JP2004270762A - Hydraulic/mechanical continuously variable transmission - Google Patents

Hydraulic/mechanical continuously variable transmission Download PDF

Info

Publication number
JP2004270762A
JP2004270762A JP2003060052A JP2003060052A JP2004270762A JP 2004270762 A JP2004270762 A JP 2004270762A JP 2003060052 A JP2003060052 A JP 2003060052A JP 2003060052 A JP2003060052 A JP 2003060052A JP 2004270762 A JP2004270762 A JP 2004270762A
Authority
JP
Japan
Prior art keywords
hmt
clutch
output shaft
transmission
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060052A
Other languages
Japanese (ja)
Other versions
JP4261944B2 (en
Inventor
Masaaki Nakazawa
正明 中沢
Hitoshi Wada
均 和田
Shuichi Sano
修一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Shibaura Machinery Corp
Original Assignee
IHI Shibaura Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Shibaura Machinery Corp filed Critical IHI Shibaura Machinery Corp
Priority to JP2003060052A priority Critical patent/JP4261944B2/en
Publication of JP2004270762A publication Critical patent/JP2004270762A/en
Application granted granted Critical
Publication of JP4261944B2 publication Critical patent/JP4261944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve transmission efficiency of power in both forward and backward movement and to increase torque up, in a hydraulic/mechanical continuously variable transmission HMT. <P>SOLUTION: The back stage of the HMT is provided with a forward/backward clutch and a forward/high-speed clutch for switching between the forward and backward movements as a sub transmission mechanism. In the HMT, the power transmission efficiency is high, and the forward and backward movements are performed only by a clutch operation while using rotation in only one direction having large torque up. By only the clutch operation, a power shutoff (neutral) state of the transmission and a neutral lock (brake) state of a running wheel are realized. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、農業用・土木用等の産業用車両の変速装置に関する。
【0002】
【従来の技術】
従来、油圧式無段変速装置(以後、HSTと表現する)及び遊星歯車を用いた差動機構を備えた油圧・機械式無段変速装置(以後、HMTと表現する)が知られている。
HSTは、油圧ポンプ又は油圧モータのうち、少なくとも一方が可動斜板(斜軸)により可変容量型とされ、該可動斜板(斜軸)が主変速操作手段と連結連動されて、該主変速操作手段の回動操作により油圧ポンプの油吐出量が変更されることによりHSTの出力軸の出力回転数が変更されて駆動軸に伝達され、主変速が行われる。また、主変速操作手段を中立位置から回動することにより、車両の前後進の切り替えとともに無段で変速を行えるように構成されている。
【0003】
しかし、HSTは効率が悪く、この損失が熱等に変換される点が問題となっている。この為、HSTの低効率改善の為に、油圧・機械式無段変速装置(HMT)がさまざまな形式で利用されている。
HMTを用いると、出力回転の片方向は効率向上し、逆方向は効率低下する機構となるので、従来、HMTを用いた機構では、特許文献1のように、低効率も許容し正逆回転方向を使用する方法や、特許文献2のように、片方向の中高速域ではHMTとして使用し、低速域と逆方向はHST単体で使用する方法がある。また、両方式とも機械式の副変速機能を具備し、歯車列の噛合いを手動で直接操作する。若しくは、別途アクチュエータを設け操作する方法をとっている。
【特許文献1】
特開2000−16102号公報
【特許文献2】
特開2000−127785号公報
【0004】
【発明が解決しようとする課題】
しかし、これら従来の技術では、HMTの高効率部分を片方向(多くの場合、車両前進方向)しか使用できず、逆方向(多くの場合、車両後進方向)は低効率である問題点があった。
【0005】
【課題を解決するための手段】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
【0006】
即ち、請求項1においては、HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段に、前後進切替用の前進クラッチと後進クラッチと歯車摺動式副変速機構を具備するものである。
【0007】
請求項2においては、HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを並列に配置したものである。
【0008】
請求項3においては、HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを並列に配置し、前記前進低速クラッチと後進クラッチと前進高速クラッチの少なくとも二つをONすることにより変速出力軸をロック可能とし、全てのクラッチをOFFすることで動力遮断(ニュートラル)とするものである。
【0009】
請求項4においては、HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを配置し、該HMT出力軸と変速出力軸とを同一軸心上に配置し、該前進高速クラッチを該HMT出力軸と該変速出力軸との間に配置するものである。
【0010】
【発明の実施の形態】
次に、発明の実施の形態を説明する。
図1はHMT式変速装置を装備した走行車両の動力伝達のスケルトン図、図2は前後進切替装置と副変速装置の第一の実施例を示すスケルトン図、図3は第一実施例の制御ブロック図、図4は前進低速クラッチと後進クラッチの作動を示す図、図5は前後進切替装置と副変速装置の第二の実施例を示すスケルトン図、図6は第二実施例の制御ブロック図、図7は第二の実施例におけるクラッチと動力伝達状態との関係を示す図である。
【0011】
まず、図1を参照しながら、このHMT式トランスミッション100を用いた動力伝達機構を説明する。
このHMT式トランスミッション100は、例えば農用トラクタ等の産業用車両に適用が可能であり、機体前方に配置されたエンジン120の動力を変速して後輪107や前輪(図示しない)に伝達するとともに、機体後部のリアPTO軸11に伝達させることとしている。
【0012】
具体的には図1に示すように、エンジン120のフライホイール1にクラッチ2を介して、このトランスミッション100に対する動力を受け入れるための入力軸3が取り付けられ、該入力軸3の後方に伝達軸5が同心状に配置されて、該伝達軸5は入力軸3とカップリング4を介して相対回転不能に連結されている。前記入力軸3の後方にはHST7の後述の油圧ポンプ14が配置され、前記伝達軸5は該油圧ポンプ14の回転軸心を貫通しながら後方へ延出される。この伝達軸5はHST7の入力軸と兼用としている。
【0013】
該伝達軸5の後端にはPTO主軸10が同心状に配置されて軸支され、該PTO主軸10はカップリング9を介して前記伝達軸5に連結し、相対回転不能とされている。PTO主軸10は図1に示す如く更に後方に延長され、また、その該PTO主軸10と平行にリアPTO軸11を配置している。PTO主軸10と該リアPTO軸11との間には、歯車変速式のPTO変速機構12が介設されている。
【0014】
このHMT式トランスミッション100に配置される油圧・機械式無段変速装置(HMT)101は、HST7と、差動機構である遊星歯車機構30とを組み合わせて構成される。
以下、斜板式のHST7について説明する。
このHST7は油圧ポンプ・油圧モータ一体型とし、一体的に形成された平板状の油路板13を上下方向に配置し、該油路板13の一側面の上半部に可変容積型の油圧ポンプ14を、下半部に固定容積型の油圧モータ15をそれぞれ付設し、該油路板13の内部に穿設される図外の作動油循環油路によって、両者14・15が流体的に接続されている。該油圧ポンプ14及び油圧モータ15の両者は共通のHSTハウジング16によって覆われる。
油圧モータ15の回転軸心には出力軸21が配置され、該出力軸21は前記油路板13を貫通して後方に延出されている。油圧ポンプ14の入力軸を兼ねる前記伝達軸5と、前記出力軸21とは、上下平行に配置される関係にある。
【0015】
次に、前記遊星歯車機構30について説明する。
前記伝達軸5のエンジン120側と反対側の端部は、HST7の油路板13を貫通して後方に突出されて、その先端に歯車38が相対回転不能に連結されている。一方、前記HST7の油圧モータ15の出力軸21には、歯車85・86と遊星歯車入力軸87を介して、遊星歯車機構30の太陽歯車33が相対回転不能に連動連結されている。
【0016】
遊星歯車機構30は前記HST7の下側後方(動力伝動下流側)に配置されている。そして、該遊星歯車機構30の太陽歯車33は遊星歯車入力軸87上に固設され、該遊星歯車入力軸87の他端は歯車86・85を介して前記HST7の出力軸21と連動連結されている。遊星歯車34を支持するキャリア31にはHMT出力軸36が相対回転不能に連結される。内歯車35には歯車39が固設されてHST7の伝達軸5に固設した歯車38と噛合されている。
HMT出力軸36は後述する副変速機構やクラッチ機構40を介して、変速出力軸28に伝えられる。該変速出力軸28の端部にはピニオン27が設けられ、該ピニオン27にデフ装置49のリングギア50が噛合され、該デフ装置49の左右両側からデフヨーク軸48・48が突出され、該デフヨーク軸48・48の内端側同士は差動的に結合している。
【0017】
前記デフヨーク軸48・48のそれぞれには減速ギア51が固定され、該減速ギア51は後車軸52上の歯車53に噛合されて、該後車軸52に固定される後輪107を駆動する。
また、前記変速出力軸28には前輪駆動歯車55が固設され、該前輪駆動歯車55より図示しない2駆・4駆切換装置等を介して前輪を駆動可能としている。
【0018】
図2、図3、図4より第一実施例の前後進切替装置と副変速装置について説明する。
クラッチ機構40は、多板式の油圧クラッチよりなる前進低速クラッチ81と後進クラッチ82とにより構成されてHMT出力軸36上に並列に配置され、電磁バルブからの圧油により切り換えられる構成とし、その後段に副変速装置(副変速機構)が配置されている。即ち、HMT出力軸36と歯車41の間に前進低速クラッチ81が配置され、HMT出力軸36と歯車42の間に後進クラッチ82が配置されている。歯車41は伝動軸25上に固設した従動歯車43と噛合し、歯車42は逆転ギア45を介して伝動軸25上に固設した従動歯車44と噛合している。該伝動軸25上には更に高速出力歯車46aと低速出力歯車46bが固設され、前記変速出力軸28上には相対回転不能、且つ、摺動可能に摺動歯車84が配置され、副変速レバー等で該摺動歯車84を摺動して、小径歯車84aを前記高速出力歯車46aと噛合させることにより高速側に変速することができ、大径歯車84bを低速出力歯車46bと噛合することにより低速側に変速することができ、副変速装置を構成している。なお、高速後進は通常設けないので、HMT出力軸36上に前進低速クラッチ81と後進クラッチ82と高速前進クラッチを並列に配置し、その出力を高速前進クラッチの出力側に入力する構成とすることも可能である。
【0019】
また、図3に示すように、前記前進低速クラッチ81と後進クラッチ82を作動させるための電磁バルブのソレノイド81a・82aはコントローラ61と接続され、該コントローラ61には更に前進低速スイッチ62と後進スイッチ63とブレーキセンサ64が接続されている。前進低速スイッチ62と後進スイッチ63は図示しない前後進切替レバーまたは前後進切替ペダル等の操作部に設けられて、前進または後進の切替操作を検知する手段となっている。
ブレーキセンサ64はブレーキ操作を検知する手段であり、ブレーキペダルの回動操作を検知するようにし、或いは、駐車ブレーキレバーの回動操作を検知するようにしている。
車速センサ66は、車軸の回転を検出するようにしている。
【0020】
このような構成において、エンジン120からの動力をHST7により主変速を行い、その出力を出力軸21から歯車85・86を介して遊星歯車入力軸87に伝えて太陽歯車33を駆動し、また、エンジン120からの動力を出力歯車38を介して内歯車35に伝えて、遊星歯車機構30により合成して、該遊星歯車機構30の出力は、HMT出力軸36より取り出される。
【0021】
このとき、前後進レバー等の操作で前進側に変速すると、前進低速スイッチ62がONして、前進低速クラッチ81がONとなり(後進クラッチはOFF)、動力は、HMT出力軸36より歯車41→従動歯車43→伝動軸25→高速出力歯車46a若しくは低速出力歯車46b→摺動歯車84→変速出力軸28と伝達され、後輪107・107へ前進の回転力が伝わる。このとき、摺動歯車84の小径歯車84aを高速出力歯車46aと噛合させることにより高速前進となり、摺動歯車84の大径歯車84bを低速出力歯車46bと噛合させることにより低速前進となる。更に、主変速レバーを回動することにより油圧ポンプ14の斜板(斜軸)を回動して無段階に変速できる。
【0022】
また、前後進レバー等の操作で後進側に変速すると、後進スイッチ63がONとなり、後進クラッチ82がONとなり(前進低速クラッチ81はOFF)、動力は、HMT出力軸36より歯車42→逆転ギア45→従動歯車44→伝動軸25→高速出力歯車46aもしくは低速出力歯車46b→摺動歯車84→変速出力軸28と伝達され、後輪107・107へ後進の回転力が伝わる。
【0023】
また、変速ペダル(前後進切替ペダル)または変速レバー(前後進切替レバー)を中立に戻したとき、車両は減速し、車速センサ66が速度0を検知すると、ソレノイド81a、82aは同時にONし、動力は変速出力軸28をロックさせ、車両の停止状態を維持し、HST機のニュートラルロック(坂道等で変速レバーまたはペダルを中立にすると、車輪がロックされる。)の状態を作ることができる。
そして、駐車ブレーキレバーを制動側に回動することにより、ブレーキセンサ64がそれを検出して、ソレノイド81a、82aは同時にONし、ブレーキ状態を作ることができる。
【0024】
また、更に機能を拡張した以下の方式も可能である。
ブレーキペダルを踏むとその角度がブレーキセンサ64により検知されて、その回動量に応じて、ソレノイド81a・82aを同時にONする時間が増加される。つまり、ソレノイド81a・82aはPWM制御等で「接」時間をブレーキペダル回動量に比例させることで、ディスクブレーキ等と同様に制動することができる方式である。
【0025】
以上より、HST7と遊星歯車機構30からなるHMT101において無段変速が可能となり、前後進切替操作により前進低速クラッチ81または後進クラッチ82をONとして、高速前進・低速前進・高速後進・低速後進を実現することが可能となる。
加えて、前述のように、クラッチ操作のみの簡易な構造にて、変速機の動力遮断(ニュートラル)状態、走行輪のニュートラルロック(ブレーキ)状態を実現できる。
【0026】
次に第二実施例について、図5、図6、図7より説明する。
遊星歯車機構30の後方(動力伝動下流側)には、三つのクラッチ機構40を設けて、これにより前進2段・後進1段とブレーキ状態とを切り換えられるようにしている。
【0027】
前記クラッチ機構40は多板式の油圧クラッチからなり、電磁バルブからの圧油により切り換えられ、HMT出力軸36上に前進低速クラッチ81と後進クラッチ82と前進高速クラッチ83を並列に配置している。
具体的には、前記HMT出力軸36が後方に延出されて、該HMT出力軸36上に歯車41・42を相対回転自在に配置している。一方、前記PTO主軸10に筒状の伝動軸25が相対回転自在に外嵌され、該伝動軸25上には、従動歯車43・44を相対回転不能に設け、更には出力歯車46を固設している。歯車41は前記従動歯車43と噛合され、歯車42は前記従動歯車44と逆転ギア45を介して連動連結されている。
【0028】
そして、前記HMT出力軸36と歯車41・42との間、HMT出力軸36と変速出力軸28の前端との間にクラッチ機構40が配置され、該クラッチ機構40は前進低速クラッチ81と後進クラッチ82と前進高速クラッチ83より構成している。つまり、前進低速クラッチ81と後進クラッチ82はHMT出力軸36上に並列に配置し、前進高速クラッチ83は同一軸心上に配置されるHMT出力軸36の後端と変速出力軸28前端の間に配置される。なお、前進低速クラッチ81と後進クラッチ82と高速前進クラッチ83は、構造上の配置は直列であるが、作用上は並列に配置されている。よって、作用上並列に配置する構成であれば構造上の配置構成は限定するものではない。
前記クラッチ機構40は油圧クラッチとして電磁バルブを介して送油される圧によりON・OFF可能であり、該前進低速クラッチ81と後進クラッチ82と前進高速クラッチ83を作動させるための電磁バルブのソレノイド81a・82a・83aはコントローラ61と接続され、該コントローラ61には更に前進低速スイッチ62と後進スイッチ63とブレーキセンサ64と前進高速スイッチ65と車速センサ66が接続されている。
前記前進低速スイッチ62と後進スイッチ63は、前後進切り換えレバーやボタン操作等で操作可能とし、ブレーキセンサ64はブレーキペダルまたは駐車レバー等に配置し、前進高速スイッチ65は副変速レバーまたはボタン等に配置し、それぞれ容易に操作できるようにしている。
【0029】
このような構成において、▲1▼前後進レバー等の操作で前進側に変速すると、前進低速スイッチ62がONして、前進低速クラッチ81がONとなり(後進クラッチ82及び前進高速クラッチ83はOFF)、動力は、HMT出力軸36より歯車41→従動歯車43→伝動軸25→出力歯車46→歯車84’→変速出力軸28と伝達され、後輪107・107へ前進の回転力が伝わる。このとき、歯車41と従動歯車43、出力歯車46と歯車84’により減速されて低速前進となる。
【0030】
また、▲2▼前後進レバー等の操作で後進側に変速すると、後進スイッチ63がONとなり、後進クラッチがONとなり(前進低速クラッチ81及び前進高速クラッチ83はOFF)、動力は、HMT出力軸36より歯車42→逆転ギア45→従動歯車44→伝動軸25→出力歯車46→歯車84’→変速出力軸28と伝達され、後輪107・107へ後進の回転力が伝わる。このとき、後進となる。
【0031】
▲3▼また、副変速レバーまたはボタン等を操作して、高速とすると、前進低速クラッチ81・後進クラッチ82がOFFとなり、前進高速クラッチ83がONとなり、HMT出力軸36からの動力が歯車を介せずに、直接変速出力軸28に伝達され、後輪107・107へ回転力が伝わる。この場合は、減速ギアを介さないため、減速されず、高速駆動となる。つまり、前進低速及び後進操作時は、HMT出力軸36上の歯車と、該HMT出力軸36と平行に配置した伝動軸25上の減速歯車を介して減速して変速出力軸28に伝え、前進高速の場合には、HMT出力軸36から直接に変速出力軸28に伝える。但し、この場合低速時に直接伝え、高速時に増速歯車を介して伝達する構成とすることもできる。
【0032】
このように、HST7と遊星歯車機構30からなるHMT101において、該HMT101を主変速とし、該HMT101の後段のHMT出力軸36上に前進低速クラッチ81と後進クラッチ82と前進高速クラッチ83とを配置し、該HMT出力軸36と変速出力軸28とを同一軸心上に配置し、該前進高速クラッチ83を該HMT出力軸36と該変速出力軸28との間に配置したため、HMT出力軸36より得られる高速回転を、別途歯車等を介せずに該前進高速クラッチ83のみで直接変速出力軸28に伝達することができ、機構を安価なものとし、動力の伝達ロスも低減できる。
【0033】
▲4▼そして、主クラッチペダルを踏んだ場合には、前進低速クラッチ81・後進クラッチ82・前進高速クラッチ83が全てOFFとなり、変速出力軸28に力は伝わらず、動力遮断(ニュートラル)状態が得られる。
【0034】
また、変速ペダルまたはレバーを中立に戻したとき、車両は減速し、車速センサ66が速度0を検出すると、ソレノイド81a、82a、83aの少なくとも二つが同時にONし、動力は変速出力軸28をロックさせ、車両の停止状態を維持し、HST機と同様のニュートラルロックの状態を作ることができる。
また、駐車ブレーキレバーを制動側に回動することにより、ブレーキセンサ64がそれを検知して、ソレノイド81a、82a、83aの少なくとも二つが同時にONし、ブレーキをかけた状態をつくることもできる。
【0035】
更に、機能を拡張した以下の方式も可能である。
ブレーキペダルを踏むとその角度がブレーキセンサ64により検知されて、その回動量に応じて、ソレノイド81a・82a・83aのいずれか二つ以上を同時にONする時間が増加される。つまり、ソレノイド81a・82a・83aはPWM制御等で「接」時間をブレーキペダル回動量に比例させることで、ディスクブレーキ等と同様に制動することができる方式である。
【0036】
例えば▲6▼ブレーキ2の場合、前進低速クラッチ81と後進クラッチ82が同時にONとなり、動力は、HMT出力軸36より従動歯車43・44に同時に反対方向の回転力が伝えられて、伝動軸25及び変速出力軸28はロック(ブレーキ)状態となる。
▲7▼ブレーキ3の場合、後進クラッチ82と前進高速クラッチ83が同時にONとなり、動力は、HMT出力軸36より歯車42→逆転ギア45→従動歯車44→伝動軸25→出力歯車46→歯車84’と伝えられる逆転駆動と、HMT出力軸36より変速出力軸28に正転駆動が同時に伝えられて、ロック(ブレーキ)状態となる。
▲8▼ブレーキ4の場合は、前進低速クラッチ81と前進高速クラッチ83が同時にONとなり、HMT出力軸36より歯車41→従動歯車43→伝動軸25→出力歯車46→歯車84’→変速出力軸28と伝えられる動力の回転数と、HMT出力軸36より直接変速出力軸28が駆動される動力の回転数は異なるため、ロック状態となる。
▲5▼の三つを同時にONした場合は前述のように当然ロック状態となる。
【0037】
以上より、HST7と遊星歯車機構30からなるHMT101において、該HMT101を主変速とし、該HMT101の後段のHMT出力軸36上に前進低速クラッチ81と後進クラッチ82を並列に設け、該HMT出力軸36に直列に前進高速クラッチ83を介して変速出力軸と連結したことにより、常にHMTの伝達効率が良く、トルクアップの大きな一方向のみを使用しながら、高速前進・低速前進・後進の副変速機能を実現することが可能となる。
加えて、第一の実施例とは異なり、各々の歯車列は、常時完全に噛合った状態であるので、機構的に信頼性も高い。
また、歯車数が減少するので、機構が安価にできる。
【0038】
そして、HST7と遊星歯車機構30からなるHMT101において、該HMT101を主変速とし、該HMT101の後段のHMT出力軸36上に前進低速クラッチ81と後進クラッチ82を並列に設け、該HMT出力軸36に直列に前進高速クラッチ83を介して変速出力軸28と連結し、前記前進低速クラッチ81と後進クラッチ82と前進高速クラッチ83の少なくとも二つをONすることにより変速出力軸28をロック可能とし、全てのクラッチをOFFすることで動力遮断(ニュートラル)としたため、例えば、複数のクラッチの内の二つ以上をONにすることでロック状態を実現し、HSTと同じニュートラルロックを可能にした。また、全てのクラッチをOFFにすることでニュートラル状態を実現することことができる。
また、第一の実施例とは異なり、クラッチの選び方により、ロック(ブレーキ)状態の強弱も複数から選択することが可能となり、クラッチの容量が小さくてすむメリットがある。
【0039】
【発明の効果】
本発明は、以上のように構成したので、以下に示すような効果を奏する。
【0040】
即ち、請求項1に示す如く、静油圧無段変速装置HSTと遊星歯車機構からなる油圧・機械式無段変速装置HMTにおいて、該HMTを主変速とし、該HMTの後段に、前後進切替用の前進クラッチと後進クラッチと歯車摺動式副変速機構を具備したことにより、常にHMTの伝達効率が良く、トルクアップの大きな一方向のみを使用しながら、高速前進・低速前進・高速後進・低速後進を実現することが可能となる。
加えて、前述のように、クラッチ操作のみの簡易な構造にて、変速機の動力遮断(ニュートラル)状態、走行輪のニュートラルロック(ブレーキ)状態を実現し、車速0時の状態をこの二通りから選択可能とする。
また、クラッチを油圧クラッチとし、電磁バルブにて制御することで、ボタン操作等、簡易な方法で副変速操作を行うことができる。
【0041】
請求項2に示す如く、HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを並列に配置したことにより、常にHMTの伝達効率が良く、トルクアップの大きな一方向のみを使用しながら、高速前進・低速前進・後進の副変速機能を実現することが可能となる。
加えて、第一の実施例とは異なり、各々の歯車列は、常時完全に噛合った状態であるので、機構的に信頼性も高い。
また、歯車数が減少するので、機構が安価にできる。
【0042】
請求項3に示す如く、HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを並列に配置し、前記前進低速クラッチと後進クラッチと前進高速クラッチとの少なくとも二つをONすることにより変速出力軸をロック可能とし、全てのクラッチをOFFすることで動力遮断(ニュートラル)としたため、例えば、複数のクラッチの内の二つ以上をONにすることでロック状態を実現し、HSTと同様のニュートラルロックを実現できる。また、全てのクラッチをOFFにすることでニュートラル状態を実現できる。
クラッチの選び方により、ロック(ブレーキ)の強弱も複数から選択することが可能となる。
【0043】
請求項4に示す如く、HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを配置し、該HMT出力軸と変速出力軸とを同一軸心上に配置し、該前進高速クラッチを該HMT出力軸と該変速出力軸との間に配置したため、HMT出力軸より得られる高速回転を、別途歯車等を介せずにクラッチのみで直接変速出力軸に伝達することができ、機構を安価なものとし、動力の伝達ロスも低減できる。
【図面の簡単な説明】
【図1】HMT式変速装置を装備した走行車両の動力伝達のスケルトン図。
【図2】前後進切替装置と副変速装置の第一の実施例を示すスケルトン図。
【図3】第一実施例の制御ブロック図。
【図4】前進クラッチと後進クラッチの作動を示す図。
【図5】前後進切替装置と副変速装置の第二の実施例を示すスケルトン図。
【図6】第二実施例の制御ブロック図。
【図7】第二の実施例におけるクラッチと動力伝達状態との関係を示す図。
【符号の説明】
7 静油圧無段変速装置(HST)
14 油圧ポンプ
15 油圧モータ
30 遊星歯車機構
40 クラッチ機構
81 前進低速クラッチ
82 後進クラッチ
83 前進高速クラッチ
101 油圧・機械式無段変速装置(HMT)
120 エンジン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission for an industrial vehicle such as agriculture and civil engineering.
[0002]
[Prior art]
Conventionally, a hydraulic continuously variable transmission (hereinafter referred to as HST) and a hydraulic / mechanical continuously variable transmission (hereinafter referred to as HMT) having a differential mechanism using a planetary gear are known.
In the HST, at least one of a hydraulic pump or a hydraulic motor is of a variable displacement type by a movable swash plate (slanted axis), and the movable swash plate (slanted axis) is coupled and interlocked with a main transmission operating means to By changing the oil discharge amount of the hydraulic pump by rotating the operation means, the output rotation speed of the output shaft of the HST is changed and transmitted to the drive shaft, and the main shift is performed. Further, the main speed change operation means is rotated from the neutral position so that the speed can be changed continuously with the forward / reverse switching of the vehicle.
[0003]
However, HST is inefficient, and the problem is that this loss is converted into heat or the like. For this reason, hydraulic / mechanical continuously variable transmissions (HMTs) are used in various forms to improve the efficiency of HST.
When an HMT is used, the efficiency of one direction of output rotation is improved and the efficiency of the reverse direction is reduced. Therefore, a mechanism using an HMT conventionally allows low efficiency and forward / reverse rotation as in Patent Document 1. There are a method of using the direction and a method of using HMT in the medium high speed region in one direction and using the HST alone in the opposite direction to the low speed region as in Patent Document 2. Both types have a mechanical auxiliary transmission function, and the gear train meshing is directly operated manually. Alternatively, a separate actuator is provided for operation.
[Patent Document 1]
JP 2000-16102 A
[Patent Document 2]
JP 2000-127785 A
[0004]
[Problems to be solved by the invention]
However, these conventional techniques have a problem that the high-efficiency portion of the HMT can be used only in one direction (in many cases, the vehicle forward direction), and the reverse direction (in many cases, the vehicle reverse direction) is low in efficiency. It was.
[0005]
[Means for Solving the Problems]
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
[0006]
That is, in claim 1, in the HMT composed of the HST and the planetary gear mechanism, the HMT is used as a main transmission, and a forward clutch, a reverse clutch, and a gear sliding auxiliary transmission mechanism for forward / reverse switching are provided at the subsequent stage of the HMT. It has.
[0007]
According to claim 2, in an HMT comprising an HST and a planetary gear mechanism, the HMT is a main transmission, and a forward low speed clutch, a reverse clutch, and a forward high speed clutch are arranged in parallel on the HMT output shaft at the rear stage of the HMT. It is.
[0008]
In claim 3, in the HMT composed of the HST and the planetary gear mechanism, the HMT is a main speed change, and the forward low speed clutch, the reverse clutch, and the forward high speed clutch are arranged in parallel on the HMT output shaft at the rear stage of the HMT, The transmission output shaft can be locked by turning on at least two of the forward low-speed clutch, the reverse clutch, and the forward high-speed clutch, and the power is cut off (neutral) by turning off all the clutches.
[0009]
According to a fourth aspect of the present invention, in an HMT comprising an HST and a planetary gear mechanism, the HMT is a main speed change, and a forward low speed clutch, a reverse clutch, and a forward high speed clutch are disposed on the HMT output shaft at the rear stage of the HMT, The output shaft and the speed change output shaft are disposed on the same axis, and the forward high speed clutch is disposed between the HMT output shaft and the speed change output shaft.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the invention will be described.
FIG. 1 is a skeleton diagram of power transmission of a traveling vehicle equipped with an HMT transmission, FIG. 2 is a skeleton diagram showing a first embodiment of a forward / reverse switching device and an auxiliary transmission, and FIG. 3 is a control of the first embodiment. 4 is a diagram showing the operation of the forward low speed clutch and the reverse clutch, FIG. 5 is a skeleton diagram showing a second embodiment of the forward / reverse switching device and the auxiliary transmission, and FIG. 6 is a control block of the second embodiment. FIGS. 7A and 7B are diagrams showing the relationship between the clutch and the power transmission state in the second embodiment.
[0011]
First, a power transmission mechanism using the HMT transmission 100 will be described with reference to FIG.
The HMT transmission 100 can be applied to an industrial vehicle such as an agricultural tractor. The HMT transmission 100 shifts the power of the engine 120 disposed in front of the fuselage and transmits it to the rear wheel 107 and the front wheel (not shown). This is transmitted to the rear PTO shaft 11 at the rear of the machine body.
[0012]
Specifically, as shown in FIG. 1, an input shaft 3 for receiving power for the transmission 100 is attached to a flywheel 1 of an engine 120 via a clutch 2, and a transmission shaft 5 is disposed behind the input shaft 3. Are arranged concentrically, and the transmission shaft 5 is connected to the input shaft 3 and the coupling 4 so as not to rotate relative to each other. A hydraulic pump 14, which will be described later, of the HST 7 is disposed behind the input shaft 3, and the transmission shaft 5 extends rearward while passing through the rotational axis of the hydraulic pump 14. This transmission shaft 5 is also used as the input shaft of HST7.
[0013]
A PTO main shaft 10 is concentrically disposed at the rear end of the transmission shaft 5 and is pivotally supported. The PTO main shaft 10 is coupled to the transmission shaft 5 via a coupling 9 so that relative rotation is impossible. As shown in FIG. 1, the PTO main shaft 10 extends further rearward, and a rear PTO shaft 11 is arranged in parallel with the PTO main shaft 10. Between the PTO main shaft 10 and the rear PTO shaft 11, a gear transmission type PTO transmission mechanism 12 is interposed.
[0014]
A hydraulic / mechanical continuously variable transmission (HMT) 101 disposed in the HMT transmission 100 is configured by combining the HST 7 and a planetary gear mechanism 30 as a differential mechanism.
Hereinafter, the swash plate type HST 7 will be described.
The HST 7 is a hydraulic pump / hydraulic motor integrated type, and an integrally formed flat oil passage plate 13 is arranged in the vertical direction, and a variable displacement hydraulic pressure is provided on the upper half of one side surface of the oil passage plate 13. The pump 14 is provided with a fixed displacement type hydraulic motor 15 in the lower half part, and both 14 and 15 are fluidized by a hydraulic oil circulation oil passage (not shown) formed in the oil passage plate 13. It is connected. Both the hydraulic pump 14 and the hydraulic motor 15 are covered by a common HST housing 16.
An output shaft 21 is disposed at the rotational axis of the hydraulic motor 15, and the output shaft 21 extends rearward through the oil passage plate 13. The transmission shaft 5 that also serves as the input shaft of the hydraulic pump 14 and the output shaft 21 are arranged in parallel in the vertical direction.
[0015]
Next, the planetary gear mechanism 30 will be described.
The end of the transmission shaft 5 opposite to the engine 120 side penetrates the oil passage plate 13 of the HST 7 and protrudes rearward, and a gear 38 is connected to the tip of the transmission shaft 5 so as not to be relatively rotatable. On the other hand, the sun gear 33 of the planetary gear mechanism 30 is linked to the output shaft 21 of the hydraulic motor 15 of the HST 7 through gears 85 and 86 and a planetary gear input shaft 87 so as not to be relatively rotatable.
[0016]
The planetary gear mechanism 30 is disposed on the lower rear side (downstream side of power transmission) of the HST 7. The sun gear 33 of the planetary gear mechanism 30 is fixed on the planetary gear input shaft 87, and the other end of the planetary gear input shaft 87 is linked to the output shaft 21 of the HST 7 via gears 86 and 85. ing. An HMT output shaft 36 is connected to the carrier 31 supporting the planetary gear 34 so as not to be relatively rotatable. A gear 39 is fixed to the internal gear 35 and meshed with a gear 38 fixed to the transmission shaft 5 of the HST 7.
The HMT output shaft 36 is transmitted to the transmission output shaft 28 via a sub transmission mechanism and a clutch mechanism 40 which will be described later. A pinion 27 is provided at an end portion of the speed change output shaft 28, and a ring gear 50 of a differential device 49 is engaged with the pinion 27, and differential yoke shafts 48, 48 project from both left and right sides of the differential device 49, The inner end sides of the shafts 48 are connected differentially.
[0017]
A reduction gear 51 is fixed to each of the differential yoke shafts 48 and 48, and the reduction gear 51 is engaged with a gear 53 on the rear axle 52 to drive a rear wheel 107 fixed to the rear axle 52.
Further, a front wheel drive gear 55 is fixed to the speed change output shaft 28, and the front wheels can be driven from the front wheel drive gear 55 via a two-wheel drive / four-wheel drive switching device (not shown).
[0018]
The forward / reverse switching device and the auxiliary transmission of the first embodiment will be described with reference to FIGS.
The clutch mechanism 40 is composed of a forward low speed clutch 81 and a reverse clutch 82 made up of multi-plate hydraulic clutches, arranged in parallel on the HMT output shaft 36, and switched by pressure oil from an electromagnetic valve. A sub-transmission device (sub-transmission mechanism) is disposed at the end. That is, the forward low speed clutch 81 is disposed between the HMT output shaft 36 and the gear 41, and the reverse clutch 82 is disposed between the HMT output shaft 36 and the gear 42. The gear 41 meshes with a driven gear 43 fixed on the transmission shaft 25, and the gear 42 meshes with a driven gear 44 fixed on the transmission shaft 25 via a reverse gear 45. A high speed output gear 46a and a low speed output gear 46b are further fixed on the transmission shaft 25, and a sliding gear 84 is disposed on the speed change output shaft 28 so as not to be relatively rotatable and slidable. By sliding the sliding gear 84 with a lever or the like and meshing the small diameter gear 84a with the high speed output gear 46a, the gear can be shifted to the high speed side, and the large diameter gear 84b is meshed with the low speed output gear 46b. Thus, the speed can be changed to the low speed side, and the auxiliary transmission is configured. Since high speed reverse is not normally provided, the forward low speed clutch 81, the reverse clutch 82, and the high speed forward clutch are arranged in parallel on the HMT output shaft 36, and the output is input to the output side of the high speed forward clutch. Is also possible.
[0019]
As shown in FIG. 3, solenoids 81a and 82a of electromagnetic valves for operating the forward low-speed clutch 81 and the reverse clutch 82 are connected to a controller 61. The controller 61 further includes a forward low-speed switch 62 and a reverse switch. 63 and the brake sensor 64 are connected. The forward low speed switch 62 and the reverse switch 63 are provided in an operation unit such as a forward / reverse switching lever or a forward / reverse switching pedal (not shown), and serve as means for detecting forward / reverse switching operation.
The brake sensor 64 is a means for detecting a brake operation, and detects a turning operation of the brake pedal or a turning operation of the parking brake lever.
The vehicle speed sensor 66 detects the rotation of the axle.
[0020]
In such a configuration, the power from the engine 120 is subjected to a main shift by the HST 7, and the output is transmitted from the output shaft 21 to the planetary gear input shaft 87 via the gears 85 and 86 to drive the sun gear 33. The power from the engine 120 is transmitted to the internal gear 35 via the output gear 38 and synthesized by the planetary gear mechanism 30, and the output of the planetary gear mechanism 30 is taken out from the HMT output shaft 36.
[0021]
At this time, when shifting forward by operating the forward / reverse lever or the like, the forward low speed switch 62 is turned ON, the forward low speed clutch 81 is turned ON (the reverse clutch is OFF), and the power is transmitted from the HMT output shaft 36 to the gear 41 → The driven gear 43 → the transmission shaft 25 → the high speed output gear 46a or the low speed output gear 46b → the sliding gear 84 → the transmission output shaft 28 is transmitted, and the forward rotational force is transmitted to the rear wheels 107 and 107. At this time, the small-diameter gear 84a of the sliding gear 84 is engaged with the high-speed output gear 46a, thereby moving forward at high speed, and the large-diameter gear 84b of the sliding gear 84 is engaged with the low-speed output gear 46b, thereby moving forward at low speed. Further, by rotating the main transmission lever, the swash plate (slant shaft) of the hydraulic pump 14 can be rotated to change the speed steplessly.
[0022]
Further, when shifting to the reverse side by operating the forward / reverse lever or the like, the reverse switch 63 is turned ON, the reverse clutch 82 is turned ON (the forward low speed clutch 81 is OFF), and the power is transmitted from the HMT output shaft 36 to the gear 42 → reverse gear. 45 → driven gear 44 → transmission shaft 25 → high-speed output gear 46a or low-speed output gear 46b → sliding gear 84 → transmission output shaft 28, and the reverse rotational force is transmitted to the rear wheels 107 and 107.
[0023]
Further, when the shift pedal (forward / reverse switching pedal) or the shift lever (forward / reverse switching lever) is returned to neutral, the vehicle decelerates, and when the vehicle speed sensor 66 detects the speed 0, the solenoids 81a and 82a are simultaneously turned ON, The motive power locks the shift output shaft 28, maintains the stop state of the vehicle, and can create a neutral lock state of the HST machine (the wheel is locked when the shift lever or pedal is neutral on a slope or the like). .
Then, by rotating the parking brake lever to the braking side, the brake sensor 64 detects it, and the solenoids 81a and 82a are simultaneously turned on to create a brake state.
[0024]
In addition, the following method with further expanded functions is also possible.
When the brake pedal is depressed, the angle is detected by the brake sensor 64, and the time for which the solenoids 81a and 82a are simultaneously turned on is increased according to the amount of rotation. That is, the solenoids 81a and 82a can be braked in the same manner as the disc brake or the like by making the “contact” time proportional to the brake pedal rotation amount by PWM control or the like.
[0025]
As described above, the HMT 101 composed of the HST 7 and the planetary gear mechanism 30 can be continuously variable, and the forward low speed clutch 81 or the reverse clutch 82 is turned ON by the forward / reverse switching operation to realize high speed forward, low speed forward, high speed reverse, and low speed reverse. It becomes possible to do.
In addition, as described above, the power cut-off (neutral) state of the transmission and the neutral lock (brake) state of the traveling wheels can be realized with a simple structure that only requires clutch operation.
[0026]
Next, a second embodiment will be described with reference to FIGS.
Three clutch mechanisms 40 are provided behind the planetary gear mechanism 30 (on the downstream side of power transmission) so that the two forward speeds, the first reverse speed, and the brake state can be switched.
[0027]
The clutch mechanism 40 is composed of a multi-plate hydraulic clutch and is switched by pressure oil from an electromagnetic valve. A forward low-speed clutch 81, a reverse clutch 82, and a forward high-speed clutch 83 are arranged in parallel on the HMT output shaft 36.
Specifically, the HMT output shaft 36 extends rearward, and gears 41 and 42 are disposed on the HMT output shaft 36 so as to be relatively rotatable. On the other hand, a cylindrical transmission shaft 25 is fitted on the PTO main shaft 10 so as to be relatively rotatable, and driven gears 43 and 44 are provided on the transmission shaft 25 so as not to be relatively rotatable. Further, an output gear 46 is fixed. is doing. The gear 41 is meshed with the driven gear 43, and the gear 42 is interlocked and connected via the driven gear 44 and the reverse gear 45.
[0028]
A clutch mechanism 40 is disposed between the HMT output shaft 36 and the gears 41 and 42, and between the HMT output shaft 36 and the front end of the transmission output shaft 28. The clutch mechanism 40 includes a forward low speed clutch 81 and a reverse clutch. 82 and the forward high-speed clutch 83. That is, the forward low speed clutch 81 and the reverse clutch 82 are arranged in parallel on the HMT output shaft 36, and the forward high speed clutch 83 is located between the rear end of the HMT output shaft 36 and the front end of the transmission output shaft 28 arranged on the same axis. Placed in. The forward low-speed clutch 81, the reverse clutch 82, and the high-speed forward clutch 83 are structurally arranged in series, but are arranged in parallel in operation. Therefore, the structural arrangement configuration is not limited as long as it is configured to be arranged in parallel in operation.
The clutch mechanism 40 can be turned on and off by a pressure fed through an electromagnetic valve as a hydraulic clutch, and an electromagnetic valve solenoid 81a for operating the forward low-speed clutch 81, the reverse clutch 82, and the forward high-speed clutch 83. 82a and 83a are connected to a controller 61, and a forward low speed switch 62, a reverse switch 63, a brake sensor 64, a forward high speed switch 65, and a vehicle speed sensor 66 are further connected to the controller 61.
The forward low-speed switch 62 and the reverse switch 63 can be operated by a forward / reverse switching lever, button operation, etc., the brake sensor 64 is disposed on a brake pedal or a parking lever, etc., and the forward high-speed switch 65 is provided on a sub-shift lever or button, etc. They are arranged so that each can be operated easily.
[0029]
In such a configuration, (1) when shifting forward by operating the forward / reverse lever or the like, the forward low speed switch 62 is turned on and the forward low speed clutch 81 is turned on (the reverse clutch 82 and the forward high speed clutch 83 are OFF). The power is transmitted from the HMT output shaft 36 to the gear 41 → the driven gear 43 → the transmission shaft 25 → the output gear 46 → the gear 84 ′ → the speed change output shaft 28, and the forward rotational force is transmitted to the rear wheels 107 and 107. At this time, it is decelerated by the gear 41 and the driven gear 43, the output gear 46 and the gear 84 ', and moves forward at a low speed.
[0030]
Further, (2) when the shift is made to the reverse side by operating the forward / reverse lever or the like, the reverse switch 63 is turned ON, the reverse clutch is turned ON (the forward low speed clutch 81 and the forward high speed clutch 83 are OFF), and the power is supplied to the HMT output shaft. 36, the gear 42, the reverse gear 45, the driven gear 44, the transmission shaft 25, the output gear 46, the gear 84 ', and the speed change output shaft 28 are transmitted to the rear wheels 107 and 107, and the reverse rotational force is transmitted. At this time, it will be reverse.
[0031]
(3) Also, if the sub-shift lever or button is operated to increase the speed, the forward low-speed clutch 81 and the reverse clutch 82 are turned OFF, the forward high-speed clutch 83 is turned ON, and the power from the HMT output shaft 36 rotates the gear. Instead, the torque is transmitted directly to the transmission output shaft 28, and the rotational force is transmitted to the rear wheels 107 and 107. In this case, since no reduction gear is used, the vehicle is not decelerated and is driven at high speed. That is, during forward low speed and reverse operation, the speed is reduced and transmitted to the speed change output shaft 28 via the gear on the HMT output shaft 36 and the reduction gear on the transmission shaft 25 arranged in parallel with the HMT output shaft 36. In the case of high speed, it is transmitted directly from the HMT output shaft 36 to the speed change output shaft 28. However, in this case, it may be configured to transmit directly at a low speed and transmit via a speed increasing gear at a high speed.
[0032]
As described above, in the HMT 101 including the HST 7 and the planetary gear mechanism 30, the HMT 101 is used as a main transmission, and the forward low-speed clutch 81, the reverse clutch 82, and the forward high-speed clutch 83 are arranged on the HMT output shaft 36 subsequent to the HMT 101. Since the HMT output shaft 36 and the transmission output shaft 28 are arranged on the same axis, and the forward high speed clutch 83 is arranged between the HMT output shaft 36 and the transmission output shaft 28, the HMT output shaft 36 The obtained high speed rotation can be directly transmitted to the speed change output shaft 28 only by the forward high speed clutch 83 without using a separate gear or the like, and the mechanism can be made inexpensive and the transmission loss of power can be reduced.
[0033]
(4) When the main clutch pedal is depressed, the forward low-speed clutch 81, the reverse clutch 82, and the forward high-speed clutch 83 are all turned off, no power is transmitted to the transmission output shaft 28, and the power cut-off (neutral) state is established. can get.
[0034]
Further, when the shift pedal or lever is returned to neutral, the vehicle decelerates, and when the vehicle speed sensor 66 detects the speed 0, at least two of the solenoids 81a, 82a, 83a are simultaneously turned ON, and the power locks the shift output shaft 28. The vehicle can be kept stopped and a neutral lock state similar to that of the HST machine can be created.
Further, by turning the parking brake lever to the braking side, the brake sensor 64 detects it, and at least two of the solenoids 81a, 82a, 83a can be simultaneously turned on to create a braked state.
[0035]
Further, the following method with expanded functions is also possible.
When the brake pedal is depressed, the angle is detected by the brake sensor 64, and the time for simultaneously turning on any two or more of the solenoids 81a, 82a, 83a is increased according to the amount of rotation. That is, the solenoids 81a, 82a, and 83a can be braked in the same manner as the disc brake or the like by making the “contact” time proportional to the brake pedal rotation amount by PWM control or the like.
[0036]
For example, in the case of (6) brake 2, the forward low-speed clutch 81 and the reverse clutch 82 are simultaneously turned on, and the power is transmitted to the driven gears 43 and 44 simultaneously from the HMT output shaft 36 so that the transmission shaft 25 The transmission output shaft 28 is in a locked (brake) state.
(7) In the case of the brake 3, the reverse clutch 82 and the forward high speed clutch 83 are simultaneously turned ON, and the power is transmitted from the HMT output shaft 36 to the gear 42 → the reverse gear 45 → the driven gear 44 → the transmission shaft 25 → the output gear 46 → the gear 84. The reverse rotation drive transmitted to 'and the normal rotation drive from the HMT output shaft 36 to the speed change output shaft 28 are simultaneously transmitted to enter a lock (brake) state.
(8) In the case of the brake 4, the forward low speed clutch 81 and the forward high speed clutch 83 are simultaneously turned ON, and the gear 41 → the driven gear 43 → the transmission shaft 25 → the output gear 46 → the gear 84 ′ → the speed change output shaft from the HMT output shaft 36. Since the rotational speed of the power transmitted to 28 and the rotational speed of the power directly driving the speed change output shaft 28 from the HMT output shaft 36 are different, the locked state is established.
If the three of (5) are simultaneously turned on, it is naturally locked as described above.
[0037]
As described above, in the HMT 101 including the HST 7 and the planetary gear mechanism 30, the HMT 101 is used as the main speed change, the forward low-speed clutch 81 and the reverse clutch 82 are provided in parallel on the HMT output shaft 36 at the rear stage of the HMT 101, and the HMT output shaft 36 By connecting to the speed change output shaft through the forward high speed clutch 83 in series, the HMT transmission efficiency is always good, and only one direction with a large torque increase is used, while high speed forward / low speed forward / reverse auxiliary speed change function. Can be realized.
In addition, unlike the first embodiment, each gear train is always in a completely meshed state, so that it is mechanically reliable.
Moreover, since the number of gears is reduced, the mechanism can be made inexpensive.
[0038]
In the HMT 101 composed of the HST 7 and the planetary gear mechanism 30, the HMT 101 is used as a main speed change, and a forward low speed clutch 81 and a reverse clutch 82 are provided in parallel on the HMT output shaft 36 at the rear stage of the HMT 101. The transmission output shaft 28 is connected in series via the forward high speed clutch 83, and the transmission output shaft 28 can be locked by turning on at least two of the forward low speed clutch 81, the reverse clutch 82, and the forward high speed clutch 83. Since the power was cut off (neutral) by turning off the clutch, for example, the lock state was realized by turning on two or more of the plurality of clutches, and the same neutral lock as HST was made possible. Moreover, the neutral state can be realized by turning off all the clutches.
Further, unlike the first embodiment, it is possible to select a plurality of lock (brake) states depending on how the clutch is selected, and there is an advantage that the capacity of the clutch can be reduced.
[0039]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0040]
That is, as shown in claim 1, in a hydraulic / mechanical continuously variable transmission HMT comprising a hydrostatic continuously variable transmission HST and a planetary gear mechanism, the HMT is used as a main transmission, and a forward / reverse switching switch is provided at the subsequent stage of the HMT. The forward clutch, reverse clutch, and gear-sliding sub-transmission mechanism are provided, so that the HMT transmission efficiency is always good and only one direction with large torque increase is used, while high-speed forward / low-speed forward / high-speed reverse / low-speed It is possible to realize backwards.
In addition, as described above, a simple structure with only a clutch operation realizes a transmission power cut-off (neutral) state and a running wheel neutral lock (brake) state. Can be selected.
Further, the sub-shift operation can be performed by a simple method such as a button operation by using a hydraulic clutch as the clutch and controlling the clutch with an electromagnetic valve.
[0041]
As shown in claim 2, in the HMT composed of the HST and the planetary gear mechanism, the HMT is a main speed change, and the forward low speed clutch, the reverse clutch, and the forward high speed clutch are arranged in parallel on the HMT output shaft at the rear stage of the HMT. As a result, it is possible to realize the subtransmission function of high speed forward / low speed forward / reverse while always using only one direction in which the HMT transmission efficiency is high and the torque is greatly increased.
In addition, unlike the first embodiment, each gear train is always in a completely meshed state, so that it is mechanically reliable.
Moreover, since the number of gears is reduced, the mechanism can be made inexpensive.
[0042]
According to a third aspect of the present invention, in the HMT composed of the HST and the planetary gear mechanism, the HMT is a main speed change, and the forward low speed clutch, the reverse clutch, and the forward high speed clutch are arranged in parallel on the HMT output shaft at the rear stage of the HMT. The shift output shaft can be locked by turning on at least two of the forward low speed clutch, the reverse clutch, and the forward high speed clutch, and the power cut off (neutral) by turning off all the clutches. By turning on two or more of the clutches, a locked state is realized, and a neutral lock similar to HST can be realized. Further, the neutral state can be realized by turning off all the clutches.
Depending on how the clutch is selected, the lock (brake) strength can be selected from a plurality.
[0043]
In the HMT comprising the HST and the planetary gear mechanism, the HMT is a main speed change, and the forward low speed clutch, the reverse clutch, and the forward high speed clutch are disposed on the HMT output shaft at the rear stage of the HMT, Since the HMT output shaft and the speed change output shaft are arranged on the same axis, and the forward high speed clutch is arranged between the HMT output shaft and the speed change output shaft, the high speed rotation obtained from the HMT output shaft is separately provided with a gear. Therefore, the transmission can be directly transmitted to the speed change output shaft only by the clutch without using a mechanism, etc., the mechanism can be made inexpensive and the transmission loss of power can be reduced.
[Brief description of the drawings]
FIG. 1 is a skeleton diagram of power transmission of a traveling vehicle equipped with an HMT transmission.
FIG. 2 is a skeleton diagram showing a first embodiment of a forward / reverse switching device and a subtransmission device.
FIG. 3 is a control block diagram of the first embodiment.
FIG. 4 is a diagram illustrating the operation of a forward clutch and a reverse clutch.
FIG. 5 is a skeleton diagram showing a second embodiment of the forward / reverse switching device and the auxiliary transmission.
FIG. 6 is a control block diagram of the second embodiment.
FIG. 7 is a diagram showing a relationship between a clutch and a power transmission state in the second embodiment.
[Explanation of symbols]
7 Hydrostatic continuously variable transmission (HST)
14 Hydraulic pump
15 Hydraulic motor
30 Planetary gear mechanism
40 Clutch mechanism
81 Forward low speed clutch
82 Reverse clutch
83 Forward high speed clutch
101 Hydraulic and mechanical continuously variable transmission (HMT)
120 engine

Claims (4)

静油圧式無段変速装置(以下HST)と遊星歯車機構からなる油圧・機械式無段変速装置(以下HMT)において、該HMTを主変速とし、該HMTの後段に、前後進切替用の前進クラッチと後進クラッチと歯車摺動式副変速機構を具備することを特徴とした油圧・機械式無段変速装置。In a hydraulic / mechanical continuously variable transmission (hereinafter referred to as "HMT") comprising a hydrostatic continuously variable transmission (hereinafter referred to as "HST") and a planetary gear mechanism, the HMT is used as a main transmission, and the forward movement for forward / reverse switching is performed at the subsequent stage of the HMT. A hydraulic / mechanical continuously variable transmission comprising a clutch, a reverse clutch, and a gear sliding auxiliary transmission mechanism. HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを並列に配置したことを特徴とした油圧・機械式無段変速装置。In an HMT comprising an HST and a planetary gear mechanism, the HMT is a main transmission, and a forward low speed clutch, a reverse clutch, and a forward high speed clutch are arranged in parallel on the HMT output shaft at the rear stage of the HMT. Mechanical continuously variable transmission. HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを並列に配置し、前記前進低速クラッチと後進クラッチと前進高速クラッチの少なくとも二つをONすることにより変速出力軸をロック可能とし、全てのクラッチをOFFすることで動力遮断(ニュートラル)としたことを特徴とする油圧・機械式無段変速装置。In an HMT composed of an HST and a planetary gear mechanism, the HMT is a main speed change, and a forward low-speed clutch, a reverse clutch, and a forward high-speed clutch are arranged in parallel on the HMT output shaft of the rear stage of the HMT, and the forward low-speed clutch and the reverse drive Hydraulic and mechanical continuously variable transmission characterized in that the shift output shaft can be locked by turning on at least two of the clutch and the forward high speed clutch, and the power is cut off (neutral) by turning off all the clutches. . HSTと遊星歯車機構からなるHMTにおいて、該HMTを主変速とし、該HMTの後段のHMT出力軸上に前進低速クラッチと後進クラッチと前進高速クラッチとを配置し、該HMT出力軸と変速出力軸とを同一軸心上に配置し、該前進高速クラッチを該HMT出力軸と該変速出力軸との間に配置することを特徴とする油圧・機械式無段変速装置。In an HMT comprising an HST and a planetary gear mechanism, the HMT is a main speed change, a forward low speed clutch, a reverse clutch, and a forward high speed clutch are arranged on the HMT output shaft at the rear stage of the HMT, and the HMT output shaft and the shift output shaft Are arranged on the same axis, and the forward high speed clutch is arranged between the HMT output shaft and the transmission output shaft.
JP2003060052A 2003-03-06 2003-03-06 Hydraulic and mechanical continuously variable transmission Expired - Fee Related JP4261944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060052A JP4261944B2 (en) 2003-03-06 2003-03-06 Hydraulic and mechanical continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060052A JP4261944B2 (en) 2003-03-06 2003-03-06 Hydraulic and mechanical continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2004270762A true JP2004270762A (en) 2004-09-30
JP4261944B2 JP4261944B2 (en) 2009-05-13

Family

ID=33122715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060052A Expired - Fee Related JP4261944B2 (en) 2003-03-06 2003-03-06 Hydraulic and mechanical continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4261944B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040077A1 (en) * 2005-09-30 2007-04-12 Kubota Corporation Speed change transmission device
JP2007177982A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Drive device
JP2008025630A (en) * 2006-07-18 2008-02-07 Yanmar Co Ltd Transmission having hydraulic continuously-variable transmission apparatus
JP2008189144A (en) * 2007-02-05 2008-08-21 Kubota Corp Gear shift transmission device
JP2010159883A (en) * 2010-04-22 2010-07-22 Kubota Corp Variable-speed transmission
JP2010540864A (en) * 2007-10-02 2010-12-24 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト Stepless transmission device for vehicles
JP2012021649A (en) * 2011-09-26 2012-02-02 Iseki & Co Ltd Vehicular forward-backward travel clutch control device
JP2013257042A (en) * 2013-08-08 2013-12-26 Kubota Corp Transmission device of tractor
DE102019219356A1 (en) * 2019-12-11 2021-06-17 Zf Friedrichshafen Ag Power split transmission and drive train for a work machine
DE102021200780B3 (en) 2021-01-28 2022-07-28 Zf Friedrichshafen Ag Method of operating a ship's propulsion system, ship's transmission and ship's propulsion system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096912B2 (en) 2005-09-30 2012-01-17 Kubota Corporation Speed change transmission device
JP2007091139A (en) * 2005-09-30 2007-04-12 Kubota Corp Gear shift transmission device
EP1930198A1 (en) * 2005-09-30 2008-06-11 Kubota Corporation Speed change transmission device
CN101291825B (en) * 2005-09-30 2012-06-27 株式会社久保田 Speed change transmission device
JP4594840B2 (en) * 2005-09-30 2010-12-08 株式会社クボタ Variable speed transmission for tractor
WO2007040077A1 (en) * 2005-09-30 2007-04-12 Kubota Corporation Speed change transmission device
KR101017785B1 (en) * 2005-09-30 2011-02-28 가부시끼 가이샤 구보다 Speed change transmission device
EP1930198A4 (en) * 2005-09-30 2011-07-27 Kubota Kk Speed change transmission device
JP2007177982A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Drive device
JP2008025630A (en) * 2006-07-18 2008-02-07 Yanmar Co Ltd Transmission having hydraulic continuously-variable transmission apparatus
JP2008189144A (en) * 2007-02-05 2008-08-21 Kubota Corp Gear shift transmission device
JP2010540864A (en) * 2007-10-02 2010-12-24 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト Stepless transmission device for vehicles
KR101514475B1 (en) * 2007-10-02 2015-04-22 젯트에프 프리드리히스하펜 아게 Variable transmission device for a vehicle
JP2010159883A (en) * 2010-04-22 2010-07-22 Kubota Corp Variable-speed transmission
JP2012021649A (en) * 2011-09-26 2012-02-02 Iseki & Co Ltd Vehicular forward-backward travel clutch control device
JP2013257042A (en) * 2013-08-08 2013-12-26 Kubota Corp Transmission device of tractor
DE102019219356A1 (en) * 2019-12-11 2021-06-17 Zf Friedrichshafen Ag Power split transmission and drive train for a work machine
DE102021200780B3 (en) 2021-01-28 2022-07-28 Zf Friedrichshafen Ag Method of operating a ship's propulsion system, ship's transmission and ship's propulsion system

Also Published As

Publication number Publication date
JP4261944B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
JP2019095058A (en) Tractor gear change transmission device and tractor
JP4740174B2 (en) Variable speed transmission
JP2009196393A (en) Working vehicle
JP4261944B2 (en) Hydraulic and mechanical continuously variable transmission
JP3936854B2 (en) Gearbox for work vehicle
JP5833168B2 (en) Gearbox for work vehicle
JP5426731B2 (en) Transmission device for work vehicle
JP5492037B2 (en) Tractor transmission
JP4605567B2 (en) Hydraulic-mechanical continuously variable transmission
JP5592539B2 (en) Transmission device for work vehicle
JP3612593B2 (en) Crawler type vehicle traveling turning drive device
JP5346456B2 (en) Transmission device for work vehicle
JP6199593B2 (en) Tractor transmission
JP2002172946A (en) Tractor
JP5083497B2 (en) Tractor
JP4891867B2 (en) Variable speed transmission
JP4981463B2 (en) Driving transmission structure of work vehicle
JP4899752B2 (en) Traveling vehicle
JP4189144B2 (en) Brake device for tractor
JP4246306B2 (en) Gearbox for work vehicle
JP3773830B2 (en) Emergency traveling mechanism for work vehicles
JP7376069B2 (en) transmission structure
JP5823276B2 (en) Working machine
JP5809039B2 (en) Working machine
JPH11105562A (en) Hydraulic transmission of farm working vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees