JP2004270390A - Building structure of composting facility - Google Patents

Building structure of composting facility Download PDF

Info

Publication number
JP2004270390A
JP2004270390A JP2003065830A JP2003065830A JP2004270390A JP 2004270390 A JP2004270390 A JP 2004270390A JP 2003065830 A JP2003065830 A JP 2003065830A JP 2003065830 A JP2003065830 A JP 2003065830A JP 2004270390 A JP2004270390 A JP 2004270390A
Authority
JP
Japan
Prior art keywords
building
air
fermentation
wall
draft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003065830A
Other languages
Japanese (ja)
Inventor
Shigeo Nishida
茂雄 西田
Masuo Ogino
益男 荻野
Rei Watanabe
玲 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003065830A priority Critical patent/JP2004270390A/en
Publication of JP2004270390A publication Critical patent/JP2004270390A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fertilizing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the building structure of a composting facility capable of smoothly discharging fermentation water vapor to the outdoors by natural ventilation. <P>SOLUTION: In a building wherein a primary fermentor 22 performing aerobic fermentation by forced venting from a tank bottom part is disposed in one region and a secondary fermentor 23 performing anaerobic fermentation is disposed in the other region, a draft wall 38 for partitioning an indoor space into both regions is erected inside the building 21, and exhaust ports 30 are provided in the upper position of the draft wall 38 and in the ceiling part of the building 21, while air supply ports 29 are provided in a sidewall 28 of the building 21. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はコンポスト化設備の建屋構造に関し、有機性廃棄物をコンポスト化する設備において換気を行う技術に係るものである。
【0002】
【従来の技術】
従来、図5に示すようなコンポスト化設備では、建屋1の内部に複数の一次発酵槽2と二次発酵槽3とを通路4で隔てた両側に配設している。
【0003】
コンポスト化工程はわら類、糞尿、生ごみ、畜産糞尿、余剰汚泥等の有機性廃棄物を好気的条件下で分解させるものである。コンポスト化の条件には、例えば適度に水分を保つことがある。微生物の生育には水分が不可欠であるが、多すぎると嫌気的条件になり易く、水分は40〜65%に保つことが望ましい。また、好気性微生物は、当然、呼吸のために酸素を消費するので、空気を適度に供給する必要があり、酸素が不足すると生育や分解が著しく阻害される。しかし、大量の空気を供給すると放冷が起こり発酵が抑制される。
【0004】
このため、一次発酵槽2では、固定槽に有機性廃棄物を堆積させて槽底部より有機性廃棄物の発酵分解に必要な空気を強制通気し、一定時間ごとに機械攪拌を行って固定槽の中で有機性廃棄物を緩やかに移動させながら土壌の微生物により好気性分解を促進させる。一次発酵槽2では易分解性の有機物を分解し、好気性発酵で発生するエネルギーで有機性廃棄物の堆積物内の温度が上昇し、60〜70℃の高温域で好気性発酵を継続し、高温となることで水分が蒸発する。
【0005】
一次発酵物は二次発酵槽3へ移動させ、二次発酵槽3で難分解性の有機物を分解させる。
建屋1は屋根5が棟6から両側の軒7に向けて下り勾配をなし、側壁8に形成した給気口9から新鮮空気が流入し、棟6に設けた排気口10から屋内空気が流出することで自然換気している。建屋1の換気は自然換気以外に換気扇による強制換気もある。
【0006】
この種のコンポスト化設備に関する先行技術としては特許文献1、2に記載するものがある。
【0007】
【特許文献1】特開平11−168911号
【0008】
【特許文献2】特開平11−314988号
【0009】
【発明が解決しようとする課題】
上記したようなコンポスト化設備では、発酵過程で発生する炭酸ガスや発酵水蒸気を屋外へ排気するために換気が必要不可欠である。しかし、強制換気を行う場合には設備費、電力費が必要となる。
【0010】
また、自然換気を行う場合に、建屋1の内部空間が広くて、温度の異なる一次発酵槽2と二次発酵槽3とが存在することで円滑な換気を行えず、空気が滞留する箇所ができる。一次発酵槽2において強制通気した発酵用空気は一次発酵槽2から発生する発酵水蒸気を含む暖気となり、屋内に拡散しながら上昇し、天井面に達した屋内空気は天井面の勾配に沿って流れて棟6に設けた排気口10から屋外に流出し、側壁8の給気口9から冷気の新鮮空気が流入して屋内空気が換気される。
【0011】
寒冷地においては冬場に屋内外の温度差が大きくなり、天井面付近に滞留する屋内空気が屋根5を隔てた外気により冷却され、屋内空気中の発酵水蒸気が凝縮して結露し、結露は雫となって一次発酵槽2に落下し、発酵熱で蒸発・乾燥した発酵物の水分が再び増加する問題がある。
【0012】
本発明は上記した課題を解決するものであり、自然換気で発酵水蒸気を屋外へ円滑に排出できるコンポスト化設備の建屋構造を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る本発明のコンポスト化設備の建屋構造は、コンポスト化設備の建屋において、屋内空間を複数の領域に仕切るドラフト壁を建屋内に立設し、ドラフト壁の上方位置で建屋の天井部に排気口を設け、建屋の側壁に給気口を設けたものである。
【0014】
上記した構成により、屋内の空気が天井部に設けた排気口から屋外へ流出し、側壁に設けた給気口から屋外の新鮮空気が流入することで、建屋内の空気が換気される。このとき、ドラフト壁の近傍の空気はドラフト壁に沿って上昇し、その整流効果を受けて排気口に向けて上昇する上昇速度が周囲の空気に比べて速くなり、ドラフト壁の近傍における気圧が周囲に比べて低くなる。このため屋内空間に拡散する暖かい空気、および給気口から流入した新鮮空気を含む屋内空気は、建屋の天井部に滞留することが少なくなり、ドラフト壁に向かって流れて後にドラフト壁に沿って上昇し、排気口から屋外へ流出することになり、建屋における換気効率が向上する。
【0015】
請求項2に係る本発明のコンポスト化設備の建屋構造は、ドラフト壁を隔てた一方の領域に一次発酵槽を配置し、他方の領域に二次発酵槽を配置したものである。
【0016】
上記した構成により、一次発酵槽では有機性廃棄物を堆積させて槽底部より有機性廃棄物の発酵分解に必要な空気を強制通気し、機械攪拌により有機性廃棄物を緩やかに移動させながら土壌の微生物により易分解性の有機物を好気性発酵により分解する。一次発酵槽では好気性発酵で発生するエネルギーで有機性廃棄物の堆積物内の温度が上昇して60〜70℃の高温域で好気性発酵が継続して行われ、水分が蒸発する。一次発酵物は二次発酵槽へ移動させて発酵させ、難分解性の有機物を発酵により分解する。
【0017】
発酵エネルギーで暖められた空気が天井部に設けた排気口から屋外へ流出し、側壁に設けた給気口から屋外の新鮮空気が流入することで、建屋内の空気が換気される。このとき、ドラフト壁の近傍の空気はドラフト壁に沿って上昇し、その整流効果を受けて排気口に向けて上昇する上昇速度が周囲の空気に比べて速くなり、ドラフト壁の近傍における気圧が周囲に比べて低くなる。このため、堆積物から蒸発した発酵水蒸気を含んで一次発酵槽から屋内空間に拡散する暖かい空気、および給気口から流入した新鮮空気を含む屋内空気は、建屋の天井部に滞留することが少なくなり、ドラフト壁に向かって流れて後にドラフト壁に沿って上昇し、排気口から屋外へ流出することになり、建屋における換気効率が向上する。
【0018】
建屋内では一次発酵と二次発酵の温度が異なることに由来してドラフト壁を隔てた一方の領域と他方の領域とで屋内空間の雰囲気に温度差が存在するので、一次発酵槽から蒸発した発酵水蒸気を含んで一方の高温の領域側を流れる空気はドラフト壁に沿って上昇する間に他方の低温の領域側を流れる空気に冷却されて凝縮され、発酵水蒸気はドラフト壁面で結露し、結露水はドラフト壁に沿って流下してドラフト壁の下端縁で回収される。よって、発酵水蒸気が結露して再び一次発酵槽に落下し、発酵熱で蒸発・乾燥した発酵物の水分が再び増加することを低減できる。
【0019】
請求項3に係る本発明のコンポスト化設備の建屋構造は、ドラフト壁を隔てた一方の領域にのみ発酵槽を配置したものである。
上記した構成により、発酵槽を配置した一方の領域では発酵により発生するエネルギーで暖められた空気が天井部に設けた排気口から屋外へ流出し、側壁に設けた給気口から屋外の新鮮空気が流入することで、建屋内の空気が換気される。このとき、ドラフト壁の近傍の空気はドラフト壁に沿って上昇し、その整流効果を受けて排気口に向けて上昇する上昇速度が周囲の空気に比べて速くなり、ドラフト壁の近傍における気圧が周囲に比べて低くなる。このため、堆積物から屋内空間に拡散する暖かい空気、および給気口から流入した新鮮空気を含む屋内空気は、建屋の天井部に滞留することが少なくなり、ドラフト壁に向かって流れて後にドラフト壁に沿って上昇し、排気口から屋外へ流出することで建屋における換気効率が向上する。
【0020】
建屋内では発酵槽を配置した一方の領域とドラフト壁を隔てた他方の領域とで屋内空間の雰囲気に温度差が存在するので、発酵槽を配置した一方の高温の領域側を流れる空気はドラフト壁に沿って上昇する間に他方の低温の領域側を流れる空気に冷却されて凝縮され、発酵水蒸気はドラフト壁面で結露し、結露水はドラフト壁に沿って流下してドラフト壁の下端縁で回収される。よって、発酵水蒸気が結露して再び発酵槽に落下し、発酵物の水分が再び増加することを低減できる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1〜図4はコンポスト化設備の一例を開示するものであり、建屋21の一方の領域に複数の一次発酵槽22を配置し、他方の領域に二次発酵槽23を配置しており、両領域間に通路24を配設している。建屋21は屋根25が棟26から両側の軒27に向けて下り勾配をなし、側壁28に形成した給気口29から新鮮空気が流入し、天上部の最上である棟26に設けた排気口30から屋内空気が流出することで自然換気する。排気口30に換気扇を設けて強制換気することも可能である。
【0022】
一次発酵槽22は各固定槽31の底部に形成した複数の床溝32に給気管33を配置しており、固定槽31の間に形成した点検通路34に配置するブロアー35に給気管33を接続している。各固定槽31には攪拌装置36を設けており、攪拌装置36は槽壁37に沿って移動し、固定槽31に堆積する堆積物を切り返しながら移動させるものである。
【0023】
建屋内にはドラフト壁38を立設しており、ドラフト壁38は屋内空間を双方の領域に仕切るものであり、ドラフト壁38の上方に排気口30が位置している。ドラフト壁38はステンレス製の骨組39の表面にポリオレフィン製の透明のフィルム40を張ったものであり、下端縁に結露水を回収する樋41を設けている。ドラフト壁38は建築上の強度を必要とするものではなく、単に気流の拡散を制限できれば良いので、上述の構造に限らずテント布地などで形成してもよく、安価な材料で形成できる。
【0024】
以下、上記した構成における作用を説明する。一次発酵槽22では各固定槽31に堆積させた有機性廃棄物にブロアー35から給気管33を通して空気を供給し、有機性廃棄物の発酵分解に必要な空気を強制通気して微生物により好気性発酵させる。また、攪拌装置36により一定時間ごとに機械攪拌を行って固定槽31の中で有機性廃棄物を緩やかに移動させて好気性発酵を促進させる。
【0025】
この一次発酵槽22では好気性発酵で発生するエネルギーで有機性廃棄物の堆積物内の温度が上昇し、60〜70℃の高温域で好気性発酵を継続し、高温となることで水分が蒸発する。
【0026】
一次発酵槽22で好気性発酵を終えた一次発酵物は二次発酵槽23へ移動させ、二次発酵槽23で難分解性の有機物を発酵により分解する。二次発酵槽23における二次発酵物の堆積物内の温度は40℃以下である。
【0027】
建屋21の内部で発酵エネルギーにより暖められた空気は天井部に設けた排気口30から屋外へ流出し、側壁28に設けた給気口29から屋外の新鮮空気が流入することで、建屋21の内部の空気が自然換気される。
【0028】
このとき、ドラフト壁38の近傍の空気はその拡散がドラフト壁38によって抑制されてドラフト壁38のフィルム40に沿って上昇し、排気口30に向けて上昇する空気の上昇速度がドラフト壁38による整流効果を受けて周囲の空気に比べて速くなる。ダウンフローの流れもあるが全体としては上昇流となる。
【0029】
このため、堆積物から蒸発した発酵水蒸気を含んで一次発酵槽22から屋内空間に拡散する暖かい空気、および給気口29から流入した新鮮空気を含む屋内空気は、建屋21の天井部に滞留することが少なくなり、ドラフト壁38に向かって流れて後にドラフト壁38に沿って上昇し、排気口30から屋外へ流出することになり、建屋21における自然換気効率が向上し、強制換気する場合にあっても設備容量を小さくできる。
【0030】
建屋21では一次発酵と二次発酵の温度が異なることに由来してドラフト壁38のフィルム40を隔てた一方の領域と他方の領域とで屋内空間の雰囲気に温度差が存在するので、一次発酵槽22から蒸発した発酵水蒸気を含んで一方の高温の領域側を流れる空気はドラフト壁38の薄いフィルム40に沿って上昇する間に他方の低温の領域側を流れる空気に冷却されて凝縮され、発酵水蒸気はドラフト壁38の壁面をなすフィルム40の表面で結露し、結露水はドラフト壁38に沿って流下してドラフト壁38の下端縁の樋41で回収される。
【0031】
よって、発酵水蒸気が二次発酵槽23もしくは作業通路の領域に拡散することをドラフト壁38によって抑制でき、二次発酵槽23の領域の作業環境の悪化を防止できる。また、従来のように、発酵水蒸気が天井部で結露して再び一次発酵槽22に落下し、発酵熱で蒸発・乾燥した発酵物の水分が再び増加することを低減できる。
【0032】
本実施の形態では、ドラフト壁38を隔てた一方の領域に一次発酵槽22を配置し、他方の領域に二次発酵槽23を配置する構成を説明したが、発酵槽を一次発酵槽22および二次発酵槽23に区分しない場合や区分する場合においても、ドラフト壁38を隔てた一方の領域にのみ発酵槽を配置し、他方の領域を養生域とすることも可能である。
【0033】
この場合にも、ドラフト壁38の近傍の空気はドラフト壁38による整流効果を受けてドラフト壁38のフィルム40に沿った上昇流となり、発酵槽(一次発酵槽22および二次発酵槽23)から屋内空間に拡散する暖かい空気、および給気口29から流入した新鮮空気を含む屋内空気が、建屋21の天井部に滞留することが少なくなり、ドラフト壁38に向かって流れて後にドラフト壁38に沿って上昇するので、建屋21における自然換気効率が向上し、強制換気する場合にあっても設備容量を小さくできる。
【0034】
建屋21では発酵槽が存在する一方の領域とドラフト壁38のフィルム40を隔てた他方の領域とで屋内空間の雰囲気に温度差が存在するので、一方の高温の領域側を流れる空気はドラフト壁38の薄いフィルム40に沿って上昇する間に他方の低温の領域側を流れる空気に冷却されて凝縮され、発酵水蒸気はドラフト壁38の壁面をなすフィルム40の表面で結露し、結露水はドラフト壁38に沿って流下してドラフト壁38の下端縁の樋41で回収される。
【0035】
【発明の効果】
以上のように本発明によれば、ドラフト壁に沿って上昇流が生じることで、堆積物から蒸発した発酵水蒸気を含んで一次発酵槽から屋内空間に拡散する暖かい空気が建屋の天井部に滞留することが少なくなり、ドラフト壁に向かって流れて後にドラフト壁に沿って上昇し、排気口から屋外へ流出することになり、建屋における換気効率を向上させることができる。しかも、ドラフト壁に沿って上昇する間に発酵水蒸気をドラフト壁面に結露させて回収することができ、発酵水蒸気が再び一次発酵槽に落下して発酵物の水分が再び増加することを抑制できる。
【図面の簡単な説明】
【図1】本発明の実施の形態における建屋を示す斜視図である。
【図2】同実施の形態における建屋の内部を示す断面図である。
【図3】同実施の形態における建屋の内部の詳細を示す斜視図である。
【図4】同実施の形態における建屋の概略を示す模式図である。
【図5】従来の建屋の概略を示す模式図である。
【符号の説明】
21 建屋
22 一次発酵槽
23 二次発酵槽
24 通路
25 屋根
26 棟
27 軒
28 側壁
29 給気口
30 排気口
31 固定槽
32 床溝
33 給気管
34 点検通路
35 ブロアー
36 攪拌装置
37 槽壁
38 ドラフト壁
39 骨組
40 フィルム
41 樋
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a building structure of a composting facility, and relates to a technique for performing ventilation in a facility for composting organic waste.
[0002]
[Prior art]
Conventionally, in a composting facility as shown in FIG. 5, a plurality of primary fermentation tanks 2 and secondary fermentation tanks 3 are arranged inside a building 1 on both sides separated by a passage 4.
[0003]
The composting step decomposes organic waste such as straw, manure, garbage, livestock manure, and excess sludge under aerobic conditions. The composting conditions include, for example, maintaining a moderate amount of water. Although water is indispensable for the growth of microorganisms, anaerobic conditions are apt to occur when the amount is too large, and it is desirable to maintain the water content at 40 to 65%. In addition, since aerobic microorganisms naturally consume oxygen for respiration, it is necessary to supply air appropriately, and if oxygen is insufficient, growth and decomposition are significantly inhibited. However, when a large amount of air is supplied, cooling is performed and fermentation is suppressed.
[0004]
For this reason, in the primary fermentation tank 2, the organic waste is deposited in the fixed tank, the air necessary for the fermentation decomposition of the organic waste is forcibly ventilated from the bottom of the tank, and mechanical stirring is performed at regular intervals to perform fixed stirring. The aerobic decomposition is promoted by microorganisms in the soil while slowly moving the organic waste in the soil. The primary fermenter 2 decomposes easily decomposable organic matter, increases the temperature in the sediment of organic waste by the energy generated by aerobic fermentation, and continues aerobic fermentation in a high temperature range of 60 to 70 ° C. At high temperatures, water evaporates.
[0005]
The primary fermentation product is moved to the secondary fermentation tank 3, where the hardly decomposable organic matter is decomposed.
In the building 1, the roof 5 has a downward slope from the ridge 6 toward the eaves 7 on both sides, fresh air flows in from an air supply port 9 formed in the side wall 8, and indoor air flows out from an exhaust port 10 provided in the ridge 6. By doing natural ventilation. The ventilation of the building 1 includes forced ventilation with a ventilation fan in addition to natural ventilation.
[0006]
Prior art relating to this type of composting equipment is disclosed in Patent Documents 1 and 2.
[0007]
[Patent Document 1] JP-A-11-168911
[Patent Document 2] JP-A-11-314988
[Problems to be solved by the invention]
In the above composting equipment, ventilation is indispensable to exhaust carbon dioxide gas and fermentation steam generated in the fermentation process to the outside. However, when forced ventilation is performed, equipment costs and power costs are required.
[0010]
In addition, when performing natural ventilation, since the internal space of the building 1 is large and the primary fermentation tank 2 and the secondary fermentation tank 3 having different temperatures are present, smooth ventilation cannot be performed, and the location where air stays may be reduced. it can. The air for fermentation forcedly aerated in the primary fermentation tank 2 becomes warm air containing fermentation steam generated from the primary fermentation tank 2 and rises while diffusing indoors, and the indoor air reaching the ceiling surface flows along the gradient of the ceiling surface. The air flows out from the exhaust port 10 provided in the building 6 to the outside, and fresh air of cool air flows in from the air supply port 9 in the side wall 8 to ventilate the indoor air.
[0011]
In a cold region, the temperature difference between the indoor and outdoor areas increases in winter, and the indoor air staying near the ceiling surface is cooled by the external air across the roof 5, and fermentation steam in the indoor air condenses and forms dew. As a result, there is a problem that the water content of the fermented material that has fallen into the primary fermenter 2 and evaporated and dried by the fermentation heat increases again.
[0012]
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a building structure of a composting facility capable of smoothly discharging fermentation steam to the outdoors by natural ventilation.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a building structure of a composting facility according to the present invention according to claim 1 includes: a drafting wall that partitions an indoor space into a plurality of areas in a building of a composting facility; An exhaust port is provided on the ceiling of the building above the wall, and an air supply port is provided on the side wall of the building.
[0014]
With the above-described configuration, indoor air flows out from the exhaust port provided on the ceiling to the outside, and fresh outdoor air flows from the air supply port provided on the side wall, whereby the air in the building is ventilated. At this time, the air near the draft wall rises along the draft wall, and the rectifying effect causes the air to rise toward the exhaust port faster than the surrounding air, and the air pressure near the draft wall increases. It is lower than the surroundings. Therefore, the indoor air including the warm air diffused into the indoor space and the fresh air flowing from the air supply port is less likely to stay at the ceiling of the building, flows toward the draft wall, and then flows along the draft wall. As a result, the air is discharged to the outside from the exhaust port, and the ventilation efficiency in the building is improved.
[0015]
The building structure of the composting facility according to the present invention according to claim 2 is such that a primary fermenter is arranged in one area across a draft wall, and a secondary fermenter is arranged in the other area.
[0016]
With the above-described configuration, in the primary fermentation tank, organic waste is deposited, air required for fermentative decomposition of the organic waste is forcibly ventilated from the bottom of the tank, and the organic waste is slowly moved by mechanical stirring to the soil. Decomposes easily decomposable organic matter by aerobic fermentation. In the primary fermenter, the energy generated in the aerobic fermentation increases the temperature in the organic waste sediment, and the aerobic fermentation is continuously performed in a high temperature range of 60 to 70 ° C. to evaporate water. The primary fermentation product is moved to a secondary fermentation tank for fermentation, and the hardly decomposable organic matter is decomposed by fermentation.
[0017]
The air warmed by the fermentation energy flows out from the exhaust port provided on the ceiling to the outside, and the fresh air from the outside flows from the air supply port provided on the side wall, whereby the air in the building is ventilated. At this time, the air near the draft wall rises along the draft wall, and the rectifying effect causes the air to rise toward the exhaust port faster than the surrounding air, and the air pressure near the draft wall increases. It is lower than the surroundings. Therefore, the warm air diffused from the primary fermenter to the indoor space containing the fermentation steam evaporated from the sediment and the indoor air containing the fresh air flowing from the air supply port are less likely to stay on the ceiling of the building. Then, it flows toward the draft wall, and then rises along the draft wall, and flows out from the exhaust port, and the ventilation efficiency in the building is improved.
[0018]
In the building, since the temperature of primary fermentation and the temperature of secondary fermentation are different, there is a temperature difference in the atmosphere of the indoor space between one area and the other area across the draft wall, so the primary fermentation tank evaporates The air flowing on one high-temperature region side including the fermentation steam rises along the draft wall while being cooled and condensed by the air flowing on the other low-temperature region side, and the fermentation steam condenses on the draft wall surface and forms condensation. Water flows down the draft wall and is collected at the lower edge of the draft wall. Therefore, it is possible to prevent the fermentation steam from condensing and dropping again into the primary fermenter, and the water content of the fermented product evaporated and dried by the fermentation heat is increased again.
[0019]
The building structure of the composting facility according to the third aspect of the present invention is such that the fermenter is arranged only in one area separated by the draft wall.
With the above-described configuration, in one area where the fermenter is arranged, air warmed by energy generated by fermentation flows out from the exhaust port provided on the ceiling to the outside, and fresh air from the outside is supplied from the air supply port provided on the side wall. The air in the building is ventilated by flowing in. At this time, the air near the draft wall rises along the draft wall, and the rectifying effect causes the air to rise toward the exhaust port faster than the surrounding air, and the air pressure near the draft wall increases. It is lower than the surroundings. For this reason, the warm air that diffuses from the sediment into the indoor space and the indoor air including the fresh air that has flowed in from the air supply port are less likely to stay on the ceiling of the building, flow toward the draft wall, and later draft. Ascending along the wall and spilling out of the exhaust outlet, the ventilation efficiency in the building is improved.
[0020]
In the building, since there is a temperature difference in the atmosphere of the indoor space between the one area where the fermenter is arranged and the other area across the draft wall, the air flowing through the one high-temperature area where the fermenter is arranged is drafted. While rising along the wall, it is cooled and condensed by the air flowing on the other cold area side, the fermentation steam condenses on the draft wall, and the condensed water flows down along the draft wall at the lower edge of the draft wall. Collected. Therefore, it is possible to prevent the fermentation steam from condensing and dropping again into the fermentation tank, and the water content of the fermented product from increasing again.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 4 disclose an example of a composting facility, in which a plurality of primary fermenters 22 are arranged in one area of a building 21 and a second fermenter 23 is arranged in the other area. A passage 24 is provided between the two regions. In the building 21, the roof 25 has a downward slope from the ridge 26 toward the eaves 27 on both sides, fresh air flows in from an air supply port 29 formed in the side wall 28, and an exhaust port provided in the ridge 26 at the top of the top. Natural ventilation is performed by the indoor air flowing out of the room 30. It is also possible to provide a ventilation fan at the exhaust port 30 to perform forced ventilation.
[0022]
In the primary fermentation tank 22, an air supply pipe 33 is disposed in a plurality of floor grooves 32 formed at the bottom of each fixed tank 31, and an air supply pipe 33 is connected to a blower 35 disposed in an inspection passage 34 formed between the fixed tanks 31. Connected. Each fixed tank 31 is provided with a stirrer 36, and the stirrer 36 moves along the tank wall 37, and moves while turning back the deposits deposited on the fixed tank 31.
[0023]
A draft wall 38 is provided upright in the building. The draft wall 38 partitions the indoor space into both areas, and the exhaust port 30 is located above the draft wall 38. The draft wall 38 is formed by stretching a transparent film 40 made of polyolefin on the surface of a skeleton 39 made of stainless steel, and has a gutter 41 at the lower end edge for collecting dew water. The draft wall 38 does not require architectural strength and only needs to be able to limit the diffusion of the airflow. Therefore, the draft wall 38 may be formed of a tent cloth or the like without being limited to the above structure, and may be formed of an inexpensive material.
[0024]
Hereinafter, the operation of the above configuration will be described. In the primary fermentation tank 22, air is supplied from the blower 35 to the organic waste accumulated in each fixed tank 31 through the air supply pipe 33, and air required for fermentation decomposition of the organic waste is forcibly aerated to be aerobic by microorganisms. Let it ferment. In addition, mechanical agitation is performed at regular time intervals by the agitation device 36 to slowly move the organic waste in the fixed tank 31 to promote aerobic fermentation.
[0025]
In the primary fermentation tank 22, the temperature in the organic waste sediment rises due to the energy generated by the aerobic fermentation, and the aerobic fermentation is continued in a high temperature range of 60 to 70 ° C., so that the water becomes Evaporate.
[0026]
The primary fermentation product after the aerobic fermentation in the primary fermentation tank 22 is moved to the secondary fermentation tank 23, where the hardly decomposable organic matter is decomposed by fermentation. The temperature in the deposit of the secondary fermentation product in the secondary fermentation tank 23 is 40 ° C. or less.
[0027]
The air warmed by the fermentation energy inside the building 21 flows out of the building through the exhaust port 30 provided on the ceiling, and the fresh air from the outside flows in from the air supply port 29 provided on the side wall 28. The inside air is naturally ventilated.
[0028]
At this time, diffusion of the air near the draft wall 38 is suppressed by the draft wall 38 and rises along the film 40 of the draft wall 38, and the rising speed of the air rising toward the exhaust port 30 is increased by the draft wall 38. Due to the rectification effect, it becomes faster than the surrounding air. Although there is a downflow flow, it is an upward flow as a whole.
[0029]
For this reason, the warm air diffused into the indoor space from the primary fermentation tank 22 including the fermentation steam evaporated from the sediment and the indoor air including the fresh air flowing from the air supply port 29 stay on the ceiling of the building 21. And the air flows toward the draft wall 38, and then rises along the draft wall 38 and flows out from the exhaust port 30 to the outside. Thus, the natural ventilation efficiency in the building 21 is improved, and the forced ventilation is performed. Even if there is, equipment capacity can be reduced.
[0030]
In the building 21, since the temperature of the primary fermentation and the temperature of the secondary fermentation are different from each other, there is a temperature difference in the atmosphere of the indoor space between the one area and the other area of the draft wall 38 that separate the film 40. The air flowing on one side of the high-temperature region including the fermentation steam evaporated from the tank 22 is cooled and condensed by the air flowing on the side of the other low-temperature region while rising along the thin film 40 of the draft wall 38, The fermentation steam condenses on the surface of the film 40 that forms the wall surface of the draft wall 38, and the condensed water flows down along the draft wall 38 and is collected by the gutter 41 at the lower edge of the draft wall 38.
[0031]
Therefore, the diffusion of the fermentation steam to the secondary fermentation tank 23 or the area of the work passage can be suppressed by the draft wall 38, and deterioration of the work environment in the area of the secondary fermentation tank 23 can be prevented. Further, as in the conventional case, it is possible to prevent the fermentation steam from condensing on the ceiling and dropping again into the primary fermentation tank 22 to increase the moisture of the fermented product evaporated and dried by the fermentation heat.
[0032]
In the present embodiment, the configuration has been described in which the primary fermenter 22 is disposed in one region across the draft wall 38 and the secondary fermenter 23 is disposed in the other region. Even when the secondary fermentation tank 23 is not divided or divided, the fermentation tank can be arranged only in one area separated by the draft wall 38, and the other area can be used as a curing area.
[0033]
Also in this case, the air in the vicinity of the draft wall 38 is subjected to the rectifying effect by the draft wall 38 and becomes an ascending flow along the film 40 of the draft wall 38, from the fermenter (the primary fermenter 22 and the secondary fermenter 23). Warm air diffused into the indoor space and indoor air including fresh air flowing in from the air supply port 29 are less likely to stay on the ceiling of the building 21 and flow toward the draft wall 38 and later on the draft wall 38. Since it rises along, the natural ventilation efficiency in the building 21 is improved, and the equipment capacity can be reduced even in the case of forced ventilation.
[0034]
In the building 21, since there is a temperature difference in the atmosphere of the indoor space between the one region where the fermenter is present and the other region of the draft wall 38 which is separated by the film 40, the air flowing through the one high-temperature region side is the draft wall. While ascending along the thin film 40 of 38, it is cooled and condensed by the air flowing on the other cold region side, and the fermentation steam is condensed on the surface of the film 40 forming the wall of the draft wall 38, and the condensed water is drafted. It flows down along the wall 38 and is collected by the gutter 41 at the lower edge of the draft wall 38.
[0035]
【The invention's effect】
As described above, according to the present invention, the ascending flow is generated along the draft wall, so that the warm air containing fermentation steam evaporated from the sediment and diffusing from the primary fermentation tank into the indoor space stays at the ceiling of the building. Therefore, the air flows toward the draft wall, rises along the draft wall later, and flows out from the exhaust port to the outside, so that the ventilation efficiency in the building can be improved. In addition, the fermentation steam can be condensed on the draft wall and recovered while rising along the draft wall, and it is possible to suppress the fermentation steam from falling back into the primary fermentation tank and increasing the moisture of the fermented product again.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a building according to an embodiment of the present invention.
FIG. 2 is a sectional view showing the inside of the building in the embodiment.
FIG. 3 is a perspective view showing details of the inside of the building in the embodiment.
FIG. 4 is a schematic diagram showing an outline of a building in the embodiment.
FIG. 5 is a schematic diagram showing an outline of a conventional building.
[Explanation of symbols]
21 Building 22 Primary fermentation tank 23 Secondary fermentation tank 24 Passage 25 Roof 26 Building 27 eaves 28 Side wall 29 Air supply port 30 Exhaust port 31 Fixed tank 32 Floor groove 33 Air supply pipe 34 Inspection passage 35 Blower 36 Stirrer 37 Tank wall 38 Draft Wall 39 frame 40 film 41 gutter

Claims (3)

コンポスト化設備の建屋において、屋内空間を複数の領域に仕切るドラフト壁を建屋内に立設し、ドラフト壁の上方位置で建屋の天井部に排気口を設け、建屋の側壁に給気口を設けたことを特徴とするコンポスト化設備の建屋構造。In the building of composting equipment, a draft wall that divides the indoor space into multiple areas is erected inside the building, an exhaust port is provided on the ceiling of the building above the draft wall, and an air supply port is provided on the side wall of the building The building structure of composting equipment. ドラフト壁を隔てた一方の領域に一次発酵槽を配置し、他方の領域に二次発酵槽を配置したことを特徴とする請求項1に記載のコンポスト化設備の建屋構造。The building structure of the composting facility according to claim 1, wherein a primary fermenter is arranged in one area separated from the draft wall, and a secondary fermenter is arranged in the other area. ドラフト壁を隔てた一方の領域にのみ発酵槽を配置したことを特徴とする請求項1に記載のコンポスト化設備の建屋構造。The building structure of the composting equipment according to claim 1, wherein the fermenter is disposed only in one area separated by the draft wall.
JP2003065830A 2003-03-12 2003-03-12 Building structure of composting facility Pending JP2004270390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065830A JP2004270390A (en) 2003-03-12 2003-03-12 Building structure of composting facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065830A JP2004270390A (en) 2003-03-12 2003-03-12 Building structure of composting facility

Publications (1)

Publication Number Publication Date
JP2004270390A true JP2004270390A (en) 2004-09-30

Family

ID=33126708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065830A Pending JP2004270390A (en) 2003-03-12 2003-03-12 Building structure of composting facility

Country Status (1)

Country Link
JP (1) JP2004270390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397793A (en) * 2013-08-05 2013-11-20 贵州茅台酒股份有限公司 Intelligent fermentation leaven room
CN114000739A (en) * 2021-11-11 2022-02-01 四川郎酒股份有限公司 Making wine workshop top layer structure and making wine workshop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397793A (en) * 2013-08-05 2013-11-20 贵州茅台酒股份有限公司 Intelligent fermentation leaven room
CN103397793B (en) * 2013-08-05 2014-12-17 贵州茅台酒股份有限公司 Intelligent fermentation leaven room
CN114000739A (en) * 2021-11-11 2022-02-01 四川郎酒股份有限公司 Making wine workshop top layer structure and making wine workshop

Similar Documents

Publication Publication Date Title
US7135332B2 (en) Biomass heating system
CN205933675U (en) Environmental control system of good oxygen compost technology
CN101205111A (en) Sludge drying apparatus and sludge drying method using the same
CN106900567A (en) A kind of environmentally friendly pig house and implementation method
CN110013732A (en) Crouch rotating waste fermentation closed cycle fixed nitrogen deodoration system
CN205933673U (en) Steam collecting system of good oxygen compost fermentation
CN105601351A (en) Kitchen waste composting system and method
JP2004270390A (en) Building structure of composting facility
CN210560138U (en) High-efficient fermenting installation of municipal administration mud
CN109122327A (en) A kind of environmental protection pig house
CN206547563U (en) A kind of energy-saving environment-protecting pig house
CN207002734U (en) A kind of experimental provision of agricultural crop straw aerobic fermentation
US5830358A (en) Method and apparatus for decomposition of organic waste
CN105728427A (en) Method for treating organic garbage by earthworms cultivated by geothermal method
CN212051167U (en) Fertilizer cloth wind device
JP2005137957A (en) Atmospheric air heating-type aerobic fermentation tank and fermentation method for cold district
CN201077820Y (en) Pit type high-temperature aerobic biofermentation deodorizer degrading organic fetor wastes compost
CN209669082U (en) Crouch rotating waste fermentation deodoration system in situ
CN109553259B (en) Manure composting facility suitable for medium and small scale farms
CN106719009A (en) A kind of energy-saving environment-protecting pig house
CN209923159U (en) Micro-oxygen type storage system for non-liquid fecal sewage
JPH07148479A (en) Organic waste fermenting and drying apparatus and method using deodorizing device
CN207340760U (en) A kind of livestock-raising greenhouse energy recycling device
CN205874251U (en) Ventilation unit and fermenter
US6010551A (en) Method and apparatus for accelerated biodegradation of organic matter