JP2004276435A - Metal mask and its manufacturing method by laser working method - Google Patents

Metal mask and its manufacturing method by laser working method Download PDF

Info

Publication number
JP2004276435A
JP2004276435A JP2003071561A JP2003071561A JP2004276435A JP 2004276435 A JP2004276435 A JP 2004276435A JP 2003071561 A JP2003071561 A JP 2003071561A JP 2003071561 A JP2003071561 A JP 2003071561A JP 2004276435 A JP2004276435 A JP 2004276435A
Authority
JP
Japan
Prior art keywords
metal mask
base material
thin plate
plate base
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071561A
Other languages
Japanese (ja)
Other versions
JP3809531B2 (en
Inventor
Koichi Saito
耕一 斉藤
Shoji Shibazaki
正二 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku Kogyo Co Ltd
Original Assignee
Taiyo Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku Kogyo Co Ltd filed Critical Taiyo Kagaku Kogyo Co Ltd
Priority to JP2003071561A priority Critical patent/JP3809531B2/en
Publication of JP2004276435A publication Critical patent/JP2004276435A/en
Application granted granted Critical
Publication of JP3809531B2 publication Critical patent/JP3809531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screen printing metal mask, with which the printed film of printing paste having a high thickness accuracy and a high dimensional accuracy is obtained and the coming off of paste at a paste printing is favorable, and its easy manufacturing method. <P>SOLUTION: In this metal mask, opening parts are provided by irradiating laser over a thin base material plate made of austenitic stainless steel and a reformed layer made of a compound of the austenitic stainless steel and fluorine is provided on the surface of the thin base material plate including on the inner wall surfaces of the opening parts. Further, the reformed layer is formed by washing the surface of the thin base material plate with a processing liquid mainly made of acid ammonium fluoride and nitric acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、ステンレス鋼からなる薄板母材にレーザビーム照射により開口部を形成して得られる、例えばスクリーン印刷等に用いられるメタルマスクと、ステンレス鋼からなる薄板母材にレーザビーム照射により開口部を形成した後の後処理方法を改善したメタルマスクの製造方法に関する。
【0002】
【従来の技術】
プリント配線板の回路パターンの所定ランド部分に所定の厚み及び所定のパターンではんだペーストを印刷するためや、その他のスクリーン印刷の技術分野において、スクリーン印刷用メタルマスクが用いられており、また、半導体等の製造においては、所定部分に金属を蒸着させるために蒸着マスク等が用いられている。
これらのスクリーン印刷用メタルマスク、蒸着用メタルマスク等のメタルマスクは、ステンレス鋼からなる薄板母材にエッチング加工により、穴開け、溝切りその他の加工を行なうことにより得ることもできるが、その精密加工を行うことは手間がかかり、生産性がよくないので、製品の納期を数分の1に短縮できる、生産性のよいレーザによる精密加工(微細加工)が行われるようになってきた。
金属板に対するレーザ加工は、レーザビームの熱エネルギーにより所定の個所を溶融し、これにより切断、穴開け等の加工を行なうものであるが、例えばステンレス鋼からなる薄板母材にレーザ加工を行うと、熱溶融跡の加工部の表面、裏面及び断面にドロスと呼ばれる溶融酸化物が付着したり、金属の溶融物の飛散物が付着したり、加工部周辺の前記薄板母材の表面に酸化膜が形成される。このような溶融酸化物、飛散物及び酸化膜(以下、ドロス等という)をそのままにして製品にすると、例えばスクリーン印刷用メタルマスクではその上をはんだペースト等の印刷材料をスキージにより擦りつけるので、これが円滑に動作するのを妨げるのみならず、例えばプリント配線板の配線パターン上の所定のランドに所定パターンで印刷された印刷膜の厚み精度や寸法精度も悪くする。これを回避するために、ドロス等を除去する後処理が必要とされる。
従来、ドロス等の除去には、(i) 研磨布や研磨ペーバー等による機械的な研磨(物理的な手法)、(ii) 電解研磨( 電気的な手法) 、(iii) フッ化水素酸や、硝酸を主体とした処理液による溶解である化学研磨( 化学的な手法) が知られている(前者については特開平7−40070号公報を参照)。
【0003】
【特許文献1】
特開平7−40070号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前記(i) の物理的な手法では、レーザビーム照射により形成した開口部の内壁面に隣接する薄板母材の表面や裏面の研磨は比較的容易であるが、例えば開口部内壁面の研磨を研磨布で行おうとしても、その開けられた穴が例えば直径0.1mmというように微小であるため、その研磨布をその開口部に挿入して擦ることは困難である。これを可能にするために、サンドブラスト法を使用すると、開口部の内壁面に形成された、溶融酸化膜、開口部の下端から前記薄板母材の裏面側に張り出したドロス等は除去できるが、同時に開口のエッジをも削ってしまう、いわゆるエッジだれといわれる変形を起こし、これにより開口部寸法も変化させてしまい、そのままにしてスクリーン印刷用メタルマスクとして用いると、印刷ペーストを印刷するときに、印刷パターンのエッジ部が所定領域からはみ出してしまい、寸法精度のよい印刷パターンが得られないという問題がある。また、この方法では、薄板母材の板厚の極めて薄い製品や、薄板母材の板サイズが小さい、すなわち板面の狭い製品では研磨の際の固定方法を適切に選択しないと、板折れ等の問題を生じ、その固定方法の選択に手間がかかるという作業性の問題もある。
前記(ii)の電気的な手法は、レーザビーム照射により開口部を形成した加工品に電極を接続し、対極との間で電解液を介して通電するものであるが、実質的には母材の溶解を通してドロス等を除去するものであるから、前記ドロス等の剥離むらが生じ易く、その剥離しない部分は研磨されないという研磨むらが生じることになる。また、ドロス等を除去する過程ではステンレス鋼からなる薄板母材の溶出も回避することができず、例えば開口部を形成した場合の開口部のエッジの部分が溶出され、上述したようにエッジだれが起こり、メタルマスクとして使用した場合には寸法精度のよい印刷パターンが得られないという問題を生じる。また、処理をしようとする対象品の形状によっては電極を接続するのに適さないものもあり、この処理を行えないものもあるという問題もある。
【0005】
前記(iii) のフッ化水素酸や硝酸を主体とした化学的な手法は、古くから知られており、ドロス等を化学的に溶解除去しようとするものであるが、この方法では、ドロス等の溶解とともに薄板母材の溶出も避けがたく、上述したようなエッジだれが起こり、メタルマスクとして使用した場合には寸法精度のよい印刷パターンが得られないという問題を生じるのみならず、フッ化水素酸や硝酸が接触する部分の板厚の変化も生じる。形成された開口部の周辺の板厚が小さい場合には、印刷材料を印刷したときの印刷膜の膜厚が小さくなり、例えばはんだペーストを印刷した場合に所定の膜厚が得られないことになり、リフローはんだ付けを行なう場合に所定のはんだ強度が得られないという問題を生じ、スクリーン印刷用メタルマスク等としては使用できなくなる。
【0006】
本発明の第1の目的は、印刷パターンの寸法精度及び厚み精度のよいメタルマスクを提供することにある。
本発明の第2の目的は、さらに、印刷ペーストの抜けのよいメタルマスクを提供することにある。
本発明の第3の目的は、薄板母材にレーザビーム照射により形成した開口部の内壁面を含む表面から溶融酸化物等を除去すると同時にその表面に改質層を容易に設けることができるメタルマスクの製造方法を提供することにある。
本発明の第4の目的は、ペースト印刷時の厚み精度及び寸法精度の高いメタルマスクの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、前記課題を解決するために、(1)、ステンレス鋼からなる薄板母材にレーザビーム照射により前記薄板母材の一方の主面から他方の主面に貫通する開口部が形成されたメタルマスクにおいて、前記薄板母材としてオーステナイト系ステンレス鋼を用い、該薄板母材は前記レーザビーム照射により形成された開口部の内壁面を含む前記薄板母材の表面に該オーステナイト系ステンレス鋼とフッ素との化合物からなる改質層が設けられたことを特徴とするメタルマスクを提供するものである。
また、本発明は、(2)、改質層が設けられたメタルマスクの表面は、該メタルマスクの表面に純水を滴下した際に前記メタルマスクの表面と前記純水の液滴との接触角が50〜75度である撥水性を備えることを特徴とする前記(1)のメタルマスクを提供するものである。
また、本発明は、(3)、オーステナイト系ステンレス鋼からなる薄板母材にレーザビーム照射により前記薄板母材の一方の主面から他方の主面に貫通する開口部を形成する工程と、前記レーザビーム照射により形成された開口部の内壁面を含む前記薄板母材の表面を、酸性フッ化アンモニウム及び硝酸を主成分とする処理液で洗浄する工程と、を有することを特徴とするレーザ加工法によるメタルマスクの製造方法を提供するものである。
また、本発明は、(4)、前記処理液で洗浄することによる開口部の寸法変化量をa、前記処理液で洗浄することによる前記薄板母材の厚み変化量をbとしたとき、a≧3bとすることを特徴とする前記(3)のレーザ加工法によるメタルマスクの製造方法を提供するものである。
【0008】
本発明において、「レーザビーム照射による開口部を形成する」とは、レーザビームの照射により、切断、穴開け、溝ほりその他のエッチング加工といわれる加工の代替をする加工で、微細な開口部の形成を含む加工を母材の金属の熱溶融により行わせた金属板・金属箔その他の金属からなる物をいい、金属にはステンレス鋼が挙げられる。
「メタルマスク」とは、このような加工により例えば丸穴や角穴等を所定の位置に配置した、いわゆるパターン形成した製品のスクリーン印刷用メタルマスクや、蒸着用メタルマスクその他の同様又は類似の加工を施された製品のことをいい、金属板単体の加工品みならず、金属板や金属箔を他の基材に貼り合わせ、その加工をしたもの、あるいは加工部に他の基材に貼り合わせたものも含まれる。
【0009】
前記したステンレス鋼からなる薄板母材の所定の位置に、レーザビームを照射して、前記薄板母材の熱溶融により開口部を設けた加工物及びその周辺には、ドロス等が付着され、上述したようにその除去が必要になる。
その除去のために、本発明においては、メタルマスクの薄板母材としてオーステナイト系ステンレス鋼を選択するとともに、該薄板母材にレーザビーム照射により開口部を形成し、アンモニウム及びアミンの少なくとも1種の酸性フッ化水素酸塩を含有する処理液により処理(洗浄)する。酸性フッ化水素酸塩とは一水素二フッ化水素酸塩のことであり、アンモニウムの酸性フッ化水素酸塩は酸性フッ化アンモニウム(一水素二フッ化アンモニウム)ともいわれるが、アミンの酸性フッ化水素酸塩(4級アンモニウム基を有するアミン塩)とは、アンモニウムの代わりにアミンを用いたものをいい、アミンには有機アミンが挙げられるが、その置換基を水素原子にした極端な場合がアンモニウムであるということもできる。有機アミンとしてはアンモニウムと同等又は類似の機能を有するものが好ましい。アンモニウムやアミンの酸性フッ化水素酸塩は当初より酸性フッ化アンモニウムあるいは酸性フッ化アミン塩であってもよいが、フッ化水素酸とアンモニウムあるいはアミンを所定当量加えて、溶液中で酸性フッ化アンモニウムあるいは酸性フッ化アミン塩と同等又は類似の機能を有するようにしたものでもよく、本発明はこの場合も含む。
【0010】
本発明に係わる処理液は、アンモニウム及びアミンの少なくとも1種の酸性フッ化水素酸塩の化合物を主成分として有する処理液でもよいが、その化合物の金属に対する溶解性を調整する調整剤を含有することが好ましく、この調整剤には硝酸や、硫黄を含む無機系の薬品が挙げられる。このような調整剤を併用すると、薄板母材である金属の溶出を抑制し、ドロス等の除去のみを可能とすることができる。この意味で、この調整剤は抑制剤とすることもできる。
また、上記処理液には、処理対象物表面に対する濡れを促進するために、界面活性剤を含有させてもよい。界面活性剤にはポリエチレングリコール等のポリアルキレングリコール、その誘導体等のノニオン性のものが挙げられるが、アニオン性、カチオン性、両性のものでもよい。
【0011】
上記処理液により処理されてドロス等は除去され、薄板母材の表面にはオーステナイト系ステンレス鋼とフッ素との化合物からなる改質層が形成されるが、酸化膜等の熱溶融変質層の除去による開口部の寸法変化量aと、薄板母材の金属の溶出によるその厚みの寸法変化量bを比べると、a≧3bとすることが好ましい。この条件では、薄板母材の厚みの減少を抑制しつつ、レーザ加工部の熱変質量及び開口部近傍の溶融飛散物の除去と、撥水性の付与を行うことができる。前記オーステナイト系ステンレス鋼とフッ素との化合物からなる改質層が形成されると、その後さらに前記処理液による洗浄を続けても、薄板母材の厚みの変化が抑制されるようになり、ペースト印刷時の厚み精度及び寸法精度の高いメタルマスクを得ることができる。
このようにして、レーザ加工した後の熱溶融跡に付着したドロス等は除去されるが、前記処理液の処理により、薄板母材の金属表面に対して、撥水性を付与することができその値を一定の水準を超えるようにすることができるとともに、また、その表面粗さを大きくすることができる。このように、表面粗さを大きくすると、梨地状にすることができ、意匠性を付与できるとともに、例えばスクリーン印刷用メタルマスクの場合には基板等の被印刷物からの版離れを良くできる。また、所定の撥水性を付与すると、印刷ペーストに対してはその付着を防止し、印刷ペーストの抜けのよいメタルマスクを提供することができる。このとき、そのメタルマスクが薄い場合でも印刷ペーストの刷り込みが均一に行われ、寸法精度及び厚み精度のよい印刷パターンが得られ、印刷性が向上するとともに、その洗浄も容易であるので作業性も向上する。
【0012】
前記処理液による作用については、その処理液中のフッ素イオンがドロス等の例えば酸化膜のクラックを通して薄板母材のオーステナイト系ステンレス鋼と反応し、該オーステナイト系ステンレス鋼とフッ素との化合物からなる改質層を生成し、この過程で酸化膜が剥離する。また、薄板母材の表面に生成した前記改質層は、それ以降の化学反応を抑える効果を有しており、薄板母材であるオーステナイト系ステンレス鋼の溶解が進まないようにするものと考えられる。上述した薄板母材の金属の寸法変化を抑えることができること、前記改質層が設けられた薄板母材の表面が所定の撥水性を示すことは、それぞれ、前記改質層の形成にその原因を求めることもできる。
また、メカニズムは不明だが、前記処理液による作用は、本発明のように薄板母材としてオーステナイト系ステンレス鋼を用いた場合のみに得られる特有のものであって、他のステンレス鋼、例えばマルテンサイト系ステンレス鋼、フェライト系ステンレス鋼等を用いて前記処理液で処理した場合には、同様な改質層の付与や薄板母材の厚み変化や開口部の寸法変化を抑えることができなかった。
