JP4079897B2 - Organic-inorganic hybrid glassy material and method for producing the same - Google Patents
Organic-inorganic hybrid glassy material and method for producing the same Download PDFInfo
- Publication number
- JP4079897B2 JP4079897B2 JP2004060549A JP2004060549A JP4079897B2 JP 4079897 B2 JP4079897 B2 JP 4079897B2 JP 2004060549 A JP2004060549 A JP 2004060549A JP 2004060549 A JP2004060549 A JP 2004060549A JP 4079897 B2 JP4079897 B2 JP 4079897B2
- Authority
- JP
- Japan
- Prior art keywords
- organic
- inorganic hybrid
- gel
- glass
- hybrid glassy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Silicon Polymers (AREA)
Description
本発明は、ゾルゲル法に用いられる原料を出発原料とする有機無機ハイブリッドガラス状物質とその製造方法に関する。 The present invention relates to an organic-inorganic hybrid glassy material starting from a raw material used in the sol-gel method and a method for producing the same.
600℃以下で軟化する材料としては、高分子材料や低融点ガラスなどが有名であり、古くから封着・封止材料、パッシベーションガラス、釉薬など、多くのところで用いられてきた。高分子材料と低融点ガラスでは、その諸物性が異なるので、その使用できる環境に応じて使い分けられてきた。一般的には、耐熱性や気密性能が優先される場合にはガラスが、耐熱性や気密性能以外の特性が優先される分野では高分子材料に代表される有機材料が使われてきた。しかし、昨今の技術進歩に伴い、これまで要求されなかった特性も着目され、その特性をもった材料の開発が期待されている。 As materials that soften at 600 ° C. or lower, polymer materials and low-melting glass are well known, and have been used in many places such as sealing / sealing materials, passivation glasses, glazes and the like. Polymer materials and low-melting glass have different physical properties, so they have been used properly according to the environment in which they can be used. In general, glass is used when heat resistance and airtightness are prioritized, and organic materials represented by polymer materials are used in fields where properties other than heat resistance and airtightness are prioritized. However, with recent technological advancement, attention has been paid to properties that have not been required so far, and development of materials having such properties is expected.
このため、耐熱性や気密性能を増能させた高分子材料や、軟化領域を低温化させたガラスいわゆる低融点ガラスの開発が積極的になされている。特に、耐熱性や気密性能が要求される電子材料市場において、PbO-SiO2-B2O3系あるいはPbO-P2O5-SnF2系ガラスなどに代表される低融点ガラスは、電子部品の封着、被覆などの分野で不可欠の材料となっている。また、低融点ガラスは高温溶融ガラスに比べ、その成形加工に要するエネルギーひいてはコストを抑えられるため、省エネルギーに対する昨今の社会的要請とも合致している。さらに、光機能性能の有機物を破壊しない温度で溶融することが可能ならば、光機能性有機物含有(非線形)光学材料のホストとして光スイッチなどの光情報通信デバイスなどへの応用が期待される。このように、一般的な溶融ガラスの特徴である耐熱性や気密性能を有し、かつ高分子材料のように種々の特性を得やすい材料は多くの分野で要望され、特に低融点ガラスにその期待が集まっている。さらに、有機無機ハイブリッドガラスも低融点ガラスの一つとして着目されている。 For this reason, the development of polymer materials with increased heat resistance and airtight performance and so-called low-melting glass, which is a glass with a softened region lowered in temperature, has been actively carried out. Especially in the electronic materials market where heat resistance and airtight performance are required, low melting point glass such as PbO-SiO 2 -B 2 O 3 or PbO-P 2 O 5 -SnF 2 It is an indispensable material in fields such as sealing and coating. In addition, the low melting point glass can reduce the energy required for the molding process and the cost compared to the high temperature molten glass, and therefore, it meets the recent social demand for energy saving. Furthermore, if it can be melted at a temperature that does not destroy the organic substance having optical functional performance, it can be expected to be applied to an optical information communication device such as an optical switch as a host of the optical functional organic substance-containing (nonlinear) optical material. As described above, materials having heat resistance and airtightness, which are the characteristics of general molten glass, and easily obtaining various properties such as polymer materials are demanded in many fields. Expectations are gathered. Furthermore, organic-inorganic hybrid glass is also attracting attention as one of low-melting glass.
低融点ガラスでは、例えば、Sn−Pb−P−F−O系ガラス(例えば、非特許文献1参照)に代表されるTickガラスが有名であり、100℃前後にガラス転移点を持ち、しかも優れた耐水性を示すので、一部の市場では使われてきている。しかしながら、この低融点ガラスはその主要構成成分に鉛を含むので、昨今の環境保護の流れから代替材料に置き換える必要性がでてきている。さらには、Tickガラスに代表される低融点ガラスに対する要求特性も大きく変化していると同時に、その要望も多様化している。 As the low melting point glass, for example, Tick glass represented by Sn-Pb-PFO glass (for example, see Non-Patent Document 1) is famous, and has a glass transition point around 100 ° C., and is excellent. It has been used in some markets due to its water resistance. However, since this low melting point glass contains lead as a main component, it is necessary to replace it with an alternative material from the recent trend of environmental protection. Furthermore, the required characteristics of low melting point glass represented by Tick glass are changing greatly, and the demands are diversified.
一般的なガラスの製造方法としては、溶融法と低温合成法が知られている。溶融法はガラス原料を直接加熱することにより溶融してガラス化させる方法で、多くのガラスがこの方法で製造されており、低融点ガラスもこの方法で製造されている。しかし、低融点ガラスの場合、融点を下げるために、鉛やアルカリ、ビスマスなどの含有を必要とする等、構成できるガラス組成には多くの制限がある。 As a general glass production method, a melting method and a low-temperature synthesis method are known. The melting method is a method in which a glass raw material is directly heated to be melted and vitrified. Many glasses are produced by this method, and low-melting glass is also produced by this method. However, in the case of a low-melting glass, there are many restrictions on the glass composition that can be constructed, such as the need to contain lead, alkali, bismuth, etc. in order to lower the melting point.
一方、非晶質バルクの低温合成法としては、ゾルゲル法、液相反応法及び無水酸塩基反応法が考えられている。ゾルゲル法は金属アルコキシドなどを加水分解−重縮合し、500℃を超える温度(例えば、非特許文献2参照)、通常は700〜1600℃で熱処理することにより、バルク体を得ることができる。しかし、ゾルゲル法で作製したバルク体を実用材料としてみた場合、原料溶液の調製時に導入するアルコールなど有機物の分解・燃焼、又は有機物の分解ガス若しくは水の加熱過程における蒸発放出などのために多孔質となることが多く、耐熱性や気密性能には問題があった。このように、ゾルゲル法によるバルク製造ではまだ多くの問題が残っており、特に低融点ガラスをゾルゲル法で生産することはなされていない。 On the other hand, as a low-temperature synthesis method of amorphous bulk, a sol-gel method, a liquid phase reaction method, and an acid anhydride base reaction method are considered. In the sol-gel method, a bulk body can be obtained by hydrolysis-polycondensation of metal alkoxide and the like, and heat treatment at a temperature exceeding 500 ° C. (for example, see Non-Patent Document 2), usually 700 to 1600 ° C. However, when the bulk material produced by the sol-gel method is viewed as a practical material, it is porous due to the decomposition and combustion of organic substances such as alcohol introduced during the preparation of the raw material solution, or evaporative emission during the heating process of the decomposition gas or water of organic substances. In many cases, there were problems in heat resistance and airtightness. As described above, many problems still remain in bulk production by the sol-gel method, and in particular, low-melting glass has not been produced by the sol-gel method.
さらに、液相反応法は収率が低いために生産性が低いという問題の他、反応系にフッ酸などを用いることや薄膜合成が限度とされていることなどから、現実的にバルク体を合成する手法としては不可能に近い状態にある。 In addition, the liquid phase reaction method has a low yield, resulting in low productivity, the use of hydrofluoric acid in the reaction system and the limited synthesis of thin films. It is almost impossible to synthesize.
無水酸塩基反応法は、近年開発された手法であり、低融点ガラスの一つである有機無機ハイブリッドガラスの製作も可能(例えば、非特許文献3参照)であるが、まだ開発途上であり、すべての低融点ガラスが製作できているわけではない。 The anhydride-base reaction method is a technique developed in recent years, and it is possible to produce an organic-inorganic hybrid glass that is one of low-melting glasses (for example, see Non-Patent Document 3), but it is still under development. Not all low-melting glasses can be made.
したがって、多くの低融点ガラスの製造は、低温合成法ではなく、溶融法により行われてきた。このため、ガラス原料を溶融する都合上からそのガラス組成は制限され、生産できる低融点ガラスとなると、その種類は極めて限定されていた。 Therefore, many low-melting-point glasses have been manufactured not by a low-temperature synthesis method but by a melting method. For this reason, the glass composition is limited for the convenience of melting the glass raw material, and the kind of the low melting glass that can be produced is extremely limited.
なお、現時点では耐熱性や気密性能から、低融点ガラスが材料として有力であり、低融点ガラスに代表される形で要求物性が出されることが多い。しかし、その材料は低融点ガラスにこだわるものではなく、要求物性が合致すれば、ガラス以外の低融点あるいは低軟化点物質で大きな問題はない。 At present, low-melting glass is a promising material due to heat resistance and airtightness, and required physical properties are often obtained in a form typified by low-melting glass. However, the material is not particular about the low melting point glass, and if the required physical properties match, there is no major problem with a low melting point or low softening point substance other than glass.
公知技術をみれば、ゾルゲル法による石英ガラス繊維の製造方法(例えば、特許文献1参照)が、ゾルゲル法による酸化チタン繊維の製造方法(例えば、特許文献2参照)が、さらにはゾルゲル法による半導体ドープマトリックスの製造方法(例えば、特許文献3参照)が開示されている。また、溶融法によるP2O5−TeO2−ZnF2系低融点ガラス(例えば、特許文献4参照)が、さらには有機−無機ハイブリッドガラス用前駆体組成物及びそれよりなるハイブリッドガラスが開示されている(例えば、特許文献5参照)。 Looking at the known technology, a method for producing quartz glass fibers by the sol-gel method (for example, see Patent Document 1), a method for producing titanium oxide fibers by the sol-gel method (for example, see Patent Document 2), and further a semiconductor by the sol-gel method. A method for manufacturing a dope matrix (see, for example, Patent Document 3) is disclosed. Also disclosed is a P 2 O 5 —TeO 2 —ZnF 2 -based low-melting glass (for example, see Patent Document 4) by a melting method, a precursor composition for organic-inorganic hybrid glass, and a hybrid glass comprising the same. (For example, see Patent Document 5).
多くの低軟化点材料、特に低融点ガラスの製造は、溶融法により行われてきた。このため、そのガラス組成には多くの制限があり、ガラス原料を溶融する都合上、生産できる低融点ガラスは極めて限られていた。 Many low softening point materials, particularly low melting glass, have been manufactured by melting methods. For this reason, the glass composition has many restrictions, and the low melting glass which can be produced was very limited on account of melting a glass raw material.
一方、低温合成法のゾルゲル法で製造した場合、緻密化のために500℃以上の処理温度が必要となるが、その温度で処理すると低融点ガラスとはならないので、結果として耐熱性や気密性能の良好な低融点ガラスを得ることはできなかった。特に、電子材料分野では、厳しい耐熱性や気密性能と低融点化に対応する低融点ガラスはなかった。さらに、耐熱性や気密性能を満足するガラス以外の低融点材料もこれまで見出されていない。 On the other hand, when manufactured by the low temperature synthesis sol-gel method, a processing temperature of 500 ° C. or higher is required for densification, but if it is processed at that temperature, it does not become a low melting point glass, resulting in heat resistance and airtight performance. No good low melting point glass could be obtained. In particular, in the field of electronic materials, there has been no low-melting glass corresponding to severe heat resistance, airtight performance and low melting point. Furthermore, no low-melting-point material other than glass that satisfies heat resistance and hermetic performance has been found so far.
特開昭62-297236号公報、特開昭62-223323号公報及び特開平1-183438号公報で開示された方法は、高温溶融でのみ対応可能であった材料生産を低温でも可能としたという功績はあるが、低融点ガラスを製造することはできない。また、ゾルゲル処理後には、500℃以上での処理も必要である。一方、特開平7-126035号公報の方法では、転移点が3百数十℃のガラスを作製できることが開示されている。しかし、それ以下の転移点をもつガラスを鉛やビスマスなどを始めとする低融点化材料なしで製作した例はこれまでなかった。さらには、特開平2-137737号公報の方法でもどこまでバルク状のガラスが低融点化されているか不明である。 The methods disclosed in JP-A-62-297236, JP-A-62-223323, and JP-A-1-183438 made it possible to produce materials at low temperatures that could only be handled by high-temperature melting. Although there is an achievement, low melting glass cannot be manufactured. Further, after sol-gel treatment, treatment at 500 ° C. or higher is also necessary. On the other hand, the method disclosed in Japanese Patent Application Laid-Open No. 7-126035 discloses that a glass having a transition point of 3 and several tens of degrees Celsius can be produced. However, there has been no example of manufacturing a glass having a transition point lower than that without a low melting point material such as lead or bismuth. Furthermore, it is unclear to what extent the bulk glass has a low melting point even by the method of Japanese Patent Application Laid-Open No. 2-137737.
すなわち、これまでの低融点ガラスの製造方法では、厳しい耐熱性や気密性能と低融点特性を同時に満たすガラスを作ることはできなかった。また、ガラス以外の材料でもこのような特性を満たすものはなかった。 In other words, conventional low-melting glass manufacturing methods have not been able to produce a glass that satisfies severe heat resistance, airtightness and low-melting characteristics at the same time. In addition, no material other than glass satisfies such characteristics.
本発明は、有機無機ハイブリッドガラス状物質の製造方法において、ゾルゲル法によるゲル体の製作工程、加熱による溶融工程、及び熟成工程の3工程を最低限有する有機無機ハイブリッドガラス状物質の製造方法である。 The present invention relates to a method for producing an organic-inorganic hybrid glassy material, which has at least three steps: a gel body production process by a sol-gel method, a melting process by heating, and an aging process. .
また、ゲル体の構造中に有機官能基を持つ金属ユニットを有する上記の有機無機ハイブリッドガラス状物質の製造方法である。 Moreover, it is a manufacturing method of said organic-inorganic hybrid glassy substance which has a metal unit with an organic functional group in the structure of a gel body.
また、フェニル基を含んでいるゾルゲル原料を少なくとも1種類用いる上記の有機無機ハイブリッドガラス状物質の製造方法である。 Moreover, it is a manufacturing method of said organic inorganic hybrid glassy substance using at least 1 sort (s) of the sol-gel raw material containing a phenyl group.
また、加熱による溶融工程が30℃以上400℃以下の温度で処理される上記の有機無機ハイブリッドガラス状物質の製造方法である。 Moreover, it is a manufacturing method of said organic-inorganic hybrid glassy substance by which the melting process by heating is processed at the temperature of 30 degreeC or more and 400 degrees C or less.
また、熟成工程が30℃以上400℃以下の温度でかつ5分以上の時間で処理する上記の有機無機ハイブリッドガラス状物質の製造方法である。 Moreover, it is a manufacturing method of said organic-inorganic hybrid glassy substance which a ripening process processes at the temperature of 30 to 400 degreeC for 5 minutes or more.
本発明によれば、これまで製作することが極めて難しいとされてきた耐熱性や気密性能と低融点特性を同時に満たす有機無機ハイブリッドガラス状物質を生成することができる。 According to the present invention, it is possible to produce an organic-inorganic hybrid glassy material that simultaneously satisfies the heat resistance, hermetic performance, and low melting point characteristics that have been considered extremely difficult to produce.
本発明は、有機無機ハイブリッドガラス状物質の製造方法において、ゾルゲル法によるゲル体の製作工程、加熱による溶融工程、及び熟成工程の3工程を最低限有する有機無機ハイブリッドガラス状物質の製造方法である。それぞれの工程は重要な意味をもち、全てが必要な工程である。 The present invention relates to a method for producing an organic-inorganic hybrid glassy material, which has at least three steps: a gel body production process by a sol-gel method, a melting process by heating, and an aging process. . Each process has an important meaning, and everything is necessary.
本発明の手法は、従来のゾルゲル法と称されている方法とは基本的に異なる。従来のゾルゲル法では、数種類のゾルゲル原料を混合した後、室温で数時間撹拌、その後室温で2日〜1週間静置し、湿潤ゲルを得る。その後、室温〜約100℃で1〜3日間乾燥させて乾燥ゲルとし、必要であれば粉砕・洗浄・濾過した後、低くとも400℃以上で通常は800℃以上で焼結させてバルク体や繊維状とする。膜の場合には、湿潤ゲルの状態で薄膜状とし、乾燥・焼結させて薄膜を得る。ゲル体をそのまま焼結した場合、例えば透明状材料を得ることはできるが、融点の低い材料を得ることはできない。 The method of the present invention is fundamentally different from a method called a conventional sol-gel method. In the conventional sol-gel method, several types of sol-gel raw materials are mixed, stirred for several hours at room temperature, and then allowed to stand at room temperature for 2 days to 1 week to obtain a wet gel. Then, it is dried at room temperature to about 100 ° C. for 1 to 3 days to obtain a dry gel, and if necessary, pulverized, washed and filtered, and then sintered at least at 400 ° C. and usually at 800 ° C. It shall be fibrous. In the case of a film, it is formed into a thin film in a wet gel state, dried and sintered to obtain a thin film. When the gel body is sintered as it is, for example, a transparent material can be obtained, but a material having a low melting point cannot be obtained.
これまでのゾルゲル法では、ゲル体を溶融するという概念はなく、そのまま焼結工程に入っていた。このため、従来のゾルゲル法においては、乾燥ゲルが溶融状態となることはないとされていた。例えば、特開平2-137737号公報でも溶融性の概念は全く記載されていない。これに対し、本発明で得られたゲル体については、加熱することにより溶融状態とすることができる。さらには、前記の溶融工程の後に、熟成工程を有することも本発明の特徴である。しかし、本発明でいう熟成は、従来のゾルゲル法の中で一部の研究者が述べていた熟成とは全く別のものである。すなわち、熟成は2日〜1週間かけて湿潤ゲルを得るための静置を指すのではなく、溶融後の有機無機ハイブリッドガラスを積極的に構造変化せしめてガラス状物質を安定化させる作業を指す。このため、静置条件よりも高温で、場合によっては減圧条件下での処理という特徴を有す。 In the conventional sol-gel method, there is no concept of melting the gel body, and it has entered the sintering process as it is. For this reason, in the conventional sol-gel method, it was supposed that a dry gel will not be in a molten state. For example, Japanese Patent Application Laid-Open No. 2-137737 does not describe the concept of melting at all. On the other hand, about the gel body obtained by this invention, it can be made into a molten state by heating. Furthermore, it is also a feature of the present invention to have an aging step after the melting step. However, the aging referred to in the present invention is completely different from the aging described by some researchers in the conventional sol-gel method. In other words, ripening does not refer to standing for obtaining a wet gel over 2 days to 1 week, but refers to an operation of stabilizing the glassy substance by positively changing the structure of the organic-inorganic hybrid glass after melting. . For this reason, it is characterized by treatment at a temperature higher than that of the stationary condition and, in some cases, under reduced pressure.
従来から行われてきたゾルゲル法では、前記の溶融工程がなく、乾燥ゲルをそのまま焼結するため、その後の熟成工程もない。しかし、この熟成工程は極めて重要であり、溶融性を有するガラス状物質でもその後の熟成工程を経なければ、所望の有機無機ハイブリッドガラス状物質を得ることはできない。単に溶融しただけでは系内に反応活性な水酸基(−OH)が残留しており、これを冷やし固めたとしても、その残留した水酸基(−OH)が加水分解−脱水縮合を起こして、結果的にクラックが生じたり、破壊したりして、良好な有機無機ハイブリッドガラス状物質を得ることができない。このため、この反応活性な水酸基(−OH)を熟成によりガラス状物質内で安定化させることが極めて重要な工程となる。これらの点が本発明と従来のゾルゲル法で大きく異なる点である。 In the conventional sol-gel method, there is no melting step, and since the dried gel is sintered as it is, there is no subsequent aging step. However, this aging step is extremely important, and a desired organic-inorganic hybrid glassy material cannot be obtained without passing through a subsequent aging step even for a glassy material having a melting property. Reactively active hydroxyl groups (-OH) remain in the system simply by melting, and even if this is cooled and hardened, the remaining hydroxyl groups (-OH) cause hydrolysis-dehydration condensation, resulting in Thus, cracks are generated or broken, and a good organic-inorganic hybrid glassy substance cannot be obtained. For this reason, it is an extremely important step to stabilize this reactive hydroxyl group (—OH) within the glassy material by aging. These points are greatly different between the present invention and the conventional sol-gel method.
出発原料は金属アルコキシド、金属アセチルアセトナート、金属カルボン酸、金属水酸化物、又は金属ハロゲン化物であり、先ずゾルゲル法によりゲル体を製作する。この出発原料は、上記以外でも、ゾルゲル法で使われているものであれば問題はなく、上記の出発原料に限定されない。但し、このゲル体の作製は重要な最初の工程である。 The starting material is metal alkoxide, metal acetylacetonate, metal carboxylic acid, metal hydroxide, or metal halide. First, a gel body is produced by a sol-gel method. Other than the above, this starting material is not limited to the above starting materials as long as it is used in the sol-gel method. However, the production of this gel body is an important first step.
ゾルゲル法により作製されたゲル体構造中に有機官能基を持つ金属ユニットを有することが好ましい。製作されたゲル体構造中に有機官能基を持つ金属ユニットを有しない場合、焼結はするが、溶融はしない。この金属ユニットは有機官能基Rを持つことが特徴であり、(RnSiO(4-n)/2)(n=1〜3)で表されるケイ素ユニットが例示される。ここで、nは自然数であり、1、2、3の中から選択される。さらに、詳細には、フェニル基の金属ユニット(PhnSiO(4-n)/2)を有することがより好ましい。また、メチル基の金属ユニット(MenSiO(4-n)/2)、エチル基の金属ユニット(EtnSiO(4-n)/2)、ブチル基の金属ユニット(BtnSiO(4-n)/2)(n=1〜3)等との組み合わせも有効である。 It is preferable to have a metal unit having an organic functional group in the gel structure produced by the sol-gel method. When the manufactured gel body structure does not have a metal unit having an organic functional group, it is sintered but not melted. This metal unit is characterized by having an organic functional group R, and a silicon unit represented by (R n SiO (4-n) / 2 ) (n = 1 to 3) is exemplified. Here, n is a natural number and is selected from 1, 2, and 3. More specifically, it is more preferable to have a phenyl group metal unit (Ph n SiO (4-n) / 2 ). Further, a methyl group metal unit (Me n SiO (4-n) / 2 ), an ethyl group metal unit (Et n SiO (4-n) / 2 ), a butyl group metal unit (Bt n SiO (4 -n) A combination with n) / 2 ) (n = 1 to 3) or the like is also effective.
この有機官能基Rは、アリール基やアルキル基が代表的である。アリール基としては、フェニル基、ピリジル基、トリル基、キシリル基などがあり、特に好ましいのはフェニル基である。アルキル基としては、メチル基、エチル基、プロピル基(n−、i−)、ブチル基(n−、i−、t−)、ペンチル基、ヘキシル基(炭素数:1〜20)などが挙げられ、特に好ましいのはメチル基とエチル基である。当然ながら、有機官能基は上述のアルキル基やアリール基に限定されるものではない。アルキル基としては、直鎖型でも分岐型でもさらには環状型でも良い。以上の点から、フェニル基を含んでいるゾルゲル原料を少なくとも1種類用いることが好ましい。 The organic functional group R is typically an aryl group or an alkyl group. Examples of the aryl group include a phenyl group, a pyridyl group, a tolyl group, and a xylyl group, and a phenyl group is particularly preferable. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group (n-, i-), a butyl group (n-, i-, t-), a pentyl group, a hexyl group (carbon number: 1 to 20). Particularly preferred are methyl and ethyl groups. Of course, the organic functional group is not limited to the above-described alkyl group or aryl group. The alkyl group may be linear, branched or cyclic. From the above points, it is preferable to use at least one sol-gel raw material containing a phenyl group.
加熱による溶融工程は30℃以上400℃以下の温度で処理することが好ましい。30℃よりも低い温度では、実質上溶融できない。また、400℃を超えると、網目を形成する金属元素と結合する有機基が燃焼するために所望の有機無機ハイブリッドガラス状物質を得られないばかりか、破砕したり、気泡を生じて不透明になったりする。望ましくは、100℃以上300℃以下である。 The melting step by heating is preferably performed at a temperature of 30 ° C. or higher and 400 ° C. or lower. At temperatures lower than 30 ° C., it cannot be melted substantially. Further, when the temperature exceeds 400 ° C., the organic group bonded to the metal element forming the network burns, so that a desired organic-inorganic hybrid glassy material cannot be obtained. Or Desirably, it is 100 degreeC or more and 300 degrees C or less.
熟成工程は30℃以上400℃以下の温度で処理することが好ましい。30℃よりも低い温度では、実質上熟成できない。400℃を超えると、熱分解することがあり、安定したガラス状物質を得ることは難しくなる。望ましくは、100℃以上300℃以下である。さらに、この熟成温度は、溶融下限温度よりも低い温度ではその効果が極めて小さくなる。一般的には、溶融下限温度〜(溶融下限温度+150℃)程度が望ましい。さらに、熟成に要する時間は5分以上必要である。熟成時間は、その処理量、処理温度及び反応活性な水酸基(−OH)の許容残留量により異なるが、一般的には5分未満では満足できるレベルに到達することは極めて難しい。また、長時間では生産性が下がってくるので、望ましくは10分以上1週間以内である。 The aging step is preferably performed at a temperature of 30 ° C. or higher and 400 ° C. or lower. At a temperature lower than 30 ° C., it cannot be aged substantially. If it exceeds 400 ° C., it may be thermally decomposed, making it difficult to obtain a stable glassy substance. Desirably, it is 100 degreeC or more and 300 degrees C or less. Further, the effect of the aging temperature becomes extremely small at a temperature lower than the lower limit melting temperature. Generally, the lower limit of melting temperature to the lower limit of melting temperature (+ 150 ° C.) is desirable. Furthermore, the time required for aging is 5 minutes or more. The aging time varies depending on the processing amount, processing temperature, and allowable residual amount of reactive hydroxyl group (—OH), but generally it is extremely difficult to reach a satisfactory level in less than 5 minutes. Moreover, since productivity falls in a long time, it is 10 minutes or more and less than 1 week desirably.
なお、加熱による溶融工程若しくは熟成工程において、不活性雰囲気下で行ったり、減圧下で行なったりすることにより時間を短縮できる傾向にあり、有効である。また、マイクロ波や超音波加熱も有効である。 In addition, in the melting step or the aging step by heating, it is effective because the time can be shortened by carrying out under an inert atmosphere or under reduced pressure. Microwave and ultrasonic heating are also effective.
また、上記の方法で製造された有機無機ハイブリッドガラス状物質は当然ながら全て対象となるが、その一部又はすべてに不規則網目構造をもつ有機無機ハイブリッドガラス状物質であることが好ましい。 Of course, all of the organic-inorganic hybrid glassy materials produced by the above-mentioned method are targeted. However, organic or inorganic hybrid glassy materials having an irregular network structure in a part or all of them are preferable.
さらには、軟化温度は400℃以下であることが好ましい。軟化温度が400℃を超えると、溶融時に網目を形成する金属元素と結合する有機基が燃焼するために所望の有機無機ハイブリッドガラス状物質を得られないばかりか、破砕したり、気泡を生じて不透明になったりする。より好ましくは50℃以上350℃以下、さらに好ましくは60℃以上300℃以下である。なお、熟成前の軟化温度が60〜150℃、熟成後の軟化温度が100〜300℃であれば、非常に好ましい。 Furthermore, the softening temperature is preferably 400 ° C. or lower. When the softening temperature exceeds 400 ° C., the organic group bonded to the metal element that forms the network at the time of melting burns, so that the desired organic-inorganic hybrid glassy material cannot be obtained, and it is crushed or bubbles are generated. It becomes opaque. More preferably, it is 50 degreeC or more and 350 degrees C or less, More preferably, they are 60 degreeC or more and 300 degrees C or less. In addition, it is very preferable if the softening temperature before aging is 60 to 150 ° C and the softening temperature after aging is 100 to 300 ° C.
さらに、フェニル基を含んでいることが好ましい。フェニル基を含んだ有機無機ハイブリッドガラス状物質は、上記の温度範囲は入る場合が多く、かつ非常に安定化しているからである。 Further, it preferably contains a phenyl group. This is because an organic-inorganic hybrid glassy material containing a phenyl group often falls within the above temperature range and is very stable.
以下、実施例に基づき、述べる。
(実施例1)
出発原料には金属アルコキシドのフェニルトリエトキシシラン(PhSi(OEt)3)とエタノールを用いた。容器中で10mlのフェニルトリエトキシシラン、40mlの水、30mlのエタノールに触媒である塩酸を加え、室温で1日間撹拌し、ゲル化させた。このゲル体についてはJEOL社の磁気共鳴測定装置CMX-400型により金属ユニットの一つであるケイ素ユニットRnSiO(4-n)/2(R:有機官能基、n:1〜3)が存在していることを確認した。その後、約100℃で乾燥し、そのゲル体を120℃で2時間溶融し、それに引き続いて200℃で5時間熟成することにより透明状物質を得た。
Hereinafter, description will be made based on examples.
Example 1
The starting materials used were metal alkoxides phenyltriethoxysilane (PhSi (OEt) 3 ) and ethanol. In a container, hydrochloric acid as a catalyst was added to 10 ml of phenyltriethoxysilane, 40 ml of water, and 30 ml of ethanol, and the mixture was stirred at room temperature for 1 day to gel. For this gel body, a silicon unit R n SiO (4-n) / 2 (R: an organic functional group, n: 1 to 3), which is one of the metal units, is obtained by a magnetic resonance measuring device CMX-400 type manufactured by JEOL. Confirmed that it exists. Thereafter, the gel was dried at about 100 ° C., and the gel was melted at 120 ° C. for 2 hours, followed by aging at 200 ° C. for 5 hours to obtain a transparent material.
この透明状物質の軟化温度は115℃であり、フェニル基の分解温度の約400℃よりも低い温度であった。また、不規則網目構造を有していたことも考慮すると、今回得た透明状物質は有機無機ハイブリッドガラス構造をとる物質、すなわち有機無機ハイブリッドガラス状物質である。 The softening temperature of this transparent material was 115 ° C., which was lower than the decomposition temperature of the phenyl group of about 400 ° C. Further, considering that it has an irregular network structure, the transparent material obtained this time is a material having an organic-inorganic hybrid glass structure, that is, an organic-inorganic hybrid glassy material.
この有機無機ハイブリッドガラス状物質の気密性能をみるため、得られた有機無機ハイブリッドガラス状物質の中に有機色素を入れ、1ヶ月後の染み出し状態を観察した。この結果、染み出しは全く認められず、気密性能を満足していることが分かった。また、100℃の雰囲気下に300時間置いたこの有機無機ハイ
ブリッドガラス状物質の転移点を測定したが、その変化は認められず、耐熱性にも問題がないことが確認された。さらに、得られた有機無機ハイブリッドガラス状物質を1ヶ月間、大気中に放置したが、特に変化は認められず、化学的耐久性に優れていることも確認できた。
In order to check the airtight performance of the organic-inorganic hybrid glassy material, an organic dye was put into the obtained organic-inorganic hybrid glassy material, and the bleeding state after one month was observed. As a result, no oozing was observed and it was found that the airtight performance was satisfied. Further, the transition point of this organic-inorganic hybrid glassy substance placed in an atmosphere of 100 ° C. for 300 hours was measured, but no change was observed, and it was confirmed that there was no problem in heat resistance. Furthermore, although the obtained organic-inorganic hybrid glassy substance was left in the atmosphere for one month, no particular change was observed, and it was confirmed that it was excellent in chemical durability.
なお、図1に示すように、有機無機ハイブリッドガラス状物質の軟化温度は、10℃/minで昇温したTMA測定から判断した。図1は本実施例の結果である。すなわち、上記条件で収縮量変化から軟化挙動を求め、その開始温度を軟化温度とした。 In addition, as shown in FIG. 1, the softening temperature of the organic-inorganic hybrid glassy substance was judged from the TMA measurement heated at 10 ° C./min. FIG. 1 shows the results of this example. That is, the softening behavior was obtained from the shrinkage change under the above conditions, and the starting temperature was defined as the softening temperature.
(実施例2)
出発原料には金属アルコキシドのフェニルトリエトキシシラン(PhSi(OEt)3)とメチルトリエトキシシランの混合系を用い。その比は9:1とした。容器中で10mlのフェニルトリエトキシシラン、1mlのメチルトリエトキシシラン、40mlの水、30mlのエタノールに触媒である酢酸を加え、室温で2日間撹拌し、ゲル化させた。このゲル体については、図2に示すようにJEOL社の磁気共鳴測定装置CMX-400型により金属ユニットの一つであるケイ素ユニットRnSiO(4-n)/2(R:有機官能基、n:1〜3)が存在していることを確認した。その後、約100℃で乾燥し、そのゲル体を120℃で1時間溶融し、それに引き続いて180℃で3日間熟成することにより透明状物質を得た。
(Example 2)
The starting material is a mixed system of phenyltriethoxysilane (PhSi (OEt) 3 ) and methyltriethoxysilane, which are metal alkoxides. The ratio was 9: 1. Acetic acid as a catalyst was added to 10 ml of phenyltriethoxysilane, 1 ml of methyltriethoxysilane, 40 ml of water, and 30 ml of ethanol in a container, and the mixture was stirred at room temperature for 2 days for gelation. As for this gel body, as shown in FIG. 2, a silicon unit R n SiO (4-n) / 2 (R: an organic functional group, which is one of metal units) by a magnetic resonance measuring apparatus CMX-400 type of JEOL. n: 1 to 3) was present. Thereafter, the gel was dried at about 100 ° C., and the gel was melted at 120 ° C. for 1 hour, followed by aging at 180 ° C. for 3 days to obtain a transparent material.
この透明状物質の軟化温度は119℃であり、不規則網目構造を有していたことも考慮すると、今回得た透明状物質は有機無機ハイブリッドガラス構造をとる物質、すなわち有機無機ハイブリッドガラス状物質である。 Considering that the softening temperature of this transparent material is 119 ° C. and has an irregular network structure, the transparent material obtained this time is a material having an organic-inorganic hybrid glass structure, that is, an organic-inorganic hybrid glassy material. It is.
さらに、図3に示すように、日立U−3500形自記分光光度計により有機無機ハイブリッドガラス状物質の300〜2500nmの波長域における透過率曲線を測定した。実施例2と書かれた実線のデータがこれにあたる。この結果からも明らかなように、可視領域でみられた着色、特に従来みられた青色領域での吸収はないことが分かる。なお、波長300〜800nmにおける平均透過率は85.7%であった。 Furthermore, as shown in FIG. 3, the transmittance curve in the wavelength range of 300 to 2500 nm of the organic-inorganic hybrid glassy substance was measured with a Hitachi U-3500 self-recording spectrophotometer. The solid line data written as Example 2 corresponds to this. As is clear from this result, it can be seen that there is no coloration observed in the visible region, particularly absorption in the blue region observed conventionally. The average transmittance at a wavelength of 300 to 800 nm was 85.7%.
この有機無機ハイブリッドガラス状物質の気密性能をみるため、得られた有機無機ハイブリッドガラス状物質の中に有機色素を入れ、1ヶ月後の染み出し状態を観察した。この結果、染み出しは全く認められず、気密性能を満足していることが分かった。また、100℃の雰囲気下に300時間置いたこの有機無機ハイブリッドガラス状物質の転移点を測定したが、その変化は認められず、耐熱性にも問題がないことが確認された。さらに、得られた有機無機ハイブリッドガラス状物質を1ヶ月間、大気中に放置したが、特に変化は認められず、化学的耐久性に優れていることも確認できた。 In order to check the airtight performance of the organic-inorganic hybrid glassy material, an organic dye was put into the obtained organic-inorganic hybrid glassy material, and the bleeding state after one month was observed. As a result, no oozing was observed and it was found that the airtight performance was satisfied. Further, the transition point of this organic-inorganic hybrid glassy substance placed in an atmosphere of 100 ° C. for 300 hours was measured, but no change was observed, and it was confirmed that there was no problem in heat resistance. Furthermore, although the obtained organic-inorganic hybrid glassy substance was left in the atmosphere for one month, no particular change was observed, and it was confirmed that it was excellent in chemical durability.
(実施例3)
出発原料には金属アルコキシドのフェニルトリエトキシシランとジエトキシジフェニルシランの混合系を用い、その比は7:3とした。容器中で9mlのフェニルトリエトキシシラン、4mlのジエトキシジフェニルシラン、40mlの水、30mlのエタノールに触媒である酢酸を加え、室温で2日間撹拌し、ゲル化させた。このゲル体についてはJEOL社の磁気共鳴測定装置CMX-400型により金属ユニットの一つであるケイ素ユニットRnSiO(4-n)/2(R:有機官能基、n:1〜3)が存在していることを確認した。その後、約100℃で乾燥し、そのゲル体を120℃で1時間溶融し、それに引き続いて200℃で4日間熟成することにより透明状物質を得た。
(Example 3)
As a starting material, a mixed system of metal alkoxides phenyltriethoxysilane and diethoxydiphenylsilane was used, and the ratio was 7: 3. Acetic acid as a catalyst was added to 9 ml of phenyltriethoxysilane, 4 ml of diethoxydiphenylsilane, 40 ml of water, and 30 ml of ethanol in a container, and the mixture was stirred at room temperature for 2 days to gel. For this gel body, a silicon unit R n SiO (4-n) / 2 (R: an organic functional group, n: 1 to 3), which is one of the metal units, is obtained by a magnetic resonance measuring device CMX-400 type manufactured by JEOL. Confirmed that it exists. Thereafter, the gel was dried at about 100 ° C., the gel was melted at 120 ° C. for 1 hour, and then aged at 200 ° C. for 4 days to obtain a transparent material.
この透明状物質の軟化温度は116℃であり、不規則網目構造を有していたことも考慮すると、今回得た透明状物質は有機無機ハイブリッドガラス構造をとる物質、すなわち有機無機ハイブリッドガラス状物質である。この有機無機ハイブリッドガラス状物質の気密性能をみるため、得られた有機無機ハイブリッドガラス状物質の中に有機色素を入れ、1ヶ月後の染み出し状態を観察した。この結果、染み出しは全く認められず、気密性能を満足していることが分かった。また、100℃の雰囲気下に300時間置いたこの有機無機ハイブリッドガラス状物質の転移点を測定したが、その変化は認められず、耐熱性にも問題がないことが確認された。さらに、得られた有機無機ハイブリッドガラス状物質を1ヶ月間、大気中に放置したが、特に変化は認められず、化学的耐久性に優れていることも確認できた。 Considering that the softening temperature of this transparent material is 116 ° C. and has an irregular network structure, the transparent material obtained this time is a material having an organic-inorganic hybrid glass structure, that is, an organic-inorganic hybrid glassy material. It is. In order to check the airtight performance of the organic-inorganic hybrid glassy material, an organic dye was put into the obtained organic-inorganic hybrid glassy material, and the bleeding state after one month was observed. As a result, no oozing was observed and it was found that the airtight performance was satisfied. Further, the transition point of this organic-inorganic hybrid glassy substance placed in an atmosphere of 100 ° C. for 300 hours was measured, but no change was observed, and it was confirmed that there was no problem in heat resistance. Furthermore, although the obtained organic-inorganic hybrid glassy substance was left in the atmosphere for one month, no particular change was observed, and it was confirmed that it was excellent in chemical durability.
(実施例4)
出発原料には金属アルコキシドのフェニルトリエトキシシランとジエトキシジメチルシランの混合系を用い、その比は8:2とした。容器中で10mlのフェニルトリエトキシシラン、2mlのジエトキシジメチルシラン、40mlの水、30mlのエタノールに触媒である酢酸を加え、室温で2日間撹拌し、ゲル化させた。その後、約100℃で乾燥し、そのゲル体を120℃で1時間溶融し、それに引き続いて200℃で1日間熟成することにより透明状物質を得た。
Example 4
As a starting material, a mixed system of metal alkoxides phenyltriethoxysilane and diethoxydimethylsilane was used, and the ratio was 8: 2. Acetic acid as a catalyst was added to 10 ml of phenyltriethoxysilane, 2 ml of diethoxydimethylsilane, 40 ml of water, and 30 ml of ethanol in a container, and the mixture was stirred at room temperature for 2 days to gelate. Then, it dried at about 100 degreeC, the gel body was melt | dissolved for 1 hour at 120 degreeC, and the transparent material was obtained by aging at 200 degreeC for 1 day following that.
この透明状物質の軟化温度は125℃であり、不規則網目構造を有していたことも考慮すると、今回得た透明状物質は有機無機ハイブリッドガラス構造をとる物質、すなわち有機無機ハイブリッドガラス状物質である。この有機無機ハイブリッドガラス状物質の気密性能をみるため、得られた有機無機ハイブリッドガラス状物質の中に有機色素を入れ、1ヶ月後の染み出し状態を観察した。この結果、染み出しは全く認められず、気密性能を満足していることが分かった。また、100℃の雰囲気下に300時間置いたこの有機無機ハイブリッドガラス状物質の転移点を測定したが、その変化は認められず、耐熱性にも問題がないことが確認された。さらに、得られた有機無機ハイブリッドガラス状物質を1ヶ月間、大気中に放置したが、特に変化は認められず、化学的耐久性に優れていることも確認できた。 Considering that the softening temperature of this transparent material is 125 ° C. and has an irregular network structure, the transparent material obtained this time is a material having an organic-inorganic hybrid glass structure, that is, an organic-inorganic hybrid glassy material. It is. In order to check the airtight performance of the organic-inorganic hybrid glassy material, an organic dye was put into the obtained organic-inorganic hybrid glassy material, and the bleeding state after one month was observed. As a result, no oozing was observed and it was found that the airtight performance was satisfied. Further, the transition point of this organic-inorganic hybrid glassy substance placed in an atmosphere of 100 ° C. for 300 hours was measured, but no change was observed, and it was confirmed that there was no problem in heat resistance. Furthermore, although the obtained organic-inorganic hybrid glassy substance was left in the atmosphere for one month, no particular change was observed, and it was confirmed that it was excellent in chemical durability.
(実施例5)
出発原料には金属アルコキシドのフェニルトリエトキシシランとジエトキシジエチルシランの混合系を用い、その比は9:1とした。容器中で10mlのフェニルトリエトキシシラン、1mlのジエトキシジエチルシラン、40mlの水、30mlのエタノールに触媒である酢酸を加え、室温で2日間撹拌し、ゲル化させた。その後、約100℃で乾燥し、そのゲル体を120℃で1時間溶融し、それに引き続いて200℃で1日間熟成することにより透明状物質を得た。
(Example 5)
As a starting material, a mixed system of metal alkoxides phenyltriethoxysilane and diethoxydiethylsilane was used, and the ratio was 9: 1. Acetic acid as a catalyst was added to 10 ml of phenyltriethoxysilane, 1 ml of diethoxydiethylsilane, 40 ml of water, and 30 ml of ethanol in a container, and the mixture was stirred at room temperature for 2 days to gel. Then, it dried at about 100 degreeC, the gel body was melt | dissolved for 1 hour at 120 degreeC, and the transparent material was obtained by aging at 200 degreeC for 1 day following that.
この透明状物質の軟化温度は121℃であり、不規則網目構造を有していたことも考慮すると、今回得た透明状物質は有機無機ハイブリッドガラス構造をとる物質、すなわち有機無機ハイブリッドガラス状物質である。この有機無機ハイブリッドガラス状物質の気密性能をみるため、得られた有機無機ハイブリッドガラス状物質の中に有機色素を入れ、1ヶ月後の染み出し状態を観察した。この結果、染み出しは全く認められず、気密性能を満足していることが分かった。また、100℃の雰囲気下に300時間置いたこの有機無機ハイブリッドガラス状物質の転移点を測定したが、その変化は認められず、耐熱性にも問題がないことが確認された。さらに、得られた有機無機ハイブリッドガラス状物質を1ヶ月間、大気中に放置したが、特に変化は認められず、化学的耐久性に優れていることも確認できた。 Considering that the softening temperature of this transparent material is 121 ° C. and has an irregular network structure, the transparent material obtained this time is a material having an organic-inorganic hybrid glass structure, that is, an organic-inorganic hybrid glassy material. It is. In order to check the airtight performance of the organic-inorganic hybrid glassy material, an organic dye was put into the obtained organic-inorganic hybrid glassy material, and the bleeding state after one month was observed. As a result, no oozing was observed and it was found that the airtight performance was satisfied. Further, the transition point of this organic-inorganic hybrid glassy substance placed in an atmosphere of 100 ° C. for 300 hours was measured, but no change was observed, and it was confirmed that there was no problem in heat resistance. Furthermore, although the obtained organic-inorganic hybrid glassy substance was left in the atmosphere for one month, no particular change was observed, and it was confirmed that it was excellent in chemical durability.
(比較例1)
実施例1とほぼ同様の原料により、ゾルゲル法でゲル体を得た。そのゲル体を約100℃で乾燥させた後、すぐに約600℃で焼結した。この結果、得られた物質は黒化し、800℃でも軟化せず、低融点物質とは言えなかった。
(Comparative Example 1)
A gel body was obtained by a sol-gel method using substantially the same raw material as in Example 1. The gel body was dried at about 100 ° C. and immediately sintered at about 600 ° C. As a result, the obtained substance was blackened and did not soften even at 800 ° C. and could not be said to be a low melting point substance.
(比較例2)
実施例1とほぼ同様の原料により、ゾルゲル法でゲル体を得た。そのゲル体を135℃で1時間熔融した後、20℃での熟成を試みた。20℃で1週間処理したが、この物質は、例えば軟化温度が時間や処理温度とともに変化する不安定な生成物であった。すなわち、安定したガラス状物質ではなかった。
(Comparative Example 2)
A gel body was obtained by a sol-gel method using substantially the same raw material as in Example 1. The gel body was melted at 135 ° C. for 1 hour, and then aging at 20 ° C. was attempted. Treated at 20 ° C. for 1 week, this material was an unstable product whose softening temperature, for example, varies with time and processing temperature. That is, it was not a stable glassy substance.
(比較例3)
実施例2とほぼ同様の原料により、ゾルゲル法でゲル体を得た。そのゲル体を500℃で5時間熔融し、550℃での熟成を試みた。この結果、得られた物質は褐色であり、800℃でも軟化せず、低融点物質とは言えなかった。
(Comparative Example 3)
A gel body was obtained by the sol-gel method using substantially the same raw material as in Example 2. The gel was melted at 500 ° C. for 5 hours and aging at 550 ° C. was attempted. As a result, the obtained substance was brown and did not soften even at 800 ° C. and could not be said to be a low melting point substance.
PDPを始めとするディスプレイ部品の封着・被覆用材料、光スイッチや光結合器を始めとする光情報通信デバイス材料、LEDチップを始めとする光学機器材料、光機能性(非線形)光学材料、接着材料等、低融点ガラスが使われている分野、エポキシ等の有機材料が使われている分野に利用可能である。 Materials for sealing and covering display components such as PDP, optical information communication device materials such as optical switches and optical couplers, optical equipment materials such as LED chips, optical functional (non-linear) optical materials, It can be used in fields where low-melting glass is used, such as adhesive materials, and fields where organic materials such as epoxy are used.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004060549A JP4079897B2 (en) | 2003-03-14 | 2004-03-04 | Organic-inorganic hybrid glassy material and method for producing the same |
US10/800,010 US7802450B2 (en) | 2003-03-14 | 2004-03-15 | Organic-inorganic hybrid glassy materials and their production processes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003069327 | 2003-03-14 | ||
JP2004060549A JP4079897B2 (en) | 2003-03-14 | 2004-03-04 | Organic-inorganic hybrid glassy material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004300416A JP2004300416A (en) | 2004-10-28 |
JP4079897B2 true JP4079897B2 (en) | 2008-04-23 |
Family
ID=33421663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004060549A Expired - Fee Related JP4079897B2 (en) | 2003-03-14 | 2004-03-04 | Organic-inorganic hybrid glassy material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4079897B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4375982B2 (en) * | 2003-03-14 | 2009-12-02 | セントラル硝子株式会社 | Organic-inorganic hybrid glassy material and method for producing the same |
JP4512936B2 (en) * | 2003-03-14 | 2010-07-28 | セントラル硝子株式会社 | Organic inorganic hybrid glassy material |
JP4516727B2 (en) * | 2003-07-31 | 2010-08-04 | セントラル硝子株式会社 | Organic-inorganic hybrid glassy material and method for producing the same |
JP4516736B2 (en) * | 2003-11-19 | 2010-08-04 | セントラル硝子株式会社 | Film-like organic-inorganic hybrid glassy substance and method for producing the same |
JP4736388B2 (en) * | 2004-09-29 | 2011-07-27 | セントラル硝子株式会社 | Organic-inorganic hybrid glassy material and method for producing the same |
JP2009215345A (en) * | 2008-03-07 | 2009-09-24 | Central Glass Co Ltd | Thermosetting organic and inorganic hybrid transparent sealing material |
JP6905916B2 (en) * | 2017-10-31 | 2021-07-21 | 石塚硝子株式会社 | Organic Inorganic Hybrid Glass Material |
-
2004
- 2004-03-04 JP JP2004060549A patent/JP4079897B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004300416A (en) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100756398B1 (en) | Organic-inorganic hybrid vitreous material and method for producing same | |
KR100740804B1 (en) | Organic-inorganic hybrid vitreous material and method for producing same | |
JP4079898B2 (en) | Organic inorganic hybrid glassy material | |
US7728095B2 (en) | Organic-inorganic hybrid glassy material and its production process | |
KR100768577B1 (en) | Organic-inorganic hybrid vitreous material and method for producing same | |
JP4079897B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4516736B2 (en) | Film-like organic-inorganic hybrid glassy substance and method for producing the same | |
US7802450B2 (en) | Organic-inorganic hybrid glassy materials and their production processes | |
JP4516727B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP2005035876A (en) | Organic-inorganic hybrid glassy material and its manufacturing method | |
JP2005097030A (en) | Organic inorganic hybrid glass-like material and its manufacturing method | |
JP4079896B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP2005146222A (en) | Organic/inorganic hybrid glassy material and method for producing the same | |
JP4516766B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4516737B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4516776B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4512936B2 (en) | Organic inorganic hybrid glassy material | |
JP4736388B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP4375982B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP2005146221A (en) | Ultraviolet/visible light transmissive organic-inorganic hybrid glassy material | |
JP2008019395A (en) | Organic/inorganic hybrid glassy substance and its manufacturing method | |
JP2008019396A (en) | Organic/inorganic hybrid glassy substance and its manufacturing method | |
WO2008007681A1 (en) | Organic-inorganic hybrid glassy material and its fabrication method | |
JP2005047780A (en) | Organic-inorganic hybrid vitreous material and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040913 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060424 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20070925 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080205 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4079897 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110215 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110215 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130215 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140215 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |