JP2004277207A - Organic-inorganic hybrid glassy material and its production method - Google Patents
Organic-inorganic hybrid glassy material and its production method Download PDFInfo
- Publication number
- JP2004277207A JP2004277207A JP2003069344A JP2003069344A JP2004277207A JP 2004277207 A JP2004277207 A JP 2004277207A JP 2003069344 A JP2003069344 A JP 2003069344A JP 2003069344 A JP2003069344 A JP 2003069344A JP 2004277207 A JP2004277207 A JP 2004277207A
- Authority
- JP
- Japan
- Prior art keywords
- organic
- inorganic hybrid
- melting
- gel
- hybrid glassy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
- Silicon Polymers (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、ゾルゲル法により作製されたゲルと無水酸塩基反応法により作製された物質を出発材料とする新しいガラス状物質とその製造方法に関する。
【0002】
【従来の技術】
600℃以下で軟化する材料としては、高分子材料や低融点ガラスなどが有名であり、古くから封着・封止材料、パッシベーションガラス、釉薬など、多くのところで用いられてきた。高分子材料と低融点ガラスでは、その諸物性が異なるので、その使用できる環境に応じて使い分けられてきた。一般的には、耐熱性や気密性能が優先される場合にはガラスが、耐熱性や気密性能以外の特性が優先される分野では高分子材料に代表される有機材料が使われてきた。しかし、昨今の技術進歩に伴い、これまで要求されなかった特性も着目され、その特性をもった材料の開発が期待されている。
【0003】
このため、耐熱性や気密性能を増能させた高分子材料や、軟化領域を低温化させたガラスいわゆる低融点ガラスの開発が積極的になされている。特に、耐熱性や気密性能が要求される電子材料市場において、PbO−SiO2−B2O3系あるいはPbO−P2O5−SnF2系ガラスなどに代表される低融点ガラスは、電子部品の封着、被覆などの分野で不可欠の材料となっている。また、低融点ガラスは高温溶融ガラスに比べ、その成形加工に要するエネルギーひいてはコストを抑えられるため、省エネルギーに対する昨今の社会的要請とも合致している。さらに、光機能性能の有機物を破壊しない温度で溶融することが可能ならば、光機能性有機物含有(非線形)光学材料のホストとして光スイッチなどの光情報通信デバイスなどへの応用が期待される。このように、一般的な溶融ガラスの特徴である耐熱性や気密性能を有し、かつ高分子材料のように種々の特性を得やすい材料は多くの分野で要望され、特に低融点ガラスにその期待が集まっている。さらに、有機無機ハイブリッドガラスも低融点ガラスの一つとして着目されている。
【0004】
低融点ガラスでは、例えば、Sn−Pb−P−F−O系ガラス(例えば、非特許文献1参照)に代表されるTickガラスが有名であり、100℃前後にガラス転移点を持ち、しかも優れた耐水性を示すので、一部の市場では使われてきている。しかしながら、この低融点ガラスはその主要構成成分に鉛を含むので、昨今の環境保護の流れから代替材料に置き換える必要性がでてきている。さらには、Tickガラスに対する要求特性も大きく変化していると同時に、その要望も多様化している。
【0005】
一般的なガラスの製造方法としては、溶融法と低温合成法が知られている。溶融法はガラス原料を直接加熱することにより溶融してガラス化させる方法で、多くのガラスがこの方法で製造されており、低融点ガラスもこの方法で製造されている。しかし、低融点ガラスの場合、融点を下げるために、鉛やアルカリ、ビスマスなどの含有を必要とするなど、構成できるガラス組成には多くの制限がある。
【0006】
一方、非晶質バルクの低温合成法としては、ゾルゲル法、液相反応法及び無水酸塩基反応法が考えられている。ゾルゲル法は金属アルコキシドなどを加水分解−重縮合し、500℃を超える温度(例えば、非特許文献2参照)、通常は700〜1600℃で熱処理することにより、バルク体を得ることができる。しかし、ゾルゲル法で作製したバルク体を実用材料としてみた場合、原料溶液の調製時に導入するアルコールなど有機物の分解・燃焼、又は有機物の分解ガス若しくは水の加熱過程における蒸発放出などのために多孔質となることが多く、耐熱性や気密性能には問題があった。このように、ゾルゲル法によるバルク製造ではまだ多くの問題が残っており、特に低融点ガラスをゾルゲル法で生産することはなされていない。
【0007】
さらに、液相反応法は収率が低いために生産性が低いという問題の他、反応系にフッ酸などを用いることや薄膜合成が限度とされていることなどから、現実的にバルク体を合成する手法としては不可能に近い状態にある。
【0008】
無水酸塩基反応法は、近年開発された手法であり、低融点ガラスの一つである有機無機ハイブリッドガラスの製作も可能(例えば、非特許文献3参照)であるが、まだ開発途上であり、すべての低融点ガラスが製作できているわけではない。
【0009】
したがって、多くの低融点ガラスの製造は、低温合成法ではなく、溶融法により行われてきた。このため、ガラス原料を溶融する都合上からそのガラス組成は制限され、生産できる低融点ガラスとなると、その種類は極めて限定されていた。
【0010】
なお、現時点では耐熱性や気密性能から、低融点ガラスが材料として有力であり、低融点ガラスに代表される形で要求物性が出されることが多い。しかし、その材料は低融点ガラスにこだわるものではなく、要求物性が合致すれば、ガラス以外の低融点あるいは低軟化点物質で大きな問題はない。
【0011】
公知技術をみれば、ゾルゲル法による石英ガラス繊維の製造方法(例えば、特許文献1参照)が、ゾルゲル法による酸化チタン繊維の製造方法(例えば、特許文献2参照)が、さらにはゾルゲル法による半導体ドープマトリックスの製造方法(例えば、特許文献3参照)が開示されている。また、溶融法によるP2O5−TeO2−ZnF2系低融点ガラスが開示されている(例えば、特許文献4参照)。
【0012】
【特許文献1】
特開昭62−297236号公報
【特許文献2】
特開昭62−223323号公報
【特許文献3】
特開平1−183438号公報
【特許文献4】
特開平7−126035号公報
【非特許文献1】
P.A.Tick, Physics and Chemistry of Glasses, 14, 1140(1989).
【非特許文献2】
神谷寛一、作花済夫、田代憲子,窯業協会誌,618−618,84(1976).
【非特許文献3】
高橋雅英、新居田治樹、横尾俊信,New Glass, 8−14,17(2002).
【0013】
【発明が解決しようとする課題】
多くの低軟化点材料、特に低融点ガラスの製造は、溶融法により行われてきた。このため、そのガラス組成には多くの制限があり、ガラス原料を溶融する都合上、生産できる低融点ガラスは極めて限られていた。
【0014】
一方、低温合成法のゾルゲル法で製造した場合、緻密化のために500℃以上の処理温度が必要となるが、その温度で処理すると低融点ガラスとはならないので、結果として耐熱性や気密性能の良好な低融点ガラスを得ることはできなかった。特に、電子材料分野では、厳しい耐熱性や気密性能と低融点化に対応する低融点ガラスはなかった。さらに、耐熱性や気密性能を満足するガラス以外の低融点材料もこれまで見出されていない。
【0015】
特開昭62−297236号公報、特開昭62−223323号公報及び特開平1−183438号公報で開示された方法は、高温溶融でのみ対応可能であった材料生産を低温でも可能としたという功績はあるが、低融点ガラスを製造することはできない。また、ゾルゲル処理後には、500℃以上での処理も必要である。一方、特開平7−126035号公報の方法では、転移点が3百数十℃のガラスを作製できることが開示されている。しかし、それ以下の転移点をもつガラスを鉛やビスマスなどを始めとする低融点化材料なしで製作した例はこれまでなかった。
【0016】
すなわち、これまでの低融点ガラスの製造方法では、厳しい耐熱性や気密性能と低融点特性を同時に満たすガラスを作ることはできなかった。また、ガラス以外の材料でもこのような特性を満たすものはなかった。また、その製造方法も確立されていない。
【0017】
【課題を解決するための手段】
本発明は、有機無機ハイブリッドガラス状物質を製造する場合において、ゾルゲル法で作製されたゲル体と無水酸塩基反応法により得られた物質とを、混合し、加熱して溶融し、さらに熟成された有機無機ハイブリッドガラス状物質の製造方法である。
【0018】
また、本発明は、ゾルゲル法で作製されたゲル体がRSiO3/2若しくはR2SiO(R:有機官能基)を含む上記の有機無機ハイブリッドガラス状物質の製造方法である。
【0019】
また、本発明は、無水酸塩基反応法により得られたガラス状質がR2SiO、P2O5及びSnOを含む上記の有機無機ハイブリッドガラス状物質の製造方法である。
【0020】
また、本発明は、加熱による溶融工程が30℃以上400℃以下の温度で処理される上記の有機無機ハイブリッドガラス状物質の製造方法である。
【0021】
また、本発明は、熟成工程が30℃以上400℃以下の温度でかつ5分以上の時間で処理される上記の有機無機ハイブリッドガラス状物質の製造方法である。
【0022】
また、本発明は、上記の方法で製造された有機無機ハイブリッドガラス状物質である。
【0023】
また、本発明は、有機無機ハイブリッドガラス状物質の一部又はすべてに不規則網目構造を有する有機無機ハイブリッドガラス状物質である。
【0024】
この有機無機ハイブリッドガラス状物質は、低融点ガラス材料、光導波路、蛍光体や光触媒などの光機能性材料、湿式太陽電池や電子材料基板などの封止材等に使うことができる。また、光ファイバーなどの機能性繊維や機能性薄膜にも使うことができる。さらに、他の材料と組み合わせることにより、又は単独でも、建築材料、車両材料など、多くの応用が可能である。
【0025】
【発明の実施形態】
本発明は、有機無機ハイブリッドガラス状物質を製造する場合において、ゾルゲル法で作製されたゲル体と無水酸塩基反応法により得られた物質とを、混合し、加熱して溶融し、さらに熟成された有機無機ハイブリッドガラス状物質の製造方法である。上記の異なる2つの方法で作製されたゲル体と得られた物質を混合する工程が先ず必要である。この混合工程がなければ、両者の長所を生かした有機無機ハイブリッドガラス状物質を作製することはできない。
【0026】
ゾルゲル法で作製されたゲル体がRSiO3/2若しくはR2SiO(R:有機官能基)を含む上記の有機無機ハイブリッドガラス状物質の製造方法である。このように、ゾルゲル法により作製されたゲル体構造中に有機官能基を持つ金属ユニットを有することが極めて重要な意味をもつ。作製されたゲル体構造中に有機官能基を持つ金属ユニットを有しない場合、焼結はするが、溶融はしない。
【0027】
なお、この有機官能基Rは、アルキル基やアリール基が代表的である。アルキル基としては、直鎖型でも分岐型でもさらには環状型でも良い。アルキル基としては、メチル基、エチル基、プロピル基(n−、i−)、ブチル基(n−、i−、t−)、ペンチル基、ヘキシル基(炭素数:1〜20)などが挙げられ、特に好ましいのはメチル基とエチル基である。さらに、アリール基としては、フェニル基、ピリジル基、トリル基、キシリル基などがあり、特に好ましいのはフェニル基である。当然ながら、有機官能基は上述のアルキル基やアリール基に限定されるものではない。
【0028】
無水酸塩基反応法により得られた物質がR2SiO、P2O5及びSnOを含むことは、有機無機ハイブリッドガラス状物質を作製する上で極めて重要である。R2SiO、P2O5及びSnOを含まずに耐熱性及び気密性能、さらに低溶融性をもつ有機無機ハイブリッドガラス状物質を作製することは極めて難しい。
【0029】
そのゲル体と物質の混合物を加熱し、溶融状態とすることが次の重要な工程である。例えば、これまでのゾルゲル法では、ゲル体を溶融するという概念はほとんどなく、そのまま焼結工程に入っていた。このような場合、ゲル体をそのまま焼結しても、例えば高融点の透明状材料を得ることはできるが、低融点材料を得ることはできない。
【0030】
加熱による溶融工程が30℃以上400℃以下の温度で処理される有機無機ハイブリッドガラス状物質の製造方法である。30℃よりも低い温度では、実質上溶融できない。また、400℃を超えると、網目を形成する金属元素と結合する有機基が燃焼するために所望のガラス状物質を得られないばかりか、破砕したり、気泡を生じて不透明になったりする。望ましくは、100℃以上300℃以下である。
【0031】
前記の溶融工程の後に、熟成工程に入ることが本製造法の特徴である。この熟成工程も極めて重要である。例えば、従来のゾルゲル法では、前記の溶融工程がないため、当然ながらその後の熟成工程もなかった。しかし、溶融工程をもったとしても、その後の熟成工程を経なければ、所望の有機無機ハイブリッドガラス状物質を得ることはできない。
【0032】
熟成工程が30℃以上400℃以下の温度で処理する有機無機ハイブリッドガラス状物質の製造方法である。30℃よりも低い温度では、実質上熟成できない。400℃を超えると、熱分解することがあり、安定した有機無機ハイブリッドガラス状物質を得ることは難しくなる。望ましくは、100℃以上300℃以下である。さらに、この熟成温度は、溶融下限温度よりも低い温度では効果がない。一般的には、溶融下限温度〜(溶融下限温度+150℃)程度が望ましい。さらに、熟成に要する時間は5分以上必要である。熟成時間は、その処理量、処理温度及び反応活性な水酸基(−OH)の許容残留量により異なるが、一般的には5分未満では満足できるレベルに到達することは極めて難しい。また、長時間では生産性が下がってくるので、望ましくは10分以上1週間以内である。
【0033】
ゾルゲル法での出発原料は金属アルコキシド、金属アセチルアセトナート、金属カルボキシレート、硝酸塩、金属水酸化物、又は金属ハロゲン化物であり、先ずゾルゲル法によりゲル体を製作する。この出発原料は、上記以外でも、ゾルゲル法で使われているものであれば問題はなく、上記の出発原料に限定されない
無水酸塩基反応法での出発原料としては、例えばトリアルキルクロロシラン(R3SiCl)、ジメチルジクロロシラン(Me2SiCl2)およびリン酸(例えば、H3PO4、H3PO3)を用いることが多いが、当然ながら上述の原料に限定はされない。
【0034】
上述した2つの方法を組み合わせることにより、これまでできなかった厳しい耐熱性や気密性能と低融点特性を同時に満たす低融点ガラスの要求特性に対応することができる。また、その要求物性に容易に対応も可能となる。
【0035】
なお、加熱による溶融工程若しくは熟成工程において、不活性雰囲気下で行ったり、減圧下で行なったりすることで、時間が短縮できる傾向にある。また、マイクロ波加熱も有効である。
【0036】
また、上記の方法で製造された有機無機ハイブリッドガラス状物質は当然ながら全て対象となるが、その一部又はすべてに不規則網目構造をもつ有機無機ハイブリッドガラス状物質である。
【0037】
【実施例】
以下、実施例に基づき、述べる。
(実施例1)
ゾルゲル法での出発原料には金属アルコキシドのフェニルトリエトキシシラン(PhSi(OEt)3)とエタノールを用いた。容器中でフェニルトリエトキシシランに水、エタノール、触媒である塩酸を加え、室温で2時間撹拌し、ゲル化させた。その後、約100℃で乾燥した。
【0038】
無水塩基反応法での出発原料にはオルトリン酸(H3PO4)、ジメチルジクロロシラン(Me2SiCl2)、ジエチルジクロロシラン(Et2SiCl2)塩化スズ(SnCl2)を用いた。窒素雰囲気の反応装置中でオルトリン酸を40℃に加熱して液体にした後にジアルキルジクロロシランを加え、3時間加熱・撹拌した。この過程で徐々に昇温し、100℃まで加熱した。この段階で塩化スズを添加した。これを同じく窒素雰囲気下250℃でさらに1時間加熱し、透明状物質を得た。
【0039】
そのゲル体と透明状物質を混合し、150℃で1時間溶融し、それに引き続いて200℃で5時間熟成することにより新たな透明状物質を得た。
【0040】
10℃/minで昇温したTMA測定での収縮量変化から軟化挙動開始点を求め、その開始温度を軟化温度としたところ、この物質の軟化温度は60℃であった。また、Nicolet社の赤外吸収スペクトロメーターAVATOR360型及びJEOL社の磁気共鳴測定装置CMX−400型でケイ素ユニットが存在していることを確認した。不規則網目構造を有していたことも考慮すると、今回得た透明状物質は有機無機ハイブリッドガラス構造をとる物質、すなわち有機無機ハイブリッドガラス状物質である。
【0041】
この有機無機ハイブリッドガラス状物質の気密性能をみるため、得られた有機無機ハイブリッドガラス状物質の中に有機色素メチレンブルーを入れ、1ヶ月後の染み出し状態を観察した。この結果、染み出しは全く認められず、気密性能を満足していることが分かった。また、100℃の雰囲気下に300時間置いたこの有機無機ハイブリッドガラス状物質の転移点を測定したが、その変化は認められず、耐熱性にも問題がないことが確認された。さらに、得られた有機無機ハイブリッドガラス状物質を1ヶ月間、大気中に放置したが、特に変化は認められず、化学的耐久性に優れていることも確認できた。
【0042】
(実施例2)
ゾルゲル法での出発原料には金属アルコキシドのエチルトリエトキシシラン(EtSi(OEt)3)とエタノールを用いた。容器中でエチルトリエトキシシランに水、エタノール、触媒である塩酸を加え、室温で2時間撹拌し、ゲル化させた。 無水塩基反応法での出発原料には亜リン酸(H3PO3)、ジメチルジクロロシラン(Me2SiCl2)、ジエチルジクロロシラン(Et2SiCl2)塩化スズ(SnCl2)を用いた。窒素雰囲気の反応装置中で亜リン酸を40℃に加熱して液体にした後にジアルキルジクロロシランを加え、3時間加熱・撹拌した。この過程で徐々に昇温し、100℃まで加熱した。この段階で塩化スズを添加した。これを同じく窒素雰囲気下250℃でさらに1時間加熱し、透明状物質を得た。
【0043】
そのゲル体と透明状物質を混合し、150℃で1時間溶融し、それに引き続いて200℃で5時間熟成することにより新たな透明状物質を得た。
【0044】
10℃/minで昇温したTMA測定での収縮量変化から軟化挙動開始点を求め、その開始温度を軟化温度としたところ、この物質の軟化温度は120℃であった。また、Nicolet社の赤外吸収スペクトロメーターAVATOR360型及びJEOL社の磁気共鳴測定装置CMX−400型でケイ素ユニットが存在していることを確認した。不規則網目構造を有していたことも考慮すると、今回得た透明状物質は有機無機ハイブリッドガラス構造をとる物質、すなわち有機無機ハイブリッドガラス状物質である。
【0045】
この有機無機ハイブリッドガラス状物質の気密性能をみるため、得られた有機無機ハイブリッドガラス状物質の中に有機色素を入れ、1ヶ月後の染み出し状態を観察した。この結果、染み出しは全く認められず、気密性能を満足していることが分かった。また、100℃の雰囲気下に300時間置いたこの有機無機ハイブリッドガラス状物質の転移点を測定したが、その変化は認められず、耐熱性にも問題がないことが確認された。さらに、得られた有機無機ハイブリッドガラス状物質を1ヶ月間、大気中に放置したが、特に変化は認められず、化学的耐久性に優れていることも確認できた。
【0046】
(比較例1)
実施例1とほぼ同様の原料を用い、それぞれの方法で得られたゲル体とガラス状物質を混合後、600℃で焼成した。
【0047】
この結果、得られた物質は800℃でも軟化せず、低融点物質とは言えなかった。
【0048】
(比較例2)
実施例2とほぼ同様の原料を用い、それぞれの方法で得られたゲル体とガラス状物質を混合後、700℃で焼成した。
【0049】
この結果、得られた物質は800℃でも軟化せず、低融点物質とは言えなかった。
【0050】
【発明の効果】
本発明によれば、これまで作製が極めて難しいとされてきた厳しい耐熱性や気密性能と低融点特性を同時に満たす、更には種々の要求物性に容易に対応できる有機無機ハイブリッドガラス状物質とその製造方法を得ることができた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel glassy substance starting from a gel produced by a sol-gel method and a substance produced by an acid-base reaction method, and a method for producing the same.
[0002]
[Prior art]
As materials softening at 600 ° C. or lower, polymer materials and low-melting glass are well known, and have been used in many places such as sealing / sealing materials, passivation glass, and glaze since ancient times. Since various properties are different between the polymer material and the low melting point glass, they have been used properly according to the environment in which they can be used. Generally, glass is used when heat resistance and airtight performance are prioritized, and organic materials represented by polymer materials are used in fields where properties other than heat resistance and airtight performance are prioritized. However, with the recent technological progress, attention has been paid to characteristics that have not been required so far, and development of materials having such characteristics is expected.
[0003]
For this reason, the development of a polymer material having enhanced heat resistance and airtightness, and a glass having a softened region at a low temperature, a so-called low-melting glass, have been actively developed. In particular, in the electronic materials market heat resistance and airtight property is required, a low-melting glass represented by a PbO-SiO 2 -B 2 O 3 system or PbO-P 2 O 5 -SnF 2 based glass, electronic components It has become an indispensable material in fields such as sealing and coating. In addition, low-melting glass can reduce the energy required for its forming process and the cost as compared with the high-melting glass, and is therefore in line with recent social demands for energy saving. Furthermore, if it is possible to melt the organic material having optical functional performance at a temperature that does not destroy it, it is expected to be applied to optical information communication devices such as optical switches as hosts for optical functional organic material-containing (non-linear) optical materials. As described above, materials having heat resistance and airtightness, which are characteristics of general molten glass, and easily obtaining various characteristics such as a polymer material are demanded in many fields. Expectations are gathering. Further, an organic-inorganic hybrid glass is also attracting attention as one of the low-melting glass.
[0004]
Among low-melting glasses, for example, Tick glass represented by Sn-Pb-PFO-based glass (for example, see Non-Patent Document 1) is famous, has a glass transition point around 100 ° C., and is excellent. It has been used in some markets because of its excellent water resistance. However, since the low-melting glass contains lead as a main component, it has become necessary to replace the low-melting glass with an alternative material from the recent trend of environmental protection. Furthermore, the required characteristics for the Tick glass have changed significantly, and the demands have been diversified.
[0005]
As a general method for producing glass, a melting method and a low-temperature synthesis method are known. The melting method is a method in which a glass raw material is directly heated to be melted and vitrified. Many glasses are manufactured by this method, and low-melting glass is also manufactured by this method. However, in the case of low-melting glass, there are many restrictions on the glass composition that can be configured, such as the need to contain lead, alkali, bismuth, etc. in order to lower the melting point.
[0006]
On the other hand, as a low-temperature synthesis method of an amorphous bulk, a sol-gel method, a liquid phase reaction method, and an acid-base reaction method are considered. In the sol-gel method, a bulk body can be obtained by subjecting a metal alkoxide or the like to hydrolysis-polycondensation and heat treatment at a temperature exceeding 500 ° C. (for example, see Non-Patent Document 2), usually 700 to 1600 ° C. However, when a bulk material produced by the sol-gel method is considered as a practical material, it is porous due to the decomposition and combustion of organic substances such as alcohol introduced during the preparation of the raw material solution, or the evaporation and release of organic substance decomposition gas or water during the heating process. In many cases, there was a problem in heat resistance and airtightness. As described above, many problems still remain in the bulk production by the sol-gel method, and particularly, low-melting glass has not been produced by the sol-gel method.
[0007]
In addition, the liquid phase reaction method has a problem of low productivity due to low yield, and in addition, the use of hydrofluoric acid or the like in the reaction system and the limitation of thin film synthesis limit the realization of bulk materials. It is almost impossible to combine them.
[0008]
The anhydride-base reaction method is a technique developed in recent years, and it is possible to produce an organic-inorganic hybrid glass which is one of low-melting glasses (for example, see Non-Patent Document 3), but it is still under development, Not all low melting glasses can be made.
[0009]
Therefore, the production of many low-melting glasses has been performed by a melting method, not by a low-temperature synthesis method. For this reason, the composition of the glass is limited due to the melting of the glass raw material, and the type of low-melting glass that can be produced is extremely limited.
[0010]
At present, low-melting glass is a promising material because of heat resistance and airtightness, and required physical properties are often obtained in a form typified by low-melting glass. However, the material is not limited to low melting point glass, and if the required physical properties are met, there is no major problem with low melting point or low softening point substances other than glass.
[0011]
In view of the known art, a method for producing quartz glass fibers by a sol-gel method (for example, see Patent Document 1), a method for producing titanium oxide fibers by a sol-gel method (for example, see Patent Document 2), and a semiconductor by a sol-gel method A method for producing a dope matrix (for example, see Patent Document 3) is disclosed. Further, a P 2 O 5 —TeO 2 —ZnF 2 -based low-melting glass based on a melting method is disclosed (for example, see Patent Document 4).
[0012]
[Patent Document 1]
JP 62-297236 A [Patent Document 2]
JP 62-223323 A [Patent Document 3]
JP-A-1-183438 [Patent Document 4]
Japanese Patent Application Laid-Open No. 7-126035 [Non-Patent Document 1]
P. A. Tick, Physics and Chemistry of Glasses, 14, 1140 (1989).
[Non-patent document 2]
Kanichi Kamiya, Saio Sakuhana, Noriko Tashiro, Journal of the Ceramic Industry Association, 618-618, 84 (1976).
[Non-Patent Document 3]
Masahide Takahashi, Haruki Niida, Toshinobu Yokoo, New Glass, 8-14, 17 (2002).
[0013]
[Problems to be solved by the invention]
The production of many low softening point materials, especially low melting glass, has been performed by the melting method. For this reason, there are many restrictions on the glass composition, and the low melting point glass that can be produced has been extremely limited due to the melting of the glass raw material.
[0014]
On the other hand, when manufactured by the sol-gel method of a low-temperature synthesis method, a processing temperature of 500 ° C. or more is required for densification. However, processing at that temperature does not result in a low-melting glass, and as a result, heat resistance and airtight performance Could not be obtained. In particular, in the field of electronic materials, there has been no low-melting glass corresponding to severe heat resistance, airtight performance and low melting point. Further, a low-melting-point material other than glass satisfying heat resistance and airtightness has not been found yet.
[0015]
The methods disclosed in JP-A-62-297236, JP-A-62-223323 and JP-A-1-183438 allow material production that could only be performed by high-temperature melting to be performed at low temperatures. Despite his achievements, he cannot make low melting glass. After the sol-gel treatment, treatment at 500 ° C. or higher is also required. On the other hand, the method disclosed in Japanese Patent Application Laid-Open No. H7-126035 discloses that glass having a transition point of three hundred and several tens of degrees Celsius can be produced. However, there has been no example in which glass having a transition point lower than that is manufactured without a material having a low melting point such as lead or bismuth.
[0016]
That is, the conventional method for producing a low-melting glass has not been able to produce a glass that simultaneously satisfies severe heat resistance, hermetic performance, and low-melting characteristics. Also, no material other than glass satisfies such characteristics. In addition, its manufacturing method has not been established.
[0017]
[Means for Solving the Problems]
The present invention provides a method for producing an organic-inorganic hybrid glassy substance, in which a gel obtained by a sol-gel method and a substance obtained by an acid-base reaction method are mixed, heated, melted, and further aged. And a method for producing an organic-inorganic hybrid glassy material.
[0018]
Further, the present invention is the above-mentioned method for producing an organic-inorganic hybrid glassy substance, wherein the gel body produced by the sol-gel method contains RSiO 3/2 or R 2 SiO (R: organic functional group).
[0019]
Further, the present invention is the above-mentioned method for producing an organic-inorganic hybrid glassy substance, wherein the glassy substance obtained by the acid-base reaction method contains R 2 SiO, P 2 O 5 and SnO.
[0020]
Further, the present invention is the above-described method for producing an organic-inorganic hybrid glassy material, wherein the melting step by heating is performed at a temperature of 30 ° C to 400 ° C.
[0021]
Further, the present invention is the above-mentioned method for producing an organic-inorganic hybrid glassy material, wherein the aging step is performed at a temperature of 30 ° C. or more and 400 ° C. or less for 5 minutes or more.
[0022]
Further, the present invention is an organic-inorganic hybrid glassy material produced by the above method.
[0023]
Further, the present invention is an organic-inorganic hybrid glassy material having an irregular network structure in part or all of the organic-inorganic hybrid glassy material.
[0024]
This organic-inorganic hybrid glassy substance can be used as a low-melting glass material, an optical waveguide, an optical functional material such as a phosphor or a photocatalyst, or a sealing material for a wet solar cell or an electronic material substrate. It can also be used for functional fibers such as optical fibers and functional thin films. Furthermore, many applications are possible, such as building materials and vehicle materials, by combining with other materials or by itself.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a method for producing an organic-inorganic hybrid glassy substance, in which a gel obtained by a sol-gel method and a substance obtained by an acid-base reaction method are mixed, heated, melted, and further aged. And a method for producing an organic-inorganic hybrid glassy material. First, a step of mixing the gel substance produced by the above two different methods and the obtained substance is necessary. Without this mixing step, it is not possible to produce an organic-inorganic hybrid glassy material that takes advantage of both.
[0026]
This is a method for producing the above-mentioned organic-inorganic hybrid glassy material in which the gel body produced by the sol-gel method contains RSiO 3/2 or R 2 SiO (R: organic functional group). Thus, it is extremely important to have a metal unit having an organic functional group in the gel structure produced by the sol-gel method. When there is no metal unit having an organic functional group in the produced gel structure, sintering is performed but not melting.
[0027]
The organic functional group R is typically an alkyl group or an aryl group. The alkyl group may be linear, branched or cyclic. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group (n-, i-), a butyl group (n-, i-, t-), a pentyl group, and a hexyl group (carbon number: 1 to 20). Particularly preferred are a methyl group and an ethyl group. Further, examples of the aryl group include a phenyl group, a pyridyl group, a tolyl group, and a xylyl group, and a phenyl group is particularly preferable. Naturally, the organic functional group is not limited to the above-mentioned alkyl group and aryl group.
[0028]
It is extremely important that the substance obtained by the acid-anhydride reaction method contains R 2 SiO, P 2 O 5 and SnO in producing an organic-inorganic hybrid glassy substance. It is extremely difficult to produce an organic-inorganic hybrid glassy material having heat resistance, airtightness, and low melting properties without containing R 2 SiO, P 2 O 5 and SnO.
[0029]
The next important step is to heat the mixture of the gel body and the substance to a molten state. For example, in the conventional sol-gel method, there is almost no concept of melting a gel body, and the sintering process has been started as it is. In such a case, if the gel body is sintered as it is, for example, a transparent material having a high melting point can be obtained, but a material having a low melting point cannot be obtained.
[0030]
This is a method for producing an organic-inorganic hybrid glassy substance in which a melting step by heating is performed at a temperature of 30 ° C or more and 400 ° C or less. At a temperature lower than 30 ° C., substantially no melting is possible. On the other hand, when the temperature exceeds 400 ° C., not only a desired glassy substance cannot be obtained due to the burning of the organic group bonded to the metal element forming the network, but also the powder becomes opaque due to crushing or bubbles. Desirably, the temperature is 100 ° C. or more and 300 ° C. or less.
[0031]
It is a feature of the present production method to enter the aging step after the melting step. This aging step is also very important. For example, in the conventional sol-gel method, since there is no such a melting step, there is naturally no subsequent aging step. However, even if it has a melting step, a desired organic-inorganic hybrid glassy substance cannot be obtained without a subsequent aging step.
[0032]
An aging step is a method for producing an organic-inorganic hybrid glassy material in which the treatment is performed at a temperature of 30 ° C or more and 400 ° C or less. At a temperature lower than 30 ° C., ripening cannot be performed substantially. If it exceeds 400 ° C., it may be thermally decomposed, making it difficult to obtain a stable organic-inorganic hybrid glassy substance. Desirably, the temperature is 100 ° C. or more and 300 ° C. or less. Further, this aging temperature has no effect at a temperature lower than the lower limit of melting temperature. Generally, the lower limit of the melting point to about (the lower limit of the melting point + 150 ° C) is desirable. Further, the time required for ripening is 5 minutes or more. The aging time depends on the amount of treatment, the treatment temperature and the allowable residual amount of reactive hydroxyl groups (-OH), but it is generally very difficult to reach a satisfactory level in less than 5 minutes. In addition, the productivity is lowered in a long time, so that it is desirably 10 minutes or more and 1 week or less.
[0033]
Starting materials in the sol-gel method are metal alkoxide, metal acetylacetonate, metal carboxylate, nitrate, metal hydroxide, or metal halide. First, a gel body is produced by the sol-gel method. There are no problems with this starting material as long as it is used in the sol-gel method other than the above. As a starting material in the acid-base reaction method which is not limited to the above-mentioned starting materials, for example, trialkylchlorosilane (R 3 SiCl), dimethyldichlorosilane (Me 2 SiCl 2 ), and phosphoric acid (eg, H 3 PO 4 , H 3 PO 3 ) are often used, but are not limited to the above-described materials.
[0034]
By combining the above two methods, it is possible to meet the required characteristics of a low-melting glass that simultaneously satisfies severe heat resistance, airtightness, and low-melting characteristics that could not be achieved until now. Further, it is possible to easily cope with the required physical properties.
[0035]
In the melting step by heating or the aging step, the time tends to be shortened by performing it in an inert atmosphere or under reduced pressure. Microwave heating is also effective.
[0036]
In addition, the organic-inorganic hybrid glassy material produced by the above-described method is, of course, all objects, but is an organic-inorganic hybrid glassy material having an irregular network structure in part or all thereof.
[0037]
【Example】
Hereinafter, description will be given based on examples.
(Example 1)
Metal alkoxide phenyltriethoxysilane (PhSi (OEt) 3 ) and ethanol were used as starting materials in the sol-gel method. Water, ethanol and hydrochloric acid as a catalyst were added to phenyltriethoxysilane in a container, and the mixture was stirred at room temperature for 2 hours to gel. Then, it dried at about 100 degreeC.
[0038]
Orthophosphoric acid (H 3 PO 4 ), dimethyldichlorosilane (Me 2 SiCl 2 ), diethyldichlorosilane (Et 2 SiCl 2 ), and tin chloride (SnCl 2 ) were used as starting materials in the anhydrous base reaction method. Orthophosphoric acid was heated to 40 ° C. in a reactor in a nitrogen atmosphere to make a liquid, and then dialkyldichlorosilane was added, followed by heating and stirring for 3 hours. In this process, the temperature was gradually increased and heated to 100 ° C. At this stage, tin chloride was added. This was further heated at 250 ° C. for 1 hour in a nitrogen atmosphere to obtain a transparent substance.
[0039]
The gel and the transparent substance were mixed, melted at 150 ° C. for 1 hour, and subsequently aged at 200 ° C. for 5 hours to obtain a new transparent substance.
[0040]
The softening behavior starting point was determined from the change in shrinkage in TMA measurement at a temperature rise of 10 ° C./min, and the starting temperature was taken as the softening temperature. The softening temperature of this substance was 60 ° C. In addition, it was confirmed that a silicon unit was present in an infrared absorption spectrometer type AVATOR360 manufactured by Nicolet and a magnetic resonance measurement apparatus CMX-400 manufactured by JEOL. Taking into account that it has an irregular network structure, the transparent substance obtained this time is a substance having an organic-inorganic hybrid glass structure, that is, an organic-inorganic hybrid glassy substance.
[0041]
To check the airtightness of this organic-inorganic hybrid glassy substance, an organic dye methylene blue was put into the obtained organic-inorganic hybrid glassy substance, and the state of bleeding after one month was observed. As a result, no seepage was observed at all, and it was found that the airtightness was satisfied. Further, the transition point of the organic-inorganic hybrid glassy substance placed in an atmosphere at 100 ° C. for 300 hours was measured, but no change was observed, and it was confirmed that there was no problem in heat resistance. Furthermore, the obtained organic-inorganic hybrid glassy substance was left in the air for one month, but no particular change was observed, and it was confirmed that the organic-inorganic hybrid glassy substance was excellent in chemical durability.
[0042]
(Example 2)
As starting materials in the sol-gel method, metal alkoxide ethyltriethoxysilane (EtSi (OEt) 3 ) and ethanol were used. Water, ethanol and hydrochloric acid as a catalyst were added to ethyltriethoxysilane in a container, and the mixture was stirred at room temperature for 2 hours to gel. Phosphorous acid (H 3 PO 3 ), dimethyldichlorosilane (Me 2 SiCl 2 ), diethyldichlorosilane (Et 2 SiCl 2 ), and tin chloride (SnCl 2 ) were used as starting materials in the anhydrous base reaction method. After the phosphorous acid was heated to 40 ° C. in a reactor under a nitrogen atmosphere to make it a liquid, dialkyldichlorosilane was added, and the mixture was heated and stirred for 3 hours. In this process, the temperature was gradually increased and heated to 100 ° C. At this stage, tin chloride was added. This was further heated at 250 ° C. for 1 hour in a nitrogen atmosphere to obtain a transparent substance.
[0043]
The gel and the transparent substance were mixed, melted at 150 ° C. for 1 hour, and subsequently aged at 200 ° C. for 5 hours to obtain a new transparent substance.
[0044]
When the softening behavior starting point was determined from the change in shrinkage in TMA measurement at a temperature rise of 10 ° C./min, and the starting temperature was taken as the softening temperature, the softening temperature of this substance was 120 ° C. In addition, it was confirmed that a silicon unit was present in an infrared absorption spectrometer type AVATOR360 manufactured by Nicolet and a magnetic resonance measurement apparatus CMX-400 manufactured by JEOL. Taking into account that it has an irregular network structure, the transparent substance obtained this time is a substance having an organic-inorganic hybrid glass structure, that is, an organic-inorganic hybrid glassy substance.
[0045]
In order to check the airtightness of the organic-inorganic hybrid glassy substance, an organic dye was put into the obtained organic-inorganic hybrid glassy substance, and the state of bleeding after one month was observed. As a result, no seepage was observed at all, and it was found that the airtightness was satisfied. Further, the transition point of the organic-inorganic hybrid glassy substance placed in an atmosphere at 100 ° C. for 300 hours was measured, but no change was observed, and it was confirmed that there was no problem in heat resistance. Furthermore, the obtained organic-inorganic hybrid glassy substance was left in the air for one month, but no particular change was observed, and it was confirmed that the organic-inorganic hybrid glassy substance was excellent in chemical durability.
[0046]
(Comparative Example 1)
Using substantially the same raw materials as in Example 1, the gel obtained by each method and the glassy substance were mixed, and then fired at 600 ° C.
[0047]
As a result, the obtained substance did not soften even at 800 ° C. and could not be said to be a low melting point substance.
[0048]
(Comparative Example 2)
Using the same raw materials as in Example 2, the gel obtained by each method and the vitreous substance were mixed, and then fired at 700 ° C.
[0049]
As a result, the obtained substance did not soften even at 800 ° C. and could not be said to be a low melting point substance.
[0050]
【The invention's effect】
According to the present invention, an organic-inorganic hybrid glass-like material that simultaneously satisfies severe heat resistance, airtightness, and low melting point characteristics, which have been considered extremely difficult to produce, and can easily cope with various required physical properties, and its production Managed to get the way.
Claims (7)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003069344A JP4375982B2 (en) | 2003-03-14 | 2003-03-14 | Organic-inorganic hybrid glassy material and method for producing the same |
EP04720180A EP1605010A4 (en) | 2003-03-14 | 2004-03-12 | Organic-inorganic hybrid vitreous material and method for producing same |
KR1020057016981A KR100768577B1 (en) | 2003-03-14 | 2004-03-12 | Organic-inorganic hybrid vitreous material and method for producing same |
PCT/JP2004/003293 WO2004081086A1 (en) | 2003-03-14 | 2004-03-12 | Organic-inorganic hybrid vitreous material and method for producing same |
US10/800,010 US7802450B2 (en) | 2003-03-14 | 2004-03-15 | Organic-inorganic hybrid glassy materials and their production processes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003069344A JP4375982B2 (en) | 2003-03-14 | 2003-03-14 | Organic-inorganic hybrid glassy material and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004277207A true JP2004277207A (en) | 2004-10-07 |
JP2004277207A5 JP2004277207A5 (en) | 2005-06-16 |
JP4375982B2 JP4375982B2 (en) | 2009-12-02 |
Family
ID=33286396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003069344A Expired - Fee Related JP4375982B2 (en) | 2003-03-14 | 2003-03-14 | Organic-inorganic hybrid glassy material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4375982B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004277208A (en) * | 2003-03-14 | 2004-10-07 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material |
JP2017202437A (en) * | 2016-05-09 | 2017-11-16 | 公立大学法人首都大学東京 | Photocatalytic glass |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003095690A (en) * | 2001-09-18 | 2003-04-03 | Central Glass Co Ltd | Organic-inorganic hybrid low-melting glass and method for manufacturing it |
JP2003313300A (en) * | 2002-04-24 | 2003-11-06 | Central Glass Co Ltd | Organic-inorganic hybrid low-melting glass and manufacturing process therefor |
JP2003313048A (en) * | 2002-04-24 | 2003-11-06 | Central Glass Co Ltd | Method of reducing metallic ion incorporated into organic-inorganic hybrid low melting point glass |
JP2004043242A (en) * | 2002-07-11 | 2004-02-12 | Central Glass Co Ltd | Organic-inorganic hybrid low melting glass and method for manufacturing the same |
JP2004277208A (en) * | 2003-03-14 | 2004-10-07 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material |
JP2004300416A (en) * | 2003-03-14 | 2004-10-28 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material and method for producing the same |
JP2004300417A (en) * | 2003-03-14 | 2004-10-28 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material |
-
2003
- 2003-03-14 JP JP2003069344A patent/JP4375982B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003095690A (en) * | 2001-09-18 | 2003-04-03 | Central Glass Co Ltd | Organic-inorganic hybrid low-melting glass and method for manufacturing it |
JP2003313300A (en) * | 2002-04-24 | 2003-11-06 | Central Glass Co Ltd | Organic-inorganic hybrid low-melting glass and manufacturing process therefor |
JP2003313048A (en) * | 2002-04-24 | 2003-11-06 | Central Glass Co Ltd | Method of reducing metallic ion incorporated into organic-inorganic hybrid low melting point glass |
JP2004043242A (en) * | 2002-07-11 | 2004-02-12 | Central Glass Co Ltd | Organic-inorganic hybrid low melting glass and method for manufacturing the same |
JP2004277208A (en) * | 2003-03-14 | 2004-10-07 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material |
JP2004300416A (en) * | 2003-03-14 | 2004-10-28 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material and method for producing the same |
JP2004300417A (en) * | 2003-03-14 | 2004-10-28 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004277208A (en) * | 2003-03-14 | 2004-10-07 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material |
JP4512936B2 (en) * | 2003-03-14 | 2010-07-28 | セントラル硝子株式会社 | Organic inorganic hybrid glassy material |
JP2017202437A (en) * | 2016-05-09 | 2017-11-16 | 公立大学法人首都大学東京 | Photocatalytic glass |
Also Published As
Publication number | Publication date |
---|---|
JP4375982B2 (en) | 2009-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100756398B1 (en) | Organic-inorganic hybrid vitreous material and method for producing same | |
KR100768577B1 (en) | Organic-inorganic hybrid vitreous material and method for producing same | |
JP4079898B2 (en) | Organic inorganic hybrid glassy material | |
JP4109027B2 (en) | Organic-inorganic hybrid low-melting glass and method for producing the same | |
JP2007211165A (en) | Organic-inorganic hybrid glassy material and process for producing the same | |
US7802450B2 (en) | Organic-inorganic hybrid glassy materials and their production processes | |
JP4516736B2 (en) | Film-like organic-inorganic hybrid glassy substance and method for producing the same | |
JP3910101B2 (en) | Organic-inorganic hybrid low-melting glass and method for producing the same | |
JP4516727B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4079897B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP2005097030A (en) | Organic inorganic hybrid glass-like material and its manufacturing method | |
JP4375982B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP2005035876A (en) | Organic-inorganic hybrid glassy material and its manufacturing method | |
JP4512936B2 (en) | Organic inorganic hybrid glassy material | |
JP2003095690A (en) | Organic-inorganic hybrid low-melting glass and method for manufacturing it | |
JP4079896B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4516766B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4516737B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP2005146222A (en) | Organic/inorganic hybrid glassy material and method for producing the same | |
JP4516776B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4516728B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4516767B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP2008019395A (en) | Organic/inorganic hybrid glassy substance and its manufacturing method | |
JP2005146221A (en) | Ultraviolet/visible light transmissive organic-inorganic hybrid glassy material | |
JP2008019396A (en) | Organic/inorganic hybrid glassy substance and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040913 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050609 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090908 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090908 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |