JP2004273520A - Activated carbon fiber for capacitor electrode and electric double layer capacitor - Google Patents

Activated carbon fiber for capacitor electrode and electric double layer capacitor Download PDF

Info

Publication number
JP2004273520A
JP2004273520A JP2003058372A JP2003058372A JP2004273520A JP 2004273520 A JP2004273520 A JP 2004273520A JP 2003058372 A JP2003058372 A JP 2003058372A JP 2003058372 A JP2003058372 A JP 2003058372A JP 2004273520 A JP2004273520 A JP 2004273520A
Authority
JP
Japan
Prior art keywords
carbon fiber
activated carbon
electric double
double layer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058372A
Other languages
Japanese (ja)
Inventor
Tomimori Hosotsubo
富守 細坪
Takashi Maeda
崇志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashima Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Kashima Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kashima Oil Co Ltd, Petroleum Energy Center PEC filed Critical Kashima Oil Co Ltd
Priority to JP2003058372A priority Critical patent/JP2004273520A/en
Publication of JP2004273520A publication Critical patent/JP2004273520A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated carbon fiber for capacitor electrode, which enables an electric double layer capacitor high in electrostatic capacitance and superior in performance, to be realized. <P>SOLUTION: The activated carbon fiber can be obtained by thermally treating carbon fiber and an alkaline metal compound at temperatures of 650 to 800°C. It is characterised in that its specific surface area is 1,000 to 1,500 m<SP>2</SP>/g, oxygen content is 3.5 wt.% or below, and residue of alkaline metal is 1,000 ppm or below. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、キャパシタ電極用活性炭素繊維および電気二重層キャパシタに関する。
【0002】
【従来の技術】
近年、携帯電話やノートパソコン等の新しい電子機器の急速な普及によりその電源として使用される二次電池も高性能化、小型化が求められている。また、前記二次電池は省電力化に加えて、電気自動車の補助電源等の大容量分野への応用も期待されている。中でもリチウムイオン二次電池は、かかる要望を満たす二次電池として実用化されている。
【0003】
しかしながら、リチウムイオン二次電池は使用温度範囲、充放電サイクル(寿命)、電気容量、充放電速度およびコストの面で十分に満足するものではなかった。
【0004】
このようなことから、電気二重層キャパシタが開発されている。特に、電気自動車用電源の分野では10年以上の長い寿命、減速時のエネルギー回生の効率化が必須となるため、高性能の電気二重層キャパシタの開発が切望されている。
【0005】
前記電気二重層キャパシタは、1879年のHelmholtzの理論に遡り、異なる二層が接触したときにその界面に発生する正、負の電荷が短い距離を隔てて配列する現象に基づくもので、界面に生じた正負の電荷分布が電気二重層と呼ばれている。電気二重層キャパシタは、分極性電極と電解液との界面に形成される電気二重層を利用した大容量のコンデンサであり、従来の二次電池に比べて次のような特徴を有する。
【0006】
1)従来の二次電池に比べて内部抵抗が低いために、大電流放電が可能である。
【0007】
2)充放電時に化学反応を伴わないため、大電流での急速充放電が可能で、かつエネルギー回生効率が著しく高い。
【0008】
3)電極の劣化が殆どないため、従来の二次電池に比べて数十倍から数百倍の長い寿命を有する。
【0009】
4)広い温度範囲で安定した充放電挙動を示す。
【0010】
5)短絡しても故障せず、充放電時の制約もない。
【0011】
6)カドミウム、鉛のような有害な重金属を含まないために環境に優しい。
【0012】
前述した電気二重層キャパシタの電極材料としては、比表面積の大きな活性炭、活性炭素繊維が最適と考えられている。これは、電気二重層キャパシタの充電時に蓄積される電気容量Cが電極の比表面積に比例するためである。
【0013】
前記活性炭は、従来、椰子殻、石炭、フェノール樹脂などの難黒鉛化炭素材、つまりハードカーボンの原料を水蒸気や二酸化炭素などにより賦活処理することによって製造される。しかしながら、この活性炭を電極材料とした電気二重層キャパシタは、十分な性能が得られない。
【0014】
このようなことから、特許文献1には炭素材をアルカリ金属化合物の共存下で賦活する、いわゆるアルカリ賦活により高性能の活性炭を製造する方法が開示されている。このアルカリ賦活の特徴は、従来のガス賦活では難黒鉛化炭素材のみしか賦活できないのに対し、メソフェーズピッチのような易黒鉛化炭素材も同様に原料とし用いることができることである。このため、メソフェーズピッチを炭素化した炭素材をアルカリ賦活することが試みられている。例えば、特許文献2にはメソフェーズ成分を50%以上含むピッチを紡糸してピッチ繊維を得、これをアルカリ賦活することにより2000m/g以上の高比表面積を持つ活性炭素繊維の製造方法が開示されている。
【0015】
さらに、近年、易黒鉛化炭素材を直接アルカリ賦活処理することにより得られた活性炭素繊維を電気二重層キャパシタの電極材として用いることが試みられている。例えば、特許文献3にはメソフェーズピッチ系炭素繊維を直接アルカリ賦活して比表面積が3000m/g以上の活性炭素繊維を作り、この活性炭素繊維を水または酸類で脱灰した後、繊維の形状が残らない程度に粉砕、成形してなる電気二重層キャパシタ用活性炭素繊維が開示されている。
【0016】
【特許文献1】
特開平1−137865号公報
【0017】
【特許文献2】
特開平5−247731号公報
【0018】
【特許文献3】
特開平5−258996号公報
【0019】
【発明が解決しようとする課題】
前記アルカリ賦活処理により得られた活性炭素繊維は、電気二重層キャパシタ用電極材として用いた場合、従来のガス賦活法で製造された活性炭、活性炭素繊維に比べて比表面積が小さくても高い充放電容量が得られる。このため、単位体積あたりの充放電容量を向上できる利点を有する。しかしながら、現在市販されているアルカリ賦活法で活性炭素繊維をキャパシタ電極材として使用した場合でも、未だ十分な性能を発揮し難く、実用化の大きな障害になっていた。このため、より静電容量の高いキャパシタ電極材料が望まれている。
【0020】
本発明者らは、電気二重層キャパシタの容量が活性炭素繊維表面への電解質イオンの吸着により発現することから、アルカリ賦活法で得られた活性炭素繊維の比表面積に着目して種々検討した。その結果、前記活性炭素繊維の比表面積が大きい程、『単位重量あたりのキャパシタ容量(F/g)』を増加できるものの、比表面積が大きくなる程、活性炭素繊維の嵩密度が小さくなって『単位容積あたりのキャパシタ容量(F/cc)』が低下する傾向にあることを究明した。
【0021】
このような究明結果に基づいて、本発明者らは前記活性炭素繊維の比表面積の下限を1000m/g、上限を1500m/gに規定することによって、『単位重量あたりのキャパシタ容量(F/g)』と『単位容積あたりのキャパシタ容量(F/cc)』をバランスさせて最適化でき、高キャパシタ容量の電気二重層キャパシタを実現し得るキャパシタ電極用活性炭素繊維を見出した。
【0022】
また、本発明者らはアルカリ賦活法で得られた活性炭素繊維に含まれる酸素が、電気二重層キャパシタの充放電時に酸素ガスの発生源となって電解液の劣化を生じることに着目し、酸素含有量を3.5重量%以下に規定することによって、充放電時の酸素ガス発生を抑制し、電解液劣化を低減した長寿命の電気二重層キャパシタを実現し得るキャパシタ電極用活性炭素繊維を見出した。
【0023】
さらに、本発明者らはアルカリ賦活法で得られた活性炭素繊維に残留するアルカリ金属が電気二重層キャパシタの初期性能を低下させることに着目し、アルカリ金属残量を1000ppm以下に規定することによって、初期性能の優れた電気二重層キャパシタを実現し得るキャパシタ電極用活性炭素繊維を見出した。
【0024】
以上のように、本発明者らは比表面積、酸素含有量、さらにアルカリ金属残量をそれぞれ特定の範囲に規定することによって、静電容量が高く、高性能の電気二重層キャパシタを実現し得るキャパシタ電極用活性炭素繊維を見出し、本発明を完成した。
【0025】
また、本発明者らは前記活性炭素繊維を有するキャパシタ電極を備えることによって、静電容量が高く、高性能の電気二重層キャパシタを見出した。
【0026】
【課題を解決するための手段】
前記目的を達成するために本発明は、炭素繊維とアルカリ金属化合物とを650〜800℃の温度で熱処理することによって製造された活性炭素繊維であって、
比表面積が1000m/g〜1500m/g、酸素含有量が3.5重量%以下、アルカリ金属残量が1000ppm以下であることを特徴とするキャパシタ電極用活性炭素繊維を提供する。
【0027】
また、本発明は前記キャパシタ電極用活性炭素繊維を含むキャパシタ電極を備えることを特徴とする電気二重層キャパシタを提供する。
【0028】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0029】
本発明のキャパシタ電極用活性炭素繊維は、炭素繊維とアルカリ金属化合物とを650〜800℃の温度で熱処理することによって製造されたものである。この活性炭素繊維は、比表面積が1000m/g〜1500m/g、酸素含有量が3.5重量%以下、アルカリ金属残量が1000ppm以下である性状(特性)を有する。
【0030】
前記炭素繊維としては、例えば1)原料ピッチを2)紡糸工程、3)不融化工程、4)炭化工程、5)粉砕工程を経ることにより製造されたものが用いられる。
【0031】
1)原料ピッチ
この原料ピッチとしては、例えば石油系または石炭系のメソフェーズピッチを挙げることができる。このピッチのメソフェーズ含有量は、50%以上、好ましくは80%以上、より好ましくは100%であることが望ましい。
【0032】
2)紡糸工程
この紡糸工程は、例えば溶融紡糸法、遠心紡糸法、メルトブロー紡糸法等の一般的な方法を採用することができる。中でも、コストの面からメルトブロー紡糸法が好ましい。
【0033】
3)不融化工程
この不融化工程は、例えば紡糸された炭素材を空気、二酸化窒素、ヨウ素等の酸化性雰囲気(好ましくは空気の雰囲気)中、250〜350℃、好ましくは270〜320℃の温度にて実施される。
【0034】
4)炭化工程
この炭化工程は、例えば不融化処理後の炭素材を窒素雰囲気中、650〜700℃で実施される。炭化操作を650℃未満で実施すると、炭化後の炭素材中に酸素、水素等が残留してこの後の賦活反応が均一に進行しなくなる虞がある。一方、炭化操作が700℃を超える温度で実施されると、炭化反応が進行し過ぎて、この後の賦活反応が進み難くなる虞がある。
【0035】
5)粉砕工程
この粉砕工程は、例えばジェットミル、ボールミル、ディスクミル、高速回転ミル等の粉砕機を用いて実施される。特に、炭素繊維を円柱状に保持するためにジェットミル、高速回転ミルを用いることが好ましい。
【0036】
前記アルカリ金属化合物としては、例えばカリウム、ナトリウム、リチウムの水酸化物または酸化物を用いることができる。特に、反応効率を高める観点から、アルカリ金属化合物として水酸化カリウム、水酸化ナトリウムを用いることが好ましい。
【0037】
前記アルカリ金属化合物の配合量は、前記炭素繊維100重量部に対して150〜300重量部、好ましくは160〜200重量部にすることが望ましい。アルカリ金属化合物の配合量を150重量部未満にすると前記炭素繊維を十分に賦活することが困難になる。一方、アルカリ金属化合物の配合量が300重量部を超えると、アルカリ賦活反応が過度に進行する虞がある。
【0038】
前記熱処理は、前記炭素繊維をアルカリ賦活処理し、その炭素繊維を多孔化する、つまり比表面積を増大させるためになされる。前記熱処理温度を650℃未満にすると、炭素繊維を十分にアルカリ賦活することが困難になる。一方、前記熱処理温度が800℃を超えると賦活以外の副次的な反応が進行して炭素繊維の多孔化を阻害する虞れがある。
【0039】
また、低い温度域での熱処理においては初期性能の高いアルカリ賦活活性炭素繊維が得られるものの、その酸素含有量が高くなって、ある程度の充放電の繰り返した後において酸素発生による電解液の劣化を生じる虞がある。逆に、高い温度域での熱処理においては得られたアルカリ賦活活性炭素繊維の初期性能が下がるものの、その酸素含有量が低減されて充放電時の酸素ガス発生の抑制、電解液の劣化抑制を図ることが可能になる。このようなことから前記熱処理温度を700〜750℃に設定することがより好ましい。
【0040】
本発明に係る活性炭素繊維において、比表面積を1000m/g未満にすると、『単位重量あたりのキャパシタ容量(F/g)』を十分に増大することが困難になる。一方、その活性炭素繊維の比表面積が1500m/gを超えると、『単位容積あたりのキャパシタ容量(F/cc)』が低下するする虞がある。より好ましい比表面積は、1100m/g〜1300m/gである。
【0041】
本発明に係る活性炭素繊維において、酸素含有量が3.5重量%を超えると充放電時に比較的多い酸素ガスが発生して、電解液を短い期間で劣化する虞がある。より好ましい酸素含有量が3.0重量%以下である。
【0042】
本発明に係る活性炭素繊維において、アルカリ金属残量が1000ppmを超えると初期性能が低下する虞がある。より好ましいアルカリ金属残量は、600ppm%以下である。
【0043】
次に、本発明に係る電気二重層キャパシタを説明する。
【0044】
この電気二重層キャパシタは、前述した活性炭素繊維を含む一対のキャパシタ電極(陽極、陰極)をセパレータを間に挟んで配置し、かつ前記キャパシタ電極およびセパレータに電解液を含浸した構造を有する。
【0045】
前記キャパシタ電極は、例えば前記活性炭素繊維、黒鉛粉末のような導電剤およびポリテトラフルオロエチレンのような結着剤を混練し、この混練物を圧延、シート化するか、または前記混練物をアルミニウム箔のような集電体の片面もしくは両面に圧延、シート化するか、いずれかの方法により作製される。
【0046】
前記セパレータとしては、ポリエチレンのようなポリオレフィンの不織布、微細な孔を開口した多孔質ポリオレフィンシート等を用いることができる。
【0047】
前記電解液は、水溶液系電解液、有機系電解液に大別され、後者の有機系電解液を用いたキャパシタはエネルギー密度を非常に大きくすることが可能である。
【0048】
前記水溶液系電解液は、硫酸水溶液からなる。
【0049】
前記有機系電解液は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルスルフォキシド、アセトニトリル、テトラヒドロフランおよびジメトキシエタンのような有機溶媒に四級アンモニウム塩、LiClO,NaBF,LiPFのような電解質を溶解した組成を有する。
【0050】
このような電気二重層キャパシタは、具体的にはコイン型キャパシタ、円筒型キャパシタを挙げることができる。
【0051】
【実施例】
以下、本発明の好ましい実施例を説明する。
【0052】
(実施例1)
まず、石油系メソフェーズピッチをメルトブロー法で紡糸した後、空気雰囲気中、300℃で不融化し、窒素雰囲気中、650℃で炭化し、ジェットミルで粉砕することにより粉末状炭素繊維を得た。
【0053】
次いで、前記粉末状炭素繊維100重量部とに対して水酸化カリウム250重量部を添加し、十分に混合した後、ニッケル基合金から作られた反応容器内に投入した。つづいて、前記反応容器をベルト式炉に搬入し、室温から700℃まで5℃/分の昇温速度で加熱し、同温度に2時間保持することによってアルカリ賦活処理を実施した。前記ベルト炉から般出された反応容器を窒素雰囲気中で室温まで冷却し、その後純水および塩酸水溶液で金属カリウムが溶出しなくなるまで洗浄を繰り返し、その後乾燥することによりカリウム賦活された活性炭素繊維を製造した。
【0054】
得られた活性炭素繊維は、BET式窒素吸着法による比表面積、酸素含有量およびカリウム残量がそれぞれ1120m/g、3.4重量%および520ppmであることが確認された。
【0055】
前記活性炭素繊維85重量部と導電剤としての黒鉛10重量部と結着剤としてのポリテトラフルオロエチレン(PTFE)5重量部とを混練した後、この混練物を集電体としてのアルミニウム箔の片面に圧延、シート化することによりキャパシタ電極を作製した。得られた電極を2枚用意し、これら電極(陽極、陰極)を前記混練物シートが互いに対向するように配置すると共に、陽極、陰極の間にセパレータとしてのポリプロピレン不織布を介在させて電気二重層キャパシタ(試験セル)を組み立てた。なお、前記陽極、陰極およびポリプロピレン不織布には電解液[プロピレンカーボネートにテトラメチルアンモニウム・テトラフルオロボレート{(CNBF}を1.8モル/L溶解した組成]を含浸した。
【0056】
(実施例2)
賦活処理温度を720℃にした以外、実施例1と同様な条件で活性炭素繊維を製造した。得られた活性炭素繊維は、BET式窒素吸着法による比表面積、酸素含有量およびカリウム残量がそれぞれ1100m/g、3.0重量%および550ppmであることが確認された。
【0057】
得られた活性炭素繊維を用いて実施例1と同様な試験セルを組み立てた。
【0058】
(比較例1)
賦活処理温度を600℃にした以外、実施例1と同様な条件で活性炭素繊維を製造した。得られた活性炭素繊維は、BET式窒素吸着法による比表面積、酸素含有量およびカリウム残量がそれぞれ1010m/g、5.8重量%および1200ppmであることが確認された。
【0059】
得られた活性炭素繊維を用いて実施例1と同様な試験セルを組み立てた。
【0060】
(比較例2)
賦活処理温度を850℃にした以外、実施例1と同様な条件で活性炭素繊維を製造した。得られた活性炭素繊維は、BET式窒素吸着法による比表面積、酸素含有量およびカリウム残量がそれぞれ950m/g、2.1重量%および450ppmであることが確認された。
【0061】
得られた活性炭素繊維を用いて実施例1と同様な試験セルを組み立てた。
【0062】
(比較例3)
粉末状炭素繊維を得るための炭化処理温度を750℃にした以外、実施例1と同様な条件で活性炭素繊維を製造した。得られた活性炭素繊維は、BET式窒素吸着法による比表面積、酸素含有量およびカリウム残量がそれぞれ880m/g、2.8重量%および1260ppmであることが確認された。
【0063】
得られた活性炭素繊維を用いて実施例1と同様な試験セルを組み立てた。
【0064】
実施例1、2および比較例1〜3の試験セルについて、試験セルをインキュペータ(恒温槽)内に設置し、25℃の一定の温度に保持しながら、100mA/gの電流密度にて0V〜2.8Vの電圧範囲で定電流充放電を100回繰り返し、初期充放電時および100回目の充放電後における試験セルから取り出されたキャパシタ容量を調べた。その結果を下記表1に示す。なお、下記表1にはキャパシタ電極材料として用いた活性炭素繊維の比表面積、酸素含有量およびカリウム残量を併記する。
【0065】
【表1】

Figure 2004273520
【0066】
前記表1から明らかなように比表面積が1000m/g〜1500m/g、酸素含有量が3.5重量%以下、カリウム残量が1000ppm以下の活性炭素繊維をキャパシタ電極材料として用いた本実施例1、2の試験セルは、初期充放電時において比較例1〜3の試験セルに比べて34F/cc以上と高いキャパシタ容量を取り出すことができ、かつ100回目の充放電後においても比較例1〜3の試験セルに比べて30F/ccと高いキャパシタ容量を取り出すことができることがわかる。
【0067】
【発明の効果】
以上詳述したように本発明によれば、比表面積、酸素含有量、さらにアルカリ金属残量をそれぞれ特定の範囲に規定することによって、静電容量が高く、高性能の電気二重層キャパシタを実現し得るキャパシタ電極用活性炭素繊維を提供できる。
【0068】
また、本発明によれば前記活性炭素繊維を有するキャパシタ電極を備え、静電容量が高く、高性能の電気二重層キャパシタを提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an activated carbon fiber for a capacitor electrode and an electric double layer capacitor.
[0002]
[Prior art]
In recent years, with the rapid spread of new electronic devices such as mobile phones and notebook computers, secondary batteries used as power sources for such devices have also been required to have higher performance and smaller size. In addition to the power saving, the secondary battery is expected to be applied to a large capacity field such as an auxiliary power supply of an electric vehicle. Above all, a lithium ion secondary battery has been put to practical use as a secondary battery satisfying such demands.
[0003]
However, lithium ion secondary batteries have not been fully satisfactory in terms of operating temperature range, charge / discharge cycle (life), electric capacity, charge / discharge speed, and cost.
[0004]
For these reasons, electric double layer capacitors have been developed. In particular, in the field of power supplies for electric vehicles, a long life of 10 years or more and efficient energy regeneration at the time of deceleration are indispensable. Therefore, development of a high-performance electric double layer capacitor has been desired.
[0005]
The electric double layer capacitor is based on the phenomenon that positive and negative charges generated at the interface when different two layers come into contact with each other are arranged at a short distance from the Helmholtz theory of 1879. The resulting positive and negative charge distribution is called an electric double layer. An electric double layer capacitor is a large-capacity capacitor using an electric double layer formed at an interface between a polarizable electrode and an electrolytic solution, and has the following characteristics as compared with a conventional secondary battery.
[0006]
1) Since the internal resistance is lower than that of a conventional secondary battery, large current discharge is possible.
[0007]
2) Since no chemical reaction is involved during charge / discharge, rapid charge / discharge with a large current is possible, and the energy regeneration efficiency is extremely high.
[0008]
3) Since the electrode is hardly deteriorated, it has a long life which is several tens to several hundreds times longer than that of a conventional secondary battery.
[0009]
4) Stable charge / discharge behavior over a wide temperature range.
[0010]
5) There is no failure even if short-circuited, and there are no restrictions during charging and discharging.
[0011]
6) It is environmentally friendly because it does not contain harmful heavy metals such as cadmium and lead.
[0012]
Activated carbon and activated carbon fiber having a large specific surface area are considered to be optimal as the electrode material of the electric double layer capacitor. This is because the electric capacitance C accumulated during charging of the electric double layer capacitor is proportional to the specific surface area of the electrode.
[0013]
The activated carbon is conventionally produced by activating a non-graphitizable carbon material such as coconut shell, coal, and phenol resin, that is, a raw material of hard carbon with steam, carbon dioxide, or the like. However, an electric double layer capacitor using this activated carbon as an electrode material cannot obtain sufficient performance.
[0014]
For this reason, Patent Document 1 discloses a method of producing a high-performance activated carbon by so-called alkali activation, in which a carbon material is activated in the presence of an alkali metal compound. The feature of this alkali activation is that only conventional non-graphitizable carbon materials can be activated by conventional gas activation, but easily graphitizable carbon materials such as mesophase pitch can also be used as a raw material. Therefore, attempts have been made to alkali-activate the carbon material obtained by carbonizing the mesophase pitch. For example, Patent Document 2 discloses a method for producing an activated carbon fiber having a high specific surface area of 2,000 m 2 / g or more by spinning a pitch containing 50% or more of a mesophase component to obtain a pitch fiber and activating it with an alkali. Have been.
[0015]
Further, in recent years, it has been attempted to use an activated carbon fiber obtained by directly subjecting a graphitizable carbon material to an alkali activation treatment as an electrode material of an electric double layer capacitor. For example, Patent Document 3 discloses that an activated carbon fiber having a specific surface area of 3000 m 2 / g or more is produced by directly activating a mesophase pitch-based carbon fiber with an alkali, and the activated carbon fiber is demineralized with water or acids to form a fiber. Activated carbon fibers for an electric double layer capacitor, which are pulverized and molded to the extent that no residual carbon is left.
[0016]
[Patent Document 1]
JP-A-1-137865
[Patent Document 2]
JP-A-5-247773
[Patent Document 3]
JP-A-5-258996
[Problems to be solved by the invention]
When the activated carbon fiber obtained by the alkali activation treatment is used as an electrode material for an electric double layer capacitor, the activated carbon fiber has a high specific charge even if the specific surface area is smaller than activated carbon and activated carbon fiber produced by a conventional gas activation method. A discharge capacity is obtained. Therefore, there is an advantage that the charge / discharge capacity per unit volume can be improved. However, even when activated carbon fiber is used as a capacitor electrode material by a commercially available alkali activation method, it is still difficult to exhibit sufficient performance, which has been a major obstacle to practical use. Therefore, a capacitor electrode material having a higher capacitance is desired.
[0020]
The present inventors have made various studies focusing on the specific surface area of the activated carbon fiber obtained by the alkali activation method since the capacity of the electric double layer capacitor is developed by adsorption of electrolyte ions on the surface of the activated carbon fiber. As a result, as the specific surface area of the activated carbon fiber increases, the “capacitance per unit weight (F / g)” can be increased, but as the specific surface area increases, the bulk density of the activated carbon fiber decreases, It has been found that the “capacitance per unit volume (F / cc)” tends to decrease.
[0021]
Based on such an investigation result, the present inventors set the lower limit of the specific surface area of the activated carbon fiber to 1000 m 2 / g and set the upper limit to 1500 m 2 / g, whereby the “capacitance per unit weight (F / G)] and “capacitance per unit volume (F / cc)” can be optimized by balancing, and an active carbon fiber for a capacitor electrode capable of realizing an electric double layer capacitor having a high capacitance has been found.
[0022]
The present inventors have also focused on the fact that oxygen contained in activated carbon fibers obtained by the alkali activation method becomes a source of oxygen gas at the time of charging and discharging of the electric double layer capacitor and causes deterioration of the electrolytic solution, Activated carbon fiber for capacitor electrode capable of suppressing generation of oxygen gas during charge and discharge and realizing a long-life electric double layer capacitor with reduced electrolyte solution by regulating the oxygen content to 3.5% by weight or less. Was found.
[0023]
Further, the present inventors have focused on the fact that the alkali metal remaining in the activated carbon fiber obtained by the alkali activation method lowers the initial performance of the electric double layer capacitor, and by defining the remaining alkali metal to 1000 ppm or less. An active carbon fiber for a capacitor electrode capable of realizing an electric double layer capacitor having excellent initial performance was found.
[0024]
As described above, the present inventors can realize a high-capacity, high-performance electric double-layer capacitor by specifying the specific surface area, the oxygen content, and the remaining amount of the alkali metal in specific ranges, respectively. An active carbon fiber for a capacitor electrode was found, and the present invention was completed.
[0025]
In addition, the present inventors have found a high-performance electric double layer capacitor having high capacitance by providing a capacitor electrode having the activated carbon fiber.
[0026]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an activated carbon fiber produced by heat-treating a carbon fiber and an alkali metal compound at a temperature of 650 to 800 ° C,
A specific surface area of 1000m 2 / g~1500m 2 / g, an oxygen content of 3.5 wt% or less, to provide a capacitor electrode for the active carbon fiber, wherein the alkali metal remaining is 1000ppm or less.
[0027]
Further, the present invention provides an electric double layer capacitor comprising a capacitor electrode including the activated carbon fiber for a capacitor electrode.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0029]
The activated carbon fiber for a capacitor electrode of the present invention is produced by heat-treating a carbon fiber and an alkali metal compound at a temperature of 650 to 800 ° C. The active carbon fiber has a specific surface area of 1000m 2 / g~1500m 2 / g, an oxygen content of 3.5 wt% or less, having characteristics alkali metal remaining is 1000ppm or less (characteristic).