【0013】
【発明の実施の形態】
本発明の実施の形態は、その詳細は以下の実施例で述べるが、少なくともこれらの実施例を含む。
【0014】
【実施例】
実施例1
オーステナイト系ステンレス鋼からなる薄板母材の一例として、板厚100μmのSUS304系ステンレス鋼からなる薄板母材を用い、これにYAGレーザビームを照射し、前記薄板母材の一方の主面から他方の主面に貫通する直径100μmの丸穴状の開口部を設けたメタルマスクについて、以下の処理液及び処理条件で後処理としての洗浄を行ない、その後、純水よる洗浄、乾燥等を行ってレーザ精密加工品としてのメタルマスクの試験片を得た。

Figure 2004276435
【0015】
比較例1
実施例1において、酸性フッ化アンモニウム85%水溶液の代わりに、フッ化水素酸85%水溶液を用いたこと以外は同様にして処理を行ない、比較例としてのメタルマスクの試験片を得た。
【0016】
上記実施例1、比較例1のそれぞれのメタルマスクの試験片において、処理時間を0〜30分まで5分間隔で変えたこと以外は同様にして処理し、処理前(処理時間ゼロ)の薄板母材の厚みT0に対する各処理時間(min)における前記薄板母材の厚みTtの変化量ΔT=T0−Tt(μm)を調べた結果を図1に示す。尚、実線は実施例1、点線は比較例1の結果を示す。
この結果より、上記実施例1において、処理時間15分では、処理前の薄板母材の厚みT0に対して処理後の薄板母材の厚みTtの変化ΔT=T0−Ttが2μmであったのに対し、比較例1において、処理時間15分では薄板母材の厚みの減少が20μmであった。
次に、前記実施例1のメタルマスクの試験片において、処理時間を60分まで5分間隔で変えたこと以外は同様にして処理し、処理前(処理時間ゼロ)の開口部の寸法D0に対する各処理時間(min)における前記メタルマスクの開口部の寸法Dtの変化量ΔD=Dt−D0(μm)を調べた結果を図2に示す。
この結果より、処理時間15分以降は、単位時間当たりの開口部の寸法の変化量が小さくなっていることがわかる。
また、前記開口部寸法変化量を測定した各メタルマスクの試験片について、それぞれ各処理時間における両主面の表面粗さの測定結果を図3に示す。
この結果より、表面粗さは処理時間にほぼ比例して増大することがわかった。
【0017】
実施例2
オーステナイト系ステンレス鋼として厚さ120μmのSUS304材からなる薄板母材を用い、これにYAGレーザビーム照射により一方の主面から他方の主面に貫通する直径250μmの丸穴状の開口部を形成したメタルマスクの試験片を作成した。
このメタルマスクの試験片についてその表裏に物理研磨としてバフ研磨を施したメタルマスクを比較例の試験片とし、これとは別に前記のメタルマスクの試験片について前記実施例1と同様に処理液を用いて処理時間15分及び処理時間30分の条件で処理したメタルマスクを実施例の試験片とし、各試験片の表面と純水の液滴との接触角と、各試験片の表面粗さの測定値の平均値(Rz ave)を測定した結果を表1に示す。
【0018】
【表1】
Figure 2004276435
【0019】
なお、接触角は、水平に保持した各試験片の主面上に純水(蒸留水)を滴下して接触角測定用の水滴を形成した状態を前記主面の延長線上から観察し、主面と液滴輪郭との接点を中心とし、その中心点から液滴の輪郭に外接する直線と主面との挟角を測定したものである。
また、表面粗さの測定値の平均値(Rz ave)は、非接触方式のレーザ表面粗さ計による測定値(粗さ曲線)から次式〔数1〕(JIS BO601−2000)により平均して求めた値である。
【0020】
【数1】
Figure 2004276435
【0021】
JIS BO601−2000においては、Rzは「十点平均粗さ」といわれ、粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均値から縦倍率の方向に測定した最も高い山頂から5番目までの山頂の標高(Yp)の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高(Yv)の絶対値の平均をいう、とされている。
本実施例の場合も、これに準じて前記〔数1〕により求めたが、前記JIS規定では、基準長さ(L)としては、測定値の水準によって5段階に分かれており、Rzが0.10〜0.50(μm)の場合には、L=0.25(mm)となっているので、これを採用した。
【0022】
さらに、南工学社製MK−860SV型印刷機に上記各メタルマスクの試験片(厚さ120μm、直径250μmの対応状の開口部を形成したもの)をセットし、ニホンハンダ社製の半田ペースト(品番:RX363−92M−DO)を用い、スキージ角度60度、印圧1.0Kg/cm、スキージ速度10mm/sec、版離れ速度0.5mm/secの条件にて、各20枚のプリント基板に連続印刷を行ない、偶数枚目に印刷したプリント基板上のパターンの半田ペースト印刷膜のパターンの直径(印刷径)をそれぞれ測定した結果を図4に示す。 図4より、実施例のメタルマスクの試験片(15分処理)、同(30分処理)では、印刷回数20回までほぼ安定した印刷径で半田ペースト印刷が行なわれ、半田ペーストの抜けが良好であるのに対し、比較例のメタルマスクの試験片では、所定の印刷径を満たさず、また、印刷回数が20回に近づくにつれて半田ペーストの印刷径が減少し、目詰まりの傾向が見られ、半田ペーストの抜けが不良であった。
また、本発明のメタルマスクは、前記の如くその表面に改質層を有し、所定の撥水性をそなえるとともに、その表面は適当な表面粗さを有するため、梨地状を呈し、意匠性にも優れるとともに、例えば被印刷基板からの版離れが良好である。
【0023】
【発明の効果】
本発明によれば、オーステナイト系ステンレス鋼からなる薄板母材の開口部の内壁面を含む表面にオーステナイト系ステンレス鋼とフッ素との化合物からなる改質層を設けたので、ペースト印刷時の厚み精度及び寸法精度の高いメタルマスクを提供することができる。また、母材表面に所定の撥水性を付与することができ、例えば印刷ペーストの抜けが向上したメタルマスクを提供することができる。
また、開口部の壁面を含む鋼板の表面にフッ素との化合物からなる改質層を設けるだけであるので、その形成も容易であり、また、オーステナイト系ステンレス鋼からなる薄板母材の厚み精度を保持しつつ、レーザ加工部の溶融酸化物及び加工部近傍の溶融飛散物の除去と、適度な撥水性を付与することができるメタルマスクの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例と比較例の方法により得られるメタルマスクの試験片の薄板母材の処理前の厚みに対する各処理時間における厚み変化量の変化を示すグラフである。
【図2】本発明の実施例の方法により得られるメタルマスクの試験片の、処理前の開口部寸法に対する、各処理時間における開口部寸法変化量の変化を示すグラフである。
【図3】本発明の実施例の方法により得られるメタルマスクの試験片の各処理時間における表面粗さの変化を示すグラフである。
【図4】本発明の一実施例のメタルマスクの試験片及び比較例として物理研磨のみのメタルマスクの試験片をそれぞれ用い半田ペーストを連続印刷した際の各印刷回数における印刷パターン径を測定した結果を示すグラフである。[0001]
[Industrial applications]
The present invention provides a metal mask used for, for example, screen printing, which is obtained by forming an opening by laser beam irradiation on a thin plate base made of stainless steel, and an opening formed by laser beam irradiation on a thin plate base made of stainless steel. The present invention relates to a method for manufacturing a metal mask having an improved post-treatment method after forming a metal mask.
[0002]
[Prior art]
A metal mask for screen printing is used for printing a solder paste with a predetermined thickness and a predetermined pattern on a predetermined land portion of a circuit pattern of a printed wiring board, and in other screen printing technical fields, and semiconductors. In the manufacture of such devices, a vapor deposition mask or the like is used to vapor-deposit a metal on a predetermined portion.
Metal masks such as these screen printing metal masks and vapor deposition metal masks can be obtained by performing drilling, grooving, and other processing on a thin plate made of stainless steel by etching. Since processing is troublesome and productivity is low, precision processing (fine processing) using a laser with high productivity, which can shorten the delivery time of a product to a fraction, has come to be performed.
Laser processing on a metal plate is to melt a predetermined location by the thermal energy of a laser beam and thereby perform processing such as cutting and drilling.For example, when performing laser processing on a thin plate base material made of stainless steel, , A molten oxide called dross adheres to the surface, back surface and cross section of the processed portion of the heat melting trace, a scattered metal melt adheres, and an oxide film is formed on the surface of the thin plate base material around the processed portion. Is formed. If such a molten oxide, scattered matter, and oxide film (hereinafter, referred to as dross) are made into a product as it is, for example, in a metal mask for screen printing, a printing material such as a solder paste is rubbed thereon with a squeegee. This not only hinders smooth operation, but also degrades the thickness accuracy and dimensional accuracy of a printed film printed in a predetermined pattern on a predetermined land on a wiring pattern of a printed wiring board, for example. In order to avoid this, post-processing for removing dross and the like is required.
Conventionally, dross or the like has been removed by (i) mechanical polishing (a physical method) using a polishing cloth or a polishing paver, (ii) electrolytic polishing (an electric method), (iii) hydrofluoric acid, There is known a chemical polishing (chemical method) which is a dissolution by a processing solution mainly composed of nitric acid (for the former, see Japanese Patent Application Laid-Open No. 7-40070).
[0003]
[Patent Document 1]
JP-A-7-40070 [0004]
[Problems to be solved by the invention]
However, in the physical method (i), the polishing of the front and back surfaces of the thin plate base material adjacent to the inner wall surface of the opening formed by laser beam irradiation is relatively easy. When the polishing is performed with a polishing cloth, it is difficult to insert the polishing cloth into the opening and rub the hole because the hole is small, for example, 0.1 mm in diameter. In order to make this possible, if a sand blast method is used, a molten oxide film formed on the inner wall surface of the opening, dross projecting from the lower end of the opening to the back side of the thin plate base material, etc. can be removed, At the same time, the edge of the opening is also shaved, causing a deformation called so-called edge dripping, which changes the size of the opening, and when used as it is as a screen printing metal mask, when printing a printing paste, There is a problem in that the edge of the print pattern protrudes from the predetermined area, and a print pattern with good dimensional accuracy cannot be obtained. In addition, in this method, a product having an extremely thin sheet preform or a sheet preform having a small sheet size, that is, a product having a narrow sheet surface, requires a proper fixing method for polishing if the fixing method is not properly selected. There is also a problem of workability that causes the problem described above, and it takes time to select the fixing method.
In the electrical method (ii), an electrode is connected to a processed product having an opening formed by laser beam irradiation, and current is applied between the electrode and a counter electrode through an electrolytic solution. Since dross and the like are removed through the dissolution of the material, unevenness in the separation of the dross and the like is liable to occur, and uneven portions in which the non-separated portion is not polished are generated. In addition, in the process of removing dross and the like, elution of the thin plate base material made of stainless steel cannot be avoided.For example, the edge portion of the opening when the opening is formed is eluted, and the edge drooping occurs as described above. This causes a problem that a print pattern with high dimensional accuracy cannot be obtained when used as a metal mask. In addition, there is a problem that some of the shapes of the target products to be processed are not suitable for connecting the electrodes, and some of the shapes cannot be processed.
[0005]
The above-mentioned chemical method (iii) mainly using hydrofluoric acid or nitric acid has been known for a long time, and is intended to dissolve and remove dross or the like chemically. It is unavoidable that the thin plate base material is eluted with the dissolution of the material, and the edge droop as described above occurs, and when used as a metal mask, not only a problem that a print pattern with high dimensional accuracy cannot be obtained, but also a problem of fluoride. A change in the thickness of a portion where the hydro- or nitric acid comes into contact also occurs. When the thickness of the plate around the formed opening is small, the thickness of the printed film when the printing material is printed becomes small, and for example, when a solder paste is printed, a predetermined thickness cannot be obtained. This causes a problem that a predetermined solder strength cannot be obtained when reflow soldering is performed, and cannot be used as a metal mask for screen printing.
[0006]
A first object of the present invention is to provide a metal mask having high dimensional accuracy and thickness accuracy of a print pattern.
A second object of the present invention is to provide a metal mask with good print paste removal.
A third object of the present invention is to remove a molten oxide or the like from a surface including an inner wall surface of an opening formed on a thin plate base material by laser beam irradiation and at the same time easily provide a modified layer on the surface. An object of the present invention is to provide a method for manufacturing a mask.
A fourth object of the present invention is to provide a method for manufacturing a metal mask having high thickness accuracy and dimensional accuracy during paste printing.
[0007]
[Means for Solving the Problems]
According to the present invention, in order to solve the above problems, (1) an opening is formed through a thin plate base made of stainless steel from one main surface to the other main surface of the thin plate base by laser beam irradiation. In the metal mask, austenitic stainless steel is used as the thin plate preform, and the austenitic stainless steel is formed on the surface of the thin plate preform including the inner wall surface of the opening formed by the laser beam irradiation. It is an object of the present invention to provide a metal mask characterized in that a modified layer made of a compound with fluorine is provided.
Further, according to the present invention, (2) the surface of the metal mask on which the modified layer is provided, when pure water is dropped on the surface of the metal mask, the surface of the metal mask and the droplet of the pure water are mixed. The metal mask according to the above (1) is provided with water repellency having a contact angle of 50 to 75 degrees.
Also, the present invention provides (3) a step of forming an opening penetrating from one main surface to the other main surface of the thin plate base material by irradiating a laser beam to the thin plate base material made of austenitic stainless steel; Cleaning the surface of the thin plate base material including the inner wall surface of the opening formed by laser beam irradiation with a treatment liquid containing ammonium acid fluoride and nitric acid as main components. It is intended to provide a method of manufacturing a metal mask by a method.
In addition, the present invention provides (4) when a is a dimensional change amount of an opening portion by cleaning with the processing liquid and b is a thickness change amount of the thin plate base material by cleaning with the processing liquid. It is intended to provide a method of manufacturing a metal mask by the laser processing method of the above (3), wherein ≧ 3b.
[0008]
In the present invention, “forming an opening by laser beam irradiation” means a process of substituting a process called cutting, drilling, digging and other etching by laser beam irradiation. It refers to a metal plate, a metal foil, or another metal made by performing a process including formation by heat melting a metal of a base material. Examples of the metal include stainless steel.
"Metal mask" refers to a metal mask for screen printing of a so-called patterned product in which, for example, round holes or square holes are arranged at predetermined positions by such processing, a metal mask for vapor deposition, or other similar or similar metal masks. A product that has been processed, not just a processed metal plate, but a metal plate or metal foil stuck to another substrate and processed, or the processed part is applied to another substrate Also includes those that are bonded together.
[0009]
A predetermined position of the thin plate made of stainless steel is irradiated with a laser beam, and a dross or the like is attached to a workpiece having an opening formed by thermal melting of the thin plate and the periphery thereof. It needs to be removed, as we did.
For the removal, in the present invention, austenitic stainless steel is selected as the thin plate base material of the metal mask, and an opening is formed in the thin plate base material by laser beam irradiation, and at least one of ammonium and amine is used. The substrate is treated (washed) with a treatment solution containing an acid hydrofluoride. Acid hydrofluoride refers to monohydrogen dihydrofluoride, and ammonium acid hydrofluoride is also called ammonium acid fluoride (ammonium dihydrogen fluoride). Hydrochloride (amine salt having a quaternary ammonium group) refers to a compound using an amine instead of ammonium. Examples of the amine include organic amines. In the extreme case where the substituent is replaced with a hydrogen atom, Can be ammonium. As the organic amine, those having the same or similar function as ammonium are preferable. The acidic hydrofluoric acid salt of ammonium or amine may be ammonium acid fluoride or acidic acid fluoride salt from the beginning. It may have the same or similar function as ammonium or acidic fluorinated amine salt, and the present invention includes this case.
[0010]
The treatment liquid according to the present invention may be a treatment liquid having a compound of at least one kind of acidic hydrofluoride of ammonium and amine as a main component, but contains a regulator for adjusting the solubility of the compound to metal. Preferably, the adjusting agent includes nitric acid and inorganic chemicals containing sulfur. When such an adjusting agent is used in combination, it is possible to suppress the elution of the metal that is the thin plate base material and to enable only the removal of dross and the like. In this sense, the modifier can also be an inhibitor.
Further, the treatment liquid may contain a surfactant in order to promote wetting on the surface of the treatment object. Examples of the surfactant include nonionic surfactants such as polyalkylene glycols such as polyethylene glycol and derivatives thereof, and anionic, cationic and amphoteric surfactants may be used.
[0011]
Dross and the like are removed by treatment with the above treatment solution, and a modified layer made of a compound of austenitic stainless steel and fluorine is formed on the surface of the thin plate base material. When the amount of dimensional change a of the opening due to the above is compared with the amount of dimensional change b of the thickness of the thin plate base metal due to elution of the metal, it is preferable that a ≧ 3b. Under these conditions, it is possible to remove the heat-transformed mass of the laser-processed portion and the melted scattered matter near the opening and to impart water repellency while suppressing a decrease in the thickness of the thin plate base material. When a modified layer made of a compound of the austenitic stainless steel and fluorine is formed, even if washing with the treatment liquid is further continued, a change in the thickness of the thin plate base material is suppressed, and paste printing is performed. A metal mask with high thickness accuracy and dimensional accuracy at the time can be obtained.
In this way, dross and the like attached to the heat-melted traces after the laser processing are removed, but by the treatment of the treatment liquid, water repellency can be imparted to the metal surface of the thin plate base material. The value can exceed a certain level, and the surface roughness can be increased. As described above, when the surface roughness is increased, it is possible to form a satin finish, impart design, and, for example, in the case of a metal mask for screen printing, it is possible to improve the separation of the plate from a substrate such as a substrate. Further, when a predetermined water repellency is imparted, the metal paste can be prevented from adhering to the print paste, and a metal mask with good print paste removal can be provided. At this time, even when the metal mask is thin, the printing of the printing paste is performed uniformly, a printing pattern with good dimensional accuracy and thickness accuracy is obtained, and the printability is improved, and the cleaning is easy. Also improve.
[0012]
Regarding the action of the treatment liquid, fluorine ions in the treatment liquid react with the austenitic stainless steel of the thin plate base material through, for example, cracks in an oxide film such as dross, and the fluorine ion in the treatment liquid is composed of a compound of the austenitic stainless steel and fluorine. The oxide layer is exfoliated in this process. Further, the modified layer formed on the surface of the thin plate base material has an effect of suppressing a subsequent chemical reaction, and is considered to prevent melting of the austenitic stainless steel as the thin plate base material. Can be The fact that the above-described dimensional change of the metal of the thin plate base material can be suppressed, and that the surface of the thin plate base material provided with the modified layer exhibits a predetermined water repellency, respectively, are caused by the formation of the modified layer. Can also be requested.
Although the mechanism is unknown, the action of the treatment liquid is a unique one obtained only when austenitic stainless steel is used as the thin plate base material as in the present invention, and other stainless steels such as martensite are used. When a treatment was performed with the treatment liquid using a series stainless steel, a ferritic stainless steel, or the like, it was not possible to provide a similar modified layer, suppress a change in the thickness of the thin plate base material, and a change in the dimension of the opening.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail in the following examples, but include at least these examples.
[0014]
【Example】
Example 1
As an example of a thin plate base material made of austenitic stainless steel, a thin plate base material made of SUS304 stainless steel having a thickness of 100 μm is used, and this is irradiated with a YAG laser beam, from one main surface of the thin plate base material to the other. The metal mask provided with a 100 μm-diameter round hole-shaped opening penetrating the main surface is cleaned as a post-process with the following processing liquid and processing conditions, and then washed with pure water, dried, etc. A test piece of a metal mask as a precision processed product was obtained.
Figure 2004276435
[0015]
Comparative Example 1
The procedure of Example 1 was repeated, except that a 85% aqueous solution of hydrofluoric acid was used instead of the 85% aqueous solution of acidic ammonium fluoride, to obtain a metal mask test piece as a comparative example.
[0016]
The test pieces of the metal masks of Example 1 and Comparative Example 1 were processed in the same manner except that the processing time was changed every 5 minutes from 0 to 30 minutes, and the thin plate before the processing (the processing time was zero) FIG. 1 shows the result of examining the variation ΔT = T0−Tt (μm) of the thickness Tt of the thin plate base material at each processing time (min) with respect to the base material thickness T0. The solid line shows the result of Example 1 and the dotted line shows the result of Comparative Example 1.
From this result, in Example 1 described above, at a processing time of 15 minutes, the change ΔT = T0−Tt of the thickness Tt of the thin sheet base material after the processing was 2 μm with respect to the thickness T0 of the thin sheet base material before the processing. On the other hand, in Comparative Example 1, the reduction in the thickness of the thin plate preform was 20 μm at a processing time of 15 minutes.
Next, the test piece of the metal mask of Example 1 was processed in the same manner except that the processing time was changed at intervals of 5 minutes up to 60 minutes. FIG. 2 shows the result of examining the variation ΔD = Dt−D0 (μm) of the dimension Dt of the opening of the metal mask at each processing time (min).
From this result, it can be seen that after the processing time of 15 minutes, the amount of change in the size of the opening per unit time is small.
FIG. 3 shows the measurement results of the surface roughness of both main surfaces of each test piece of each metal mask measured for the opening dimension change amount at each processing time.
From this result, it was found that the surface roughness increased almost in proportion to the processing time.
[0017]
Example 2
As austenitic stainless steel, a thin plate base material made of SUS304 having a thickness of 120 μm was used, and a 250 μm-diameter round hole opening penetrating from one main surface to the other main surface was formed in the thin plate base material by YAG laser beam irradiation. A test piece of a metal mask was prepared.
With respect to the test piece of this metal mask, a metal mask subjected to buff polishing as physical polishing on the front and back was used as a test piece of a comparative example, and separately from this, a treatment liquid was applied to the test piece of the metal mask in the same manner as in Example 1. A metal mask treated under the conditions of a treatment time of 15 minutes and a treatment time of 30 minutes was used as a test piece of the example, and the contact angle between the surface of each test piece and a droplet of pure water, and the surface roughness of each test piece Table 1 shows the result of measuring the average value (Rz ave) of the measured values of the above.
[0018]
[Table 1]
Figure 2004276435
[0019]
The contact angle was determined by observing a state in which pure water (distilled water) was dropped on the main surface of each test piece held horizontally to form a water droplet for measuring the contact angle from an extension of the main surface, The angle between the main surface and the straight line circumscribing the contour of the droplet from the center point is measured with the contact point between the surface and the contour of the droplet as the center.
The average value (Rz ave) of the measured values of the surface roughness is averaged from the value (roughness curve) measured by a non-contact laser surface roughness meter according to the following equation (Equation 1) (JIS BO601-2000). It is the value obtained by
[0020]
(Equation 1)
Figure 2004276435
[0021]
In JIS BO601-2000, Rz is referred to as "ten-point average roughness", which is extracted from the roughness curve by a reference length in the direction of the average line, and measured in the direction of longitudinal magnification from the average value of the extracted portion. The average of the absolute values of the altitudes (Yp) of the highest to fifth peaks and the average of the absolute values of the altitudes (Yv) of the lowest to fifth valleys are described.
In the case of this embodiment as well, the value was obtained according to the above [Equation 1]. However, according to the JIS regulations, the reference length (L) is divided into five stages depending on the level of the measured value, and Rz is 0. In the case of 0.10 to 0.50 (μm), L = 0.25 (mm), which was adopted.
[0022]
Further, a test piece (having a corresponding opening having a thickness of 120 μm and a diameter of 250 μm) of each of the above metal masks was set on a MK-860SV type printing machine manufactured by Minami Kogyo Co., Ltd. : RX363-92M-DO) on a 20 printed circuit board under the conditions of a squeegee angle of 60 degrees, a printing pressure of 1.0 kg / cm 2 , a squeegee speed of 10 mm / sec, and a plate separation speed of 0.5 mm / sec. FIG. 4 shows the results of measuring the diameter (printing diameter) of the pattern of the solder paste print film of the pattern on the printed circuit board printed on the even numbered sheets by performing continuous printing. As shown in FIG. 4, in the metal mask test pieces (15-minute processing) and (30-minute processing) of the example, solder paste printing was performed with a print diameter that was almost stable up to 20 times, and the solder paste was well removed. On the other hand, in the test piece of the metal mask of the comparative example, the predetermined printing diameter was not satisfied, and the printing diameter of the solder paste was reduced as the number of printings approached 20, and the tendency of clogging was observed. In addition, the solder paste was poorly removed.
In addition, the metal mask of the present invention has a modified layer on its surface as described above, and has a predetermined water repellency. And, for example, good separation of the plate from the substrate to be printed.
[0023]
【The invention's effect】
According to the present invention, since a modified layer made of a compound of austenitic stainless steel and fluorine is provided on the surface including the inner wall surface of the opening of the thin plate base material made of austenitic stainless steel, the thickness accuracy during paste printing is improved. In addition, a metal mask having high dimensional accuracy can be provided. In addition, a predetermined water repellency can be imparted to the surface of the base material, and for example, a metal mask with improved removal of the printing paste can be provided.
Also, since it is only necessary to provide a modified layer made of a compound with fluorine on the surface of the steel sheet including the wall surface of the opening, the formation is easy, and the thickness accuracy of the thin plate base material made of austenitic stainless steel is improved. It is possible to provide a method of manufacturing a metal mask capable of removing a molten oxide in a laser processing portion and a molten scattered matter in the vicinity of the processing portion while maintaining the laser processing portion and imparting appropriate water repellency.
[Brief description of the drawings]
FIG. 1 is a graph showing a change in a thickness change amount at each processing time with respect to a thickness of a test piece of a metal mask obtained by a method of an example of the present invention and a method of a comparative example before processing a thin plate base material.
FIG. 2 is a graph showing a change in an opening size change amount in each processing time with respect to an opening size before processing of a test piece of a metal mask obtained by a method according to an embodiment of the present invention.
FIG. 3 is a graph showing a change in surface roughness of a test piece of a metal mask obtained by a method according to an example of the present invention at each processing time.
FIG. 4 shows a print pattern diameter at each printing frequency when a solder paste is continuously printed by using a metal mask test piece of one example of the present invention and a metal mask test piece of only physical polishing as a comparative example, respectively. It is a graph which shows a result.

Claims (4)

ステンレス鋼からなる薄板母材にレーザビーム照射により前記薄板母材の一方の主面から他方の主面に貫通する開口部が形成されたメタルマスクにおいて、前記薄板母材としてオーステナイト系ステンレス鋼を用い、該薄板母材は前記レーザビーム照射により形成された開口部の内壁面を含む前記薄板母材の表面に該オーステナイト系ステンレス鋼とフッ素との化合物からなる改質層が設けられたことを特徴とするメタルマスク。In a metal mask in which an opening penetrating from one main surface of the thin plate base material to the other main surface thereof by laser beam irradiation on a thin plate base material made of stainless steel, austenitic stainless steel is used as the thin plate base material. A modified layer made of a compound of the austenitic stainless steel and fluorine is provided on a surface of the thin plate base material including an inner wall surface of an opening formed by the laser beam irradiation. Metal mask. 改質層が設けられたメタルマスクの表面は、該メタルマスクの表面に純水を滴下した際に前記メタルマスクの表面と前記純水の液滴との接触角が50〜75度である撥水性を備えることを特徴とする請求項1に記載のメタルマスク。The surface of the metal mask provided with the modified layer has a repellency in which the contact angle between the surface of the metal mask and the pure water droplet is 50 to 75 degrees when pure water is dropped on the surface of the metal mask. The metal mask according to claim 1, wherein the metal mask is provided with an aqueous solution. オーステナイト系ステンレス鋼からなる薄板母材にレーザビーム照射により前記薄板母材の一方の主面から他方の主面に貫通する開口部を形成する工程と、前記レーザビーム照射により形成された開口部の内壁面を含む前記薄板母材の表面を、酸性フッ化アンモニウム及び硝酸を主成分とする処理液で洗浄する工程と、を有することを特徴とするレーザ加工法によるメタルマスクの製造方法。Forming an opening penetrating from one main surface to the other main surface of the thin plate base material by laser beam irradiation on a thin plate base material made of austenitic stainless steel; and forming an opening formed by the laser beam irradiation. Cleaning the surface of the thin plate base material including the inner wall surface with a processing solution containing ammonium acid fluoride and nitric acid as main components, the method for manufacturing a metal mask by a laser processing method. 前記処理液で洗浄することによる開口部の寸法変化量をa、前記処理液で洗浄することによる前記薄板母材の厚み変化量をbとしたとき、a≧3bとすることを特徴とする請求項3に記載のレーザ加工法によるメタルマスクの製造方法。When the amount of dimensional change of the opening due to the cleaning with the processing liquid is a and the amount of change in the thickness of the thin plate base material by the cleaning with the processing liquid is b, a ≧ 3b is satisfied. Item 4. A method for manufacturing a metal mask by a laser processing method according to Item 3.
JP2003071561A 2003-03-17 2003-03-17 Metal mask and metal mask manufacturing method by laser processing method Expired - Lifetime JP3809531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071561A JP3809531B2 (en) 2003-03-17 2003-03-17 Metal mask and metal mask manufacturing method by laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071561A JP3809531B2 (en) 2003-03-17 2003-03-17 Metal mask and metal mask manufacturing method by laser processing method

Publications (2)

Publication Number Publication Date
JP2004276435A true JP2004276435A (en) 2004-10-07
JP3809531B2 JP3809531B2 (en) 2006-08-16

Family

ID=33287974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071561A Expired - Lifetime JP3809531B2 (en) 2003-03-17 2003-03-17 Metal mask and metal mask manufacturing method by laser processing method

Country Status (1)

Country Link
JP (1) JP3809531B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183049A (en) * 2004-12-27 2006-07-13 General Electric Co <Ge> Method for removing engine deposit from turbine component and composition for use in the same
WO2012118113A1 (en) * 2011-03-01 2012-09-07 住友金属工業株式会社 Metal plate for laser processing and method for producing stainless steel plate for laser processing
TWI634227B (en) * 2015-07-17 2018-09-01 日商凸版印刷股份有限公司 Method for manufacturing base material for metal mask, method for manufacturing metal mask for vapor deposition
US10273569B2 (en) 2015-07-17 2019-04-30 Toppan Printing Co., Ltd. Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
JP2019107858A (en) * 2017-12-20 2019-07-04 株式会社ボンマーク Metal mask for screen printing with plate frame and manufacturing method therefor
US10876215B2 (en) 2015-07-17 2020-12-29 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US10903426B2 (en) 2015-07-17 2021-01-26 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183049A (en) * 2004-12-27 2006-07-13 General Electric Co <Ge> Method for removing engine deposit from turbine component and composition for use in the same
US10744600B2 (en) 2011-03-01 2020-08-18 Nippon Steel Corporation Metal plate for laser processing and method for producing stainless steel plate for laser processing
JP5482962B2 (en) * 2011-03-01 2014-05-07 新日鐵住金株式会社 Manufacturing method of metal plate for laser processing and stainless steel plate for laser processing
EP2682490A4 (en) * 2011-03-01 2015-08-19 Nippon Steel & Sumitomo Metal Corp Metal plate for laser processing and method for producing stainless steel plate for laser processing
KR101877084B1 (en) * 2011-03-01 2018-07-10 신닛테츠스미킨 카부시키카이샤 Metal plate for laser processing and method for producing stainless steel plate for laser processing
WO2012118113A1 (en) * 2011-03-01 2012-09-07 住友金属工業株式会社 Metal plate for laser processing and method for producing stainless steel plate for laser processing
US10876215B2 (en) 2015-07-17 2020-12-29 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US10273569B2 (en) 2015-07-17 2019-04-30 Toppan Printing Co., Ltd. Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
TWI634227B (en) * 2015-07-17 2018-09-01 日商凸版印刷股份有限公司 Method for manufacturing base material for metal mask, method for manufacturing metal mask for vapor deposition
US10903426B2 (en) 2015-07-17 2021-01-26 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
US11111585B2 (en) 2015-07-17 2021-09-07 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
TWI775907B (en) * 2015-07-17 2022-09-01 日商凸版印刷股份有限公司 Manufacturing method of base material for metal mask, manufacturing method of metal mask for vapor deposition, base material for metal mask, and metal mask for vapor deposition
US11453940B2 (en) 2015-07-17 2022-09-27 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US11706968B2 (en) 2015-07-17 2023-07-18 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
US11746423B2 (en) 2015-07-17 2023-09-05 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
JP2019107858A (en) * 2017-12-20 2019-07-04 株式会社ボンマーク Metal mask for screen printing with plate frame and manufacturing method therefor

Also Published As

Publication number Publication date
JP3809531B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP5720860B1 (en) Manufacturing method of ceramic circuit board
TWI449796B (en) Laser processing metal plate, laser cutting metal plate mold, and laser processing with Wo Si Tin iron stainless steel plate manufacturing method
JP2734839B2 (en) Etching solution for aluminum, etching method and aluminum etching product
JP2007039716A (en) Method for peeling plating layer by using laser beam, processed plated steel sheet, rust preventive fuel tank of working machine, and laser beam machine
JP2004276435A (en) Metal mask and its manufacturing method by laser working method
EP0746638B1 (en) Surface treatment of an object
JP5521184B2 (en) Method for producing fluoride spray coating coated member
US20180171504A1 (en) Process for the electrolytic polishing of a metallic substrate
Shin et al. Electrochemical etching of stainless steel through laser masking
JP6281686B2 (en) Metal mask and manufacturing method thereof
JP2008119735A (en) Method of working high-hardness material
JP3431931B2 (en) Copper and copper alloy surface treatment method
CN110682010A (en) Method for removing metal adhering slag generated by laser cutting or punching
JP2008144228A (en) Chemical dissolution control agent for metal, chemically dissolving solution for metal, and chemically dissolving method for metal
Laxminarayana et al. Study of surface morphology on micro machined surfaces of AISI 316 by Die Sinker EDM
KR102245912B1 (en) Method for decreasing particle in arc coating process and sputtering apparatus having coating by this method
US11408080B2 (en) Method of cleaning pretreatment of ferrous components that have been joined by welding
JPH06171261A (en) Support for planographic printing plate and production thereof
JP3985620B2 (en) Etching method
JP2019072712A (en) Forming method and forming device for functional layer onto surface layer of base material layer
JP2015006719A (en) Surface processing method of aluminum base material
Singh Nonconventional Machining Operations
KR20200073408A (en) Cutting and Processing Method of Metal Plate and Stainless Steel Plate
Lee et al. Effects of acid electrolytes and electropolishing conditions on laser-stencil printing performance
Das et al. Advanced machining processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Ref document number: 3809531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term