JP4109027B2 - Organic-inorganic hybrid low-melting glass and method for producing the same - Google Patents

Organic-inorganic hybrid low-melting glass and method for producing the same Download PDF

Info

Publication number
JP4109027B2
JP4109027B2 JP2002203149A JP2002203149A JP4109027B2 JP 4109027 B2 JP4109027 B2 JP 4109027B2 JP 2002203149 A JP2002203149 A JP 2002203149A JP 2002203149 A JP2002203149 A JP 2002203149A JP 4109027 B2 JP4109027 B2 JP 4109027B2
Authority
JP
Japan
Prior art keywords
glass
organic
low
inorganic hybrid
melting glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002203149A
Other languages
Japanese (ja)
Other versions
JP2004043242A (en
Inventor
直也 早川
俊信 横尾
雅英 高橋
治樹 新居田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002203149A priority Critical patent/JP4109027B2/en
Publication of JP2004043242A publication Critical patent/JP2004043242A/en
Application granted granted Critical
Publication of JP4109027B2 publication Critical patent/JP4109027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Polymers (AREA)
  • Glass Compositions (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低い軟化点を有する新規な低融点ガラスに関し、例えば、光導波路などの光機能性材料として有用な、低融点ガラスおよびその製造方法に関する。
【0002】
【従来の技術】
低融点ガラスは、一般的には600℃以下の軟化点をもつガラスで、市販されている板ガラスと比べて、軟化開始温度、いわゆる「融点」が低いことから、低融点ガラスと称されている。この低融点ガラスは、古くから封着・封止材料、パッシベーションガラス、釉薬などとして広く用いられてきた。また、有機分子が熱分解しない程度の「低温」での焼成が可能なため、機能性有機分子を透明なガラスに分散する事によりフォトニクスを支える基幹光機能性材料ともなり得る特徴をもっている。
【0003】
低融点ガラスは種々の組成系が提案されている。例えば、Tickらが開発したSn−Pb−P−F−O系のガラスは100℃前後と低い温度域にガラス転移点を持ち、しかも優れた耐水性を示す。しかしながら、低融点ガラスと称されるガラスの大半はその主要構成成分に鉛を含んでいるので、環境保護の観点から問題がある。近年、鉛を含まないガラス系も提案されているが、ビスマス、カドミウムを始めとする安全性に問題を有す組成因子を含んでおり、環境保護に対応した低融点ガラスが提案されているとはいえない状況下にある。また、鉛を含まないガラス組成系では転移点が100℃前後のガラスは知られていない。
【0004】
ガラス状バルク体の低温合成法としてはゾル−ゲル法や液相反応法がある。ゾル−ゲル法は金属アルコキシドを加水分解−脱水縮重合することによりバルク体を得ることができるが、600℃以下の熱処理では完全に緻密なバルク体は得ることはできない。一方、液相反応法は、収率が低いという致命的な問題がある上、反応系にフッ酸を用いるため、極めて腐食性の高いHFを発生することになり、環境的な面からもコスト高となり、現実的にはガラス状バルク体を生産するのは不可能に近い状態にある。
【0005】
また、シリコーンを高分子ガラス的非晶質バルク体として用いることも考えられている。シリコーンの場合は、シロキサン骨格を有する高分子が絡み合うことにより、あるいは高分子間をある種の有機物で架橋することにより、バルク体を得ることができる。このようにして得られたシリコーンによるバルク体は、プラスチックよりも高温において安定であるという特徴をもつ一方、気密性や長期安定性など低融点ガラスに劣るという基本的な問題を有している。
【0006】
【発明が解決しようとする課題】
従来のいわゆる低融点ガラスは鉛を含んでおり、環境保護の面から問題がある。鉛を含まない低融点ガラスでは、ビスマス、カドミウムを始めとする安全性に問題を有する組成因子を含んでいる上、転移点が100℃前後のガラスは知られていない。
【0007】
ガラス状バルク体については、ゾル−ゲル法では完全な緻密なバルク体が得られないので、実用材料としてみた場合、それ自身の強度不足や導入物質の酸化、水によるアタックが重大な問題であったし、液相反応法では収率が低く、また反応中にHFが発生することから現実的にガラス状バルク体を合成することは不可能に近い状態にあった。
【0008】
すなわち、転移点が100℃近傍又は100℃未満で、鉛やビスマスなどの環境に問題のある物質をガラス組成因子とせず、材料としての気密性、長期安定性や強度、さらには水によるアタックなどの問題がない、生産可能な材料は実質的になかった。
【0009】
【課題を解決するための手段】
本発明は、転移点が100℃未満の低融点ガラスを、鉛やビスマス、カドミウムなど環境保護に問題がある物質を組成因子とせず、シール材としての気密性、長期安定性や強度、さらには水によるアタックなどの問題がない、生産可能な材料の提供に関する。
【0010】
本発明は、ジアルキルジクロロシラン、トリアルキルクロロシランとリン酸及び金属塩化物を加熱反応させて得られる3SiO0.5−R2SiO−MO−P25系の有機−無機ハイブリッド低融点ガラス(但し、Rはメチル基又はエチル基、Mは2価金属であるSn、ZnまたはGe)である。
【0014】
本発明において、反応時に共存させて用いる金属塩化物としては、2価の金属の塩化物が好ましく、具体的にはSn、Ge、およびZnの塩化物を用いることが好適である。
【0015】
本発明の製造方法の特徴としては、出発原料としてトリアルキルクロロシランRxSiClを用いる点が挙げられ、本発明の有機−無機ハイブリッド低融点ガラスは、シリコーンとは全く異なる新しいコンセプトに基づき合成製造される。
【0016】
即ち、シロキサン骨格を有機官能基でターミネートすることにより、ネットワーク次元を下げ、ガラス自体を低融点化しているために、その物性はプラスチックよりもむしろ低融点ガラスに類似している。
【0017】
本発明の有機−無機ハイブリッド低融点ガラスは、シール剤として用いると気密性がよい。更に、光機能性等を有する機能性有機物のホストとして多くの応用が期待される。
【0019】
本発明で得られる低融点ガラス及び製法の特徴を列挙すると次のようになる。
・均一なバルク体である。
・反応系に水を含まないために容易に無水のバルク体を得ることができる。
・低温で合成できるため、有機色素を分解せずに含有することが出来、その溶解度も高い。
・得られた非晶質バルク体はガラスの性質を備えている。
・得られたバルク体はガラスの特徴である高い成形性を有しており、ファイバーや薄膜形状への加工が容易である。
・目的生成物以外の反応生成物は気化し、系外へと放出される。
・酸化物骨格およびそれに結合した有機官能基により形成されているため、従来の有機−無機複合体と比べて組成による物性の制御性が高い。
・有機官能基の存在により、多量の機能性有機物をガラス中に導入することができる。また、その種類を変えることによる導入する有機物の種類を選択することができる。
【0020】
【発明の実施の形態】
本発明は、出発原料としてトリアルキルクロロシラン(R3SiCl)、ジメチルジクロロシラン(Me2SiCl2)およびリン酸(例えば、H3PO4、H3PO3)を用いた場合、次に示す反応の概念に基づいて有機−無機ハイブリッド低融点ガラスが形成される。
P-OH + Si-Cl → Si-O-P + HCl↑
この反応において、反応生成物であるHClがガスとして系外に放出されるので、反応は一方向に進行するため、緻密なバルク体が形成される。また、これらの系に塩化スズ等の金属塩化物を共存させて反応させても同じく緻密でかつ、低融点バルク体が得られる。他の金属の塩化物を用いた場合でも、基本的な反応機構は同じである。HClがガスとして系外にすべて放出される場合が理想的ではあるが、いずれの場合においても、塩素化合物がガラスとして残存することがある。
【0021】
本発明の有機−無機ハイブリッド低融点ガラスの反応は、室温から300℃以下の低温で合成でき、得られたガラスは低い軟化温度と高い成形性(再溶融も可能)を有し、ファイバーや薄膜形状への加工が容易で、有機分子の熱分解しない程度の低温で機能性有機分子を分散させるホスト材料と成り得る。
【0022】
本発明において得られる、有機−無機ハイブリッド低融点ガラスの好ましい組成は、R3SiO0.5−R2SiO−MO−P25(但し、Rはメチル基又はエチル基、Mは2価の金属)系の有機−無機ハイブリッド低融点ガラス(但し、Rはメチル基又はエチル基、Mは2価金属)であり、トリアルキルクロロシランとリン酸、又はトリアルキルクロロシランとリン酸及び金属塩化物を水を使用することなしに加熱反応させることより製造される。例えば、Sn系ガラスの場合、R3SiO0.5−R2SiO−SnO−P25を主体としたガラスとなるが、SiのまわりにはR(例えば、メチル基)が3個存在する場合が多くなることから、ガラスとしての結合性が低くなり、結果として低い転移点のガラスを得ることができる。
【0023】
反応温度は室温から300℃以下程度と、従来と比較して低温で行われ、バルク体合成時のエネルギーを抑制することができるため、環境負荷が小さいことも特徴の一つである。
【0024】
【実施例】
以下実施例をあげて本発明を説明するが、本発明は以下の実施例により限定されるものではない。
【0025】
(実施例1)
出発原料にはリン酸(H3PO4)、ジメチルジクロロシラン(Me2SiCl2)、塩化スズ(SnCl2)を用いる。作製サンプルの組成はH3PO4:Me3SiCl:Me2SiCl2:SnCl2の混合比を2:2x:2.5x:0.5と定め、xが0、0.5、1および1.5の4条件で検討した。窒素雰囲気の反応装置中でオルトリン酸を40℃に加熱して液体にした後にトリアルキルクロロシランを加え、3時間加熱・撹拌した。この過程で徐々に昇温し、100℃まで加熱した。この段階で塩化スズを添加した。これを同じく窒素雰囲気下250℃でさらに1時間加熱し、最終生成物である有機−無機ハイブリッド低融点ガラスを、計6個の試料として得た。2段階の加熱反応としたのは、より緻密なバルク体を得るためであり、加熱反応の温度や時間の組み合わせは任意である。
【0026】
本発明の有機−無機ハイブリッド低融点ガラスの作製スキームを図1に示す。図2は、塩化スズを用いた有機−無機ハイブリッド低融点ガラスのガラス転移温度の組成依存性を示すグラフである。xは0、0.5、1および1.5の4条件で検討した。
【0027】
図2のグラフのように、得られた試料は組成と反応時間に応じて様々なガラス転移点を示す。ガラス転移温度は−47〜30℃まで組成と時間に応じて変化し、低融点ガラスの特徴である低いガラス転移温度を自在に変化させることができ、極めて低い転移点のガラスをも得ることができた。
【0028】
高分子ガラスと異なりネットワーク次元だけではなく、バルク体構成元素間の化学結合性もガラス転移温度に影響を与え、アルキルクロロシランの有機部分又は同時に添加する金属を適切に選択することにより、非常に広範囲な物性制御(ガラス転移温度)が可能となる。
【0029】
(実施例2)
実施例1において、塩化スズの代わりに塩化ゲルマニウムを使った他は同様な反応を行ったところ、塩化スズの場合と同様な淡黄色透明な板状体の最終生成物が得られた。作製サンプルの組成は H3PO4:Me3SiCl:Me2SiCl2:GeCl2の混合比を2:2x:2.5x:0.5と定め、xが0、0.5、1および1.5の4条件で検討した。また、この試料のガラス転移点(Tg)は組成に応じて様々な傾向を示す。結果を塩化ゲルマニウム、塩化アルミニウム、塩化亜鉛を各々用いた各有機−無機ハイブリッド低融点ガラスのガラス転移温度の組成依存性を示すグラフである図3の中に示す。
【0031】
実施例3) 実施例1において、塩化スズの代わりに塩化亜鉛を使った他は同様な反応を行ったところ、塩化スズの場合と同様な淡黄色透明な板状体の最終生成物が得られた。作製サンプルの組成はH3PO4:Me2SiCl2:ZnCl2 の混合比を2:x:2と定め、xが0、0.5、1および1.5の4条件で検討した。結果を図3の中に示す。そのガラス転移点(Tg)は組成に応じて様々な傾向を示すことが分かる。
【0032】
【発明の効果】
本発明の有機−無機ハイブリッド低融点ガラスは、これまでなされていない特性を有す。すなわち、室温から300℃以下の低温で合成でき、低い軟化温度と高い成形性(再溶融も可能)を有し、ファイバーや薄膜形状への加工が容易で、有機分子の熱分解しない程度の低温で機能性有機分子を分散させるホスト材料と成り得る。
【図面の簡単な説明】
【図1】 本発明の有機−無機ハイブリッド低融点ガラス反応スキームの概念図である。
【図2】 塩化スズを用いた有機−無機ハイブリッド低融点ガラスのガラス転移温度の組成依存性を示すグラフである。
【図3】 塩化ゲルマニウム、塩化亜鉛を各々用いた各有機−無機ハイブリッド低融点ガラスのガラス転移温度の組成依存性を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel low-melting glass having a low softening point, for example, a low-melting glass useful as an optical functional material such as an optical waveguide, and a method for producing the same.