[0030]
As the carbon fiber, for example, one produced by passing 1) a raw material pitch through 2) a spinning step, 3) an infusibilizing step, 4) a carbonizing step, and 5) a pulverizing step is used.
[0031]
1) Raw material pitch Examples of the raw material pitch include petroleum-based or coal-based mesophase pitch. The mesophase content of this pitch is desirably 50% or more, preferably 80% or more, and more preferably 100%.
[0032]
2) Spinning Step This spinning step can employ a general method such as a melt spinning method, a centrifugal spinning method, or a melt blow spinning method. Among them, the melt blow spinning method is preferred from the viewpoint of cost.
[0033]
3) Infusibilizing step In the infusibilizing step, for example, the spun carbon material is heated to 250 to 350 ° C, preferably 270 to 320 ° C, in an oxidizing atmosphere (preferably an air atmosphere) such as air, nitrogen dioxide or iodine. Performed at temperature.
[0034]
4) Carbonization Step This carbonization step is performed, for example, at 650 to 700 ° C. in a nitrogen atmosphere on the carbon material after the infusibilization treatment. If the carbonization operation is performed at less than 650 ° C., oxygen, hydrogen, and the like may remain in the carbonized carbon material, and the subsequent activation reaction may not proceed uniformly. On the other hand, if the carbonization operation is performed at a temperature exceeding 700 ° C., the carbonization reaction may proceed too much, and the subsequent activation reaction may be difficult to proceed.
[0035]
5) Pulverization Step This pulverization step is performed using a pulverizer such as a jet mill, a ball mill, a disk mill, and a high-speed rotating mill. In particular, it is preferable to use a jet mill or a high-speed rotation mill to hold the carbon fibers in a cylindrical shape.
[0036]
As the alkali metal compound, for example, a hydroxide or oxide of potassium, sodium, or lithium can be used. In particular, from the viewpoint of increasing the reaction efficiency, it is preferable to use potassium hydroxide or sodium hydroxide as the alkali metal compound.
[0037]
The compounding amount of the alkali metal compound is desirably 150 to 300 parts by weight, preferably 160 to 200 parts by weight, based on 100 parts by weight of the carbon fiber. If the amount of the alkali metal compound is less than 150 parts by weight, it becomes difficult to sufficiently activate the carbon fibers. On the other hand, if the amount of the alkali metal compound exceeds 300 parts by weight, the alkali activation reaction may proceed excessively.
[0038]
The heat treatment is performed in order to perform an alkali activation treatment on the carbon fiber to make the carbon fiber porous, that is, to increase the specific surface area. When the heat treatment temperature is lower than 650 ° C., it becomes difficult to sufficiently activate the carbon fibers with alkali. On the other hand, when the heat treatment temperature exceeds 800 ° C., a secondary reaction other than the activation may proceed, which may hinder the carbon fiber from being made porous.
[0039]
Also, in the heat treatment in a low temperature range, although the alkali activated activated carbon fiber having a high initial performance can be obtained, the oxygen content becomes high, and after a certain number of charge / discharge cycles, the deterioration of the electrolyte due to oxygen generation is reduced. May occur. Conversely, in the heat treatment in a high temperature range, although the initial performance of the obtained alkali-activated activated carbon fiber is reduced, its oxygen content is reduced, thereby suppressing generation of oxygen gas during charge and discharge and suppression of deterioration of the electrolytic solution. It becomes possible to plan. For this reason, it is more preferable to set the heat treatment temperature to 700 to 750 ° C.
[0040]
When the specific surface area of the activated carbon fiber according to the present invention is less than 1000 m 2 / g, it is difficult to sufficiently increase “capacitance per unit weight (F / g)”. On the other hand, if the specific surface area of the activated carbon fiber exceeds 1500 m 2 / g, the “capacitance per unit volume (F / cc)” may be reduced. More preferred specific surface area is 1100m 2 / g~1300m 2 / g.
[0041]
In the activated carbon fiber according to the present invention, if the oxygen content exceeds 3.5% by weight, a relatively large amount of oxygen gas is generated during charge and discharge, and the electrolyte may be deteriorated in a short period of time. A more preferred oxygen content is 3.0% by weight or less.
[0042]
In the activated carbon fiber according to the present invention, if the residual amount of the alkali metal exceeds 1000 ppm, the initial performance may be reduced. A more preferable residual amount of the alkali metal is 600 ppm% or less.
[0043]
Next, the electric double layer capacitor according to the present invention will be described.
[0044]
This electric double layer capacitor has a structure in which a pair of capacitor electrodes (anode and cathode) containing the above-described activated carbon fiber are arranged with a separator interposed therebetween, and the capacitor electrode and the separator are impregnated with an electrolytic solution.
[0045]
The capacitor electrode is, for example, the active carbon fiber, a conductive agent such as graphite powder and a binder such as polytetrafluoroethylene are kneaded, and the kneaded material is rolled, formed into a sheet, or the kneaded material is formed of aluminum. Rolled or sheeted on one or both sides of a current collector such as a foil, or produced by any method.
[0046]
As the separator, a non-woven fabric of a polyolefin such as polyethylene, a porous polyolefin sheet having fine holes opened, or the like can be used.
[0047]
The electrolytic solution is roughly classified into an aqueous electrolytic solution and an organic electrolytic solution, and the latter using an organic electrolytic solution can greatly increase the energy density.
[0048]
The aqueous electrolyte comprises an aqueous sulfuric acid solution.
[0049]
The organic electrolyte may be a quaternary ammonium salt, an organic solvent such as ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, and dimethoxyethane, such as LiClO 4 , NaBF 4 , and LiPF 4 . It has a composition in which an electrolyte is dissolved.
[0050]
Specific examples of such an electric double layer capacitor include a coin type capacitor and a cylindrical type capacitor.
[0051]
【Example】
Hereinafter, preferred embodiments of the present invention will be described.
[0052]
(Example 1)
First, a petroleum-based mesophase pitch was spun by a melt blow method, then made infusible at 300 ° C. in an air atmosphere, carbonized at 650 ° C. in a nitrogen atmosphere, and pulverized by a jet mill to obtain powdered carbon fibers.
[0053]
Next, 250 parts by weight of potassium hydroxide was added to 100 parts by weight of the powdered carbon fiber, mixed well, and then charged into a reaction vessel made of a nickel-based alloy. Subsequently, the reaction vessel was carried into a belt furnace, heated from room temperature to 700 ° C. at a rate of 5 ° C./min, and maintained at the same temperature for 2 hours to perform an alkali activation treatment. Activated carbon fiber activated by cooling the reaction vessel generally discharged from the belt furnace to room temperature in a nitrogen atmosphere until the potassium metal is no longer eluted with pure water and an aqueous hydrochloric acid solution, and then dried. Was manufactured.
[0054]
It was confirmed that the obtained activated carbon fiber had a specific surface area, an oxygen content and a residual potassium content of 1120 m 2 / g, 3.4 wt% and 520 ppm, respectively, determined by a BET nitrogen adsorption method.
[0055]
After kneading 85 parts by weight of the activated carbon fiber, 10 parts by weight of graphite as a conductive agent, and 5 parts by weight of polytetrafluoroethylene (PTFE) as a binder, the kneaded material was used to form an aluminum foil as a current collector. A capacitor electrode was produced by rolling and sheeting on one side. Two electrodes obtained were prepared, these electrodes (anode and cathode) were arranged so that the above-mentioned kneaded material sheets face each other, and a polypropylene nonwoven fabric as a separator was interposed between the anode and the cathode to form an electric double layer. A capacitor (test cell) was assembled. The anode, the cathode and the polypropylene nonwoven fabric were impregnated with an electrolytic solution [a composition obtained by dissolving tetramethylammonium / tetrafluoroborate {(C 2 H 5 ) 4 NBF 4 } in 1.8 mol / L in propylene carbonate].
[0056]
(Example 2)
Activated carbon fibers were produced under the same conditions as in Example 1 except that the activation treatment temperature was 720 ° C. It was confirmed that the obtained activated carbon fiber had a specific surface area, oxygen content and residual potassium content of 1100 m 2 / g, 3.0% by weight and 550 ppm, respectively, determined by the BET nitrogen adsorption method.
[0057]
Using the obtained activated carbon fiber, a test cell similar to that of Example 1 was assembled.
[0058]
(Comparative Example 1)
Activated carbon fibers were produced under the same conditions as in Example 1 except that the activation treatment temperature was set to 600 ° C. It was confirmed that the obtained activated carbon fiber had a specific surface area, oxygen content, and residual potassium content of 1010 m 2 / g, 5.8% by weight, and 1200 ppm, respectively, as measured by the BET nitrogen adsorption method.
[0059]
Using the obtained activated carbon fiber, a test cell similar to that of Example 1 was assembled.
[0060]
(Comparative Example 2)
Activated carbon fibers were produced under the same conditions as in Example 1 except that the activation treatment temperature was 850 ° C. It was confirmed that the obtained activated carbon fiber had a specific surface area, an oxygen content, and a residual potassium content of 950 m 2 / g, 2.1% by weight, and 450 ppm, respectively, as measured by a BET nitrogen adsorption method.
[0061]
Using the obtained activated carbon fiber, a test cell similar to that of Example 1 was assembled.
[0062]
(Comparative Example 3)
Activated carbon fibers were produced under the same conditions as in Example 1 except that the carbonization temperature for obtaining powdered carbon fibers was 750 ° C. It was confirmed that the obtained activated carbon fiber had a specific surface area, oxygen content and residual potassium content of 880 m 2 / g, 2.8 wt% and 1260 ppm, respectively, as measured by the BET nitrogen adsorption method.
[0063]
Using the obtained activated carbon fiber, a test cell similar to that of Example 1 was assembled.
[0064]
With respect to the test cells of Examples 1 and 2 and Comparative Examples 1 to 3, the test cells were set in an incubator (constant temperature bath) and maintained at a constant temperature of 25 ° C., and at a current density of 100 mA / g, a voltage of 0 V was applied. The constant current charge / discharge was repeated 100 times in the voltage range of 22.8 V, and the capacitance of the capacitor taken out of the test cell at the time of the initial charge / discharge and after the 100th charge / discharge was examined. The results are shown in Table 1 below. In Table 1 below, the specific surface area, oxygen content, and remaining potassium content of the activated carbon fiber used as the capacitor electrode material are also shown.
[0065]
[Table 1]
Figure 2004273520
[0066]
Book apparent in specific surface area from Table 1 is 1000m 2 / g~1500m 2 / g, an oxygen content of 3.5 wt% or less, of potassium remaining amount using the following activated carbon fiber 1000ppm as a capacitor electrode material The test cells of Examples 1 and 2 can take out a higher capacitor capacity of 34 F / cc or more than the test cells of Comparative Examples 1 to 3 at the time of initial charge and discharge, and can be compared even after the 100th charge and discharge. It can be seen that a capacitor capacity as high as 30 F / cc can be taken out as compared with the test cells of Examples 1 to 3.
[0067]
【The invention's effect】
As described above in detail, according to the present invention, a specific surface area, an oxygen content, and a remaining amount of an alkali metal are defined in specific ranges, thereby realizing a high-capacity, high-performance electric double-layer capacitor. Activated carbon fiber for a capacitor electrode that can be provided.
[0068]
Further, according to the present invention, it is possible to provide a high performance electric double layer capacitor having a high capacitance and including a capacitor electrode having the activated carbon fiber.

Claims (3)

炭素繊維とアルカリ金属化合物とを650〜800℃の温度で熱処理することによって製造された活性炭素繊維であって、
比表面積が1000m/g〜1500m/g、酸素含有量が3.5重量%以下、アルカリ金属残量が1000ppm以下であることを特徴とするキャパシタ電極用活性炭素繊維。
An activated carbon fiber produced by heat-treating a carbon fiber and an alkali metal compound at a temperature of 650 to 800 ° C,
A specific surface area of 1000m 2 / g~1500m 2 / g, an oxygen content of 3.5 wt% or less, the capacitor electrode for the active carbon fiber, wherein the alkali metal remaining is 1000ppm or less.
原料である前記炭素繊維は、紡糸、不融化された炭素材を650〜700℃の温度にて炭素化されたもので、前記アルカリ金属化合物は水酸化カリウムまたは水酸化ナトリウムであることを特徴とする請求項1記載のキャパシタ電極用活性炭素繊維。The carbon fiber as a raw material is obtained by spinning and infusibilizing a carbon material at a temperature of 650 to 700 ° C., and the alkali metal compound is potassium hydroxide or sodium hydroxide. The activated carbon fiber for a capacitor electrode according to claim 1. 請求項1または2記載のキャパシタ電極用活性炭素繊維を含むキャパシタ電極を備えることを特徴とする電気二重層キャパシタ。An electric double layer capacitor comprising a capacitor electrode containing the activated carbon fiber for a capacitor electrode according to claim 1.
JP2003058372A 2003-03-05 2003-03-05 Activated carbon fiber for capacitor electrode and electric double layer capacitor Pending JP2004273520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058372A JP2004273520A (en) 2003-03-05 2003-03-05 Activated carbon fiber for capacitor electrode and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058372A JP2004273520A (en) 2003-03-05 2003-03-05 Activated carbon fiber for capacitor electrode and electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2004273520A true JP2004273520A (en) 2004-09-30

Family

ID=33121495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058372A Pending JP2004273520A (en) 2003-03-05 2003-03-05 Activated carbon fiber for capacitor electrode and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2004273520A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060071628A (en) * 2004-12-22 2006-06-27 주식회사 포스코 A method of increasing the nitrogen content in an active carbon fiber
KR100672310B1 (en) 2005-02-04 2007-01-24 엘지전자 주식회사 Energy storage capacitor and method for fabricating the same
WO2007088810A1 (en) * 2006-01-31 2007-08-09 Mitsui & Co., Ltd. Process for producing fine carbon fiber agglomerate
JP2007224434A (en) * 2006-02-21 2007-09-06 Gunma Univ Carbonized cocoon or silk material and method for producing the same
JP2012508155A (en) * 2008-11-04 2012-04-05 コーニング インコーポレイテッド Very porous activated carbon with controlled oxygen content

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060071628A (en) * 2004-12-22 2006-06-27 주식회사 포스코 A method of increasing the nitrogen content in an active carbon fiber
KR100672310B1 (en) 2005-02-04 2007-01-24 엘지전자 주식회사 Energy storage capacitor and method for fabricating the same
WO2007088810A1 (en) * 2006-01-31 2007-08-09 Mitsui & Co., Ltd. Process for producing fine carbon fiber agglomerate
JP2007224434A (en) * 2006-02-21 2007-09-06 Gunma Univ Carbonized cocoon or silk material and method for producing the same
JP2012508155A (en) * 2008-11-04 2012-04-05 コーニング インコーポレイテッド Very porous activated carbon with controlled oxygen content

Similar Documents

Publication Publication Date Title
JP6198687B2 (en) Negative electrode mixture for lithium secondary battery and lithium secondary battery using the same
US8845994B2 (en) Electrode active material having high capacitance, method for producing the same, and electrode and energy storage device comprising the same
JP5049820B2 (en) Lithium ion secondary battery
JP5228531B2 (en) Electricity storage device
US8284540B2 (en) Process of producing activated carbon for electric double layer capacitor electrode
WO2016009938A1 (en) Electrode material and a lithium-ion battery or lithium ion capacitor using same
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
US20110043968A1 (en) Hybrid super capacitor
WO1993024967A1 (en) Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell
JP6931186B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
JP2016076673A (en) Carbon material for hybrid capacitor
JP2004273520A (en) Activated carbon fiber for capacitor electrode and electric double layer capacitor
JP2012089823A (en) Lithium ion capacitor and manufacturing method for the same
JP2006059923A (en) Original composition of carbon material for electrode of electric double-layer capacitor
JP4099970B2 (en) Secondary power supply
JP2004247433A (en) Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor
JP4065011B1 (en) Non-porous carbon and electric double layer capacitors made from raw materials containing subelements
KR20220167669A (en) Lithium secondary battery anode material
JP3800810B2 (en) Electric double layer capacitor
JP4101681B2 (en) Method for producing activated carbon fiber for capacitor electrode and electric double layer capacitor
JP2009108444A (en) Method for producing mesophase pitch-based carbon fiber baked at low-temperature
JP4108422B2 (en) Method for producing activated carbon and electric double layer capacitor using the same
JP3886285B2 (en) Negative electrode material for lithium secondary battery and production method thereof, negative electrode for lithium secondary battery and lithium secondary battery
JP5131949B2 (en) Capacitors
JP6862159B2 (en) Carbon materials for power storage devices and power storage devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414