JP2004270121A - Method for producing bleached pulp - Google Patents

Method for producing bleached pulp Download PDF

Info

Publication number
JP2004270121A
JP2004270121A JP2003130992A JP2003130992A JP2004270121A JP 2004270121 A JP2004270121 A JP 2004270121A JP 2003130992 A JP2003130992 A JP 2003130992A JP 2003130992 A JP2003130992 A JP 2003130992A JP 2004270121 A JP2004270121 A JP 2004270121A
Authority
JP
Japan
Prior art keywords
pulp
hydrogen peroxide
bleaching
bleached pulp
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003130992A
Other languages
Japanese (ja)
Other versions
JP4039308B2 (en
Inventor
Hitoshi Kagawa
仁志 香川
Takeshi Hibino
雄志 日比野
Yoshihiro Ota
喜裕 太田
Yukitoshi Ishii
行敏 石井
Hideo Igarashi
英夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2003130992A priority Critical patent/JP4039308B2/en
Publication of JP2004270121A publication Critical patent/JP2004270121A/en
Application granted granted Critical
Publication of JP4039308B2 publication Critical patent/JP4039308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing bleached pulp, capable of remarkably improving viscosity and discoloration of the pulp, when the bleached pulp is produced by subjecting unbleached pulp which is obtained by digesting a ligunocellulosic material to delignification with alkali and oxygen and then treating the pulp in a multistage bleaching process in which elemental chlorine is not used. <P>SOLUTION: In this method, the unbleached pulp which is obtained by digesting the ligunocellulosic material is subjected to the delignification with the alkali and the oxygen, then sodium sulfate and/or sodium sesquisulfate are added to the pulp so as to treat the pulp with hydrogen peroxide at a pH of 1.5-4.5 in an initial stage thereof, and further the pulp is treated in the multistage bleaching process in which the elemental chlorine is not used, so that the completely bleached pulp contains hexeneuronic acid in an amount of ≤15 mmol based on bone dry weight of the pulp. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リグノセルロース物質由来の漂白パルプの製造方法に関する。更に詳しく述べれば、本発明は、リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素脱リグニンし、その後、酸性領域で芒硝あるいはセスキ芒硝含有溶液を添加した過酸化水素処理を行い、次いで、塩素、次亜塩素酸塩を用いない(ECF,TCF)多段漂白工程で処理してなるパルプ粘度の低下が少ない漂白パルプの製造方法に関する。
【0002】
【従来の技術】
リグノセルロース物質を製紙原料として多くの用途に使用するためには、蒸解のような化学作用によってパルプ化した後、或いはリファイナー等を用いて機械的作用によってパルプ化した後、得られるパルプを漂白薬品で漂白して白色度を高める必要がある。例えば、クラフトパルプは包装資材のように強度を必要とする用途に使う場合を除いて、通常、アルカリ酸素脱リグニンした後、塩素、次亜塩素酸塩、二酸化塩素、酸素、オゾン、過酸化水素、苛性ソーダ等の漂白剤及び漂白助剤により漂白処理され、パルプに含まれる着色原因物質であるリグニン等が除去された後に漂白クラフトパルプとして使用されるのが一般的である。
【0003】
未漂白パルプから漂白パルプを製造する場合は、パルプ繊維自体の強度を或る程度維持することが必要であり、そのため、パルプ繊維を構成するセルロース、ヘミセルロース等の炭水化物の分解を最小限に止めるように、過激な一段での漂白を避け、漂白薬品と漂白条件を様々に組み合わせ三〜六段の多段漂白法を採用するのが一般的である。
【0004】
従来から、多段漂白法においては、パルプを最初に塩素で処理し、パルプ中に含有されるリグニンを塩素化し、リグニンに可溶性を付加した後、次にアルカリで塩素化リグニンを溶解抽出して、パルプ中からリグニンを分離除去し、更に次亜塩素酸塩、二酸化塩素等を使用し、残留する少量のリグニンを分解除去し、白色度の高いパルプを得る方法が採られてきた。
しかしながら、近年、パルプの塩素化段からの漂白排水に含まれる有機塩素化合物(以下、AOXと略す)の環境への影響が懸念され、パルプ漂白に塩素を用いない動きが高まってきている。また、次亜塩素酸塩を用いた場合も、パルプの漂白時にクロロホルムが生成し、環境に悪影響を及ぼす可能性があることから、次亜塩素酸塩をパルプ漂白に使用しない漂白シーケンスが求められてきている。
【0005】
現在、塩素や次亜塩素酸塩の代替として、オゾン、酸素、過酸化水素及び過酢酸、過硫酸等の過酸等の酸素系の漂白薬品が注目されている。しかしながら、過酢酸、過硫酸は、脱リグニンに対する選択性が低くパルプ強度を損なう危険性があること、薬品コストが高いこと、あるいは爆発性を有しており取り扱いが困難であること等の理由から一般に普及するまでには至っていない。したがって、現在のところ、塩素や次亜塩素酸塩の代替としては、既に使用実績のある二酸化塩素、アルカリ過酸化水素を主に用いるのが一般的である。特に、塩素漂白−アルカリ抽出の順序で始まる漂白を二酸化塩素漂白及びアルカリ過酸化水素漂白に置き換える実例が多くなってきている。しかしながら、二酸化塩素やアルカリ過酸化水素は、反応漂白機構が塩素と異なることから、特に広葉樹を原料として、酸性で抄紙した場合には、実際に近い条件下では漂白後のパルプの退色性が極端に劣るという問題点があった。
【0006】
また、塩素や次亜塩素酸塩を用いない一般的な漂白シーケンス(例えば、D−E−D−P:D=二酸化塩素段、E=アルカリ抽出段、P=アルカリ過酸化水素段)で漂白したパルプのパルプ中のヘキセンウロン酸量が、絶乾パルプ1kg当たり15mmolより高い場合は、パルプの退色性が著しく劣るという問題点があった。
【0007】
退色性を改善する方法としては、パルプの酸素漂白の前又は後にキシラナーゼ処理することが公知(例えば、特開平2−264087号公報、特開平2−293486号公報参照。)であり、キシラナーゼ前処理により退色性を改善する提案(例えば、特開平6−101185号公報参照。)もあるが、処方するコストの割に退色性の改善効果はそれほど大きくないという問題がある。また、酸前処理を行なう方法(例えば、イギリス特許第1062734明細書、特表平10−508346号公報参照。)では、未漂白パルプを漂白段の前に、酸性下で80℃以上の温度(例えば、イギリス特許第1062734明細書参照。)あるいは85〜150℃で処理(例えば、特表平10−508346号公報参照。)し、その後、多段で漂白し、パルプの退色性が改善されていることが報告されている。
【0008】
しかしながら、本発明者らが、これらの条件で処理し漂白してみたところ、85℃を超える温度では退色性は改善されるものの、強度が大きく低下することが判明した。更に、この高温で酸前処理を行なう方法は、酸処理後の白色度低下が大きいため、カッパー価の低下ほどには晒薬品の低減は少なく、パルプ収率の低下、また、排水CODの増加、高温・低pHに耐えうる設備が必要等の理由から、設備コストがかかるなどの問題も有していた。
【0009】
一方、退色性の評価には乾式加熱法(105℃で24時間加熱)を用いている(例えば、特表平10−508346号公報参照。)が、実際に則した退色性をみるためには、退色試験を熱・湿度条件(例えば、80℃、相対湿度65%)下で行うことが必須であるにもかかわらず、この評価法は熱処理だけの退色評価であるため、我が国の湿度の高い気候条件を考慮すれば、この評価法で製品の退色性を評価することは困難である。
【0010】
退色の評価として通常用いられるPC価(ポストカラーナンバー)は、退色処理前後の白色度の差から求められる。PC価の少ないパルプを用いた写真用材料(例えば、特開昭56−54436号公報参照。)、酸素漂白を含むシーケンスで漂白したパルプを用いている退色に優れた写真用材料(例えば、特開昭63−303191号公報参照。)についての報告例があるが、何れも塩素をベースとした漂白によって製造されているパルプを使用している例であり、また、写真用材料という特性から、白色度90%以上と高くされていることから、当然ながら漂白パルプの退色性は優れている。しかし、本発明のように、塩素及び次亜塩素酸塩を用いない漂白法によって、強度低下のない、退色性に優れたパルプを製造しているものではない。
【0011】
一方、酸性領域での過酸化水素処理については、数件提案されている(例えば、特許文献1、特許文献2、非特許文献1参照。)が、有機又は無機錯化物併用における過酸化水素の漂白の効果を示しただけであり、パルプシートの退色性との関係を調査したものではなく、その記述もない。また、未晒パルプを酸性下で有機又は無機錯化物併用下で過酸化水素処理する方法(特許文献1)にしても、酸素晒後にさらに同様な処理を行うことについての記述は見当らない。
【0012】
また、酸性領域での過酸化水素処理において、芒硝あるいは、セスキ芒硝含有溶液を用いず、過酸化水素処理した場合では、退色性は優れるものの、パルプ粘度の低下防止に関しては改善すべき点があった。(例えば、本発明者等の先願である特願2001−227274号明細書)
【0013】
漂白パルプ製造工程において、パルプ粘度の低下を防止する方法としては、アルカリパルプをpH1.0〜1.6の酸性処理液中で、約80℃で亜硝酸塩及び硝酸塩を加えて加熱処理した後、酸素を添加しないリグニンのアルカリ抽出処理を行なう方法(例えば、特許文献4参照。)があるが、あくまで酸素漂白との代替を提案しているだけで、多段漂白段での粘度低下を防止するものではない。
【0014】
一方、塩素酸塩、硫酸、メタノールを原料とする二酸化塩素製造設備から排出される廃液の組成及び量は、一般的に、セスキ芒硝が二酸化塩素製造量1トンに対し1.2〜1.4トン、塩素酸ナトリウムが二酸化塩素製造量1トンに対し0.5〜5kg、塩化ナトリウムが二酸化塩素製造量1トンに対し0.1〜0.5kgの割合となっており、工場廃液の凝集沈殿処理槽、漂白工程等に利用される以外は廃棄処分されている。そのため、通常、元素状塩素を使用しないECF漂白法では、例えば、D−E/O−P−Dのような通常のECFシーケンスで一日当たり、生産量1000トン製造している場合、二酸化塩素の使用量は、5〜15トン必要であり、それに付随して発生する廃液中のセスキ芒硝量は一日当たり6〜21トン排出されることとなり、二酸化塩素設備からの排出量はかなりの量になる。塩素酸塩をメタノール還元して二酸化塩素を製造する方法は、日本カーリット社のR−8法や保土谷エンジニアリング社のSVP−LITE法がある。
【0015】
二酸化塩素製造設備からの廃液処理方法としては、アルミニウム又はアルミニウム化合物を添加し、硫酸アルミニウムを製造する方法(例えば、特開昭51−96796号公報参照。)、蒸解薬液に利用する方法(例えば、特開昭52―107302号公報参照。)、バイポーラ膜と陽イオン交換膜とより構成した二室式電気透析装置にて硫酸塩を硫酸とアルカリに分解し、硫酸を二酸化塩素製造設備で再利用する方法(例えば、特開平5−58601号公報参照。)等があるが、何れも製造コストや設備コストが嵩み、実際の殆どのパルプ製造工場では、工場廃液の凝集沈殿処理槽のpH調整、漂白工程のpH調整等に利用する以外は、廃棄するしかないのが現状である。
【0016】
【特許文献1】
特公昭63−20953号公報
【特許文献2】
W079/00637
【特許文献3】
特許第3265036号公報参照。
【非特許文献1】
1985,Wood and Pulping Chemistry Symposium,Hans Ulrich Suss等
【0017】
【発明が解決しようとする課題】
本発明者等は、先に、リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素脱リグニンし、その後、多段漂白工程で元素状塩素を使用せずに漂白処理してなる漂白パルプの製造方法であって、該アルカリ酸素脱リグニン後のパルプに過酸化水素処理を反応初期pH1.5〜4.5で行い、該漂白パルプ中のヘキセンウロン酸量が、絶乾パルプ1kg当たり15mmol以下であることを特徴とする退色性の改善された漂白パルプの製造方法を提案している。
【0018】
本発明は、上記方法において、漂白完成パルプ中のヘキセンウロン酸の量を、パルプ絶乾1kg当たり15mmol以下とすることによって、漂白パルプの退色性が改善されているのみならず、パルプ粘度の低下も少なくなる方法を目的とするものである。また、更に二酸化塩素製造設備より排出される廃液を有効利用することができる方法を目的とするものである。
【0019】
【課題を解決するための手段】
上記目的を達成することができる本発明は、以下の発明を包含する。
(1)リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素脱リグニンし、反応初期pH1.5〜4.5で芒硝及び/又はセスキ芒硝の存在下で過酸化水素処理を行い、次いで、元素状塩素を使用しない多段漂白工程で漂白し、パルプ中のヘキセンウロン酸量を絶乾パルプ1kg当たり15mmol以下にすることを特徴とする漂白パルプの製造方法。
【0020】
(2)前記過酸化水素処理における芒硝及び/又はセスキ芒硝の存在率は、対絶乾パルプ当たり0.01質量%〜10質量%であることを特徴とする(1)項記載の漂白パルプの製造方法。
【0021】
(3)前記過酸化水素処理における反応温度が50〜85℃であることを特徴とする(1)項又は(2)項に記載の漂白パルプの製造方法。
【0022】
(4)前記芒硝及び/又はセスキ芒硝が二酸化塩素製造設備から廃液として排出されるセスキ芒硝含有廃液であることを特徴とする(1)項〜(3)項のいずれか1項に記載の漂白パルプの製造方法。
【0023】
(5)前記過酸化水素処理にキレート剤を添加することを特徴とする(1)〜(4)のいずれか1項に記載の漂白パルプの製造方法。
【0024】
(6)前記漂白パルプが広葉樹パルプであることを特徴とする(1)項〜(5)項のいずれかに1項に記載の漂白パルプの製造方法。
【0025】
(7)前記(1)項〜(6)項のいずれか1項に記載の方法で製造された漂白パルプを主成分とする酸性紙。
【0026】
【発明の実施の形態】
本発明で用いられるリグノセルロース物質は、特に限定するものではない。本発明に使用されるパルプを得るための蒸解法としては、クラフト蒸解、ポリサルファイド蒸解、ソーダ蒸解、アルカリサルファイト蒸解等の公知の蒸解法を用いることができるが、パルプ品質、エネルギー効率等を考慮すると、クラフト蒸解法、又はポリサルファイド蒸解法が好適に用いられる。例えば、木材をクラフト蒸解する場合、クラフト蒸解液の硫化度は5〜75%、好ましくは15〜45%、有効アルカリ添加率は絶乾木材重量当たり5〜30質量%、好ましくは10〜25質量%、蒸解温度は130〜170℃で、蒸解方式は、連続蒸解法あるいはバッチ蒸解法のどちらでもよく、連続蒸解釜を用いる場合は、蒸解液を多点で添加する修正蒸解法でもよく、その方式は特に問わない。
【0027】
蒸解に際して、使用する蒸解液に蒸解助剤として、公知の環状ケト化合物、例えばベンゾキノン、ナフトキノン、アントラキノン、アントロン、フェナントロキノン及び前記キノン系化合物のアルキル、アミノ等の核置換体、或いは前記キノン系化合物の還元型であるアントラヒドロキノンのようなヒドロキノン系化合物、さらにはディールスアルダー法によるアントラキノン合成法の中間体として得られる安定な化合物である9,10−ジケトヒドロアントラセン化合物等から選ばれた1種或いは2種以上が添加されてもよく、その添加率は木材チップの絶乾質量当たり0.001〜1.0質量%である。
【0028】
本発明では、公知の蒸解法により得られた未漂白化学パルプは、洗浄、粗選及び精選工程を経て、公知のアルカリ酸素脱リグニン法により脱リグニンされる。本発明に使用されるアルカリ酸素脱リグニン法は、公知の中濃度法あるいは高濃度法がそのまま適用できるが、現在汎用的に用いられているパルプ濃度が8〜15質量%で行われる中濃度法が好ましい。
【0029】
前記中濃度法によるアルカリ酸素脱リグニン法において、アルカリとしては苛性ソーダあるいは酸化されたクラフト白液を使用することができ、酸素ガスとしては、深冷分離法からの酸素、PSA(Pressure Swing Adsorption)からの酸素、VSA(Vacuum Swing Adsorption)からの酸素等が使用できる。前記酸素ガスとアルカリは中濃度ミキサーにおいて中濃度のパルプスラリーに添加され混合が十分に行われた後、加圧下でパルプ、酸素及びアルカリの混合物を一定時間保持できる反応塔へ送られ、脱リグニンされる。
【0030】
酸素ガスの添加率は、絶乾パルプ質量当たり0.5〜3質量%、アルカリ添加率は0.5〜4質量%、反応温度は80〜120℃、反応時間は15〜100分、パルプ濃度は8〜15質量%であり、この他の条件は公知のものが適用できる。本発明では、アルカリ酸素脱リグニン工程において、上記アルカリ酸素脱リグニンを連続して複数回行い、できる限り脱リグニンを進めるのが好ましい実施形態である。アルカリ酸素脱リグニンが施されたパルプは次いで洗浄工程へ送られる。パルプは洗浄後、酸性領域の過酸化水素処理工程へ送られる。
【0031】
本発明における酸性領域の過酸化水素処理における反応温度は50〜85℃が好ましい。温度が50℃未満の場合には、退色性は十分に改善されず、一方、85℃を超える温度では、退色性は改善されるものの、漂白パルプの粘度及び強度が著しく低下する。反応初期pHは1.5〜4.5がよい。反応初期pHが1.5未満であると、パルプ強度への悪影響が大きく、また上記の温度下で1.5未満のpHでは耐久性のあるライニングを見出すことが難しく、あっても非常に高価なものになり、実用的ではない。pHが4.5より大きいと、ヘキセンウロン酸の除去効果が少なくなると同時に工程内の蓚酸カルシウムのスケーリングが激しくなる。また、酸性領域での過酸化水素処理は、反応初期pHと反応終了pHは、略同等となるのが特徴的である。
【0032】
一方、過酸化水素の添加率は、絶乾パルプ当り、0.05〜5質量%がよく、効果やパルプ繊維へのダメージを考えると好ましくは、0.1〜2質量%である。
更に、過酸化水素処理のリテンションは、その効果とパルプ繊維へのダメージを考えると30〜300分がよく、処理濃度は、一般的な工程内濃度であれば、制限はないが、8〜15%の中濃度法、又は25〜40%の高濃度法が好ましい。本発明で酸性領域を維持するために用いられる酸は、無機酸、有機酸のいずれを併用してもよい。酸処理時のpHは、1.5〜4.5であり、具体的には、硫酸、硝酸、塩酸、亜硫酸、亜硝酸あるいは二酸化塩素発生設備から排出されるセスキ芒硝等の無機酸が使用できる。セスキ芒硝以外の酸には、硫酸が入手と取り扱いが容易であるため好適に用いられる。その他、酸処理については一般的な処方が用いられる。一方、芒硝あるいは、セスキ芒硝の添加率は、絶乾パルプ当り、0.01〜10質量%がよく、好ましくは、0.1〜5質量%がよいいが、添加率が0.01質量%未満では、粘度上昇の効果が薄く、10質量%を超えると製造コストが嵩む。
【0033】
本発明の酸性領域の過酸化水素処理においては、キレート剤を添加することが更に好ましい。キレート剤の種類は、Fe2+、Cu2+、Mn2+ 等の金属イオンを封鎖できるものであればEDTA(エチレンジアミンテトラ酢酸)、DTPA(ジエチレントリアミンペンタ酢酸)、DTPMP(ジエチレントリアミンペンタメチレンホスホン酸)、PHAS(ポリ−α−ヒドロキシアクリル酸塩)等何でもよく、各種キレート剤を混合使用してもよい。また、キレート剤の添加率は、一般的に絶乾パルプに対し0.001質量%〜5質量%の範囲で添加され、キレート剤の添加は、過酸化水素添加の前後どちらで添加しても構わないが、キレート効果を最大限に発揮させるためには、過酸化水素添加前の方が効果的である。
【0034】
本発明の酸性領域の過酸化水素処理においては、酸素含有ガスあるいは窒素含有ガスを用いて加圧することもできる。処理時に加圧のために用いられる酸素含有ガスとしては、深冷分離法からの酸素、PSAからの酸素、VSAからの酸素等のように工業規模での利用が可能で、現在、アルカリ酸素脱リグニンに使用されている酸素純度が85容量%以上の酸素或いは酸素含有ガス、前記モレキュラーシーブを用いた酸素製造設備を用いて酸素の含有量を21容量%を超えて調整された酸素含有ガス、前記酸素純度が85容量%以上の酸素含有ガスと空気を混合して製造される酸素富化ガス、酸素含有量が20容量%以上の空気等を挙げることができ、これらの中から適宜選択して用いることができる。過酸化水素処理時の酸素含有ガス、あるいは窒素含有ガスによる酸処理時の加圧圧力は0.05〜0.9MPa(ゲージ圧力)であり、好ましくは0.15〜0.7MPaである。
【0035】
また、多段漂白処理工程においてオゾン漂白段を有する場合には、酸素を含有するその排ガスも好適に使用することができる。本発明の過酸化水素処理段に使用される窒素含有ガスとしては、窒素ガス含有率が95%以上のガスであればいかなるガスでもよいが、経済的見地から、アルカリ酸素脱リグニンに使用される深冷分離法からの酸素、PSAからの酸素、VSAからの酸素等の酸素ガスを製造する際に副生する窒素含有ガスが好適に用いられる。
【0036】
本発明においては、酸性領域の過酸化水素処理工程後に、酵素処理工程を設けることも可能である。前記酵素処理工程で使用される酵素は、パルプと反応させることにより、JIS P 8206で測定されるパルプの過マンガン酸カリウム価が低下するものであれば、いかなる酵素でもよい。例えば、キシラナーゼ、リグニンパーオキシダーゼ、マンガンパーオキシダーゼ、ラッカーゼ等が知られいるが、勿論これらの酵素でもよく、未だ知られていない酵素でも該当する酵素であればよいことは言うまでもない。また、これらの酵素は単独で用いてもよく、あるいは複合、混合して、さらには複数回に分けて使用することもできる。これらの酵素のうち、キシラナーゼと呼ばれるキシラン分解酵素は、漂白促進効果も同時に有しており、好適に用いられる。
【0037】
本発明においては、アルカリ酸素漂白工程後に酸性領域での過酸化水素処理工程を設けるが、さらに、その後段で酸処理工程を設けることも可能である。本発明の酸処理工程の酸処理は、好ましくはpH2.5〜3.5、温度は、好ましくは85〜110℃、保持時間は、好ましくは20〜90分の条件下で行われる。本発明の酸処理に用いられる酸は、酸処理時のpHを所定値に調整できるものであれば無機酸、有機酸のいずれでもよいが、具体的には、硫酸、硝酸、塩酸、亜硫酸等が使用でき、中でも硫酸が入手と取り扱いが容易であるため好適に用いられる。その他、酸処理については、一般的な処方が採用される。
【0038】
本発明の多段漂白処理工程では、初段は二酸化塩素漂白段(D)、あるいは、オゾン漂白段(Z)、あるいは、オゾン漂白と二酸化塩素漂白を連続して組み合わせた漂白段(Z/D)等が好適に用いられ、二段目にはアルカリ抽出段(E)が用いられ、三段目以降には、二酸化塩素、アルカリ過酸化水素等の組み合わせが好適に用いられる。本発明の初段の二酸化塩素漂白段に用いられる二酸化塩素は、当業者にとって公知の多くの二酸化塩素発生法より得られる二酸化塩素から選ぶことができるが、好適には、塩素を副生しない発生法から得られる二酸化塩素が用いられる。本発明の初段の二酸化塩素段でのpHは2〜6、好ましくは2.5〜4であり、pHを調整するために任意の酸又はアルカリを補助的に添加することも可能である。また、二酸化塩素処理時間、処理温度、パルプ濃度等のその他の二酸化塩素漂白条件は、全て公知の条件を採用することができる。
【0039】
本発明の二酸化塩素漂白段に続くアルカリ抽出段では、当業者にとって公知の多くのアルカリ化合物を使用することができるが、苛性ソーダが最も使用しやすく、好適に使用される。本発明のアルカリ抽出段では、酸素及び/又は過酸化水素を併用することもできる。その他、本発明のアルカリ抽出段は、公知の条件で行うことができる。
【0040】
本発明の多段漂白工程で用いられる二酸化塩素漂白段、アルカリ抽出段に続く三段目以降の漂白段では、塩素及び次亜塩素酸塩以外の漂白薬品であれば如何なる漂白薬品を用いてもよいが、二酸化塩素、アルカリ過酸化水素、オゾン、過酸等の一般的な漂白薬品が好適に用いられる。三段目以降の段数も特に限定されるわけではないが、エネルギー効率、生産性等を考慮すると、合計で三段あるいは四段で終了するのが好適である。
【0041】
本発明に用いられる薬品としては、塩素及び次亜塩素酸塩を除く、酸性領域での過酸化水素(A/P)、二酸化塩素(D)、アルカリ(E)、酸素(O)、アルカリ過酸化水素(P)、オゾン(Z)、酵素(Ez)、有機過酸等の公知の漂白剤と漂白助剤を挙げることができる。漂白シーケンスとしては、酸素脱リグニン後に、例えば酸性領域での過酸化水素段(A/P)から始まるシーケンスとしては、A/P−D−E/O−D、A/P−D−E/O−P−D、A/P−D−E/O−D−D、A/P−D−E/O−D−P、A/P−D−E/OP−D、A/P−D−E/O−Z−D、A/P−Z−E/O−D、A/P−Z−E/OP−D、A/P−Z−E/OP−D−P、A/P−Z−E/OP−P−D、A/P−Z−D−E/O−D、A/P−Z−D−E/OP−D、A/P−Z/D−E/O−D、A/P−Z/D−E/OP−D等、及び酵素を含むA/P−Ez−D−E/O−D、A/P−Ez−D−E/O−P−D、 A/P−Ez−D−E/O−D−D、A/P−Ez−D−E/O−D−P、A/P−Ez−D−E/OP−D、A/P−Ez−D−E/O−Z−D、A/P−Ez−Z−E/O−D、A/P−Ez−Z−E/OP−D、A/P−Ez−Z−E/OP−D−P、A/P−Ez−Z−E/OP−P−D、A/P−Ez−Z−D−E/O−D、A/P−Ez−Z−D−E/OP−D、A/P−Ez−Z/D−E/O−D、A/P−Ez−Z/D−E/OP−D等も挙げることができる。
【0042】
また、本発明におけるA/P段は、アルカリ酸素脱リグニン後であれば、多段漂白処理工程中の何処で行ってもいいが、アルカリ酸素脱リグニン直後の方が効果的である。酸性領域での過酸化水素段(A/P)が多段漂白工程中にあるシーケンスとしては、例えば、D−A/P−E/O−D、D−E/O−A/P−D、D− A/P−E/OP−D、D−E/OP−A/P−D、D−E/O−D−A/P、Z−A/P−E/O−D、Z−E/O−A/P−D、Z−E/OP−A/P−D、Z−D−A/P−E/O−D、Z−D−E/O−A/P−D、Z/D−A/P−E/O−D、Z/D−E/O−A/P−D等を挙げることができる。また、多段漂白工程中にエチレンジアミンテトラ酢酸(EDTA)、ジエチレントリアミンペンタ酢酸(DTPA)等によるキレート剤処理段を挿入してもよい。
【0043】
また、多段漂白工程中のA/P段の前にEDTA(エチレンジアミンテトラ酢酸)、DTPA(ジエチレントリアミンペンタ酢酸)、DTPMP(ジエチレントリアミンペンタメチレンホスホン酸)、PHAS(ポリ−α−ヒドロキシアクリル酸塩)等によるキレート剤処理段(Q)を設けても良い。例えば、Q−A/P−D−E/O−D、Q−A/P−D−E/O−P−D、Q−A/P−D−E/O−D−D、Q−A/P−D−E/O−D−P、Q−A/P−D−E/OP−D、Q−A/P−D−E/O−Z−D、Q−A/P−Z−E/O−D、Q−A/P−Z−E/OP−D、Q−A/P−Z−E/OP−D−P、Q−A/P−Z−E/OP−P−D、Q−A/P−Z−D−E/O−D、Q−A/P−Z−D−E/OP−D、Q−A/P−Z/D−E/O−D、Q−A/P−Z/D−E/OP−D等が挙げられる。
【0044】
本発明において、未漂白パルプをアルカリ酸素漂白し、その後、酸性領域での過酸化水素処理をし、次いで、多段漂白してなる漂白完成パルプのヘキセンウロン酸量を絶乾パルプ1kg当たり15mmol以下にすれば、退色性が改善される理由については今後の研究を待たなければならないが、ヘキセンウロン酸が酸性紙の完成パルプ中に多く残留していると、湿度が高く、かつ温度も高い条件下では、これが色素団に変化し、白色度が低下すると考えている。したがって、針葉樹に比べ、ヘキセンウロン酸の含有量の多い広葉樹の方が退色しやすい。
【0045】
また、本発明において、酸性領域で過酸化水素がヘキセンウロン酸を分解する反応機構についても、今後の研究を待たなければならないが、過酸化水素が酸性領域で、一部リグニン等と反応し、ヘキセンウロン酸を分解しやすいラジカル種を生成しているか、酸性領域で過酸化水素から生成すると予想されるハイドロオキソニウムイオン(OH+)がヘキセンウロン酸の分解に関与していると考えられる。
【0046】
一方、本発明において、セスキ芒硝がパルプ粘度を保持させる反応機構についても、今後の研究を待たなければならないが、過酸化水素由来の(OH)ラジカルの生成を抑制するか、若しくは、捕捉するような反応が起こっていると考えられる。
【0047】
本発明の漂白パルプを用いて、酸性紙を調製する方法は、漂白パルプをビーターでCSF(カナダ標準ろ水度、カナディアンスタンダードフリーネス)350ml〜550ml程度に叩解し、その後、硫酸バンド約2.5%、ロジンサイズ剤(例えば、サイズパインE、荒川化学工業製)約0.5%、タルク(例えば、イライト、日本タルク製)約20%、歩留向上剤(例えば、パーコール182、協和産業製)約0.02%の順に配合し、常法にて坪量64g/m程度の酸性紙を抄造する方法がある。酸性紙の抄紙に際しては,本発明の漂白パルプによる酸性紙が有する優れた特性を損なわない範囲で他の漂白パルプを混合使用することはもちろん可能である。
【0048】
また、本発明の漂白パルプを用いて、中性紙を調製する方法は、漂白パルプをビーターでCSF350ml〜550ml程度に叩解し、その後、カチオン化澱粉(例えば、エースK100、王子コーンスターチ製)約0.5%、硫酸バンド約0.5%、AKD(例えば、SPK902、荒川化学工業製)約0.05%、軽質炭酸カルシウム(例えば、TP121、奥多摩工業製)約20%、歩留向上剤(例えば、パーコール182、協和産業製)約0.02%の順に配合し、常法にて坪量64g/m程度の中性紙を抄造する方法がある。
本発明の退色性改善効果は、酸性紙の場合に大きいが、本発明で処理したパルプを中性紙に用いて何ら問題はない。
【0049】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、勿論、本発明はこれらの実施例によって限定されるものではない。以下に示す実施例1〜5及び比較例1〜3は、工場製アルカリ酸素漂白後の広葉樹クラフトパルプをA/P−D−E−Dシーケンスで漂白を行ったものである。
また、特に示さない限り、カッパー価の測定、パルプ中のヘキセンウロン酸量の測定、パルプ白色度の測定、パルプの退色性の評価、パルプ粘度の測定はそれぞれ以下の方法で行った。なお、実施例及び比較例における薬品の添加率は絶乾パルプ質量当たりの質量%示す。
【0050】
1.パルプのカッパー価の測定
カッパー価の測定は、JIS P 8211に準じて行った。
【0051】
2.パルプ中のヘキセンウロン酸量の定量
500mlのSUS製容器に十分にイオン交換水で洗浄したパルプを絶乾パルプ5g量り取って入れ、蟻酸−蟻酸ナトリウムバッファー10mmol/l溶液を用いてトータル300mlとした。その後、SUS製容器内を窒素ガスで置換し、油恒温槽内で、110℃、5時間処理した。SUS容器を流水冷却後、処理後のパルプ懸濁液を洗浄液を含めて500mlにメスアップした後、ろ過して、液をHPLC(高速液体クロマトグラフィー)にて分析し、2−furoic acidと5−carboxy−2−furaldehydeを定量した。定量に際し、算出式、参考文献は、以下のものを使用した。
【0052】
算出式:(各サンプル20μlの濃度)=a、b(ng/μl)とした。
1)2−furoic acid量(mmol/kg)=a×(500/1000)/(10×10−3)/112.08
2)5−carboxy−2−furaldehyde量(mmol/kg)=b×(500/1000)/(10×10−3)/140.1
3)ヘキセンウロン酸量(mmol/l)=2−furoic acid量+5−carboxy−2−furaldehyde量
【0053】
参考文献:著者 Vuorinen,T.
Selective hydrolysis of hexenuronic acid groups and its application in ECF and TCF bleaching of kraft pulps International Pulp Bleaching Conference,April 14−18,1996,P43−51
【0054】
3.漂白パルプの白色度の測定
漂白パルプを離解後、パルプスラリーに硫酸バンドを対パルプ3.0%加え、Tappi試験法T205os−71(JIS P 8209)に従って坪量60g/mのシートを作製した。その後、JIS P 8123に従ってパルプの白色度を測定した。
【0055】
4.パルプの退色性評価
白色度測定用パルプシートを80℃、相対湿度65%の条件下で、48時間の退色させ、退色前後のパルプ白色度から下式に従いPC価を算出し、評価した。
PC価=100×[{(1−退色後白色度)/(2×退色後白色度)}−(1−退色前白色度)/(2×退色前白色度)}]
【0056】
5.漂白パルプの粘度の測定
パルプ粘度の測定は、J.TAPPI 44に準じて行った。
6.漂白パルプの比引裂き強度の測定
パルプを離解した後、Tappi試験法T205os−71(JIS P 8209)に従って坪量60g/mのシートを作製し、JIS P 8116に従ってパルプの比引裂き強度を測定した。
【0057】
実施例1
工場製広葉樹の蒸解−アルカリ酸素脱リグニン後のクラフトパルプ(白色度50.1%、カッパー価10.5)の絶乾質量80.0gをプラスチック袋に入れ、イオン交換水を用いてパルプ濃度を10%に調整した後、絶乾パルプ質量当たりセスキ芒硝を0.1%、硫酸を0.68%、過酸化水素を0.4%添加し、温度が70℃の恒温槽に120分間浸漬して、酸性領域での過酸化水素処理を行った(以下、A/P段と略す)。A/P段の反応初期pHは3.1であった。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートを用いて脱水・洗浄し、A/P段後パルプを得た。次いで、A/P後のパルプをプラスチック袋に入れ、イオン交換水を用いてパルプ濃度を10%に調整し、絶乾パルプ質量当たり二酸化塩素を0.7%添加し、温度が70℃の恒温水槽に40分間浸漬して初段の二酸化塩素段(以下、D段と略す)の漂白を行った。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。
【0058】
D段後のパルプをプラスチック袋に入れ、イオン交換水を用いてパルプ濃度を10%に調整した後、苛性ソーダを絶乾パルプ質量当たり1.2%加え、D段と同様にして温度70℃で110分間処理し、アルカリ抽出段(以下、E段と略す)を行った。得られたパルプをイオン交換水で希釈してパルプ濃度を3%に調整した後、ブフナーロートを用いて脱水・洗浄し、E段後パルプを得た。
続いて、E段後パルプをプラスチック袋に入れ、イオン交換水を用いてパルプ濃度10%に調整した後、絶乾パルプ質量当たり二酸化塩素を0.25%添加し、D段と同様にして温度70℃で240分間処理し、二段目のD段の漂白を行った。得られたパルプをイオン交換水で3%に希釈し、ブフナーロートを用いて洗浄、脱水し、白色度が83.4%の漂白パルプを得た。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0059】
実施例2
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理でのセスキ芒硝を2.0%、硫酸添加率を0.33%とした以外は実施例1と同様の操作を行った。A/P段の反応初期pHは3.1であり、多段漂白後のパルプ白色度は83.9%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0060】
実施例3
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理でのセスキ芒硝を2.0%、硫酸添加率を0.33%、過酸化水素添加率0.3%とした以外は実施例1と同様の操作を行った。A/P段の反応初期pHは3.1であり、多段漂白後のパルプ白色度は83.7%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0061】
実施例4
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理でのセスキ芒硝を2.0%、硫酸添加率を0.33%、過酸化水素添加率0.2%とした以外は実施例1と同様の操作を行った。A/P段の反応初期pHは3.1であり、多段漂白後のパルプ白色度は83.5%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0062】
実施例5
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理でのセスキ芒硝を3.7%、硫酸無添加とした以外は実施例1と同様の操作を行った。A/P段の反応初期pHは3.2であり、多段漂白後のパルプ白色度は83.5%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0063】
実施例6
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理での芒硝を2.0%、硫酸0.70%添加とした以外は実施例1と同様の操作を行った。A/P段の反応初期pHは3.1であり、多段漂白後のパルプ白色度は84.0%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0064】
実施例7
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理でDTPAを0.30%添加した以外は実施例2と同様の操作を行った。A/P段の反応初期pHは3.1であり、多段漂白後のパルプ白色度は83.9%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0065】
比較例1
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理でのセスキ芒硝を0%、硫酸添加率を0.70%とした以外は実施例1と同様の操作を行った。A/P段の反応初期pHは3.1であり、多段漂白後のパルプ白色度は83.7%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0066】
比較例2
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理でのセスキ芒硝を0%、硫酸添加率を0.70%、過酸化水素添加率0.2%とした以外は実施例1と同様の操作を行った。A/P段の反応初期pHは3.1であり、多段漂白後のパルプ白色度は84.1%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0067】
比較例3
アルカリ酸素脱リグニン後、クラフトパルプの酸性領域の過酸化水素処理でのセスキ芒硝添加率を2.0%、硫酸添加率を0.33%、過酸化水素無添加とした以外は実施例1と同様の操作を行った。A/P段の反応初期pHは、3.1であり、多段漂白後のパルプ白色度は83.2%であった。得られた漂白パルプのヘキセンウロン酸量、48時間後の漂白パルプシートのPC価、漂白パルプの粘度及び比引裂き強度を測定し、表1に示した。
【0068】
【表1】

Figure 2004270121
【0069】
表1の実施例1〜7と比較例1を比較すると明らかなように、酸性領域での過酸化水素処理時に芒硝あるいは、セスキ芒硝を使用しない場合、粘度及び比引裂強度が低下することが判る。また、実施例7の様にキレート剤を添加すると更に粘度が向上する。一方、実施例1〜7と比較例2を比較すると明らかなように、粘度を向上させるために過酸化水素の添加率を減添加しても、ヘキセンウロン酸量が多くなり、PC価が高く、退色性に劣ったパルプとなる。更に、実施例2〜4と比較例3を比較すると明らかなように、セスキ芒硝を添加しても、過酸化水素無添加であれば、やはりヘキセンウロン酸量が多くなり、PC価が高く、退色性に劣ったパルプとなる。
【0070】
【発明の効果】
リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素脱リグニンし、その後、セスキ芒硝を添加した酸性領域での過酸化水素処理を行い、塩素、次亜塩素酸塩を共に用いない多段漂白工程で処理してなる漂白完成パルプの製造方法を用いて、漂白完成パルプのヘキセンウロン酸量が絶乾パルプ当たり、15mmol以下とすることで、前記漂白パルプを離解した後、パルプシートを作製し、80℃、相対湿度65%の恒温度かつ恒湿度条件で48時間処理したPC価は、10.0以下となり、漂白パルプの退色性を著しく改善すると共にパルプ粘度を大幅に向上させることが可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing bleached pulp derived from lignocellulosic materials. More specifically, the present invention provides an alkaline oxygen delignification of an unbleached pulp obtained by digesting a lignocellulosic material, followed by a hydrogen peroxide treatment to which a solution containing sodium sulfate or sesqui sodium sulfate is added in an acidic region, The present invention relates to a method for producing bleached pulp which has a small decrease in pulp viscosity by a multi-stage bleaching step without using chlorine, hypochlorite (ECF, TCF).
[0002]
[Prior art]
In order to use the lignocellulosic material as a raw material for papermaking in many applications, the pulp obtained after pulping by a chemical action such as digestion or pulping by a mechanical action using a refiner or the like is used as a bleaching chemical. It is necessary to bleach to increase the whiteness. For example, kraft pulp is usually subjected to alkali oxygen delignification, then chlorine, hypochlorite, chlorine dioxide, oxygen, ozone, hydrogen peroxide, unless used for applications that require strength, such as packaging materials. It is generally used as bleached kraft pulp after bleaching treatment with a bleaching agent such as caustic soda and a bleaching aid to remove lignin and the like, which are coloring agents contained in the pulp.
[0003]
In the case of producing bleached pulp from unbleached pulp, it is necessary to maintain the strength of the pulp fiber itself to a certain degree, so that decomposition of carbohydrates such as cellulose and hemicellulose constituting the pulp fiber is minimized. In general, a bleaching method of three to six stages is generally adopted by avoiding extreme one-stage bleaching and variously combining bleaching chemicals and bleaching conditions.
[0004]
Conventionally, in the multi-stage bleaching method, pulp is first treated with chlorine, lignin contained in the pulp is chlorinated, after adding solubility to lignin, then chlorinated lignin is dissolved and extracted with alkali, A method has been adopted in which lignin is separated and removed from the pulp, and a small amount of the remaining lignin is decomposed and removed by using hypochlorite, chlorine dioxide and the like to obtain pulp having high whiteness.
However, in recent years, there has been a concern about the effect of an organic chlorine compound (hereinafter abbreviated as AOX) contained in the bleaching wastewater from the pulp chlorination stage on the environment, and movements not using chlorine for pulp bleaching have been increasing. Also, when hypochlorite is used, chloroform is generated during pulp bleaching, which may have an adverse effect on the environment.Therefore, a bleaching sequence that does not use hypochlorite for pulp bleaching is required. Is coming.
[0005]
At present, as a substitute for chlorine and hypochlorite, oxygen-based bleaching chemicals such as ozone, oxygen, hydrogen peroxide, and peracids such as peracetic acid and persulfuric acid are attracting attention. However, peracetic acid and persulfuric acid have low selectivity for delignification, which may impair pulp strength, high chemical costs, or have explosive properties and are difficult to handle. It has not yet become widespread. Therefore, at present, as a substitute for chlorine and hypochlorite, chlorine dioxide and alkali hydrogen peroxide, which have already been used, are mainly used. In particular, there is an increasing number of instances in which bleaching, which begins with a chlorine bleach-alkali extraction sequence, is replaced by chlorine dioxide bleach and alkaline hydrogen peroxide bleach. However, chlorine dioxide and alkaline hydrogen peroxide have a different reaction bleaching mechanism than chlorine, so the bleaching of pulp after bleaching under extreme conditions is extremely high, especially when hardwood is used as the raw material and acidified. There was a problem that it was inferior.
[0006]
In addition, bleaching is performed using a general bleaching sequence that does not use chlorine or hypochlorite (for example, DEPD: D = chlorine dioxide stage, E = alkali extraction stage, P = alkali hydrogen peroxide stage). When the amount of hexenuronic acid in the pulp of the pulp obtained is higher than 15 mmol per 1 kg of the absolutely dried pulp, there is a problem that the discoloration of the pulp is extremely poor.
[0007]
As a method for improving the bleaching property, it is known that pulp is treated with xylanase before or after oxygen bleaching (see, for example, JP-A-2-264087 and JP-A-2-293486). (For example, see Japanese Patent Application Laid-Open No. 6-101185), but there is a problem that the effect of improving the discoloration is not so great for the cost of prescribing. Further, in the method of performing an acid pretreatment (for example, see British Patent No. 1062734, Japanese Patent Application Laid-Open No. 10-508346), unbleached pulp is subjected to a temperature of 80 ° C. or more under acidity before the bleaching stage. For example, it is treated at 85 to 150 ° C. (see, for example, Japanese Patent Application Laid-Open No. 10-508346), and then bleached in multiple stages to improve the bleaching property of the pulp. It has been reported.
[0008]
However, when the present inventors performed processing and bleaching under these conditions, it was found that at temperatures exceeding 85 ° C., although the fading property was improved, the strength was greatly reduced. Further, in the method in which the acid pretreatment is performed at this high temperature, the whiteness after the acid treatment is greatly reduced. Therefore, as the Kappa number decreases, the amount of the bleached chemicals decreases, the pulp yield decreases, and the wastewater COD increases. In addition, there is also a problem that equipment cost is high because equipment that can withstand high temperature and low pH is required.
[0009]
On the other hand, a dry heating method (heating at 105 ° C. for 24 hours) is used for the evaluation of the fading property (see, for example, Japanese Patent Application Laid-Open No. 10-508346). Although it is essential to perform the fading test under heat and humidity conditions (for example, 80 ° C. and a relative humidity of 65%), since this evaluation method is a fading evaluation based on only heat treatment, the high humidity in Japan is high. Considering climatic conditions, it is difficult to evaluate the fading properties of products using this evaluation method.
[0010]
The PC value (post-color number) usually used for the evaluation of fading is obtained from the difference in whiteness between before and after fading processing. A photographic material using pulp having a low PC value (see, for example, JP-A-56-54436) and a photographic material excellent in fading using pulp bleached in a sequence including oxygen bleaching (for example, There are reports on the use of pulp manufactured by chlorine-based bleaching, and from the characteristics of photographic materials, Since the whiteness is increased to 90% or more, the bleached pulp naturally has excellent fading. However, as in the present invention, a pulp excellent in fading property without a decrease in strength is produced by a bleaching method not using chlorine and hypochlorite.
[0011]
On the other hand, hydrogen peroxide treatment in an acidic region has been proposed several times (for example, see Patent Literature 1, Patent Literature 2, Non-Patent Literature 1), but hydrogen peroxide in combination with an organic or inorganic complex is proposed. It merely shows the effect of bleaching and does not investigate the relationship with the bleaching properties of the pulp sheet, and does not describe it. Further, even in a method in which unbleached pulp is treated with hydrogen peroxide under an acidic condition in combination with an organic or inorganic complex (Patent Document 1), there is no description of performing the same treatment after oxygen exposure.
[0012]
Further, in the hydrogen peroxide treatment in the acidic region, when the hydrogen peroxide treatment is performed without using the sodium sulfate or the sesqui sodium sulfate-containing solution, the discoloration is excellent, but there is a point to be improved with respect to preventing the pulp viscosity from lowering. Was. (For example, Japanese Patent Application No. 2001-227274, a prior application of the present inventors, etc.)
[0013]
In the bleached pulp production process, as a method for preventing a decrease in pulp viscosity, an alkali pulp is heated at about 80 ° C. by adding nitrite and nitrate in an acidic treatment solution having a pH of 1.0 to 1.6, There is a method in which lignin is subjected to an alkali extraction treatment without adding oxygen (for example, see Patent Document 4). However, only a substitute for oxygen bleaching is proposed to prevent a viscosity decrease in a multi-stage bleaching stage. is not.
[0014]
On the other hand, the composition and amount of waste liquid discharged from a chlorine dioxide production facility using chlorate, sulfuric acid, and methanol as raw materials are generally as follows: sesqui sodium sulfate is 1.2 to 1.4 per 1 ton of chlorine dioxide production. Tons and sodium chlorate account for 0.5 to 5 kg per 1 ton of chlorine dioxide, and sodium chloride for 0.1 to 0.5 kg per 1 ton of chlorine dioxide. Except for use in processing tanks and bleaching processes, they are disposed of. Therefore, in an ECF bleaching method that does not use elemental chlorine, for example, when a production volume of 1,000 tons per day is produced by a normal ECF sequence such as DE / O-PD, chlorine dioxide is not used. The amount of use is 5 to 15 tons, and the amount of sesqui sodium sulfate in the waste liquid accompanying the discharge is to be discharged 6 to 21 tons per day, and the amount of discharge from chlorine dioxide equipment is considerable. . Methods for producing chlorine dioxide by reducing chlorate with methanol include the R-8 method of Carlit Japan and the SVP-LITE method of Hodogaya Engineering.
[0015]
As a method for treating waste liquid from a chlorine dioxide production facility, a method of adding aluminum or an aluminum compound to produce aluminum sulfate (see, for example, JP-A-51-96796), and a method of using a cooking chemical liquid (for example, Japanese Patent Application Laid-Open No. 52-107302), sulfates are decomposed into sulfuric acid and alkali by a two-chamber electrodialysis apparatus composed of a bipolar membrane and a cation exchange membrane, and the sulfuric acid is reused in a chlorine dioxide production facility. (For example, refer to Japanese Patent Application Laid-Open No. 5-58601), but all of them increase production costs and equipment costs, and in most actual pulp production plants, adjust the pH of the coagulation and sedimentation treatment tank of the factory waste liquid. At present, except for use in pH adjustment in the bleaching step, etc., there is no alternative but to discard.
[0016]
[Patent Document 1]
JP-B-63-20953
[Patent Document 2]
W079 / 00637
[Patent Document 3]
See Japanese Patent No. 3265036.
[Non-patent document 1]
1985, Wood and Pulling Chemistry Symposium, Hans Ulrich Suss, etc.
[0017]
[Problems to be solved by the invention]
The inventors of the present invention have previously performed an alkaline oxygen delignification of unbleached pulp obtained by digesting a lignocellulosic substance, and thereafter, a bleached pulp obtained by performing a bleaching treatment without using elemental chlorine in a multi-stage bleaching step. In the production method, the pulp after the alkali oxygen delignification is subjected to a hydrogen peroxide treatment at an initial reaction pH of 1.5 to 4.5, and the amount of hexeneuronic acid in the bleached pulp is 15 mmol or less per kg of absolutely dry pulp. A method for producing bleached pulp having improved bleaching characteristics is proposed.
[0018]
According to the present invention, in the above method, the bleached pulp has an amount of hexenuronic acid in the finished pulp of 15 mmol or less per 1 kg of absolutely dried pulp. The aim is to reduce the number. It is another object of the present invention to provide a method capable of effectively utilizing a waste liquid discharged from a chlorine dioxide production facility.
[0019]
[Means for Solving the Problems]
The present invention that can achieve the above object includes the following inventions.
(1) Unbleached pulp obtained by digesting a lignocellulosic substance is subjected to alkali oxygen delignification, and subjected to a hydrogen peroxide treatment at an initial reaction pH of 1.5 to 4.5 in the presence of sodium sulfate and / or sesqui sodium sulfate, A bleached pulp, wherein bleaching is performed in a multi-stage bleaching step without using elemental chlorine, and the amount of hexenuronic acid in the pulp is adjusted to 15 mmol or less per kg of absolutely dried pulp.
[0020]
(2) The bleached pulp according to (1), wherein an abundance ratio of sodium sulfate and / or sesqui sodium sulfate in the hydrogen peroxide treatment is 0.01% by mass to 10% by mass based on absolute dry pulp. Production method.
[0021]
(3) The method for producing bleached pulp according to (1) or (2), wherein a reaction temperature in the hydrogen peroxide treatment is 50 to 85 ° C.
[0022]
(4) The bleaching according to any one of the above items (1) to (3), wherein the sodium sulfate and / or sesqui sodium salt is a waste liquid containing sesqui sodium sulfate discharged as a waste liquid from a chlorine dioxide production facility. Pulp manufacturing method.
[0023]
(5) The method for producing bleached pulp according to any one of (1) to (4), wherein a chelating agent is added to the hydrogen peroxide treatment.
[0024]
(6) The method for producing bleached pulp according to any one of (1) to (5), wherein the bleached pulp is hardwood pulp.
[0025]
(7) An acidic paper mainly containing bleached pulp produced by the method according to any one of the above items (1) to (6).
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
The lignocellulosic substance used in the present invention is not particularly limited. As a cooking method for obtaining the pulp used in the present invention, known cooking methods such as kraft cooking, polysulfide cooking, soda cooking, and alkali sulphite cooking can be used, but pulp quality, energy efficiency, etc. are taken into consideration. Then, the kraft cooking method or the polysulfide cooking method is suitably used. For example, when wood is kraft cooked, the sulphidity of the kraft cooking liquor is 5 to 75%, preferably 15 to 45%, and the effective alkali addition rate is 5 to 30% by mass, preferably 10 to 25% by mass of the absolutely dry wood. %, The cooking temperature is 130-170 ° C., the cooking method may be either continuous cooking method or batch cooking method. When using a continuous cooking furnace, a modified cooking method in which cooking liquor is added at multiple points may be used. The method is not particularly limited.
[0027]
At the time of cooking, a known cyclic keto compound such as benzoquinone, naphthoquinone, anthraquinone, anthrone, phenanthroquinone and a nucleus-substituted product such as an alkyl or amino of the quinone-based compound, or the quinone-based compound is used as a cooking aid in the cooking liquor to be used. Hydroquinone-based compounds such as anthrahydroquinone, which is a reduced form of the compound; and 9,10-diketohydroanthracene compounds, which are stable compounds obtained as intermediates in anthraquinone synthesis by the Diels-Alder method. Species or two or more species may be added, and the addition rate is 0.001 to 1.0% by mass based on the absolute dry mass of the wood chips.
[0028]
In the present invention, the unbleached chemical pulp obtained by the known digestion method is subjected to washing, roughing and selective steps, and then delignified by the known alkaline oxygen delignification method. As the alkali oxygen delignification method used in the present invention, a known medium concentration method or a high concentration method can be applied as it is, but the medium concentration method currently used generally at a pulp concentration of 8 to 15% by mass is used. Is preferred.
[0029]
In the alkali oxygen delignification method by the above-mentioned medium concentration method, caustic soda or oxidized kraft white liquor can be used as an alkali, and oxygen from cryogenic separation method, PSA (Pressure Swing Adsorption) can be used as an oxygen gas. Of oxygen, oxygen from VSA (Vacuum Swing Adsorption) and the like can be used. The oxygen gas and alkali are added to a medium-concentration pulp slurry in a medium-concentration mixer, and after sufficient mixing is performed, the mixture is sent to a reaction tower capable of holding a mixture of pulp, oxygen, and alkali for a predetermined time under pressure, and subjected to delignification. Is done.
[0030]
The addition rate of oxygen gas is 0.5 to 3% by mass per absolutely dry pulp mass, the alkali addition ratio is 0.5 to 4% by mass, the reaction temperature is 80 to 120 ° C, the reaction time is 15 to 100 minutes, and the pulp concentration. Is from 8 to 15% by mass, and other known conditions can be applied. In the present invention, in the alkali oxygen delignification step, it is a preferred embodiment that the above alkali oxygen delignification is continuously performed a plurality of times, and delignification is advanced as much as possible. The pulp subjected to the alkali oxygen delignification is then sent to a washing step. After washing, the pulp is sent to a hydrogen peroxide treatment step in an acidic region.
[0031]
The reaction temperature in the hydrogen treatment of the acidic region in the present invention is preferably from 50 to 85 ° C. When the temperature is lower than 50 ° C., the fading property is not sufficiently improved. On the other hand, when the temperature is higher than 85 ° C., the viscosity and strength of the bleached pulp are significantly reduced although the fading property is improved. The initial pH of the reaction is preferably 1.5 to 4.5. If the initial pH of the reaction is less than 1.5, the pulp strength is greatly adversely affected, and if the pH is less than 1.5 at the above temperature, it is difficult to find a durable lining, and even if it is very expensive, Is not practical. When the pH is higher than 4.5, the effect of removing hexenuronic acid is reduced, and at the same time, the scaling of calcium oxalate in the process becomes severe. Further, the characteristic of the hydrogen peroxide treatment in the acidic region is that the initial pH of the reaction and the pH at the end of the reaction are substantially equal.
[0032]
On the other hand, the addition rate of hydrogen peroxide is preferably 0.05 to 5% by mass, based on absolutely dry pulp, and is preferably 0.1 to 2% by mass in consideration of the effect and damage to the pulp fiber.
Further, the retention of the hydrogen peroxide treatment is preferably 30 to 300 minutes in consideration of its effect and damage to the pulp fiber. The treatment concentration is not limited as long as it is a general concentration in the process, but is 8 to 15 minutes. % Medium concentration method or 25-40% high concentration method is preferred. The acid used for maintaining the acidic region in the present invention may be any of an inorganic acid and an organic acid. The pH at the time of the acid treatment is 1.5 to 4.5, and specifically, an inorganic acid such as sulfuric acid, nitric acid, hydrochloric acid, sulfurous acid, nitrous acid, or sesqui sodium sulfate discharged from chlorine dioxide generating equipment can be used. . As an acid other than sesqui sodium sulfate, sulfuric acid is preferably used because it is easy to obtain and handle. In addition, a general recipe is used for the acid treatment. On the other hand, the addition rate of sodium sulfate or sesqui sodium sulfate is preferably 0.01 to 10% by mass, and more preferably 0.1 to 5% by mass, based on the absolutely dried pulp, but the addition ratio is 0.01% by mass. If it is less than 10%, the effect of increasing the viscosity is small, and if it exceeds 10% by mass, the production cost increases.
[0033]
In the hydrogen peroxide treatment of the acidic region of the present invention, it is more preferable to add a chelating agent. The type of chelating agent is Fe 2+ , Cu 2+ , Mn 2+ EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), DTPMP (diethylenetriaminepentamethylenephosphonic acid), PHAS (poly-α-hydroxyacrylate), etc. A chelating agent may be mixed and used. The addition rate of the chelating agent is generally in the range of 0.001% by mass to 5% by mass with respect to the absolutely dry pulp, and the chelating agent may be added either before or after the addition of hydrogen peroxide. Although it does not matter, in order to maximize the chelating effect, it is more effective before adding hydrogen peroxide.
[0034]
In the hydrogen peroxide treatment of the acidic region of the present invention, pressurization can be performed using an oxygen-containing gas or a nitrogen-containing gas. The oxygen-containing gas used for pressurization during the treatment can be used on an industrial scale, such as oxygen from cryogenic separation, oxygen from PSA, oxygen from VSA, etc. Oxygen or oxygen-containing gas having an oxygen purity of 85% by volume or more used for lignin, an oxygen-containing gas whose oxygen content has been adjusted to exceed 21% by volume using an oxygen production facility using the molecular sieve, An oxygen-enriched gas produced by mixing oxygen-containing gas having an oxygen purity of 85% by volume or more with air, air having an oxygen content of 20% by volume or more, and the like can be mentioned. Can be used. The pressure applied during the acid treatment with the oxygen-containing gas or the nitrogen-containing gas during the hydrogen peroxide treatment is 0.05 to 0.9 MPa (gauge pressure), and preferably 0.15 to 0.7 MPa.
[0035]
In the case where an ozone bleaching step is provided in the multi-stage bleaching step, the exhaust gas containing oxygen can also be suitably used. As the nitrogen-containing gas used in the hydrogen peroxide treatment stage of the present invention, any gas may be used as long as the nitrogen gas content is 95% or more, but from an economic viewpoint, it is used for alkaline oxygen delignification. A nitrogen-containing gas by-produced when producing oxygen gas such as oxygen from cryogenic separation, oxygen from PSA, and oxygen from VSA is preferably used.
[0036]
In the present invention, it is also possible to provide an enzyme treatment step after the hydrogen peroxide treatment step in the acidic region. The enzyme used in the enzyme treatment step may be any enzyme as long as it reacts with pulp to reduce the potassium permanganate value of the pulp measured by JIS P 8206. For example, xylanase, lignin peroxidase, manganese peroxidase, laccase, and the like are known. Of course, these enzymes may be used, and it is needless to say that enzymes that are not yet known may be applicable enzymes. In addition, these enzymes may be used alone, or may be used in combination, mixed, or divided into a plurality of times. Among these enzymes, a xylan-degrading enzyme called xylanase has a bleach accelerating effect at the same time and is preferably used.
[0037]
In the present invention, a hydrogen peroxide treatment step in an acidic region is provided after the alkali oxygen bleaching step, and an acid treatment step may be further provided at a subsequent stage. The acid treatment in the acid treatment step of the present invention is preferably performed at a pH of 2.5 to 3.5, at a temperature of preferably 85 to 110 ° C, and for a retention time of preferably 20 to 90 minutes. The acid used in the acid treatment of the present invention may be any of an inorganic acid and an organic acid as long as the pH at the time of the acid treatment can be adjusted to a predetermined value, and specifically, sulfuric acid, nitric acid, hydrochloric acid, sulfurous acid and the like Can be used, and sulfuric acid is particularly preferably used because it is easy to obtain and handle. In addition, a general recipe is used for the acid treatment.
[0038]
In the multistage bleaching process of the present invention, the first stage is a chlorine dioxide bleaching stage (D), an ozone bleaching stage (Z), or a bleaching stage (Z / D) in which ozone bleaching and chlorine dioxide bleaching are continuously combined. Is preferably used, an alkali extraction stage (E) is used in the second stage, and a combination of chlorine dioxide, alkali hydrogen peroxide and the like is preferably used in the third and subsequent stages. The chlorine dioxide used in the first chlorine dioxide bleaching stage of the present invention can be selected from chlorine dioxide obtained from many chlorine dioxide generation methods known to those skilled in the art. The chlorine dioxide obtained from is used. The pH of the first chlorine dioxide stage of the present invention is from 2 to 6, preferably from 2.5 to 4, and it is also possible to add any acid or alkali to adjust the pH. Known chlorine dioxide bleaching conditions, such as chlorine dioxide treatment time, treatment temperature, and pulp concentration, can be all known conditions.
[0039]
In the alkali extraction stage following the chlorine dioxide bleaching stage of the present invention, many alkali compounds known to those skilled in the art can be used, but caustic soda is most easily used and is preferably used. In the alkali extraction stage of the present invention, oxygen and / or hydrogen peroxide can be used in combination. In addition, the alkali extraction stage of the present invention can be performed under known conditions.
[0040]
In the chlorine dioxide bleaching stage used in the multi-stage bleaching step of the present invention, any bleaching agent other than chlorine and hypochlorite may be used in the third and subsequent bleaching stages following the alkali extraction stage. However, common bleaching chemicals such as chlorine dioxide, alkaline hydrogen peroxide, ozone, and peracid are preferably used. Although the number of stages after the third stage is not particularly limited, it is preferable that the process be completed in three or four stages in consideration of energy efficiency, productivity, and the like.
[0041]
The chemicals used in the present invention include hydrogen peroxide (A / P), chlorine dioxide (D), alkali (E), oxygen (O), and alkali peroxides in the acidic region, excluding chlorine and hypochlorite. Known bleaching agents and bleaching aids such as hydrogen oxide (P), ozone (Z), enzyme (Ez), and organic peracid can be used. As a bleaching sequence, for example, a sequence starting from a hydrogen peroxide stage (A / P) in an acidic region after oxygen delignification includes A / P-DE / OD, A / P-DE / OPD, A / PDE / ODD, A / PDE / ODP, A / PDE / OP-D, A / P- DE / O-Z-D, A / P-Z-E / O-D, A / P-Z-E / OP-D, A / P-Z-E / OP-DP, A / PZE / OP-PD, A / PZDE / OD, A / PZDE / OP-D, A / PZ / DE / A / P-Ez-DE / OD, A / P-Ez-DE / OP including enzymes, such as O-D, A / P-Z / DE / OP-D, etc. -D, A / P-Ez-DE / ODD, A / P-Ez-DE / ODP, A / P-Ez-D -E / OP-D, A / P-Ez-DE / O-Z-D, A / P-Ez-ZE-O / D, A / P-Ez-Z-E / OP-D , A / P-Ez-ZE / OP-DP, A / P-Ez-ZE / OP-PD, A / P-Ez-ZDE / OD, A / P-Ez-ZDE / OP-D, A / P-Ez-Z / DE / OD, A / P-Ez-Z / DE / OP-D, etc. Can be.
[0042]
The A / P stage in the present invention may be performed anywhere in the multi-stage bleaching process as long as it is after alkali oxygen delignification, but it is more effective immediately after alkali oxygen delignification. Sequences in which the hydrogen peroxide stage (A / P) in the acidic region is in the multi-stage bleaching process include, for example, DA / PE / OD, DE / OA / PD, DA / PE / OP-D, DE / OP-A / PD, DE / ODA / P, ZA / PE / OD, Z- E / OA / PD, ZE / OP-A / PD, ZDA / PE / OD, ZDE / OA / PD, Z / DA / PE / OD, Z / DE / OA / PD, etc. can be mentioned. Further, a chelating agent treatment step using ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) or the like may be inserted in the multi-stage bleaching step.
[0043]
Before the A / P stage in the multi-stage bleaching process, EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentamethyleneacetic acid), DTPMP (diethylenetriaminepentamethylenephosphonic acid), PHAS (poly-α-hydroxyacrylate), etc. A chelating agent treatment stage (Q) may be provided. For example, QA / PDE / OD, QA / PDE / OPD, QA / PDE / ODD, Q- A / PDE / ODP, QA / PDE / OP-D, QA / PDE / OZD, QA / P- ZE / OD, QA / PZE / OP-D, QA / PZE / OP-DP, QA / PZZE / OP- PD, QA / PZDE / OD, QA / PZDE / OP-D, QA / PZ / DE / O- D, QA / PZ / DE / OP-D, and the like.
[0044]
In the present invention, unbleached pulp is subjected to alkali oxygen bleaching, followed by hydrogen peroxide treatment in an acidic region, and then the bleached finished pulp obtained by multi-stage bleaching is reduced to 15 mmol or less of hexeneuronic acid per kg of absolutely dried pulp. For example, it is necessary to wait for further research on the reason why the bleaching property is improved.However, if hexeneuronic acid is largely retained in the finished pulp of acidic paper, under conditions of high humidity and high temperature, It is thought that this changes to a chromophore and the whiteness decreases. Therefore, compared to conifers, broadleaf trees with a higher hexenuronic acid content are more likely to fade.
[0045]
Further, in the present invention, the reaction mechanism in which hydrogen peroxide decomposes hexenuronic acid in the acidic region must be awaited for further study.However, hydrogen peroxide partially reacts with lignin and the like in the acidic region to form hexenuronic acid. It is considered that a hydroxonium ion (OH +), which generates a radical species that easily decomposes an acid or is expected to be generated from hydrogen peroxide in an acidic region, is involved in the decomposition of hexeneuronic acid.
[0046]
On the other hand, in the present invention, the reaction mechanism by which sesqui sodium sulfate keeps the pulp viscosity must be further studied, but it is necessary to suppress or capture the generation of (OH) radicals derived from hydrogen peroxide. It is considered that an unusual reaction is occurring.
[0047]
The method for preparing acidic paper using the bleached pulp of the present invention is as follows. Bleached pulp is beaten with a beater to about 350 ml to 550 ml of CSF (Canadian Standard Freeness, Canadian Standard Freeness). %, Rosin sizing agent (for example, Size Pine E, manufactured by Arakawa Chemical Industries) about 0.5%, talc (for example, Illite, manufactured by Nippon Talc) about 20%, retention agent (for example, Percoll 182, manufactured by Kyowa Sangyo) ) Compounded in order of about 0.02%, and weighed 64 g / m 2 There is a method of making acidic paper of a certain degree. When making acidic paper, it is of course possible to mix and use other bleached pulp within a range that does not impair the excellent properties of the acid bleached pulp of the present invention.
[0048]
Further, the method for preparing neutral paper using the bleached pulp of the present invention is as follows: beaten the bleached pulp with a beater to about 350 ml to 550 ml of CSF, and then cationize starch (for example, Ace K100, manufactured by Oji Cornstarch) to about 0%. 0.5%, sulfate band about 0.5%, AKD (for example, SPK902, manufactured by Arakawa Chemical Industries) about 0.05%, light calcium carbonate (for example, TP121, manufactured by Okutama Industry) about 20%, retention aid ( (For example, Percoll 182, manufactured by Kyowa Sangyo) in an order of about 0.02%, and a basis weight of 64 g / m by a conventional method. 2 There is a method of making neutral paper of a certain degree.
The effect of the present invention for improving the fading property is great in the case of acidic paper, but there is no problem when the pulp treated in the present invention is used for neutral paper.
[0049]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, needless to say, the present invention is not limited to these Examples. In Examples 1 to 5 and Comparative Examples 1 to 3 below, bleached hardwood kraft pulp after alkaline oxygen bleaching manufactured by a factory was bleached in an A / PDED sequence.
Unless otherwise indicated, the measurement of the kappa number, the measurement of the amount of hexenuronic acid in the pulp, the measurement of the pulp brightness, the evaluation of the bleaching property of the pulp, and the measurement of the pulp viscosity were performed by the following methods, respectively. In addition, the addition rate of the chemicals in Examples and Comparative Examples is shown by mass% per absolutely dry pulp mass.
[0050]
1. Determination of pulp kappa number
The measurement of the kappa number was performed according to JIS P 8211.
[0051]
2. Determination of hexenuronic acid content in pulp
A pulp sufficiently washed with ion-exchanged water was weighed and weighed in 5 g of absolutely dried pulp in a 500 ml SUS container, and a total of 300 ml was prepared using a 10 mmol / l solution of formic acid-sodium formate buffer. Thereafter, the inside of the SUS container was replaced with nitrogen gas, and the container was treated at 110 ° C. for 5 hours in an oil thermostat. After cooling the SUS container with running water, the pulp suspension after the treatment was diluted to 500 ml including the washing solution, filtered, and the solution was analyzed by HPLC (high performance liquid chromatography). -Carboxy-2-furaldehyde was quantified. The following calculation formulas and references were used for quantification.
[0052]
Calculation formula: (concentration of 20 μl of each sample) = a, b (ng / μl).
1) Amount of 2-furic acid (mmol / kg) = a × (500/1000) / (10 × 10 -3 ) /112.08
2) 5-carboxy-2-furaldehyde amount (mmol / kg) = b × (500/1000) / (10 × 10 -3 ) /140.1
3) Amount of hexeneuronic acid (mmol / l) = Amount of 2-furoic acid + Amount of 5-carboxy-2-furaldehyde
[0053]
References: Author Vuorinen, T .;
Selective hydrolysis of hexenuronic acid groups and it's applications in ECF and TCF bleaching of craft pulses International Pleasing April-
[0054]
3. Measurement of whiteness of bleached pulp
After the bleached pulp is disintegrated, a sulfuric acid band is added to the pulp slurry by 3.0% with respect to the pulp, and the basis weight is 60 g / m according to Tappi test method T205os-71 (JIS P 8209). 2 Was prepared. Thereafter, the whiteness of the pulp was measured according to JIS P 8123.
[0055]
4. Evaluation of bleaching property of pulp
The pulp sheet for whiteness measurement was faded for 48 hours under the conditions of 80 ° C. and 65% relative humidity, and the PC value was calculated and evaluated from the pulp whiteness before and after the fading according to the following formula.
PC value = 100 × [{(1-whiteness after fading) 2 / (2 × whiteness after fading)} − (1-whiteness before fading) 2 / (2 × whiteness before fading)}]
[0056]
5. Measurement of viscosity of bleached pulp
The measurement of pulp viscosity is described in Performed according to TAPPI 44.
6. Measurement of specific tear strength of bleached pulp.
After disintegrating the pulp, the basis weight is 60 g / m according to Tappi test method T205os-71 (JIS P 8209). 2 Was prepared, and the specific tear strength of the pulp was measured in accordance with JIS P 8116.
[0057]
Example 1
80.0 g of absolutely dry mass of kraft pulp (whiteness 50.1%, kappa number 10.5) after cooking-alkali oxygen delignification of factory hardwood was put into a plastic bag, and the pulp concentration was adjusted using ion-exchanged water. After adjusting to 10%, 0.1% of sesqui sodium sulfate, 0.68% of sulfuric acid and 0.4% of hydrogen peroxide were added per absolute dry pulp mass, and immersed in a constant temperature bath at 70 ° C. for 120 minutes. Then, a hydrogen peroxide treatment was performed in an acidic region (hereinafter abbreviated as A / P stage). The initial reaction pH of the A / P stage was 3.1. The obtained pulp was diluted to 3% with ion-exchanged water, and then dewatered and washed using a Buchner funnel to obtain pulp after A / P stage. Next, the pulp after the A / P is put into a plastic bag, the pulp concentration is adjusted to 10% using ion-exchanged water, 0.7% of chlorine dioxide is added to the absolutely dry pulp mass, and the temperature is constant at 70 ° C. The first chlorine dioxide stage (hereinafter abbreviated as D stage) was immersed in a water tank for 40 minutes to perform bleaching. The obtained pulp was diluted to 3% with ion-exchanged water, and then dehydrated and washed with a Buchner funnel.
[0058]
The pulp after the D stage is put in a plastic bag, and the pulp concentration is adjusted to 10% using ion-exchanged water. Then, caustic soda is added at 1.2% based on the absolutely dry pulp mass. After treating for 110 minutes, an alkali extraction stage (hereinafter abbreviated as E stage) was performed. The obtained pulp was diluted with ion-exchanged water to adjust the pulp concentration to 3%, and then dewatered and washed using a Buchner funnel to obtain pulp after E-stage.
Subsequently, after the E stage, the pulp was put in a plastic bag, and the pulp concentration was adjusted to 10% using ion-exchanged water. Then, 0.25% of chlorine dioxide was added per absolute dry pulp mass, and the temperature was adjusted in the same manner as in the D stage. The treatment was carried out at 70 ° C. for 240 minutes, and the second D-stage bleaching was performed. The obtained pulp was diluted to 3% with ion-exchanged water, washed and dehydrated using a Buchner funnel to obtain bleached pulp having a brightness of 83.4%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured and are shown in Table 1.
[0059]
Example 2
After the alkaline oxygen delignification, the same operation as in Example 1 was performed except that the sesqui sodium sulfate was 2.0% and the sulfuric acid addition rate was 0.33% in the hydrogen peroxide treatment of the acidic region of the kraft pulp. The initial pH of the reaction at the A / P stage was 3.1, and the pulp brightness after multistage bleaching was 83.9%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured and are shown in Table 1.
[0060]
Example 3
After alkali oxygen delignification, the kraft pulp was treated with hydrogen peroxide in the acidic region with 2.0% sesqui sodium sulfate, 0.33% sulfuric acid addition, and 0.3% hydrogen peroxide addition. The same operation as in Example 1 was performed. The initial pH of the reaction in the A / P stage was 3.1, and the pulp whiteness after multistage bleaching was 83.7%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured and are shown in Table 1.
[0061]
Example 4
Example 2 After alkaline oxygen delignification, the kraft pulp was treated with hydrogen peroxide in the acidic region with 2.0% sesqui sodium sulfate, 0.33% sulfuric acid addition, and 0.2% hydrogen peroxide addition. The same operation as in Example 1 was performed. The initial reaction pH in the A / P stage was 3.1, and the pulp brightness after multistage bleaching was 83.5%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured.
[0062]
Example 5
After the alkaline oxygen delignification, the same operation as in Example 1 was performed except that 3.7% of sesqui sodium sulfate was added to the kraft pulp in a hydrogen peroxide treatment in an acidic region and sulfuric acid was not added. The initial pH of the reaction at the A / P stage was 3.2, and the pulp whiteness after multistage bleaching was 83.5%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured and are shown in Table 1.
[0063]
Example 6
After the alkaline oxygen delignification, the same operation as in Example 1 was performed except that 2.0% of sodium sulfate and 0.70% of sulfuric acid were added in the hydrogen peroxide treatment of the acidic region of the kraft pulp. The initial pH of the reaction at the A / P stage was 3.1, and the pulp whiteness after multistage bleaching was 84.0%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured and are shown in Table 1.
[0064]
Example 7
After the alkaline oxygen delignification, the same operation as in Example 2 was performed except that 0.30% of DTPA was added by a hydrogen peroxide treatment in an acidic region of the kraft pulp. The initial pH of the reaction at the A / P stage was 3.1, and the pulp brightness after multistage bleaching was 83.9%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured and are shown in Table 1.
[0065]
Comparative Example 1
After the alkaline oxygen delignification, the same operation as in Example 1 was performed except that sesqui sodium sulfate was set to 0% and the sulfuric acid addition rate was set to 0.70% in the hydrogen peroxide treatment of the acidic region of the kraft pulp. The initial pH of the reaction in the A / P stage was 3.1, and the pulp whiteness after multistage bleaching was 83.7%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured.
[0066]
Comparative Example 2
After alkaline oxygen delignification, the kraft pulp was treated in the same manner as in Example 1 except that the acid region of the kraft pulp was treated with hydrogen peroxide at 0%, the sulfuric acid addition rate was 0.70%, and the hydrogen peroxide addition rate was 0.2%. A similar operation was performed. The initial reaction pH in the A / P stage was 3.1, and the pulp whiteness after multistage bleaching was 84.1%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured and are shown in Table 1.
[0067]
Comparative Example 3
After alkali oxygen delignification, the kraft pulp was treated in the same manner as in Example 1 except that the addition rate of sesqui sodium sulfate was 2.0%, the addition rate of sulfuric acid was 0.33%, and hydrogen peroxide was not added in the hydrogen peroxide treatment of the acidic region. A similar operation was performed. The initial pH of the reaction at the A / P stage was 3.1, and the pulp whiteness after multistage bleaching was 83.2%. The hexeneuronic acid content of the bleached pulp obtained, the PC value of the bleached pulp sheet after 48 hours, the viscosity of the bleached pulp, and the specific tear strength were measured.
[0068]
[Table 1]
Figure 2004270121
[0069]
As is clear from a comparison between Examples 1 to 7 and Comparative Example 1 in Table 1, it can be seen that the viscosity and the specific tear strength are reduced when glauberium or sesquimonite is not used during the hydrogen peroxide treatment in the acidic region. . When a chelating agent is added as in Example 7, the viscosity is further improved. On the other hand, as is clear from comparison of Examples 1 to 7 with Comparative Example 2, even when the addition rate of hydrogen peroxide was reduced to increase the viscosity, the amount of hexenuronic acid increased, and the PC value was high. It becomes a pulp with poor fading. Furthermore, when Examples 2 to 4 and Comparative Example 3 are compared, it is clear that even if sesqui sodium sulfate is added, the amount of hexenuronic acid increases, the PC value is high, and the discoloration occurs if hydrogen peroxide is not added. It becomes pulp with poor properties.
[0070]
【The invention's effect】
The unbleached pulp obtained by digesting the lignocellulosic material is subjected to alkaline oxygen delignification, and then subjected to a hydrogen peroxide treatment in an acid region to which sesqui sodium sulfate is added, and multi-stage bleaching using neither chlorine nor hypochlorite. Using the method for producing a bleached finished pulp that is treated in the process, the amount of hexenuronic acid in the bleached finished pulp is 15 mmol or less per absolutely dry pulp, after the bleached pulp is disintegrated, a pulp sheet is produced. The PC value after 48 hours of treatment at a constant temperature and a constant humidity of 80 ° C. and a relative humidity of 65% was 10.0 or less, and it was possible to remarkably improve the bleaching pulp's bleaching property and significantly improve the pulp viscosity. became.

Claims (7)

リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素脱リグニンし、該アルカリ酸素脱リグニン後に、反応初期pH1.5〜4.5、芒硝及び/又はセスキ芒硝の存在下で過酸化水素処理を行い、次いで、元素状塩素を使用しない多段漂白工程で処理し、漂白パルプ中のヘキセンウロン酸量を絶乾パルプ1kg当たり15mmol以下にすることを特徴とする漂白パルプの製造方法。The unbleached pulp obtained by digesting the lignocellulosic material is subjected to alkaline oxygen delignification, and after the alkaline oxygen delignification, treated with hydrogen peroxide in the initial stage of the reaction at pH 1.5 to 4.5, in the presence of sodium sulfate and / or sesqui sodium sulfate. A bleached pulp, wherein the bleached pulp is treated in a multi-stage bleaching step using no elemental chlorine to reduce the amount of hexenuronic acid in the bleached pulp to 15 mmol or less per kg of absolutely dried pulp. 前記過酸化水素処理における芒硝及び/又はセスキ芒硝の存在率は、対絶乾パルプ当たり0.01質量%〜10質量%であることを特徴とする請求項1記載の漂白パルプの製造方法。The method for producing bleached pulp according to claim 1, wherein the abundance of sodium sulfate and / or sesqui sodium sulfate in the hydrogen peroxide treatment is 0.01% by mass to 10% by mass based on absolute dry pulp. 前記過酸化水素処理における反応温度が50〜85℃であることを特徴とする請求項1又は2に記載の漂白パルプの製造方法。The method for producing bleached pulp according to claim 1 or 2, wherein the reaction temperature in the hydrogen peroxide treatment is 50 to 85 ° C. 前記芒硝及び/又はセスキ芒硝が二酸化塩素製造設備から廃液として排出されるセスキ芒硝含有廃液であることを特徴とする請求項1〜3のいずれか1項に記載の漂白パルプの製造方法。The method for producing bleached pulp according to any one of claims 1 to 3, wherein the sodium sulfate and / or sesqui sodium salt is a waste liquid containing sesqui sodium sulfate discharged as waste liquid from a chlorine dioxide production facility. 前記過酸化水素処理にキレート剤を添加することを特徴とする請求項1〜4のいずれか1項に記載の漂白パルプの製造方法。The method for producing bleached pulp according to any one of claims 1 to 4, wherein a chelating agent is added to the hydrogen peroxide treatment. 前記漂白パルプが広葉樹パルプであることを特徴とする請求項1〜5のいずれか1項に記載の漂白パルプの製造方法。The method for producing bleached pulp according to any one of claims 1 to 5, wherein the bleached pulp is hardwood pulp. 前記請求項1〜6のいずれか1項に記載の方法で製造された漂白パルプを主成分とする酸性紙。An acidic paper mainly comprising bleached pulp produced by the method according to any one of claims 1 to 6.
JP2003130992A 2003-01-15 2003-05-09 Method for producing bleached pulp Expired - Lifetime JP4039308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130992A JP4039308B2 (en) 2003-01-15 2003-05-09 Method for producing bleached pulp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003006879 2003-01-15
JP2003130992A JP4039308B2 (en) 2003-01-15 2003-05-09 Method for producing bleached pulp

Publications (2)

Publication Number Publication Date
JP2004270121A true JP2004270121A (en) 2004-09-30
JP4039308B2 JP4039308B2 (en) 2008-01-30

Family

ID=33133552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130992A Expired - Lifetime JP4039308B2 (en) 2003-01-15 2003-05-09 Method for producing bleached pulp

Country Status (1)

Country Link
JP (1) JP4039308B2 (en)

Also Published As

Publication number Publication date
JP4039308B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4967451B2 (en) Method for producing bleached pulp
JP5487974B2 (en) Method for producing bleached pulp
JP4887900B2 (en) Method for producing bleached pulp
JP7100315B2 (en) How to make bleached pulp
JP4893210B2 (en) Method for producing bleached pulp
JPH1181173A (en) Production of bleached pulp
JP2010285697A (en) Method for producing tcf bleached pulp
JP5515409B2 (en) Method for producing ECF bleached pulp
JP5471050B2 (en) TCF bleaching method
JP5526604B2 (en) ECF bleaching method
JP5888151B2 (en) Method for producing bleached pulp
JP3656905B2 (en) Process for producing bleached pulp with improved fading
JP2002266271A (en) Bleached pulp improved in color fading tendency
JP2013181258A (en) Method for producing pulp
JP2011001637A (en) Method for producing bleached pulp
JP2004339628A (en) Method for producing bleached pulp
JP2011001636A (en) Method for producing bleached pulp
JP4039308B2 (en) Method for producing bleached pulp
JP4645093B2 (en) Method for producing bleached pulp
JP2000290887A (en) Bleaching of lignocellulose
JP3915682B2 (en) Method for producing bleached pulp
CN114174589B (en) Method for producing bleached pulp
JP2002302888A (en) Method of production for bleached pulp
CN116507772A (en) Method for producing bleached pulp
JPH06158573A (en) Method for bleaching chemical pulp for paper manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4039308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141116

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term