[0002]
[Prior art]
The low melting point glass is generally a glass having a softening point of 600 ° C. or lower, and is referred to as a low melting point glass because it has a lower softening start temperature, so-called “melting point”, compared to a commercially available plate glass. . This low-melting glass has long been widely used as a sealing / sealing material, passivation glass, glaze and the like. In addition, since it can be baked at a “low temperature” that does not cause thermal decomposition of organic molecules, it can be a basic optical functional material that supports photonics by dispersing functional organic molecules in transparent glass.
[0003]
Various composition systems have been proposed for the low melting glass. For example, Sn-Pb-PFO glass developed by Tick et al. Has a glass transition point in a low temperature range of around 100 ° C. and exhibits excellent water resistance. However, most of the glass called low melting point glass has a problem from the viewpoint of environmental protection because it contains lead as a main component. In recent years, glass systems that do not contain lead have been proposed, but they contain composition factors that have safety problems such as bismuth and cadmium, and low-melting-point glasses that are environmentally friendly have been proposed. It is in a situation that can not be said. Further, in a glass composition system that does not contain lead, a glass having a transition point of around 100 ° C. is not known.
[0004]
As a low-temperature synthesis method of a glassy bulk material, there are a sol-gel method and a liquid phase reaction method. In the sol-gel method, a bulk body can be obtained by hydrolysis-dehydration condensation polymerization of a metal alkoxide, but a completely dense bulk body cannot be obtained by heat treatment at 600 ° C. or lower. On the other hand, the liquid phase reaction method has a fatal problem that the yield is low, and also uses hydrofluoric acid in the reaction system, so it generates HF with extremely high corrosiveness. In reality, it is almost impossible to produce a glassy bulk body.
[0005]
It is also considered to use silicone as an amorphous bulk material like a polymer glass. In the case of silicone, a bulk body can be obtained by entanglement of a polymer having a siloxane skeleton, or by crosslinking between polymers with a certain organic substance. The bulk material made of silicone thus obtained is characterized by being more stable at a higher temperature than plastics, but has a fundamental problem that it is inferior to a low-melting glass such as hermeticity and long-term stability.
[0006]
[Problems to be solved by the invention]
Conventional so-called low-melting glass contains lead and has a problem in terms of environmental protection. The low melting point glass not containing lead contains composition factors having safety problems such as bismuth and cadmium, and a glass having a transition point of around 100 ° C. is not known.
[0007]
For glassy bulk bodies, a complete and dense bulk body cannot be obtained by the sol-gel method. Therefore, when viewed as a practical material, insufficient strength, oxidation of introduced substances, and attack by water are serious problems. However, in the liquid phase reaction method, the yield was low, and HF was generated during the reaction, so that it was almost impossible to synthesize a glassy bulk material realistically.
[0008]
That is, a substance having a transition point near 100 ° C. or lower than 100 ° C. and having no environmental problems such as lead and bismuth is not used as a glass composition factor, hermeticity as a material, long-term stability and strength, and further attack by water There was virtually no material that could be produced.
[0009]
[Means for Solving the Problems]
The present invention does not use low melting point glass having a transition point of less than 100 ° C. as a composition factor for substances such as lead, bismuth, and cadmium that have environmental problems, and is hermetic, long-term stability and strength as a sealing material, The present invention relates to the provision of materials that can be produced without problems such as water attack.
[0010]
The present invention is an organic-inorganic hybrid low-melting glass of R 3 SiO 0.5 —R 2 SiO—MO—P 2 O 5 system obtained by heating reaction of dialkyldichlorosilane, trialkylchlorosilane, phosphoric acid and metal chloride ( Where R is a methyl group or ethyl group, and M is a divalent metal ( Sn, Zn, or Ge 2 ).
[0014]
In the present invention, the metal chloride used in the reaction is preferably a divalent metal chloride, and specifically, a chloride of Sn, Ge, and Zn is preferably used.
[0015]
A feature of the production method of the present invention is that trialkylchlorosilane R x SiCl is used as a starting material, and the organic-inorganic hybrid low-melting glass of the present invention is synthesized and manufactured based on a new concept completely different from silicone. The
[0016]
That is, by terminating the siloxane skeleton with an organic functional group to lower the network dimension and lower the melting point of the glass itself, the physical properties are similar to those of a low melting point glass rather than a plastic.
[0017]
The organic-inorganic hybrid low-melting glass of the present invention has good airtightness when used as a sealant. Furthermore, many applications are expected as a host of a functional organic substance having optical functionality and the like.
[0019]
The characteristics of the low melting point glass and the production method obtained by the present invention are listed as follows.
-It is a uniform bulk body.
-Since the reaction system does not contain water, an anhydrous bulk can be easily obtained.
-Since it can be synthesized at low temperatures, it can contain organic dyes without decomposing them, and its solubility is high.
-The obtained amorphous bulk body has the property of glass.
-The obtained bulk body has high moldability, which is a characteristic of glass, and can be easily processed into a fiber or a thin film shape.
-Reaction products other than the target product are vaporized and released out of the system.
-Since it is formed of an oxide skeleton and an organic functional group bonded to the oxide skeleton, the controllability of physical properties by composition is higher than that of a conventional organic-inorganic composite.
-Due to the presence of the organic functional group, a large amount of functional organic substances can be introduced into the glass. Moreover, the kind of organic substance introduced by changing the kind can be selected.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The present invention uses the following reaction when trialkylchlorosilane (R 3 SiCl), dimethyldichlorosilane (Me 2 SiCl 2 ) and phosphoric acid (for example, H 3 PO 4 , H 3 PO 3 ) are used as starting materials. Based on this concept, organic-inorganic hybrid low-melting glass is formed.
P-OH + Si-Cl → Si-OP + HCl ↑
In this reaction, HCl as a reaction product is released out of the system as a gas, and thus the reaction proceeds in one direction, so that a dense bulk body is formed. Further, even if a metal chloride such as tin chloride is allowed to coexist in these systems, a dense and low melting point bulk material can be obtained. Even when other metal chlorides are used, the basic reaction mechanism is the same. Ideally, all of HCl is released out of the system as a gas, but in either case, chlorine compounds may remain as glass.
[0021]
The reaction of the organic-inorganic hybrid low-melting glass of the present invention can be synthesized at a low temperature from room temperature to 300 ° C., and the obtained glass has a low softening temperature and a high moldability (can be remelted), and is a fiber or thin film It can be easily processed into a shape, and can be a host material that disperses functional organic molecules at a low temperature that does not cause thermal decomposition of organic molecules.
[0022]
The preferred composition of the organic-inorganic hybrid low-melting glass obtained in the present invention is R 3 SiO 0.5 —R 2 SiO—MO—P 2 O 5 (where R is a methyl group or ethyl group, and M is a divalent metal). ) System organic-inorganic hybrid low melting point glass (where R is a methyl group or ethyl group, M is a divalent metal), and trialkylchlorosilane and phosphoric acid, or trialkylchlorosilane and phosphoric acid and metal chloride are water. It is manufactured by making it heat-react without using. For example, in the case of Sn-based glass, the glass is mainly composed of R 3 SiO 0.5 —R 2 SiO—SnO—P 2 O 5 , but there are three Rs (for example, methyl groups) around Si. Therefore, the bonding property as glass is lowered, and as a result, a glass having a low transition point can be obtained.
[0023]
One of the characteristics is that the reaction temperature is from room temperature to about 300 ° C., which is lower than that in the past, and the energy during bulk body synthesis can be suppressed.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
[0025]
(Example 1)
As starting materials, phosphoric acid (H 3 PO 4), dimethyldichlorosilane (Me 2 SiCl 2 ), and tin chloride (SnCl 2 ) are used. The composition of the sample was determined by setting the mixing ratio of H 3 PO 4 : Me 3 SiCl: Me 2 SiCl 2 : SnCl 2 to 2: 2x: 2.5x: 0.5, and x under the four conditions of 0, 0.5, 1, and 1.5 did. In a nitrogen atmosphere reactor, orthophosphoric acid was heated to 40 ° C. to make a liquid, then trialkylchlorosilane was added, and the mixture was heated and stirred for 3 hours. During this process, the temperature was gradually raised and heated to 100 ° C. At this stage tin chloride was added. This was further heated at 250 ° C. for 1 hour under a nitrogen atmosphere, and the final product, an organic-inorganic hybrid low-melting glass, was obtained as a total of 6 samples. The reason for the two-step heating reaction is to obtain a denser bulk body, and the combination of the temperature and time of the heating reaction is arbitrary.
[0026]
A production scheme of the organic-inorganic hybrid low-melting glass of the present invention is shown in FIG. FIG. 2 is a graph showing the composition dependence of the glass transition temperature of an organic-inorganic hybrid low-melting glass using tin chloride. x was examined under four conditions of 0, 0.5, 1 and 1.5.
[0027]
As shown in the graph of FIG. 2, the obtained sample exhibits various glass transition points depending on the composition and reaction time. The glass transition temperature varies depending on the composition and time from −47 to 30 ° C., and can freely change the low glass transition temperature, which is a characteristic of low-melting glass, and can also obtain a glass having an extremely low transition point. did it.
[0028]
Unlike polymer glasses, not only the network dimension but also the chemical bonding between the bulk constituent elements affects the glass transition temperature, and by selecting the organic part of the alkylchlorosilane or the metal to be added at the same time, a very wide range can be obtained. Physical property control (glass transition temperature) becomes possible.
[0029]
(Example 2)
In Example 1, the same reaction was carried out except that germanium chloride was used instead of tin chloride. As a result, a light yellow transparent plate-like final product similar to the case of tin chloride was obtained. The composition of the sample was determined by setting the mixing ratio of H 3 PO 4 : Me 3 SiCl: Me 2 SiCl 2 : GeCl 2 to 2: 2x: 2.5x: 0.5, and x under the four conditions of 0, 0.5, 1, and 1.5 did. Moreover, the glass transition point (Tg) of this sample shows various tendencies depending on the composition. A result is shown in FIG. 3 which is a graph which shows the composition dependence of the glass transition temperature of each organic-inorganic hybrid low melting glass which respectively used germanium chloride, aluminum chloride, and zinc chloride.
[0031]
( Example 3 ) In Example 1, the same reaction was carried out except that zinc chloride was used instead of tin chloride. As a result, a light yellow transparent plate-like final product similar to the case of tin chloride was obtained. It was. The composition of the fabricated sample was examined under four conditions where the mixing ratio of H 3 PO 4 : Me 2 SiCl 2 : ZnCl 2 was set to 2: x: 2, and x was 0, 0.5, 1, and 1.5. The results are shown in FIG. It can be seen that the glass transition point (Tg) shows various tendencies depending on the composition.
[0032]
【The invention's effect】
The organic-inorganic hybrid low melting point glass of the present invention has characteristics that have not been achieved so far. In other words, it can be synthesized at a low temperature from room temperature to 300 ° C., has a low softening temperature and high moldability (can be remelted), can be easily processed into a fiber or thin film shape, and does not thermally decompose organic molecules. It can be a host material that disperses functional organic molecules.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an organic-inorganic hybrid low melting point glass reaction scheme of the present invention.
FIG. 2 is a graph showing the composition dependence of the glass transition temperature of an organic-inorganic hybrid low-melting glass using tin chloride.
FIG. 3 is a graph showing the composition dependence of the glass transition temperature of each organic-inorganic hybrid low melting glass using germanium chloride and zinc chloride , respectively.

Claims (1)

ジアルキルジクロロシラン、トリアルキルクロロシランとリン酸及び金属塩化物を加熱反応させて得られる3SiO0.5−R2SiO−MO−P25系の有機−無機ハイブリッド低融点ガラス(但し、Rはメチル基又はエチル基、Mは2価金属であるSn、ZnまたはGe Dialkyl dichlorosilane, R 3 SiO 0.5 -R 2 SiO -MO-P 2 O 5 based organic obtained by thermal reaction of trialkyl chlorosilane and phosphoric acid and metal chlorides - inorganic hybrid low-melting glass (where, R represents Methyl group or ethyl group, M is a divalent metal Sn, Zn or Ge 2 )
JP2002203149A 2002-07-11 2002-07-11 Organic-inorganic hybrid low-melting glass and method for producing the same Expired - Fee Related JP4109027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203149A JP4109027B2 (en) 2002-07-11 2002-07-11 Organic-inorganic hybrid low-melting glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203149A JP4109027B2 (en) 2002-07-11 2002-07-11 Organic-inorganic hybrid low-melting glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004043242A JP2004043242A (en) 2004-02-12
JP4109027B2 true JP4109027B2 (en) 2008-06-25

Family

ID=31709125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203149A Expired - Fee Related JP4109027B2 (en) 2002-07-11 2002-07-11 Organic-inorganic hybrid low-melting glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP4109027B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046963B2 (en) * 2001-09-18 2008-02-13 セントラル硝子株式会社 Organic-inorganic hybrid low-melting glass and method for producing the same
WO2004081086A1 (en) * 2003-03-14 2004-09-23 Central Glass Company, Limited Organic-inorganic hybrid vitreous material and method for producing same
JP4375982B2 (en) * 2003-03-14 2009-12-02 セントラル硝子株式会社 Organic-inorganic hybrid glassy material and method for producing the same
JP4512936B2 (en) * 2003-03-14 2010-07-28 セントラル硝子株式会社 Organic inorganic hybrid glassy material
US7802450B2 (en) 2003-03-14 2010-09-28 Central Glass Company, Limited Organic-inorganic hybrid glassy materials and their production processes
US7451619B2 (en) 2003-06-26 2008-11-18 Central Glass Company, Limited Organic-inorganic hybrid glassy materials and their production processes
JP2005239498A (en) * 2004-02-27 2005-09-08 Central Glass Co Ltd Organic-inorganic hybrid glassy material and its production method
JP4736388B2 (en) * 2004-09-29 2011-07-27 セントラル硝子株式会社 Organic-inorganic hybrid glassy material and method for producing the same
JP2007269531A (en) * 2006-03-30 2007-10-18 Kyoto Univ Low-melting lead-free glass and manufacturing method
KR100935157B1 (en) * 2006-04-19 2010-01-06 연세대학교 산학협력단 Surface modified organic·inorganic hybrid glass and producing method thereof
JP5233086B2 (en) * 2006-06-21 2013-07-10 住友化学株式会社 Organic inorganic composite material
CN103449730B (en) * 2013-08-22 2016-02-10 吴江骏达电梯部件有限公司 For the heat-protecting glass and preparation method thereof of sightseeing elevator
JP6811657B2 (en) * 2017-03-15 2021-01-13 石塚硝子株式会社 Manufacturing method of zinc-containing oxide glass

Also Published As

Publication number Publication date
JP2004043242A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4109027B2 (en) Organic-inorganic hybrid low-melting glass and method for producing the same
US4278632A (en) Method of conforming clear vitreous gal of silica-titania material
EP0669362B1 (en) Method for the preparation of organic solvent-soluble polytitanosiloxanes
Niida et al. Preparation and structure of organic–inorganic hybrid precursors for new type low-melting glasses
CN1914250B (en) Organic-inorganic hybrid vitreous material and method for producing same
JP3910101B2 (en) Organic-inorganic hybrid low-melting glass and method for producing the same
TW201004889A (en) Ga-P-S glass compositions
JP4046963B2 (en) Organic-inorganic hybrid low-melting glass and method for producing the same
JP2007269530A (en) Lead free low melting point glass and method for manufacturing the same
KR100768577B1 (en) Organic-inorganic hybrid vitreous material and method for producing same
US7802450B2 (en) Organic-inorganic hybrid glassy materials and their production processes
CA2210586A1 (en) Cyclic silane esters and solvolysis products thereof, and processes for the preparation of the cyclic silane esters and the solvolysis products
JP4375982B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP4516727B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP2005097030A (en) Organic inorganic hybrid glass-like material and its manufacturing method
JP4079904B2 (en) Low dielectric materials for display panels containing organic-inorganic hybrid glassy materials
WO1997022653A1 (en) Germanosiloxane materials and optical components comprising the same
Djouama et al. Fluorophosphate glasses containing manganese
JP4512936B2 (en) Organic inorganic hybrid glassy material
JP4516766B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP2005146222A (en) Organic/inorganic hybrid glassy material and method for producing the same
WO2007145172A1 (en) Organic-inorganic hybrid vitreous material
US2507515A (en) Bis-trihydrocarbon silylphenyl silanes
JP2012219167A (en) Amorphous body
JPS61236786A (en) Cyclic siloxane and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees