an inefficient manufacturing method.
[0006]
Accordingly, a main object of the present invention is to provide a powdery and granular carbide efficiently produced from a wood substrate and pitch, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The powdery and granular carbide of the present invention has been developed to achieve the above-mentioned object, and is characterized in that the woody substrate powder and the coating pitch are integrally carbonized.
[0008]
In addition, the method for producing a particulate carbide according to the present invention is characterized in that the wood base material and the pitch powder are introduced into a rotary furnace, and the pitch powder is melted under rotation to produce the wood base material. The present invention is characterized in that the granules are impregnated and coated, and the obtained pitch-coated wood base granules are integrally carbonized.
[0009]
The method for producing a particulate carbide according to the present invention is characterized in that the wooden substrate powder and the pitch powder are heated from room temperature to 600 to 1200 ° C. in a rotary furnace while rotating, and the pitch is about 300 ° C. Despite passing through the melting temperature range of, the particles are essentially based on the carbonized skeleton of the wood-based granular material without excessive aggregation or blocking of the particles, ie, substantially It is based on the finding that a powdery and granular carbide having good spheroidity composed of mononuclear coated carbonized particles can be obtained. Although this phenomenon has not been fully elucidated yet, the following behavior is considered from the behavior of the pitch under heating for carbonization and the interaction of the wood-based powder with a particle size adjusted according to the use of the product carbide. It is explained as follows.
[0010]
That is, when the wood base material and the pitch material are introduced into a rotary furnace and heated under rotation, the pitch material starts melting at 300 ° C. or higher, but the coexisting wood base Since the wood particles are porous, the initial melt is absorbed and impregnated into the voids of the wood base material or pores near the surface layer, and loses excessive tackiness. This prevents excessive coagulation or blocking of the wood-based base material coated with the pitch. As the temperature continues to rise, the pitch naturally causes a further decrease in viscosity. However, the temperature of about 120 ° C. or more is caused by oxygen present in the wood base material or oxygen in the atmosphere introduced as necessary. Since the pitch becomes infusibilized by oxidation in the region, the increase in the melt adhesive force of the pitch covering the wood-based base particles is offset. Therefore, the pitch-coated wood substrate powder passes in the pitch melting zone of 300 ° C. or higher without causing excessive cohesion or excessive development of viscosity that causes blockage, and 600 to 1200 ° C. or higher. At the same temperature. In addition, even if abnormal cohesion occurs in a small area between adjacent granules, a cohesive failure occurs due to the rotational shear force applied by the rotary furnace. As a comprehensive result of the above-mentioned actions, the present invention is made of a substantially mononuclear coated carbonized particle in which the wood base material and the coating pitch are integrally carbonized, and has a good uniformity of particle size and good spheroidity. It is believed that the particulate carbides of the invention are formed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the powdery and granular carbides of the present invention will be sequentially described according to the steps in the method for producing the same.
[0012]
(Wood-based powder)
The first raw material of the granular carbide of the present invention is a wood-based granular material.
[0013]
In the present invention, various industrial wastes or household wastes are used as suitable wood-based base particles.
[0014]
Preferable examples include coffee extraction residue, wood sawdust, beer slag, cereal husk (wheat husk, rice husk), wood chips, bamboo, waste paper, waste pulp, sludge, green tea and black tea residue, bran, and the like. Oxygen compounds are included. Among them, coffee extraction residue, sawdust, beer residue, cereal husk (wheat husk, rice husk), green tea and black tea residue have a constant and stable particle size, and are essentially non-uniform in woody base powder. This is extremely suitable as a main raw material in the method for producing a powdery carbide of the present invention, in which carbonization is performed integrally with the coating pitch while preventing agglomeration.
[0015]
The average particle size (50 mass% cumulative particle size based on sieve opening, hereinafter the same applies unless otherwise specified) of the wood-based powder used in the present invention, including the above-mentioned examples, is 5 mm or less, particularly The range is preferably 0.1 to 4 mm, and the same range is preferable as the raw material particle size distribution range.
[0016]
In addition, the wood base powder has a carbonization yield (carbonization yield in a nitrogen atmosphere at 800 ° C. for 0.5 hour, the same applies hereinafter) of 5% or more, particularly preferably 10 to 30%. Can be
[0017]
(Pitch powder)
Preferable examples of the pitch granular material as the second raw material in the method for producing a granular carbide of the present invention include a petroleum or coal pitch or a pitch composed of a pyrolysis residue of waste plastic (as mentioned above). , Which means a residue mainly consisting of heavy hydrocarbons which are solid at room temperature). Particularly, in the present invention, those having a softening point of 150 to 250 ° C are preferably used. It is necessary to be solid at room temperature, but even in the early stage of heating, even if it softens or liquefies, it is absorbed by the porous wood base material particles and its tackiness is effectively suppressed, so Those having an extremely low softening point are also preferably used.
[0018]
The pitch is heavier to an H / C atomic ratio of about 0.5 to 1.5, and preferably has a carbonization yield of 40% or more, particularly 50 to 70%.
[0019]
Since the pitch powder is softened or liquefied relatively early in the heating step for carbonization in the production method of the present invention, the powder is preferably a powder. The average particle size is preferably 0.05-2 mm.
[0020]
A preferred embodiment of the granular carbide of the present invention and a method for producing the same is to operate it in cooperation with a waste plastic treatment process. In other words, as awareness of the importance of environmental measures increases, simply consuming a large amount of waste plastic as fuel not only wastes resources but also generates a large amount of carbon dioxide, which is a greenhouse gas. From this viewpoint, it is more desirable to thermally decompose waste plastic that generates a small amount of carbon dioxide gas, and a preferred embodiment of the pitch powder used in the present invention is a pitch powder made of pyrolysis residue of waste plastic. In particular, the dehydrochlorination process of a vinyl chloride resin at a temperature of about 300 to 400 ° C. gives a pitch having a softening point of about 150 to 250 ° C. in high yield, and gives the pitch granular material of the present invention. However, it is particularly suitable. Further, the powdery and granular carbide (particularly activated carbon after activation) obtained through the production method of the present invention is suitable for use as an absorbent for dioxin, which is a harmful substance that may be generated in a waste incineration process.
[0021]
In the present invention, such a pitch powder is preferably used in a proportion of 10 to 50 parts by weight, particularly 20 to 40 parts by weight, based on 100 parts by weight of the wood base powder.
[0022]
According to the method for producing a powdery and granular carbide of the present invention, the above-mentioned woody base material and the pitch and the granular material are subjected to heating for carbonization in a rotary furnace.
[0023]
In this process, the melting of the pitch granules occurs, and the surface is coated while impregnating the surface layer of the wood base granules.
[0024]
Subsequently, the pitch-coated wood substrate powder is heated in a rotary furnace to 600 to 1200 ° C., preferably 650 to 850 ° C., and kept at this temperature for 10 minutes or more, preferably 0.2 to 0.5 hour. Carbonize.
[0025]
According to a preferred embodiment, the powdery and granular carbide obtained above is further activated. That is, the activation treatment is carried out at an activation temperature of 700 ° C. or higher, preferably 700 to 850 ° C., in the presence of steam, carbon dioxide or diluted oxygen for about 0.5 to 3 hours.
[0026]
By cooling the carbonized (and preferably further activated) treated product, the powdery and granular carbide (and preferably activated carbon) of the present invention is obtained.
[0027]
The above series of processes is performed as a batch process in a rotary furnace having a substantially horizontal rotation axis, or as a continuous process using a continuous flow type rotary furnace having a rotation axis slightly inclined from horizontal (a so-called rotary kiln). Done. In the case of continuous treatment, it is also possible to perform only the activation treatment in a separate furnace.
[0028]
Typical properties of the powdery and granular carbide (preferably activated carbon) of the present invention obtained as described above include an average particle diameter of 0.05 to 5 mm, particularly 0.1 to 4 mm, and a minor axis / major axis ratio ( For example, by microscopic observation, the average value of arbitrarily selected 10 particles is 0.5 or more, and the particles have good sphericalness and bulk density of 0.2 to 0.4 g, which are represented by the absence of corners in the cross-sectional shape of the particles. / Cm 3 , and a BET specific surface area of activated carbon of 500 to 1000 m 2 / g.
[0029]
The obtained carbide is suitably used as activated carbon for treating various gases and water, particularly as activated carbon suitable for adsorption and removal of dioxins. It is also suitably used as a soil modifier.
[0030]
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0031]
In addition, the typical physical properties of the granular carbide described in the specification of the present application including the following examples were measured by the following methods.
[0032]
(1) For the average grain (direct) diameter powdery granular carbide, a mass-based particle size accumulation diagram is created according to JIS K1474. The average particle diameter is obtained by calculating a sieve opening (mm) by drawing a horizontal line on the horizontal axis from an intersection of a vertical line at a point of 50% on the horizontal axis and the particle size cumulative line in the cumulative particle size diagram, The average particle diameter is used.
[0033]
(2) After the powdery and granular carbide as the bulk density sample is dried in a dryer controlled at 115 ° C. for 3 hours, it is allowed to cool in a desiccator. The dried powdery carbide sample is put into a filling density measuring container (a container shown in FIG. 8 of JIS K 1474-5.7) to a volume of 1 / of the volume of the container. Gently tap on the rubber plate until the upper surface of the powdery and granular carbide sample reaches a certain height, and further add the same amount of the powdery and particulate carbide sample and gently tap. Repeat the tapping and filling operation, filling the granular carbide sample to the upper end of the container, withdrawing the cylinder at the top of the container, shaving off the raised portion using a stainless steel straight ruler, and leveling the upper surface of the granular carbide sample horizontally. I do. The mass of the granular carbide sample in the container is measured to the order of 0.1 g. Subsequently, the bulk density (L) is calculated by the following equation.
[0034]
(Equation 1)
L = S / M
Here, S is the mass (g) of the powdery carbide sample, and M is the volume (ml) of the packed density measurement container.
[0035]
(3) Specific surface area Using a specific surface area measuring device (for example, “Flow Sorb II 2300” manufactured by MICROMERITICS) by a continuous flow gas adsorption method, the gas adsorption amount of the powdery carbide sample was measured, and the BET equation was used. The specific surface area can be calculated. Specifically, the powdered granular carbide as a sample is filled in a sample tube, and the following operation is performed while flowing a helium gas containing 30% by volume of nitrogen into the sample tube to determine the amount of nitrogen adsorbed on the powdered granular carbide sample. Ask. That is, the sample tube is cooled to -196 ° C, and nitrogen is adsorbed on the powdery carbide sample. Next, the sample tube is returned to room temperature. At this time, the amount of nitrogen desorbed from the powdery and granular carbide sample is measured by a heat conduction type detector, and is set as the amount of adsorbed gas (v).
[0036]
Approximation derived from the equation BET equation: in v m = 1 / (v · (1-x)) liquid nitrogen temperature using a single point method with nitrogen adsorption of v m by (relative pressure x = 0.3) calculated by the following formula: the specific surface area = 4.35 × v m (m 2 / g) calculating the specific surface of the sample. In each formula of the, v m is an adsorption amount necessary for forming a single molecular weight to the sample surface (cm 3 / g), v is an adsorption amount which is actually measured (cm 3 / g), x Is the relative pressure.
[0037]
(4) Caramel decolorization performance In order to evaluate the adsorptive capacity of the powdered carbonaceous material as activated carbon, a caramel test solution (20% of a caramel stock solution obtained by carbonization with a specified concentration of sulfuric acid of saccharose) was added to a 150 mg sample according to JIS K 1474. A 50-fold water-diluted solution was added, and the mixture was shaken with a shaker, followed by filtration. From the absorbance E ′ of the filtrate and the absorbance E of the caramel test solution (both at a wavelength of 430 nm), the caramel decolorizing power (= (1-E / E ′) × 100 (%)).
[0038]
(Example 1)
Pulverization of a pitch-like substance having a softening point of 180 ° C and an H / C atomic ratio of 0.7 obtained by dechlorinating a vinyl chloride resin by raising the temperature to 450 ° C in a nitrogen stream over 5 hours. A product (average particle size: 0.1 mm) was used as a pitch powder.
[0039]
100 g of this pitch powder and 400 g of a dried coffee extraction residue (average particle diameter: 0.4 mm) are horizontally held in a rotating inner cylinder having an inner diameter of 270 mm and a length of 420 mm. And a fixed outer cylinder, which is accommodated in the inner cylinder (air atmosphere) in a batch-type rotary furnace in a substantially hermetically sealed state, and the inner cylinder is rotated at a rate of 3 revolutions / minute. While rotating, the combustion gas was introduced into the space between the outer cylinder and the outer cylinder to heat the inner cylinder.
[0040]
The temperature was raised from room temperature to 300 ° C. for about 10 minutes, and then further to 820 ° C. for 30 minutes, and the temperature was maintained for 30 minutes to carbonize the contents.
[0041]
Subsequently, while maintaining the temperature in the inner cylinder at 820 ° C., steam was introduced at a rate of 5 g / min and an activation treatment was performed for 20 minutes.
[0042]
Thereafter, the heating was stopped, forced cooling was performed, the introduction of steam was stopped at 300 ° C., and after cooling to almost room temperature, the contents were collected to obtain a powdery and granular carbide of the present invention. The appearance of the charcoal was a uniform black charcoal consisting essentially of mononuclear coated charcoal particles, leaving almost the shape of the coffee extraction residue as the raw material.
[0043]
The recovery amount of the powdery and granular carbides was 70 g, and the yield based on the total amount of the pitch and the ground coffee extraction residue was 14% by mass.
[0044]
The measurement results of the physical properties of the obtained powdered carbides are summarized in Table 1 below together with the results of the following Examples and Comparative Examples.
[0045]
(Example 2)
Except for using 162 g of pitch powder and 325 g of coffee extraction residue as raw materials, the same treatment as in Example 1 was performed to obtain 87 g of powdery and granular carbide.
[0046]
Table 1 shows the measurement results of the physical properties. With the increase in the pitch compounding amount, the carbonization yield was improved to 18% by mass, but the coarse particles and fine powder slightly increased.
[0047]
(Comparative Example 1)
Except for using only 500 g of the coffee extraction residue as a raw material, a powdery and granular carbide was obtained in the same manner as in Example 1, but the increase in fine powder was conspicuous. Further, the carbonization yield was 8% by mass, which was a low level as compared with Examples 1 and 2.
[0048]
The results of the above Examples and Comparative Examples are summarized in Table 1 below.
[Table 1]
Figure 2004277453
【The invention's effect】
As described above, according to the present invention, compared to a single carbide of a brittle and easily pulverizable wood-based powder, since it is a pitch impregnated and coated carbide, the mechanical strength is high, and the granular and spherical properties are high. Good powdery and granular carbides can be obtained in a much higher yield than single carbonization of wood-based powders and granules, and can be efficiently produced without the need for intermediate pelletization or carbide pulverization. By activating the obtained powdered and granular carbide, activated carbon having a performance almost equal to that of the carbonization activating substance of the wood base powder alone can be obtained in a high yield.

Claims (6)

木質基材粉粒体および被覆ピッチとが一体的に炭化されてなる粉粒状炭化物。A granular carbide obtained by integrally carbonizing a wood base material and a coating pitch. 平均粒径が0.05〜5mmである請求項1の粉粒状炭化物。The powdery and granular carbide according to claim 1, having an average particle size of 0.05 to 5 mm. 木質基材粉粒体と、ピッチ粉粒体とを、回転炉中に導入し、回転下に該ピッチ粉粒体を溶融させて木質基材粉粒体を含浸・被覆し、得られたピッチ被覆木質基材粉粒体を一体的に炭化することを特徴とする粉粒状炭化物の製造方法。The wood base powder and the pitch powder are introduced into a rotary furnace, and the pitch powder is melted under rotation to impregnate and coat the wood base powder. A method for producing a particulate carbide, comprising integrally carbonizing a coated wood base powder. 炭化物を更に賦活することにより、活性炭として機能する粉粒状炭化物を製造する請求項3の製造方法。The method according to claim 3, further comprising activating the carbide to produce a powdery and granular carbide functioning as activated carbon. ピッチ粉粒体が、石油系もしくは石炭系ピッチまたは廃プラスチック加熱残渣からなる請求項3または4の製造方法。The method according to claim 3 or 4, wherein the pitch granules comprise petroleum-based or coal-based pitch or a residue obtained by heating a waste plastic. ピッチ粉粒体が廃塩化ビニル樹脂の加熱脱塩化水素残渣からなる請求項5の製造方法。6. The production method according to claim 5, wherein the pitch granules comprise a residue of thermally dehydrogenated waste vinyl chloride resin.
JP2003066819A 2003-03-12 2003-03-12 Method for producing powdered carbide Expired - Fee Related JP4199028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066819A JP4199028B2 (en) 2003-03-12 2003-03-12 Method for producing powdered carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066819A JP4199028B2 (en) 2003-03-12 2003-03-12 Method for producing powdered carbide

Publications (2)

Publication Number Publication Date
JP2004277453A true JP2004277453A (en) 2004-10-07
JP4199028B2 JP4199028B2 (en) 2008-12-17

Family

ID=33284607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066819A Expired - Fee Related JP4199028B2 (en) 2003-03-12 2003-03-12 Method for producing powdered carbide

Country Status (1)

Country Link
JP (1) JP4199028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510947A (en) * 2006-10-09 2010-04-08 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Method for producing discrete solid particles made of a polymer material
CN113200543A (en) * 2021-06-18 2021-08-03 南京林业大学 Method for preparing activated carbon precursor by intervention of biomass oil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108726517B (en) * 2018-07-21 2022-03-18 吉林大学 Method for improving volume specific capacitance of rice hull-based capacitance carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510947A (en) * 2006-10-09 2010-04-08 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Method for producing discrete solid particles made of a polymer material
CN113200543A (en) * 2021-06-18 2021-08-03 南京林业大学 Method for preparing activated carbon precursor by intervention of biomass oil

Also Published As

Publication number Publication date
JP4199028B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4855251B2 (en) Spherical activated carbon and method for producing the same
JP3746509B1 (en) Spherical activated carbon and its manufacturing method
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
JP3071429B2 (en) Agglomerates based on activated carbon, methods for their preparation and their use as adsorbents
JPH0516371B2 (en)
JPH0566886B2 (en)
JP2001240407A (en) Activated carbon and its manufacturing method
CN111699036B (en) Excellent carbon adsorbents
CA1116156A (en) Granular activated carbon manufacture from brown coal treated with concentrated inorganic acid without pitch
CA1075219A (en) Granular activated carbon manufacture from sub-bituminous coal mixed with concentrated inorganic acid without pitch
TWI651266B (en) Spherical activated carbon and method of producing the same
JP2000313611A (en) Active carbon and its production
KR100797141B1 (en) Process for preparing spherical activated carbon granule
CA1074768A (en) Granular activated carbon manufacture from low tank bituminous coal leached with dilute inorganic acid
JP4199028B2 (en) Method for producing powdered carbide
JP4046914B2 (en) Method for producing spherical activated carbon
JP2009057239A (en) Activated carbon preparation method
JP2002348111A (en) Method for producing activated carbon
JP2000143224A (en) Production of porous carbon material, and porous carbon material obtained thereby
JP7453462B1 (en) Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment
JP7459365B1 (en) Carbonaceous material and its manufacturing method, and palladium complex adsorption method
JP2515919B2 (en) Method for producing spherical fiber lump activated carbon
JPH08217435A (en) Non-fusion treatment of thermoplastic fine powder, and production of activated carbon with the same
RU2331580C1 (en) Method of obtaining granulated active carbon
Monika et al. Porous structure improvement of coal activated carbon using steam activation in pilot scale

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees