JP2004271340A - Instrument for measuring particle size distribution - Google Patents

Instrument for measuring particle size distribution Download PDF

Info

Publication number
JP2004271340A
JP2004271340A JP2003062447A JP2003062447A JP2004271340A JP 2004271340 A JP2004271340 A JP 2004271340A JP 2003062447 A JP2003062447 A JP 2003062447A JP 2003062447 A JP2003062447 A JP 2003062447A JP 2004271340 A JP2004271340 A JP 2004271340A
Authority
JP
Japan
Prior art keywords
light
section
particle size
size distribution
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003062447A
Other languages
Japanese (ja)
Other versions
JP3798753B2 (en
Inventor
Hideyuki Ikeda
池田英幸
Tatsuo Igushi
伊串達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003062447A priority Critical patent/JP3798753B2/en
Publication of JP2004271340A publication Critical patent/JP2004271340A/en
Application granted granted Critical
Publication of JP3798753B2 publication Critical patent/JP3798753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the so-called diffraction/scattering type measuring instrument for measuring a particle size distribution sharply reduced in cost as compared with a conventional one and prevented from the lowering of measuring precision though made compact. <P>SOLUTION: The instrument for measuring particle size distribution is equipped with a light source 2 for emitting fundamental light L displaying a small diameter direction HD and a large diameter direction HV on its cross section, the condensing lens 6 arranged on the optical axis of the fundamental light L and interposed between the light source 2 and a group of particles C to be measured and a photodetector 4 for detecting the intensity and anglular distribution of diffracted/scattered light L'. The diameter D6 of the lens 6 is made larger than the small diameter dimension DS of the cross section of the fundamental light and smaller than the large diameter dimension DL thereof in a lens-installated region and the light detecting surface 4a of the photodetector 4 is set to a position avoiding the vicinity of the axial line AV of the large diameter direction in the cross section of the fundamental light. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、分散させた測定対象粒子群に基本光を照射して生じた回折/散乱光の強度角度分布に基づいて粒径分布を測定するいわゆる回折/散乱式粒径分布測定装置に関するものである。
【0002】
【従来の技術】
この種の回折/散乱式粒径分布測定装置は、特許文献1に示すように、レーザ光を集光レンズを介してセル内に分散させた測定対象粒子に照射するとともに、そこで生じた散乱光の強度角度分布(散乱パターン)を光検出器で検出し、その散乱パターンからMIE散乱理論等に基づいて測定対象粒子の粒子径分布を求めるものである。
【0003】
そして従来は、前記レーザ光の光源としてHe−Neレーザが用いられていたところ、かかるHe−Neレーザは比較的高価なことから近時では安価な半導体レーザも用いられるようになってきている。
【0004】
【特許文献1】
特開平9−257683号公報
【0005】
【発明が解決しようとする課題】
ところが、一般に半導体レーザから射出されるレーザ光は偏光面に平行な方向と垂直な方向とで広がり角が大きく異なり、その断面には小径方向とこれに直交する大径方向とが顕れるため、基本光を全てレンズに入射させるべく、その大径方向の寸法に合わせてレンズを設計すると、レンズが大きくなり高価かつ嵩張るものとなってしまう。もちろんレンズを半導体レーザに近い位置に設置すればレンズ径を小さくできるが、その場合には、焦点位置においてビームを十分絞ることができなくなる。
【0006】
その一方でレーザとレンズとの距離を変えることなくレンズのみを小さくすると、レンズに入りきらない基本光がレンズの周縁部で回折したり球面収差の影響を受けたりして、光検出器を設置しているレーザ光焦点面で干渉縞が生じる。そしてこれが光検出器に入ることによって、光検出器から出力される散乱光強度信号のバックグラウンド値を上げるなどし、微弱散乱光の測定が難しくなる。
【0007】
そこで本発明は、光源として半導体レーザ等の安価なものを用い、しかもコンパクトな集光レンズを利用することにより、従来に比べ大幅な低価格化、コンパクト化を可能としつつも、測定精度を低下させることがないいわゆる回折/散乱式粒径分布測定装置を提供することをその主たる所期課題としたものである。
【0008】
【課題を解決するための手段】
すなわち本発明に係る粒径分布測定装置は、分散させた測定対象粒子群に基本光を照射して生じた回折/散乱光の強度角度分布に基づいて測定対象粒子群の粒径分布を測定するものであって、偏光方向によって広がり角が異なる等の理由から断面に小径方向と大径方向の広がりがあらわれる基本光を射出する光源と、前記基本光の光軸上に配置され前記光源及び測定対象粒子群の間に介在する集光レンズと、前記回折/散乱光の強度角度分布を検出する光検出器とを備えてなり、前記集光レンズの径を、その設置された部位における基本光断面の小径方向である第1方向に沿った寸法よりも大きくするとともに大径方向である第2方向に沿った寸法よりも小さくする一方、前記光検出器の受光面を、基本光断面における前記第2方向に沿った中心線近傍を避けた位置に設定していることを特徴とする。
【0009】
このようなものであれば、レンズ径をその設置位置における基本光断面の大径方向寸法である第2方向寸法より小さくしているため、コンパクト化や低価格化を促進できる。その一方で、このようにすると、第2方向には基本光がレンズよりも大きくなるため、当該第2方向に沿って焦点面で干渉縞等が生じ得るが、前記光検出器の受光面を第2方向に沿った基本光断面の中心線近傍を避けた位置に設定していることから、その干渉縞等が生じる領域に光検出器の受光面が重ならず、前記干渉縞を起因とするバックグラウンド値の上昇を抑制して微弱散乱光でも精度よく測定することが可能となる。なお、本明細書で「光」とは、可視光の他、紫外光や赤外光等をも含む。またレンズ径とはレンズとして有効に作用する部分の径のことである。基本光断面の径とは、例えば中心における光強度との比較において所定割合までの光強度を有する部分の径のことであり、粒径分布測定に有効に用い得る所定以上の光強度を有する部分の径である。
【0010】
具体的な実施態様としては、前記光検出器の受光面を、前記基本光の第1方向に沿った中心線を中心として左右に拡開する扇形状にしているものを挙げることができる。
【0011】
【発明の実施の形態】
以下に本発明の一実施形態について図1、図2、図3を参照して説明する。
【0012】
本実施形態に係る粒径分布測定装置1は、測定対象粒子Cに光を照射した際に生じる散乱光L’の散乱パターン(散乱光強度の角度分布)が、MIE散乱理論等から粒径によって定まることを利用し、前記散乱パターンを検出することによって粒径分布を測定するようにしたものである。
【0013】
具体的にこのものは、図1に模式的に示すように、光源たる半導体レーザ2から射出された基本光たるレーザ光Lを、セル3中に分散させた測定対象粒子C群に照射するとともに、そこで発生した回折又は/及び散乱光(以下散乱光という)L’の強度を複数の光検出器4で検出し、それら光検出器4からそれぞれ出力される散乱光強度信号の値に基づいて情報処理装置5により粒径分布を算出するようにしたものである。半導体レーザ2とセル3との間には、半導体レーザ2から出力されたレーザ光Lを収斂させる向きに屈折させる円形状の集光レンズ6を設けており、その集光レンズ6によるレーザ光Lの焦点面に前記光検出器4の受光面4aを設定している。
【0014】
各部を詳述する。半導体レーザ2は、例えば本実施形態では波長650nmのレーザ光Lを出力するものである。しかしてそのレーザ光Lは偏光面に平行な方向と垂直な方向とで広がり角が異なる。この例では半値全角で偏光面に垂直な方向(以下垂直偏光方向VDという)に30°、偏光面に平行な方向(以下平行偏光方向HDという)に10°である。したがってこのレーザ光Lの断面寸法は、集光レンズ6に至るまでは、第2方向である前記垂直偏光方向VDが大径方向となって大きくなり、第1方向である前記平行偏光方向HDが小径方向となって小さくなる。
【0015】
前記セル3は、ガラス等の透明容器であって、例えばポンプ等により試料を循環させる試料循環経路上に配置することにより、内部の試料が常に流動し、測定対象粒子Cが分散するようにしたフロー式のものである。もちろん、バッチ式などその他の方式で測定対象粒子Cが分散するようにしたものでも構わない。
【0016】
光検出器4は、例えばフォトダイオードであり、上述したようにその受光面4aを、レーザ光Lの光軸LCに直交しなおかつ当該レーザ光Lの焦点に位置する焦点面に設定している。この受光面4aは、図2に示すように、前記レーザ光Lの光軸LCを中心とする扇形をなすもので、複数の検出器4の受光面4aを同心円上に配置してアレイを構成している。しかして小径粒子にあたって生じた散乱光L’ほどその散乱角度が大きくなるため、中心の光検出器4ほど大径粒子からの散乱光L’を受光し、外側のものほど小径粒子からの散乱光L’を受光することとなる。なお、光軸LC上にある受光面4aは、透過レーザ光Lの強度を測定するためのものである。
【0017】
情報処理装置5は、図1に示すように、各光検出器4から出力される散乱光強度信号を受け付け、それらの値に基づいて、散乱光L’の強度角度分布を算出し、粒径分布を測定するものである。具体的にこのものは、各光検出器4から出力されるアナログ散乱光強度信号を受け付け、インピーダンス変換、AD変換等の処理を施す信号受付部51と、信号受付部51でデジタル化された各散乱光強度信号を入出力インタフェースから取り込み、メモリに記憶させたMIE散乱理論等に基づく所定のプログラムにしたがって演算することにより粒径分布等を算出する算出部52とを備えている。
【0018】
しかして本実施形態では、図3、図4に示すように、前記集光レンズ6の直径D6を、その設置された部位でのレーザ光Lの断面における平行偏光方向HDに沿った寸法(小径寸法)DSよりも十分大きくする一方、垂直偏光方向VDに沿った寸法(大径寸法)DLよりは小さくするように構成している。
ここで、レーザ光の断面寸法DS或いはDLとは、レーザ光Lの断面でみた光強度I(x)が、光軸での光強度I(0)の1/e^2となる範囲の寸法をいうものとする。
例えばレーザ光がガウス分布の場合、光軸からの距離をxとすれば、
I(x) = I(0)exp(−2x^2/w0^2)
と表されるため、x = w0 となる範囲の寸法のことととなる。
また、「集光レンズ6の径D6をDSよりも十分大きくするとは」、集光レンズの半径D6/2を前記w0の3倍乃至4倍に設定することである。このようにすれば、集光レンズ6の径を、前記焦点面でのレーザ光Lに平行偏光方向HDには回折等による影響がほとんど出ない範囲で最も小さい径となるようにすることができる。
【0019】
その一方で、前記光検出器4の受光面4aを、その部位におけるレーザ光断面の平行偏光方向HDに沿った中心線AHを中心として左右に対称に広がる扇形状にし、レーザ光断面の垂直偏光方向VDに沿った中心線AV近傍を避けるように構成している。
【0020】
したがってこのようなものであれば、レンズ径D6をレーザ光断面の大径寸法DLより小さくしているため、そのコンパクト化を図れるうえ、低価格化をも促進できる。
【0021】
一方、このようにした結果、垂直偏光方向VDにおけるレンズ周縁部で生じる回折や球面収差のため、図5〜図7に示すように、焦点面での垂直偏光方向軸線AVに沿ってのみ干渉縞IF等のバックグラウンドとなる強い光が生じる。しかしながら、本実施形態では、図2に示すように、前記光検出器4の受光面4aを平行偏光方向軸線AHを中心線として左右に対称に広がる扇形状にし、前記干渉縞IFが生じる領域Pに光検出器4の受光面4aを重ね合わせないようにしているため、前記干渉縞IFを受光することによる散乱光強度信号のバックグラウンド値の上昇を抑制することができ、精度のよい散乱光強度測定が可能となる。
【0022】
さらに本実施形態では、図2に示すように、光検出器4の受光面4aを、大径方向軸線AVを境にして両側に設けているため、片側にのみ配置した場合に比べ、受光できる散乱光L’が増加して測定精度が向上する。
【0023】
なお、本発明は前記実施形態に限られるものではない。例えば、集光レンズは、複数枚を組み合わせるようにしてもよいし、プラスチック等の樹脂を用いてもよい。もちろん球面レンズに限られず非球面レンズでもよい。また、迷光を取り除くため、一旦集光してピンホールを通すようにしてもよい。
【0024】
さらに、光検出器の受光面をレーザ光断面中心線を境にして片側にのみ設けても構わないし、特開2000−146814号公報に示すように、側方散乱光や後方散乱光を検出する光検出器をさらに備えたものとしてもよいのはもちろんである。また、各光検出器の受光面の扇形状は、前記実施形態のように、全て同一角度で開くようにする必要はなく、予め設定した幅内で最大の角度まで広げるなどして、各受光面の扇形状の開き角がそれぞれ異なるようにしたものであってもよい。加えて、レーザ光断面中心線を境にして対向する各光検出器の受光面を、互いの間隙を補完し合う位置に設けるようにしてもよい。このようにすれば光軸中心からの距離が異なるより多数の散乱光を検出でき、特に大径粒子の測定分解能を向上させることができる。
【0025】
もちろん、本発明は、偏光方向によって広がり角が異なるようなレーザ光のみならず、要は断面に大径方向と小径方向があるような異形状断面のレーザ光に適用して同様の作用効果を奏し得るものである。
【0026】
その他本発明は、上記図示例に限られず、その趣旨を逸脱しない範囲で種々の変更が可能である。
【0027】
【発明の効果】
以上に詳述したように、本発明によれば、レンズ径をその設置位置における基本光断面の大径方向寸法である第2方向寸法より小さくしているため、コンパクト化や低価格化を促進できる。その一方で、このようにすると、第2方向には基本光がレンズよりも大きくなるため、当該第2方向に沿って焦点面で干渉縞等が生じ得るが、前記光検出器の受光面を第2方向に沿った基本光断面の中心線近傍を避けた位置に設定していることから、その干渉縞等が生じる領域に光検出器の受光面が重ならず、前記干渉縞等を起因とするバックグラウンド値の上昇を抑制して微弱散乱光でも精度よく測定することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態における粒径分布測定装置の基本構造を示す全体概略図。
【図2】同実施形態における光検出器の一部を示す部分正面図。
【図3】同実施形態におけるレーザ光の広がり角の違いを説明する説明図。
【図4】同実施形態におけるレーザ光の広がり角の違いを説明する説明図。
【図5】図3における光検出器近傍を拡大した拡大図。
【図6】図4における光検出器近傍を拡大した拡大図。
【図7】同実施形態におけるレーザ光の焦点面での断面形状を示す断面図。
【符号の説明】
2・・・光源(半導体レーザ)
4・・・光検出器
4a・・・受光面
6・・・集光レンズ
C・・・測定対象粒子
L・・・基本光(レーザ光)
L’・・・回折/散乱光
HD・・・第1方向(平行偏光方向)
VD・・・第2方向(垂直偏光方向)
LC・・・光軸
DS・・・小径寸法(第1方向に沿った寸法)
DL・・・大径寸法(第2方向に沿った寸法)
AH・・・第1方向に沿った中心線
AV・・・第2方向に沿った中心線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a so-called diffraction / scattering type particle size distribution measuring apparatus for measuring a particle size distribution based on an intensity angle distribution of diffracted / scattered light generated by irradiating a dispersion target particle group with basic light. is there.
[0002]
[Prior art]
As shown in Patent Document 1, this type of diffraction / scattering type particle size distribution measuring device irradiates a laser beam onto a measurement target particle dispersed in a cell via a condenser lens and generates scattered light there. Is detected by a photodetector, and the particle size distribution of the particles to be measured is determined from the scattering pattern based on MIE scattering theory or the like.
[0003]
Conventionally, a He-Ne laser has been used as a light source of the laser light. However, since the He-Ne laser is relatively expensive, an inexpensive semiconductor laser has recently been used.
[0004]
[Patent Document 1]
JP-A-9-257683
[Problems to be solved by the invention]
However, in general, the divergence angle of a laser beam emitted from a semiconductor laser greatly differs between a direction parallel to the polarization plane and a direction perpendicular to the plane of polarization, and a small-diameter direction and a large-diameter direction perpendicular to the laser beam appear on the cross section. If a lens is designed in accordance with its large-diameter dimension so that all light is incident on the lens, the lens becomes large, expensive and bulky. Of course, if the lens is placed at a position close to the semiconductor laser, the diameter of the lens can be reduced.
[0006]
On the other hand, if only the lens is made smaller without changing the distance between the laser and the lens, a photodetector is installed because the basic light that can not enter the lens is diffracted at the periphery of the lens and affected by spherical aberration Interference fringes are generated at the focal plane of the laser beam. When the light enters the photodetector, the background value of the scattered light intensity signal output from the photodetector is increased, and the measurement of the weak scattered light becomes difficult.
[0007]
Therefore, the present invention uses a low-priced light source such as a semiconductor laser as a light source and uses a compact condensing lens, thereby making it possible to significantly reduce the cost and size as compared with the conventional one, while reducing the measurement accuracy. It is a main object of the present invention to provide a so-called diffraction / scattering type particle size distribution measuring apparatus which does not cause the measurement.
[0008]
[Means for Solving the Problems]
That is, the particle size distribution measuring apparatus according to the present invention measures the particle size distribution of the measurement target particle group based on the intensity angle distribution of diffraction / scattered light generated by irradiating the dispersed measurement target particle group with the basic light. A light source that emits basic light whose cross-section has spread in the small-diameter direction and the large-diameter direction due to the reason that the spread angle differs depending on the polarization direction, and the light source and the measurement device that are arranged on the optical axis of the basic light. A condensing lens interposed between the target particle groups, and a photodetector for detecting an intensity angular distribution of the diffracted / scattered light, and the diameter of the condensing lens is set to a value corresponding to the fundamental light at a portion where the condensing lens is installed. While the cross-section is larger than the dimension along the first direction, which is the smaller-diameter direction, and smaller than the dimension along the second direction, which is the larger-diameter direction, the light-receiving surface of the photodetector is the same as that in the basic light cross section. Along the second direction Characterized in that it is set at a position avoiding the cord near.
[0009]
In such a case, since the lens diameter is smaller than the second dimension in the large diameter direction of the basic light section at the installation position, it is possible to promote compactness and cost reduction. On the other hand, in this case, since the basic light is larger than the lens in the second direction, interference fringes and the like may occur on the focal plane along the second direction. Since the position is set so as to avoid the vicinity of the center line of the basic light section along the second direction, the light receiving surface of the photodetector does not overlap the area where the interference fringes or the like occur, and the interference fringes may be caused. This makes it possible to accurately measure even weakly scattered light by suppressing an increase in background value. In this specification, “light” includes ultraviolet light, infrared light, and the like in addition to visible light. The lens diameter is the diameter of a portion that effectively acts as a lens. The diameter of the basic light section is, for example, a diameter of a portion having a light intensity up to a predetermined ratio in comparison with the light intensity at the center, and a portion having a light intensity higher than a predetermined value that can be effectively used for particle size distribution measurement. Is the diameter of
[0010]
As a specific embodiment, a light-receiving surface of the photodetector may have a fan shape that expands right and left around a center line of the basic light along the first direction.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3. FIG.
[0012]
In the particle size distribution measuring apparatus 1 according to the present embodiment, the scattering pattern (angular distribution of the scattered light intensity) of the scattered light L ′ generated when the measurement target particles C are irradiated with light is determined by the particle size according to MIE scattering theory or the like. Utilizing this, the particle size distribution is measured by detecting the scattering pattern.
[0013]
Specifically, as shown schematically in FIG. 1, a laser beam L as a basic light emitted from a semiconductor laser 2 as a light source is applied to a group of particles C to be measured dispersed in a cell 3. The intensity of the diffracted or / and scattered light (hereinafter referred to as scattered light) L ′ generated there is detected by the plurality of photodetectors 4 and based on the values of the scattered light intensity signals output from the respective photodetectors 4. The particle size distribution is calculated by the information processing device 5. Between the semiconductor laser 2 and the cell 3, there is provided a circular condenser lens 6 for refracting the laser light L output from the semiconductor laser 2 in a direction to converge. The light receiving surface 4a of the photodetector 4 is set on the focal plane of the photodetector 4.
[0014]
Each part will be described in detail. The semiconductor laser 2 outputs, for example, a laser beam L having a wavelength of 650 nm in the present embodiment. Thus, the spread angle of the laser light L differs between the direction parallel to the polarization plane and the direction perpendicular to the plane of polarization. In this example, the angle is 30 ° in the direction perpendicular to the polarization plane (hereinafter referred to as vertical polarization direction VD) and 10 ° in the direction parallel to the polarization plane (hereinafter referred to as parallel polarization direction HD) at full angle at half maximum. Therefore, the cross-sectional dimension of the laser light L is large until the condensing lens 6 is reached, where the vertical polarization direction VD, which is the second direction, is a large-diameter direction, and the parallel polarization direction HD, which is the first direction, is large. It becomes smaller in the small diameter direction.
[0015]
The cell 3 is a transparent container made of glass or the like, and is arranged on a sample circulation path in which the sample is circulated by, for example, a pump or the like, so that the internal sample always flows and the particles C to be measured are dispersed. It is a flow type. Needless to say, the particle C to be measured may be dispersed by another method such as a batch method.
[0016]
The light detector 4 is, for example, a photodiode, and has its light receiving surface 4a set to a focal plane orthogonal to the optical axis LC of the laser light L and located at the focal point of the laser light L as described above. As shown in FIG. 2, the light receiving surface 4a has a fan shape centered on the optical axis LC of the laser light L, and the light receiving surfaces 4a of the plurality of detectors 4 are arranged concentrically to form an array. are doing. Since the scattering angle of the scattered light L ′ generated at the small-diameter particles increases, the light detector 4 at the center receives the scattered light L ′ from the large-diameter particles. L ′ is received. The light receiving surface 4a on the optical axis LC is for measuring the intensity of the transmitted laser light L.
[0017]
As shown in FIG. 1, the information processing device 5 receives the scattered light intensity signals output from the respective photodetectors 4, calculates the intensity angle distribution of the scattered light L ′ based on the values, and calculates the particle size. It measures the distribution. More specifically, the signal receiving unit 51 receives an analog scattered light intensity signal output from each photodetector 4 and performs processing such as impedance conversion and AD conversion. A calculation unit 52 is provided for calculating a particle size distribution and the like by taking in a scattered light intensity signal from an input / output interface and calculating according to a predetermined program based on MIE scattering theory and the like stored in a memory.
[0018]
In this embodiment, as shown in FIGS. 3 and 4, the diameter D6 of the condenser lens 6 is set to a dimension (small diameter) along the parallel polarization direction HD in the cross section of the laser beam L at the portion where the condenser lens 6 is installed. It is configured to be sufficiently larger than the dimension (DS) and smaller than the dimension (large-diameter dimension) DL along the vertical polarization direction VD.
Here, the cross-sectional dimension DS or DL of the laser light is a dimension in a range where the light intensity I (x) as viewed in the cross section of the laser light L is 1 / e ^ 2 of the light intensity I (0) on the optical axis. Shall be referred to.
For example, if the laser light has a Gaussian distribution, if the distance from the optical axis is x,
I (x) = I (0) exp (−2x ^ 2 / w0 ^ 2)
Therefore, the dimension in the range where x = w0 is satisfied.
"To make the diameter D6 of the condenser lens 6 sufficiently larger than DS" means to set the radius D6 / 2 of the condenser lens to three to four times w0. In this manner, the diameter of the condenser lens 6 can be set to be the smallest diameter in a direction parallel to the laser beam L on the focal plane in a direction HD that is hardly affected by diffraction or the like. .
[0019]
On the other hand, the light receiving surface 4a of the photodetector 4 is formed into a fan shape that spreads symmetrically about the center line AH along the parallel polarization direction HD of the laser beam cross section at that portion, and the vertical polarization of the laser beam cross section is obtained. It is configured to avoid the vicinity of the center line AV along the direction VD.
[0020]
Therefore, in such a case, since the lens diameter D6 is smaller than the large diameter dimension DL of the laser beam cross section, the size can be reduced and the cost can be promoted.
[0021]
On the other hand, as a result of this, due to diffraction and spherical aberration occurring at the peripheral edge of the lens in the vertical polarization direction VD, the interference fringes only along the vertical polarization direction axis AV at the focal plane as shown in FIGS. Intense light that becomes background such as IF is generated. However, in the present embodiment, as shown in FIG. 2, the light receiving surface 4a of the photodetector 4 has a fan shape that spreads symmetrically to the left and right with the parallel polarization direction axis AH as the center line, and the area P where the interference fringes IF occur is formed. Since the light receiving surface 4a of the photodetector 4 is not overlapped with the light source 4, an increase in the background value of the scattered light intensity signal due to the reception of the interference fringes IF can be suppressed, and highly accurate scattered light can be obtained. Strength measurement becomes possible.
[0022]
Further, in the present embodiment, as shown in FIG. 2, the light receiving surfaces 4a of the photodetector 4 are provided on both sides with the large-diameter axis AV as a boundary. The scattered light L 'increases and the measurement accuracy improves.
[0023]
Note that the present invention is not limited to the above embodiment. For example, a plurality of condenser lenses may be combined, or a resin such as plastic may be used. Of course, it is not limited to a spherical lens, but may be an aspheric lens. Also, in order to remove stray light, the light may be once collected and passed through a pinhole.
[0024]
Further, the light receiving surface of the photodetector may be provided only on one side with respect to the center line of the laser beam cross section, or side scattered light or back scattered light is detected as described in JP-A-2000-146814. Needless to say, a light detector may be further provided. Also, the fan shape of the light receiving surface of each photodetector does not need to be all opened at the same angle as in the above-described embodiment. The fan angles of the surfaces may be different from each other. In addition, the light receiving surfaces of the photodetectors facing each other with the laser beam cross-section center line as a boundary may be provided at positions where the gaps between the photodetectors complement each other. In this way, a larger number of scattered lights having different distances from the optical axis center can be detected, and particularly, the measurement resolution of large-diameter particles can be improved.
[0025]
Of course, the present invention can be applied not only to laser light whose divergence angle differs depending on the polarization direction, but also to laser light having a different shape cross section whose cross section has a large diameter direction and a small diameter direction, and has the same effect. It can be played.
[0026]
In addition, the present invention is not limited to the illustrated example, and various changes can be made without departing from the gist of the present invention.
[0027]
【The invention's effect】
As described in detail above, according to the present invention, since the lens diameter is smaller than the second dimension, which is the large-diameter dimension of the basic light section at the installation position, the compactness and the cost reduction are promoted. it can. On the other hand, in this case, since the basic light is larger than the lens in the second direction, interference fringes and the like may occur on the focal plane along the second direction. The light receiving surface of the photodetector does not overlap with the area where the interference fringes and the like occur because the positions are set so as to avoid the vicinity of the center line of the cross section of the basic light along the second direction. And it is possible to accurately measure even weakly scattered light.
[Brief description of the drawings]
FIG. 1 is an overall schematic diagram showing a basic structure of a particle size distribution measuring device according to an embodiment of the present invention.
FIG. 2 is a partial front view showing a part of the photodetector in the embodiment.
FIG. 3 is an explanatory diagram illustrating a difference in a spread angle of a laser beam in the embodiment.
FIG. 4 is an explanatory diagram illustrating a difference in a spread angle of a laser beam in the embodiment.
FIG. 5 is an enlarged view in which the vicinity of a photodetector in FIG. 3 is enlarged.
FIG. 6 is an enlarged view in which the vicinity of the photodetector in FIG. 4 is enlarged.
FIG. 7 is an exemplary cross-sectional view showing a cross-sectional shape of the laser light at a focal plane according to the first embodiment;
[Explanation of symbols]
2. Light source (semiconductor laser)
4 Photodetector 4a Light receiving surface 6 Condensing lens C Particle to be measured L Basic light (laser light)
L ': Diffraction / scattered light HD: First direction (parallel polarization direction)
VD: Second direction (vertical polarization direction)
LC: Optical axis DS: Small diameter dimension (dimension along the first direction)
DL: Large diameter dimension (dimension along the second direction)
AH: center line along the first direction AV: center line along the second direction

Claims (2)

分散させた測定対象粒子群に基本光を照射して生じた回折/散乱光の強度角度分布に基づいて測定対象粒子群の粒径分布を測定するものであって、偏光方向によって広がり角が異なる等の理由から断面に小径方向と大径方向の広がりがあらわれる基本光を射出する光源と、前記基本光の光軸上に配置され前記光源及び測定対象粒子群の間に介在する集光レンズと、前記回折/散乱光の強度角度分布を検出する光検出器とを備えてなり、前記集光レンズの径を、その設置された部位における基本光断面の小径方向である第1方向に沿った寸法よりも大きくするとともに大径方向である第2方向に沿った寸法よりも小さくする一方、前記光検出器の受光面を、基本光断面における前記第2方向に沿った中心線近傍を避けた位置に設定していることを特徴とする粒径分布測定装置。The particle size distribution of the measurement target particle group is measured based on the intensity angle distribution of the diffracted / scattered light generated by irradiating the dispersed measurement target particle group with the basic light, and the spread angle differs depending on the polarization direction. For example, a light source that emits basic light whose cross-section has a small-diameter direction and a large-diameter direction spread on the cross section, and a condensing lens that is arranged on the optical axis of the basic light and is interposed between the light source and the particle group to be measured. A light detector for detecting an intensity angle distribution of the diffracted / scattered light, and the diameter of the condensing lens is set along a first direction which is a small-diameter direction of a basic light cross-section at a portion where the condensing lens is installed. While being larger than the dimension and smaller than the dimension along the second direction, which is the large-diameter direction, the light receiving surface of the photodetector was avoided near the center line along the second direction in the basic light section. Set to position Particle size distribution measuring apparatus according to claim. 前記光検出器の受光面を、前記基本光の第1方向に沿った中心線を中心として左右に拡開する扇形状にしている請求項1記載の粒径分布測定装置。The particle size distribution measuring device according to claim 1, wherein the light receiving surface of the photodetector has a fan shape that expands left and right about a center line of the basic light along a first direction.
JP2003062447A 2003-03-07 2003-03-07 Particle size distribution measuring device Expired - Lifetime JP3798753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062447A JP3798753B2 (en) 2003-03-07 2003-03-07 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062447A JP3798753B2 (en) 2003-03-07 2003-03-07 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2004271340A true JP2004271340A (en) 2004-09-30
JP3798753B2 JP3798753B2 (en) 2006-07-19

Family

ID=33124367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062447A Expired - Lifetime JP3798753B2 (en) 2003-03-07 2003-03-07 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3798753B2 (en)

Also Published As

Publication number Publication date
JP3798753B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP4817442B2 (en) Optical system for particle analyzer and particle analyzer using the same
JP6691043B2 (en) Particle characterization device
US7495762B2 (en) High-density channels detecting device
US3851169A (en) Apparatus for measuring aerosol particles
KR101857950B1 (en) High accuracy real-time particle counter
JP2002048699A (en) Laser diffraction and scattering-type particle-size- distribution measuring apparatus
JPWO2014061368A1 (en) Fine particle measuring device
JP2019512701A5 (en)
CN104360095B (en) A kind of method for measuring instantaneous rotation speed based on Beams, apparatus and system
CN107144421B (en) Point source transmittance stray light test system and method based on time resolution
US10429293B2 (en) Cell analysis apparatus using plurality of lasers
CN105675615B (en) A kind of high speed large range high resolution rate imaging system
KR101085014B1 (en) Optical surface measuring apparatus and method
JPH09189653A (en) Optical axis adjusting method for use in scattering type particle size distribution measuring device
JP4266075B2 (en) Particle size distribution measuring device
US20120243567A1 (en) Laser irradiation device and microparticle measuring device
JP2022506691A (en) Detectors and methods for determining the position of at least one object
JP3798753B2 (en) Particle size distribution measuring device
CN111133291B (en) Optical flow cytometer for epi-fluorescence measurement
US20110057093A1 (en) Method for calibrating a deflection unit in a tirf microscope, tirf microscope, and method for operating the same
CN103454065A (en) Scattering measurement focusing device and method used for lithographic equipment
JP4105888B2 (en) Particle size distribution measuring device
WO2016200802A1 (en) Backscatter reductant anamorphic beam sampler
JP7078115B2 (en) Light scattering detector
JPH0277636A (en) Particle measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Ref document number: 3798753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term