JP4887900B2 - Method for producing bleached pulp - Google Patents

Method for producing bleached pulp Download PDF

Info

Publication number
JP4887900B2
JP4887900B2 JP2006137141A JP2006137141A JP4887900B2 JP 4887900 B2 JP4887900 B2 JP 4887900B2 JP 2006137141 A JP2006137141 A JP 2006137141A JP 2006137141 A JP2006137141 A JP 2006137141A JP 4887900 B2 JP4887900 B2 JP 4887900B2
Authority
JP
Japan
Prior art keywords
pulp
stage
bleaching
mass
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006137141A
Other languages
Japanese (ja)
Other versions
JP2007308815A (en
Inventor
生織 友田
洋介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006137141A priority Critical patent/JP4887900B2/en
Publication of JP2007308815A publication Critical patent/JP2007308815A/en
Application granted granted Critical
Publication of JP4887900B2 publication Critical patent/JP4887900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)

Description

本発明は、リグノセルロース物質から漂白パルプを製造する方法に関する。さらに詳しく述べれば、より二酸化塩素使用量の少ないECF(エレメンタリークロリンフリー)漂白パルプの製造方法に関する。   The present invention relates to a process for producing bleached pulp from lignocellulosic material. More specifically, the present invention relates to a method for producing ECF (elementary chlorin-free) bleached pulp with less chlorine dioxide usage.

従来から、製紙用パルプの漂白には分子状塩素(C)、次亜塩素酸塩(H)、二酸化塩素(D)のような塩素系の漂白薬品が広く用いられ、特に分子状塩素は漂白作用が高い上にパルプ強度に影響を及ぼすセルロースとの反応性が低いという理由から、特に好んで用いられてきた。また、漂白効率を高めるため、C−E−H−D、C/D−E−H−E−D(C/Dは塩素と二酸化塩素の併用漂白段、Eはアルカリ抽出段)のシーケンスのように、多段でパルプ漂白を行うのが一般的であるが、最も漂白薬品の使用量の多い初段には分子状塩素を使用するのが通例となっていた。   Conventionally, chlorine-based bleaching chemicals such as molecular chlorine (C), hypochlorite (H), and chlorine dioxide (D) have been widely used for bleaching paper pulp, especially molecular chlorine. It has been particularly preferred because of its high action and low reactivity with cellulose that affects pulp strength. Also, in order to increase the bleaching efficiency, the sequence of C-E-H-D, C / D-E-H-E-D (C / D is a combined bleaching stage of chlorine and chlorine dioxide, E is an alkali extraction stage) As described above, pulp bleaching is generally performed in multiple stages, but it has been customary to use molecular chlorine in the first stage where the most amount of bleaching chemicals is used.

しかしながら、これらの塩素系漂白薬品は漂白時に環境に有害な有機塩素化合物を副生することから、塩素系薬品の使用量を低減する動きが高まってきている。特に分子状塩素でパルプを漂白した際には多くの有機塩素化合物を生成することから、環境への影響を考慮し、分子状塩素を使用しない漂白方法に転換するケースが多くなってきている。分子状塩素を使用せずに漂白されたパルプはECF(エレメンタリークロリンフリー)パルプと呼ばれ、更に塩素系薬品を全く用いずに製造されたパルプはTCF(トータリークロリンフリー)と呼ばれ、環境配慮型のパルプとして認知されている。   However, since these chlorine bleaching chemicals by-produce organic chlorine compounds that are harmful to the environment during bleaching, there is an increasing trend to reduce the amount of chlorine based chemicals used. In particular, when a pulp is bleached with molecular chlorine, a lot of organic chlorine compounds are produced. Therefore, in consideration of the influence on the environment, switching to a bleaching method not using molecular chlorine is increasing. Pulp bleached without using molecular chlorine is called ECF (elementary chlorin-free) pulp, and pulp produced without using any chlorinated chemicals is called TCF (totally chlorin-free). It is recognized as a consideration-type pulp.

一般に、非塩素系漂白薬品は漂白への反応選択性が低く、漂白後のパルプ強度が低くなったり、パルプ収率が低くなったりするという欠点を持ち合わせていることから、二酸化塩素を使用するECF漂白が現在の主流となっている。しかしながら、ECF漂白においてもできるだけ二酸化塩素の使用量を低減する動きもあり、この漂白方法はライトECF漂白と呼ばれ、注目され始めている。   In general, non-chlorine bleaching chemicals have low reaction selectivity for bleaching, and have the disadvantages of low pulp strength after bleaching and low pulp yield. Therefore, ECF using chlorine dioxide. Bleaching is the current mainstream. However, there is a movement to reduce the amount of chlorine dioxide used in ECF bleaching as much as possible, and this bleaching method is called light ECF bleaching and has begun to attract attention.

ECF漂白において、二酸化塩素の使用量を削減する方法としては、脱リグニン効果の高いオゾン漂白を初段に用いる方法が一般的である。しかしながら、前述のとおり、オゾンは二酸化塩素に比べて反応の選択性が低いため、その使用量が制限されるという問題点があった。   In ECF bleaching, as a method for reducing the amount of chlorine dioxide used, ozone bleaching with a high delignification effect is generally used in the first stage. However, as described above, ozone has a problem that the amount of its use is limited because its reaction selectivity is lower than that of chlorine dioxide.

オゾンの反応選択性を改善する方法としては、前処理としての酸洗浄を行い、パルプ中の重金属を除去し、重金属とオゾンの反応で生じるラジカルによるセルロースの分解反応を抑制する方法が古くから知られている。しかしながら、この方法だけでは満足な効果は得られない。   As a method for improving the reaction selectivity of ozone, a method has long been known in which acid washing as a pretreatment is performed to remove heavy metals in pulp and to suppress the decomposition reaction of cellulose by radicals generated by the reaction between heavy metals and ozone. It has been. However, this method alone does not provide a satisfactory effect.

オゾンの反応選択性を改善する別の方法としては、前処理として、キレート剤処理を行う方法(特許文献1)、酵素処理とキレート剤を行う方法(特許文献2)、高温酸処理を行う方法(特許文献3)、キレート剤処理と有機過酸処理を順次行う方法(特許文献4)、有機過酸処理とキレート剤処理を順次行う方法(特許文献5)等が開示されている。また、過酸オゾン漂白時に界面活性剤を共存させる方法(特許文献6)、制御されたpH条件下に過酸とオゾンを併用する方法(特許文献7)等も開示されている。
特開平05−148785号公報 特開平07−173785号公報 特開2000−290887号公報 特開平08−503749号公報 特開平08−503750号公報 特開平07−119063号公報 特表平08−511308号公報
As another method for improving the reaction selectivity of ozone, as a pretreatment, a method of performing a chelating agent treatment (Patent Document 1), a method of performing an enzyme treatment and a chelating agent (Patent Document 2), and a method of performing a high temperature acid treatment (Patent Document 3), a method of sequentially performing a chelating agent treatment and an organic peracid treatment (Patent Document 4), a method of sequentially performing an organic peracid treatment and a chelating agent treatment (Patent Document 5), and the like are disclosed. Also disclosed are a method of coexisting a surfactant during peracid ozone bleaching (Patent Document 6), a method of using peracid and ozone in combination under controlled pH conditions (Patent Document 7), and the like.
JP 05-148785 A Japanese Patent Application Laid-Open No. 07-173785 JP 2000-290887 A Japanese Patent Laid-Open No. 08-503749 Japanese Patent Application Laid-Open No. 08-503750 Japanese Patent Application Laid-Open No. 07-119063 Japanese Translation of National Publication No. 08-511308

本発明の目的は、オゾン漂白の反応選択性を改善し、かつ反応効率を上げ、後段での二酸化塩素使用量のより少ないECF漂白パルプの製造方法を提供することにある。   An object of the present invention is to provide a method for producing ECF bleached pulp that improves the reaction selectivity of ozone bleaching, increases the reaction efficiency, and uses less chlorine dioxide in the subsequent stage.

本発明者等は、オゾン漂白における反応選択性を改善し、かつ反応効率を上げる方法について種々検討した結果、オゾン漂白前のパルプの状態をより金属イオンが少なく、かつリグニン、ヘキセンウロン酸がより少ない状態にする事が効果的であることを見出した。さらに、通常、オゾン漂白前処理として行われている硫酸による酸洗浄を、無機ペルオキシ酸による酸洗浄に変更することにより、オゾン漂白前のパルプの状態をより金属イオンが少なく、かつリグニン、ヘキセンウロン酸がより少ない状態にできることを見出し、本発明に至った。本願は以下の発明を包含する。     As a result of various studies on methods for improving reaction selectivity in ozone bleaching and increasing reaction efficiency, the present inventors have found that the state of the pulp before ozone bleaching is less metal ions, and less lignin and hexeneuronic acid. I found it effective to put it in a state. Furthermore, by changing the acid washing with sulfuric acid, which is usually performed as a pretreatment for ozone bleaching, to acid washing with an inorganic peroxy acid, the state of the pulp before ozone bleaching is reduced with less metal ions and lignin and hexeneuronic acid. Has been found to be in a state where there is less, has led to the present invention. This application includes the following inventions.

(1)リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、次いでキレート剤を添加することなく、無機ペルオキシ酸及び/又はその塩で処理した後、洗浄し、さらにオゾン処理から始まる多段漂白処理を行うことを特徴とする漂白パルプの製造方法。 (1) Unbleached pulp obtained by digesting lignocellulosic material is bleached with alkaline oxygen, then treated with inorganic peroxyacid and / or salt thereof without adding a chelating agent, washed, and further treated with ozone A method for producing bleached pulp, comprising performing a multistage bleaching process that starts.

(2)前記、無機ペルオキシ酸及び/又はその塩による処理pHが2〜3であることを特徴とする(1)項記載の漂白パルプの製造方法。 (2) The method for producing bleached pulp according to (1), wherein the treatment pH with the inorganic peroxyacid and / or salt thereof is 2 to 3.

(3)前記無機ペルオキシ酸がモノ過硫酸であることを特徴とする(1)項又は(2)項に記載の漂白パルプの製造方法。 (3) The method for producing bleached pulp according to (1) or (2), wherein the inorganic peroxyacid is monopersulfuric acid.

(4)前記アルカリ酸素漂白を複数の反応装置で行うことを特徴とする(1)項〜(3)項のいずれか1項記載の漂白パルプの製造方法。 (4) The method for producing bleached pulp according to any one of (1) to (3), wherein the alkaline oxygen bleaching is performed in a plurality of reactors.

(5)オゾン処理から始まる多段漂白処理は、オゾン漂白段に続く二段目がアルカリ抽出段であり、三段目以降に二酸化塩素漂白段及びアルカリ過酸化水素漂白段を有することを特徴とする(1)項〜(4)項のいずれか1項に記載の漂白パルプの製造方法。 (5) The multistage bleaching process starting from the ozone treatment is characterized in that the second stage following the ozone bleaching stage is an alkali extraction stage, and a chlorine dioxide bleaching stage and an alkaline hydrogen peroxide bleaching stage are provided after the third stage. The method for producing bleached pulp according to any one of items (1) to (4).

本発明によれば、蒸解、アルカリ酸素漂白後のパルプをオゾン漂白する際に、無機ペルオキシ酸で前処理することにより、オゾン漂白段での反応選択性が向上し、かつ反応効率が上がり、結果として、後段での二酸化塩素使用量を減らすことが可能となる。   According to the present invention, when ozone-bleached pulp after bleaching and alkaline oxygen bleaching, pretreatment with an inorganic peroxy acid improves reaction selectivity in the ozone bleaching stage and increases reaction efficiency, resulting in a result. As a result, it is possible to reduce the amount of chlorine dioxide used in the latter stage.

本発明で用いられるリグノセルロース物質は、ヘキセンウロン酸を生成するメチルグルクロン酸を多く含有する広葉樹材に好適であるが、針葉樹でもよく、竹や麻のような非木材と呼ばれるものでもよく、さらにこれらの混合物でもよく、特に限定されるものではない。本発明に使用されるパルプを得るための蒸解法としては、クラフト蒸解、ポリサルファイド蒸解、ソーダ蒸解、アルカリサルファイト蒸解等の公知の蒸解法を用いることができるが、パルプ品質、エネルギー効率等を考慮すると、クラフト蒸解法、又は、ポリサルファイド蒸解が好適に用いられる。   The lignocellulosic material used in the present invention is suitable for hardwoods containing a large amount of methylglucuronic acid that produces hexeneuronic acid, but may be conifers, non-woods such as bamboo and hemp, and these There is no particular limitation. As the cooking method for obtaining the pulp used in the present invention, known cooking methods such as kraft cooking, polysulfide cooking, soda cooking, alkali sulfite cooking, etc. can be used, considering pulp quality, energy efficiency, etc. Then, the kraft cooking method or polysulfide cooking is used suitably.

例えば、広葉樹材100%のリグノセルロースをクラフト蒸解する場合、クラフト蒸解液の硫化度は5〜75%、好ましくは15〜45%、有効アルカリ添加率は絶乾木材質量当たり5〜30質量%、好ましくは10〜25質量%、蒸解温度は130〜170℃で、蒸解方式は、連続蒸解法あるいはバッチ蒸解法のどちらでもよく、連続蒸解釜を用いる場合は、蒸解液を多点で添加する修正蒸解法でもよく、その方式は特に問わない。     For example, when kraft cooking 100% hardwood wood lignocellulose, the degree of sulfation of the kraft cooking liquor is 5 to 75%, preferably 15 to 45%, the effective alkali addition rate is 5 to 30% by weight per mass of absolutely dry wood, Preferably, 10 to 25% by mass, cooking temperature is 130 to 170 ° C., and the cooking method may be either a continuous cooking method or a batch cooking method. When a continuous cooking kettle is used, a cooking solution is added at multiple points. A cooking method may be used, and the method is not particularly limited.

蒸解に際して、使用する蒸解液に蒸解助剤として、公知の環状ケト化合物、例えばベンゾキノン、ナフトキノン、アントラキノン、アントロン、フェナントロキノン及び前記キノン系化合物のアルキル、アミノ等の核置換体、或いは前記キノン系化合物の還元型であるアントラヒドロキノンのようなヒドロキノン系化合物、さらにはディールスアルダー法によるアントラキノン合成法の中間体として得られる安定な化合物である9,10−ジケトヒドロアントラセン化合物等から選ばれた1種或いは2種以上が添加されてもよく、その添加率は通常の添加率であり、例えば、木材チップの絶乾質量当たり0.001〜1.0質量%である。   In cooking, as a cooking aid in the cooking solution to be used, known cyclic keto compounds, for example, benzoquinone, naphthoquinone, anthraquinone, anthrone, phenanthroquinone, and quinone-based alkyl substitutes such as alkyl and amino, or the quinone series 1 selected from hydroquinone compounds such as anthrahydroquinone, which is a reduced form of the compound, and a 9,10-diketohydroanthracene compound which is a stable compound obtained as an intermediate of an anthraquinone synthesis method by the Diels-Alder method A seed | species or 2 or more types may be added, The addition rate is a normal addition rate, for example, is 0.001-1.0 mass% per the absolute dry mass of a wood chip.

本発明では、公知の蒸解法により得られた未漂白化学パルプは洗浄、粗選及び精選工程を経て、公知のアルカリ酸素漂白法により脱リグニンされる。本発明に使用されるアルカリ酸素漂白法は、公知の中濃度法あるいは高濃度法がそのまま適用できるが、現在、汎用的に用いられているパルプ濃度が8〜15質量%で行われる中濃度法が好ましい。
前記中濃度法によるアルカリ酸素漂白法において、アルカリとしては苛性ソーダあるいは酸化されたクラフト白液を使用することができ、また、酸素ガスとしては、深冷分離法からの酸素、PSA(Pressure Swing Adsorption)からの酸素、VSA(Vacuum Swing Adsorption)からの酸素等が使用できる。
In the present invention, unbleached chemical pulp obtained by a known cooking method is delignified by a known alkaline oxygen bleaching method after undergoing washing, rough selection, and selection steps. As the alkaline oxygen bleaching method used in the present invention, a known medium concentration method or high concentration method can be applied as it is, but at present, a medium concentration method in which the pulp concentration is generally used at 8 to 15% by mass. Is preferred.
In the alkali oxygen bleaching method by the medium concentration method, caustic soda or oxidized kraft white liquor can be used as the alkali, and oxygen gas from oxygen or PSA (Pressure Swing Adsorption) can be used as the oxygen gas. And oxygen from VSA (Vacuum Swing Adsorption) can be used.

前記酸素ガスとアルカリは中濃度ミキサーにおいて中濃度のパルプスラリーに添加され混合が十分に行われた後、加圧下でパルプ、酸素及びアルカリの混合物を一定時間保持できる反応塔へ送られ、脱リグニンされる。酸素ガスの添加率は、絶乾パルプ質量当たり0.5〜3質量%、アルカリ添加率は0.5〜4質量%、反応温度は80〜120℃、反応時間は15〜100分、パルプ濃度は8〜15質量%であり、この他の条件は公知のものが適用できる。本発明では、アルカリ酸素漂白工程において、上記アルカリ酸素漂白を連続して複数回行い、できる限り脱リグニンを進め、重金属を減らしておくのが好ましい実施形態である。アルカリ酸素漂白が施されたパルプは、次いで洗浄工程へ送られる。パルプは洗浄後、無機ペルオキシ酸処理段へ送られる。   The oxygen gas and alkali are added to a medium-concentration pulp slurry in a medium-concentration mixer and mixed sufficiently, and then sent to a reaction tower capable of holding a mixture of pulp, oxygen, and alkali for a certain period of time under pressure, and delignified. Is done. The oxygen gas addition rate is 0.5 to 3% by mass per mass of dry pulp, the alkali addition rate is 0.5 to 4% by mass, the reaction temperature is 80 to 120 ° C., the reaction time is 15 to 100 minutes, and the pulp concentration Is 8 to 15% by mass, and other known conditions can be applied. In the present invention, in the alkaline oxygen bleaching step, it is a preferred embodiment that the alkali oxygen bleaching is continuously performed a plurality of times, delignification is advanced as much as possible, and heavy metals are reduced. The pulp that has been subjected to alkaline oxygen bleaching is then sent to a washing step. The pulp is sent to an inorganic peroxyacid treatment stage after washing.

本発明で使用される無機ペルオキシ酸及び/又はその塩は、モノ過硫酸、過硫酸(マーシャル酸)、モノ過燐酸、過ホウ酸、過炭酸、ペルオクソポリ酸、及びそれらの塩が該当するが、効果及び経済的な面からモノ過硫酸が好ましい。例えば、モノ過硫酸の場合、ペルオキシ二硫酸を加水分解して製造することもできるし、過酸化水素と硫酸を任意の割合で混合して製造することもできるが、その製造方法については特に限定するものではない。また、モノ過硫酸の複塩(2KHSO・KHSO・KSO)であるオキソンのようなものを使用することもできる。ただし、経済性を考慮すると、高濃度の過酸化水素と高濃度の硫酸を混合してモノ過硫酸を製造し、使用するのが好ましい実施形態である。 Examples of the inorganic peroxyacid and / or salt thereof used in the present invention include monopersulfuric acid, persulfuric acid (marshall acid), monoperphosphoric acid, perboric acid, percarbonate, peroxopolyacid, and salts thereof. Monopersulfuric acid is preferred from the standpoint of effect and economy. For example, in the case of monopersulfuric acid, it can be produced by hydrolyzing peroxydisulfuric acid, or it can be produced by mixing hydrogen peroxide and sulfuric acid at an arbitrary ratio, but the production method is particularly limited. Not what you want. It is also possible to use something like oxone is a monopersulfate double salt (2KHSO 5 · KHSO 4 · K 2 SO 4). However, in consideration of economy, it is a preferred embodiment to produce and use monopersulfuric acid by mixing high concentration hydrogen peroxide and high concentration sulfuric acid.

高濃度の過酸化水素と高濃度の硫酸を混合してモノ過硫酸を製造する方法としては、20質量%〜70質量%、好ましくは35質量%〜60質量%濃度の過酸化水素水に80質量%〜98%質量%、好ましくは93質量%〜96質量%の濃硫酸を滴下、混合する方法が好適である。前記硫酸と過酸化水素の混合モル比は1:1〜5:1であり、好ましくは2:1〜4:1である。過酸化水素、硫酸共に、質量%の低いものを用いるとモノ過硫酸の製造効率が低下するため適さない。また、質量%が高すぎると、発火等の危険性が大きくなるため適さない。さらに、硫酸と過酸化水素の混合モル比が1:1〜5:1から外れる場合にもモノ過硫酸の製造効率が低下するため適さない。   As a method for producing monopersulfuric acid by mixing high-concentration hydrogen peroxide and high-concentration sulfuric acid, 80% hydrogen peroxide solution having a concentration of 20% to 70% by mass, preferably 35% to 60% by mass is used. A method of dropping and mixing concentrated sulfuric acid having a mass% of 98% by mass, preferably 93% by mass to 96% by mass, is suitable. The mixing molar ratio of the sulfuric acid and hydrogen peroxide is 1: 1 to 5: 1, preferably 2: 1 to 4: 1. If both hydrogen peroxide and sulfuric acid have a low mass%, the production efficiency of monopersulfuric acid is lowered, which is not suitable. On the other hand, if the mass% is too high, the risk of ignition and the like increases, which is not suitable. Furthermore, when the mixing molar ratio of sulfuric acid and hydrogen peroxide deviates from 1: 1 to 5: 1, it is not suitable because the production efficiency of monopersulfuric acid is lowered.

本発明の無機ペルオキシ酸及び/又はその塩による処理では、無機ペルオキシ酸の添加率は絶乾パルプ質量当たり0.01〜2質量%であり、好ましく0.1〜1質量%である。処理pHは1.5〜6.0であり、好ましくは2〜3である。処理時間は1分〜5時間であり、好ましくは10分〜200分である。処理温度は20℃〜90℃、好ましくは40℃〜70℃である。パルプ濃度は5〜30%であり、好ましくは8〜15%である。   In the treatment with the inorganic peroxyacid and / or salt thereof of the present invention, the addition rate of the inorganic peroxyacid is 0.01 to 2% by mass, preferably 0.1 to 1% by mass, per mass of the absolutely dry pulp. The treatment pH is 1.5 to 6.0, preferably 2 to 3. The treatment time is 1 minute to 5 hours, preferably 10 minutes to 200 minutes. The treatment temperature is 20 ° C to 90 ° C, preferably 40 ° C to 70 ° C. The pulp concentration is 5-30%, preferably 8-15%.

本発明の無機ペルオキシ酸及び/又はその塩による処理では、特に処理pHが重要である。本発明ではpHは2〜3の範囲で行うことが好ましい。処理pHが1.5〜6.0の範囲では、ほぼコンスタントに脱リグニン作用があるが、ヘキセンウロン酸の分解作用はpH3付近で最大となり、pHが3から外れると徐々にその作用は低下する。また、セルロースの分解はpH2まではさほど起こらないが、pH2より低くなると急激に増え、特にパルプ中に重金属が多量に存在した場合には顕著となる。従来であれば重金属と過硫酸の反応をキレート剤を用いて制御してきたが、過硫酸の処理pHを上記の範囲に制御することによりキレート剤を添加することなく処理を行っても十分な効果を得ることが可能となる。キレート剤による処理を行わないことで、排水中のキレート剤由来のCOD負荷を低減でき、本発明は環境面からも好ましい方法である。したがって、パルプ中のリグニン量、ヘキセンウロン酸量、パルプ粘度及び重金属量に応じて処理pHを上記のように設定する必要がある。   In the treatment with the inorganic peroxyacid and / or salt thereof of the present invention, the treatment pH is particularly important. In the present invention, the pH is preferably in the range of 2 to 3. When the treatment pH is in the range of 1.5 to 6.0, there is almost always delignification action, but the hexeneuronic acid decomposition action becomes maximum near pH 3, and when the pH deviates from 3, the action gradually decreases. Cellulose decomposition does not occur so much until pH 2, but it rapidly increases when the pH is lower than 2, and becomes remarkable particularly when a large amount of heavy metal is present in the pulp. Conventionally, the reaction between heavy metals and persulfuric acid has been controlled using a chelating agent, but it is sufficient even if the treatment is carried out without adding a chelating agent by controlling the treatment pH of persulfuric acid within the above range. Can be obtained. By not performing the treatment with the chelating agent, the COD load derived from the chelating agent in the waste water can be reduced, and the present invention is a preferable method from the viewpoint of the environment. Therefore, it is necessary to set the treatment pH as described above according to the amount of lignin, the amount of hexeneuronic acid, the viscosity of the pulp and the amount of heavy metals in the pulp.

本発明の無機ペルオキシ酸及び/又はその塩による処理後のパルプは、必ず洗浄される。本発明では洗浄段で使用される洗浄機の種類、台数等は特に限定されるものではないが、洗浄効率が高いという理由で、プレスタイプのものが好適に使用される。パルプは洗浄後、多段漂白工程へ送られる。   The pulp after the treatment with the inorganic peroxyacid and / or salt thereof of the present invention is always washed. In the present invention, the type and number of washing machines used in the washing stage are not particularly limited, but a press type is preferably used because of high washing efficiency. After washing, the pulp is sent to a multistage bleaching process.

本発明の多段漂白工程の初段には必ずオゾン漂白段(Z段)が挿入される。無機ペルオキシ酸及び/又はその塩による処理後、洗浄されたパルプ中のヘキセンウロン酸量、重金属量はいずれも減少しているため、オゾン漂白段では脱リグニンの反応選択性が高まるという利点がある。また、オゾン漂白段と無機ペルオキシ酸及び/又はその塩による処理はいずれも酸性条件下で行われるため、オゾン漂白段のpH調整が容易であるという利点もある。   An ozone bleaching stage (Z stage) is always inserted in the first stage of the multistage bleaching process of the present invention. After the treatment with the inorganic peroxyacid and / or salt thereof, the amount of hexeneuronic acid and heavy metal in the washed pulp is reduced, so that there is an advantage that the reaction selectivity of delignification is increased in the ozone bleaching stage. Further, since both the ozone bleaching stage and the treatment with the inorganic peroxyacid and / or salt thereof are performed under acidic conditions, there is also an advantage that pH adjustment of the ozone bleaching stage is easy.

本発明のオゾン漂白段は、単段でもよく、またオゾン漂白後続いて二酸化塩素漂白段を行う、いわゆるオゾン/二酸化塩素漂白段でもよく、特に限定されるものではない。本発明のオゾン漂白段では、オゾン添加率は絶乾パルプ質量当たり0.1〜1質量%であり、反応温度は20〜80℃、反応時間は0.5〜60分、反応pHは2.0〜6.0であり、pH調整用に公知のアルカリ及び酸を使用することができる。パルプ濃度に関しては特に限定されるものではないが、好適には3〜40質量%で行われる。   The ozone bleaching stage of the present invention may be a single stage, or may be a so-called ozone / chlorine dioxide bleaching stage in which chlorine bleaching stage is performed after ozone bleaching, and is not particularly limited. In the ozone bleaching stage of the present invention, the ozone addition rate is 0.1 to 1% by mass per mass of the dry pulp, the reaction temperature is 20 to 80 ° C., the reaction time is 0.5 to 60 minutes, and the reaction pH is 2. It is 0-6.0, A well-known alkali and acid can be used for pH adjustment. Although it does not specifically limit regarding a pulp density | concentration, Preferably it is 3-40 mass%.

本発明の多段漂白工程の初段をオゾン/二酸化塩素漂白段とする場合には、オゾン添加率は絶乾パルプ質量当たり0.1〜1質量%であり、オゾン添加後、二酸化塩素を添加するまでの反応温度は20〜80℃、反応時間は0.5〜60分、反応pHは2.0〜6.0である。続く二酸化塩素の添加率は絶乾パルプ質量当たり0.1〜2質量%であり、二酸化塩素添加後の反応温度は30〜80℃、反応時間は5〜180分反応pHは2.0〜6.0であり、pH調整用に公知のアルカリ及び酸を使用することができる。パルプ濃度に関しては特に限定されるものではないが、操作性の点から好適には8〜15質量%で行われる。   When the first stage of the multi-stage bleaching step of the present invention is an ozone / chlorine dioxide bleaching stage, the ozone addition rate is 0.1 to 1% by mass per the dry pulp mass, and until ozone is added after adding ozone. The reaction temperature is 20 to 80 ° C., the reaction time is 0.5 to 60 minutes, and the reaction pH is 2.0 to 6.0. The subsequent addition rate of chlorine dioxide is 0.1 to 2% by mass based on the mass of the dry pulp, the reaction temperature after addition of chlorine dioxide is 30 to 80 ° C., the reaction time is 5 to 180 minutes, and the reaction pH is 2.0 to 6 0.0, and known alkalis and acids can be used for pH adjustment. Although it does not specifically limit regarding a pulp density | concentration, It is 8-15 mass% suitably from the point of operativity.

本発明では、多段漂白工程の初段をオゾン漂白段とする以外は特に限定されるものではないが、二段目はアルカリ抽出段、三段目以降は二酸化塩素漂白段とアルカリ過酸化水素漂白段の組み合わせとするのが好ましい実施形態である。オゾン漂白ではリグニンやヘキセンウロン酸を分解した際に、シュウ酸、ギ酸等の酸が生じることが知られているが、これらを抽出、除去するためには、二段目にアルカリ抽出段を挿入するのが有効である。また、三段目以降はオゾンと反応機構の異なる二酸化塩素段(D)、過酸化水素段(P)が有効である。アルカリ抽出段の条件としては、アルカリ添加率は絶乾パルプ質量当たり0.5〜3質量%、反応温度は60〜120℃、反応時間は15〜120分、パルプ濃度は8〜15質量%である。好適には、アルカリ抽出段に酸素ガスが添加される。酸素ガスの添加率は、絶乾パルプ質量当たり0.1〜3質量%である。さらに好適には、過酸化水素も添加される。過酸化水素の添加率は、絶乾パルプ質量当たり0.05〜2質量%である。 In the present invention, there is no particular limitation except that the first stage of the multi-stage bleaching process is an ozone bleaching stage, but the second stage is an alkali extraction stage, and the third and subsequent stages are a chlorine dioxide bleaching stage and an alkaline hydrogen peroxide bleaching stage. The preferred embodiment is a combination of the above. Ozone bleaching is known to produce acids such as oxalic acid and formic acid when lignin and hexeneuronic acid are decomposed. To extract and remove these, an alkali extraction stage is inserted in the second stage. Is effective. From the third stage, the chlorine dioxide stage (D) and the hydrogen peroxide stage (P), which are different in reaction mechanism from ozone, are effective. As conditions for the alkali extraction stage, the alkali addition rate is 0.5 to 3% by mass per mass of dry pulp, the reaction temperature is 60 to 120 ° C., the reaction time is 15 to 120 minutes, and the pulp concentration is 8 to 15% by mass. is there. Preferably, oxygen gas is added to the alkali extraction stage. The addition rate of oxygen gas is 0.1-3 mass% per mass of dry pulp. More preferably, hydrogen peroxide is also added. The addition rate of hydrogen peroxide is 0.05-2 mass% per mass of dry pulp.

本発明のアルカリ過酸化水素漂白段における過酸化水素添加率は絶乾パルプ質量当たり0.05〜2質量%であり、反応温度は60〜120℃、反応時間は15〜120分、pHは10.5〜12.0であり、pH調整用に公知のアルカリ及び酸を使用することができる。パルプ濃度に関しては特に限定されるものではないが、操作性の点から好適には8〜15質量%で行われる。   The hydrogen peroxide addition rate in the alkaline hydrogen peroxide bleaching stage of the present invention is 0.05 to 2% by mass per mass of the dry pulp, the reaction temperature is 60 to 120 ° C., the reaction time is 15 to 120 minutes, and the pH is 10 0.5 to 12.0, and known alkalis and acids can be used for pH adjustment. Although it does not specifically limit regarding a pulp density | concentration, It is 8-15 mass% suitably from the point of operativity.

本発明の二酸化塩素段における二酸化塩素添加率は絶乾パルプ質量当たり0.1〜1質量%であり、反応温度は60〜120℃、反応時間は15〜120分、pHは3.0〜6.0であり、pH調整用に公知のアルカリ及び酸を使用することができる。パルプ濃度に関しては特に限定されるものではないが、操作性の点から好適には8〜15質量%で行われる。   The chlorine dioxide addition rate in the chlorine dioxide stage of the present invention is 0.1 to 1% by mass with respect to the mass of the dry pulp, the reaction temperature is 60 to 120 ° C., the reaction time is 15 to 120 minutes, and the pH is 3.0 to 6. 0.0, and known alkalis and acids can be used for pH adjustment. Although it does not specifically limit regarding a pulp density | concentration, It is 8-15 mass% suitably from the point of operativity.

以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、勿論本発明はこれらの実施例に限定されるものではない。以下に示す実施例、比較例においては、特に示さない限り、モノ過硫酸の製造、パルプのカッパー価の測定、過マンガン酸カリウム価(K価)の測定、白色度の測定、粘度の測定、退色性の評価をそれぞれ以下の方法で行った。なお、実施例及び比較例における薬品の添加率は絶乾パルプ質量当たりの質量%示す。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples. In the following examples and comparative examples, unless otherwise indicated, production of monopersulfuric acid, measurement of pulp kappa number, measurement of potassium permanganate value (K value), measurement of whiteness, measurement of viscosity, The fading property was evaluated by the following methods. In addition, the addition rate of the chemical | medical agent in an Example and a comparative example shows the mass% per absolute dry pulp mass.

1.モノ過硫酸の製造
市販の50質量%過酸化水素水68.02g中に市販の96%硫酸300.24gを添加し、モノ過硫酸を製造した。製造したモノ過硫酸の濃度は、415g/lであった。
1. Production of monopersulfuric acid Monopersulfuric acid was produced by adding 300.24 g of commercially available 96% sulfuric acid to 68.02 g of commercially available 50% by mass hydrogen peroxide. The concentration of monopersulfuric acid produced was 415 g / l.

2.パルプのカッパー価の測定
カッパー価の測定は、JIS P 8211に準じて行った。
2. Measurement of pulp kappa number The kappa number was measured according to JIS P8211.

3.パルプの過マンガン酸カリウム価(K価)の測定
過マンガン酸カリウム価の測定は、JIS P 8206に準じて行った。なお、ここではパルプ中のヘキセンウロン酸量の指標として用いた。
3. Measurement of potassium permanganate value (K value) of pulp The measurement of potassium permanganate value was performed according to JIS P 8206. Here, it was used as an index of the amount of hexeneuronic acid in the pulp.

4.パルプ粘度の測定
パルプ粘度の測定は、J.TAPPI No.44法に準じて行った。
4). Measurement of Pulp Viscosity TAPPI No. Performed according to Method 44.

5.パルプ白色度の測定
漂白パルプを離解後、JIS P 8209に従って坪量60g/mのシートを作製し、JIS P 8148に従ってパルプの白色度を測定した。
5. Measurement of Pulp Whiteness After bleaching the bleached pulp, a sheet having a basis weight of 60 g / m 2 was prepared according to JIS P 8209, and the whiteness of the pulp was measured according to JIS P 8148.

実施例1
ユーカリ材70%とアカシア材30%からなる混合木材チップを絶乾質量で900g採取し、液比4、絶乾チップ質量当たり有効アルカリ17%、蒸解液の硫化度25%、蒸解温度160℃、蒸解時間120分の条件下で実験用間接加熱用オートクレーブを用いてクラフト蒸解し、その後廃液とパルプを分離し、パルプを10カットのスクリーンプレートを備えたフラットスクリーンで精選してハンター白色度38.9%、カッパー価18.2、パルプ粘度43.3mPa・sの未漂白クラフトパルプを絶乾432g得た。
Example 1
900 g of mixed wood chips consisting of 70% eucalyptus wood and 30% acacia wood were collected in an absolute dry mass, liquid ratio 4, effective alkali 17% per absolute dry chip mass, sulfidity of cooking liquor 25%, cooking temperature 160 ° C Kraft cooking using a laboratory indirect heating autoclave under a cooking time of 120 minutes, and then separating the waste liquid and pulp, and selecting the pulp on a flat screen equipped with a 10-cut screen plate, the Hunter brightness 38. An unbleached 432 g of unbleached kraft pulp having 9%, copper number of 18.2, and pulp viscosity of 43.3 mPa · s was obtained.

前記未漂白クラフトパルプの絶乾質量70.0gを採取し、絶乾パルプ質量当たり苛性ソーダを2.0%添加し、次いでイオン交換水で希釈してパルプ濃度を10%に調整し、間接加熱式オートクレーブに入れ、50m高の塔状反応容器中でアップフローの状態でアルカリ酸素漂白することを想定し、99.9%の市販の圧縮酸素ガスを注入してゲージ圧力を1MPaとし、毎分0.01MPaの割合でゲージ圧力が減少するようにガスを抜きつつ、50分間反応させた。反応終了後、ゲージ圧力が0.05MPa以下になるまで減圧し、パルプをオートクレーブから取り出し、イオン交換水7リットルを用いて洗浄、脱水した。白色度51.3%、カッパー価9.4、パルプ粘度が23.3mPa・sのパルプを得た。   70.0 g of the absolute dry mass of the unbleached kraft pulp was sampled, 2.0% of caustic soda per mass of the absolute dry pulp was added, and then diluted with ion-exchanged water to adjust the pulp concentration to 10%. In an autoclave, assuming that alkaline oxygen bleaching is performed in an upflow state in a 50 m high columnar reaction vessel, 99.9% of commercially available compressed oxygen gas is injected to adjust the gauge pressure to 1 MPa, and 0 min / min. The reaction was allowed to proceed for 50 minutes while venting the gas so that the gauge pressure decreased at a rate of 0.01 MPa. After completion of the reaction, the pressure was reduced until the gauge pressure became 0.05 MPa or less, the pulp was taken out from the autoclave, washed with 7 liters of ion-exchanged water, and dehydrated. A pulp having a whiteness of 51.3%, a copper number of 9.4, and a pulp viscosity of 23.3 mPa · s was obtained.

前記アルカリ酸素漂白後のクラフトパルプを絶乾質量で60g採取し、プラスチック袋に入れ、イオン交換水を用いてパルプ濃度を10%に調整した後、絶乾パルプ質量当たり0.28%のモノ過硫酸を添加し、温度が60℃の恒温水槽に60分間浸漬してモノ過硫酸処理を行った。モノ過硫酸処理時のパルプスラリーのpHは3.0であった。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。白色度55.0%、カッパー価8.4、パルプ粘度が20.2mPa・sのパルプを得た。   60 g of the kraft pulp after bleaching with alkaline oxygen was collected at an absolute dry mass, placed in a plastic bag, adjusted to a pulp concentration of 10% using ion-exchanged water, and then 0.28% monopermeate per absolute dry pulp mass. Sulfuric acid was added and monopersulfuric acid treatment was performed by immersing in a constant temperature water bath having a temperature of 60 ° C. for 60 minutes. The pH of the pulp slurry during the monopersulfuric acid treatment was 3.0. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel. A pulp having a whiteness of 55.0%, a copper number of 8.4, and a pulp viscosity of 20.2 mPa · s was obtained.

前記モノ過硫酸処理後のパルプを絶乾質量で55g採取し、プラスチック袋に入れ、イオン交換水及び硫酸を添加してパルプ濃度10%、pH2.5に調整した後、中濃度ミキサーに入れ、絶乾パルプ質量当たり0.6%のオゾンを添加し、50℃の条件で1分間撹拌、反応させた。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。   55 g of the pulp after monopersulfuric acid treatment was collected in an absolutely dry mass, put in a plastic bag, added ion exchange water and sulfuric acid to adjust the pulp concentration to 10% and pH 2.5, and then put into a medium concentration mixer. 0.6% ozone was added per mass of dry pulp, and the mixture was stirred and reacted at 50 ° C. for 1 minute. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel.

前記Z段後のパルプを絶乾質量で55g採取し、プラスチック袋に入れ、イオン交換水を加えてパルプ濃度を10%に調整した後、絶乾パルプ質量当たり苛性ソーダを1.0%、過酸化水素0.3%を添加してよく混合した後、ステンレス製2リットル容の間接加熱式オートクレーブに移し、ゲージ圧力が0.15MPaとなるように純度が99.9%の市販の圧縮酸素ガスで加圧し、70℃で20分間反応させた。その後、パルプスラリーをオートクレーブから取り出し、プラスチック袋に再度移した後、温度が70℃の恒温水槽に70分間浸漬し、E/OP段の抽出を行った。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。   55 g of the Z-staged pulp was collected at an absolute dry mass, put in a plastic bag, and ion-exchanged water was added to adjust the pulp concentration to 10%. Then, caustic soda was 1.0% per absolute dry pulp mass, peroxidized. Add 0.3% hydrogen and mix well, then transfer to a 2 liter stainless steel indirect heating autoclave and use commercially available compressed oxygen gas with a purity of 99.9% so that the gauge pressure is 0.15 MPa. Pressurized and reacted at 70 ° C. for 20 minutes. Thereafter, the pulp slurry was taken out from the autoclave, transferred again to a plastic bag, and then immersed in a constant temperature water bath having a temperature of 70 ° C. for 70 minutes to extract the E / OP stage. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel.

前記E/OP段後のパルプを絶乾質量で55.0g採取し、プラスチック袋に入れ、イオン交換水を用いてパルプ濃度10%に調整した後、絶乾パルプ質量当たり二酸化塩素を0.25%と苛性ソーダを0.05%添加し、温度が70℃の恒温水槽に180分間浸漬し、D段の漂白を行った。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。得られた漂白パルプの白色度は86.0%、粘度は16.1mPa・sであった。
モノ過硫酸処理時のpH、処理後パルプの性状(白色度、カッパー価、粘度)、最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
55.0 g of the pulp after the E / OP stage was collected at an absolute dry mass, put in a plastic bag, adjusted to a pulp concentration of 10% using ion-exchanged water, and then 0.25 chlorine chloride per absolute dry pulp mass. % And caustic soda 0.05% were added and immersed in a constant temperature water bath at a temperature of 70 ° C. for 180 minutes to perform D-stage bleaching. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel. The whiteness of the obtained bleached pulp was 86.0%, and the viscosity was 16.1 mPa · s.
Table 1 shows the pH during monopersulfate treatment, the properties of the treated pulp (whiteness, kappa number, viscosity), the final D-stage chlorine dioxide addition rate, and the whiteness and viscosity of the bleached pulp.

実施例2
実施例1において、モノ過硫酸処理時に硫酸を絶乾パルプ質量当たり0.6%添加して
モノ過硫酸処理時のpHを2.0に変え、かつD段での二酸化塩素添加率を0.2%に変更した以外は、実施例1と同様の操作を行った。なお、モノ過硫酸処理後のパルプの白色度は54.7%、カッパー価は8.6、パルプ粘度は19.5mPa・sであり、漂白パルプの白色度は85.9%、粘度は15.4mPa・sであった。
モノ過硫酸処理時のpH、処理後パルプの性状(白色度、カッパー価、粘度)、最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
Example 2
In Example 1, 0.6% sulfuric acid was added per mass of dry pulp during monopersulfuric acid treatment to change the pH during monopersulfuric acid treatment to 2.0, and the chlorine dioxide addition rate in the D stage was set to 0. The same operation as in Example 1 was performed except for changing to 2%. The whiteness of the pulp after monopersulfuric acid treatment was 54.7%, the kappa number was 8.6, the pulp viscosity was 19.5 mPa · s, the whiteness of the bleached pulp was 85.9%, and the viscosity was 15 It was 4 mPa · s.
Table 1 shows the pH during monopersulfate treatment, the properties of the treated pulp (whiteness, kappa number, viscosity), the final D-stage chlorine dioxide addition rate, and the whiteness and viscosity of the bleached pulp.

実施例3
実施例1において、モノ過硫酸処理時に硫酸を絶乾パルプ質量当たり2.0%添加してモノ過硫酸処理時のpHを1.5に変え、かつD段での二酸化塩素添加率を0.3%に変更した以外は、実施例1と同様の操作を行った。なお、モノ過硫酸処理後のパルプの白色度は54.7%、カッパー価は8.7、パルプ粘度は19.3mPa・sであり、漂白パルプの白色度は85.8%、粘度は15.1mPa・sであった。
モノ過硫酸処理時のpH、処理後パルプの性状(白色度、カッパー価、粘度)、最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
Example 3
In Example 1, 2.0% of sulfuric acid was added per mass of dry pulp during monopersulfuric acid treatment to change the pH during monopersulfuric acid treatment to 1.5, and the chlorine dioxide addition rate in stage D was 0.1. The same operation as in Example 1 was performed except that the ratio was changed to 3%. The whiteness of the pulp after monopersulfuric acid treatment was 54.7%, the kappa number was 8.7, the pulp viscosity was 19.3 mPa · s, the whiteness of the bleached pulp was 85.8%, and the viscosity was 15 It was 1 mPa · s.
Table 1 shows the pH during monopersulfate treatment, the properties of the treated pulp (whiteness, kappa number, viscosity), the final D-stage chlorine dioxide addition rate, and the whiteness and viscosity of the bleached pulp.

実施例4
実施例1において、モノ過硫酸処理時に苛性ソーダを絶乾パルプ質量当たり0.25%添加してモノ過硫酸処理時のpHを4.0に変え、かつD段での二酸化塩素添加率を0.3%に変更した以外は、実施例1と同様の操作を行った。なお、モノ過硫酸処理後のパルプの白色度は55.0%、カッパー価は8.4、パルプ粘度は20.9mPa・sであり、漂白パルプの白色度は85.9%、粘度は16.2mPa・sであった。
モノ過硫酸処理時のpH、処理後パルプの性状(白色度、カッパー価、粘度)、最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
Example 4
In Example 1, 0.25% of caustic soda was added per mass of dry pulp during monopersulfuric acid treatment to change the pH during monopersulfuric acid treatment to 4.0, and the chlorine dioxide addition rate in stage D was 0.00. The same operation as in Example 1 was performed except that the ratio was changed to 3%. The whiteness of the pulp after monopersulfuric acid treatment was 55.0%, the kappa number was 8.4, the pulp viscosity was 20.9 mPa · s, the whiteness of the bleached pulp was 85.9%, and the viscosity was 16 It was 2 mPa · s.
Table 1 shows the pH during monopersulfate treatment, the properties of the treated pulp (whiteness, kappa number, viscosity), the final D-stage chlorine dioxide addition rate, and the whiteness and viscosity of the bleached pulp.

実施例5
実施例1において、モノ過硫酸処理時に苛性ソーダを絶乾パルプ質量当たり0.6%添加してモノ過硫酸処理時のpHを6.0に変え、かつD段での二酸化塩素添加率を0.35%に変更した以外は、実施例1と同様の操作を行った。なお、モノ過硫酸処理後のパルプの白色度は55.4%、カッパー価は8.5、パルプ粘度は23.0mPa・sであり、漂白パルプの白色度は85.9%、粘度は15.5mPa・sであった。
モノ過硫酸処理時のpH、処理後パルプの性状(白色度、カッパー価、粘度)、最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
Example 5
In Example 1, 0.6% of caustic soda was added per mass of dry pulp during monopersulfuric acid treatment to change the pH during monopersulfuric acid treatment to 6.0, and the chlorine dioxide addition rate in stage D was 0.00. The same operation as in Example 1 was performed except that the ratio was changed to 35%. The whiteness of the pulp after monopersulfuric acid treatment was 55.4%, the kappa number was 8.5, the pulp viscosity was 23.0 mPa · s, the whiteness of the bleached pulp was 85.9%, and the viscosity was 15 It was 5 mPa · s.
Table 1 shows the pH during monopersulfate treatment, the properties of the treated pulp (whiteness, kappa number, viscosity), the final D-stage chlorine dioxide addition rate, and the whiteness and viscosity of the bleached pulp.

実施例6
実施例1において、50m高の塔状反応容器中でアップフローの状態でアルカリ酸素漂白の想定を25m高の塔状反応容器を2塔使用しての2段アルカリ酸素漂白の想定に変え、99.9%の市販の圧縮酸素ガスを注入してゲージ圧力を1MPaとし、毎分0.01MPaの割合でゲージ圧力が減少するようにガスを抜きつつ、25分間反応させ、次いで、99.9%の市販の圧縮酸素ガスを注入してゲージ圧力を1MPaとし、毎分0.01MPaの割合でゲージ圧力が減少するようにガスを抜きつつ、25分間反応させ、かつD段での二酸化塩素添加率を0.15%に変更した以外は、実施例1と同様の操作を行った。なお、アルカリ酸素漂白後のパルプの白色度は52.5%、カッパー価は8.9、パルプ粘度は22.0mPa・sモノ過硫酸処理後のパルプの白色度は56.5%、カッパー価は7.7、パルプ粘度は19.6mPa・sであり、漂白パルプの白色度は86.0%、粘度は16.2mPa・sであった。
モノ過硫酸処理時のpH、処理後パルプの性状(白色度、カッパー価、粘度)、最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
Example 6
In Example 1, the assumption of alkaline oxygen bleaching was changed to the assumption of two-stage alkaline oxygen bleaching using two towers of 25 m high tower reaction vessel in an upflow state in a tower reaction vessel of 50 m high, and 99 .9% of commercially available compressed oxygen gas was injected to make the gauge pressure 1 MPa, and the reaction was carried out for 25 minutes while venting the gas so that the gauge pressure decreased at a rate of 0.01 MPa per minute, and then 99.9% Injecting commercial compressed oxygen gas to make the gauge pressure 1 MPa, letting the gas react at a rate of 0.01 MPa per minute while reducing the gauge pressure, reacting for 25 minutes, and adding chlorine dioxide in stage D The procedure of Example 1 was repeated except that the content was changed to 0.15%. The whiteness of the pulp after alkaline oxygen bleaching was 52.5%, the kappa number was 8.9, the viscosity of the pulp was 22.0 mPa · s monopersulfuric acid, the whiteness of the pulp was 56.5%, and the kappa number 7.7, the pulp viscosity was 19.6 mPa · s, the whiteness of the bleached pulp was 86.0%, and the viscosity was 16.2 mPa · s.
Table 1 shows the pH during monopersulfate treatment, the properties of the treated pulp (whiteness, kappa number, viscosity), the final D-stage chlorine dioxide addition rate, and the whiteness and viscosity of the bleached pulp.

実施例7
ラジアータパイン材70%とカラマツ材30%からなる混合木材チップを絶乾質量で900g採取し、液比5、絶乾チップ質量当たり有効アルカリ20%、蒸解液の硫化度25%、蒸解温度165℃、蒸解時間120分の条件下で実験用間接加熱用オートクレーブを用いてクラフト蒸解し、その後廃液とパルプを分離し、パルプを10カットのスクリーンプレートを備えたフラットスクリーンで精選してハンター白色度25.9%、カッパー価30.8、パルプ粘度35.8mPa・sの未漂白クラフトパルプを絶乾質量で414g得た。
Example 7
900 g of mixed wood chips consisting of 70% Radiata pine wood and 30% larch wood are collected in an absolute dry mass, liquid ratio 5, effective alkali 20% per absolute dry chip mass, 25% sulfidity of cooking liquor, cooking temperature 165 ° C Kraft cooking using an experimental indirect heating autoclave under a cooking time of 120 minutes, and then separating the waste liquid from the pulp, and selecting the pulp on a flat screen equipped with a 10-cut screen plate to obtain a Hunter whiteness of 25 414 g of an unbleached kraft pulp having a dryness of 9%, a copper number of 30.8, and a pulp viscosity of 35.8 mPa · s was obtained.

前記未漂白クラフトパルプの絶乾質量70.0gを採取し、絶乾パルプ質量当たり苛性ソーダを2.5%添加し、次いでイオン交換水で希釈してパルプ濃度を10%に調整し、間接加熱式オートクレーブに入れ、50m高の塔状反応容器中でアップフローの状態でアルカリ酸素漂白することを想定し、99.9%の市販の圧縮酸素ガスを注入してゲージ圧力を1MPaとし、毎分0.01MPaの割合でゲージ圧力が減少するようにガスを抜きつつ、50分間反応させた。反応終了後、ゲージ圧力が0.05MPa以下になるまで減圧し、パルプをオートクレーブから取り出し、イオン交換水7リットルを用いて洗浄、脱水した。白色度34.5%、カッパー価12.6、パルプ粘度が21.7mPa・sのパルプを得た。   70.0 g of the absolute dry weight of the unbleached kraft pulp was sampled, 2.5% caustic soda was added per mass of the dry pulp, and then diluted with ion-exchanged water to adjust the pulp concentration to 10%. In an autoclave, assuming that alkaline oxygen bleaching is performed in an upflow state in a 50 m high columnar reaction vessel, 99.9% of commercially available compressed oxygen gas is injected to adjust the gauge pressure to 1 MPa, and 0 min / min. The reaction was allowed to proceed for 50 minutes while venting the gas so that the gauge pressure decreased at a rate of 0.01 MPa. After completion of the reaction, the pressure was reduced until the gauge pressure became 0.05 MPa or less, the pulp was taken out from the autoclave, washed with 7 liters of ion-exchanged water, and dehydrated. A pulp having a whiteness of 34.5%, a copper number of 12.6, and a pulp viscosity of 21.7 mPa · s was obtained.

前記アルカリ酸素漂白後のクラフトパルプを絶乾質量で60g採取し、プラスチック袋に入れ、イオン交換水を用いてパルプ濃度を10%に調整した後、絶乾パルプ質量当たり0.28%のモノ過硫酸を添加し、温度が60℃の恒温水槽に60分間浸漬してモノ過硫酸処理を行った。モノ過硫酸処理時のパルプスラリーのpHは3.0であった。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。白色度38.1%、カッパー価11.6、パルプ粘度が19.3mPa・sのパルプを得た。   60 g of the kraft pulp after bleaching with alkaline oxygen was collected at an absolute dry mass, placed in a plastic bag, adjusted to a pulp concentration of 10% using ion-exchanged water, and then 0.28% monopermeate per absolute dry pulp mass. Sulfuric acid was added and monopersulfuric acid treatment was performed by immersing in a constant temperature water bath having a temperature of 60 ° C. for 60 minutes. The pH of the pulp slurry during the monopersulfuric acid treatment was 3.0. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel. A pulp having a whiteness of 38.1%, a copper number of 11.6, and a pulp viscosity of 19.3 mPa · s was obtained.

前記モノ過硫酸処理後のパルプを絶乾質量で55g採取し、プラスチック袋に入れ、イオン交換水及び硫酸を添加してパルプ濃度10%、pH2.5に調整した後、中濃度ミキサーに入れ、絶乾パルプ質量当たり0.3%のオゾンを添加し、50℃の条件で1分間撹拌、反応させた。反応後のパルプを洗浄することなく、プラスチック袋に移し、絶乾パルプ質量当たり0.6%の二酸化塩素と苛性ソーダを0.10%添加し、よく撹拌した後、温度が70℃の恒温水槽に60分間浸漬し、Z/D段の漂白を行った。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。   55 g of the pulp after monopersulfuric acid treatment was collected in an absolutely dry mass, put in a plastic bag, added ion exchange water and sulfuric acid to adjust the pulp concentration to 10% and pH 2.5, and then put into a medium concentration mixer. 0.3% ozone was added per mass of dry pulp, and the mixture was stirred and reacted at 50 ° C. for 1 minute. Transfer the pulp after the reaction to a plastic bag without washing, add 0.10% chlorine dioxide and caustic soda per mass of dry pulp, and stir well. It was immersed for 60 minutes and bleached in the Z / D stage. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel.

前記Z/D段後のパルプを絶乾質量で55g採取し、プラスチック袋に入れ、イオン交換水を加えてパルプ濃度を10%に調整した後、絶乾パルプ質量当たり苛性ソーダを1.0%、過酸化水素0.3%を添加してよく混合した後、ステンレス製2リットル容の間接加熱式オートクレーブに移し、ゲージ圧力が0.15MPaとなるように純度が99.9%の市販の圧縮酸素ガスで加圧し、70℃で20分間反応させた。その後、パルプスラリーをオートクレーブから取り出し、プラスチック袋に再度移した後、温度が70℃の恒温水槽に70分間浸漬し、E/OP段の抽出を行った。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。   55 g of the pulp after the Z / D stage was collected at an absolute dry mass, put in a plastic bag, and after adding ion-exchanged water to adjust the pulp concentration to 10%, 1.0% caustic soda per absolute dry pulp mass, Add 0.3% hydrogen peroxide and mix well, then transfer to a 2 liter stainless steel indirect heating autoclave and commercially available compressed oxygen with a purity of 99.9% so that the gauge pressure is 0.15 MPa. The gas was pressurized and reacted at 70 ° C. for 20 minutes. Thereafter, the pulp slurry was taken out from the autoclave, transferred again to a plastic bag, and then immersed in a constant temperature water bath having a temperature of 70 ° C. for 70 minutes to extract the E / OP stage. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel.

前記E/OP段後のパルプを絶乾質量で55.0g採取し、プラスチック袋に入れ、イオン交換水を用いてパルプ濃度10%に調整した後、絶乾パルプ質量当たり二酸化塩素を0.25%と苛性ソーダを0.05%添加し、温度が70℃の恒温水槽に180分間浸漬し、D段の漂白を行った。得られたパルプをイオン交換水で3%に希釈した後、ブフナーロートで脱水、洗浄した。得られた漂白パルプの白色度は84.5%、粘度は16.0mPa・sであった。
モノ過硫酸処理時のpH、処理後パルプの性状(白色度、カッパー価、粘度)、最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
55.0 g of the pulp after the E / OP stage was collected at an absolute dry mass, put in a plastic bag, adjusted to a pulp concentration of 10% using ion-exchanged water, and then 0.25 chlorine chloride per absolute dry pulp mass. % And caustic soda 0.05% were added and immersed in a constant temperature water bath at a temperature of 70 ° C. for 180 minutes to perform D-stage bleaching. The obtained pulp was diluted to 3% with ion-exchanged water, then dehydrated and washed with a Buchner funnel. The whiteness of the obtained bleached pulp was 84.5%, and the viscosity was 16.0 mPa · s.
Table 1 shows the pH during monopersulfate treatment, the properties of the treated pulp (whiteness, kappa number, viscosity), the final D-stage chlorine dioxide addition rate, and the whiteness and viscosity of the bleached pulp.

比較例1
実施例1において、モノ過硫酸処理後、洗浄を行わず、D段での二酸化塩素添加率を0.55%に変更した以外は、実施例1と同様の操作を行った。なお、漂白パルプの白色度は85.8%、粘度は13.5mPa・sであった。
最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
Comparative Example 1
In Example 1, after the monopersulfuric acid treatment, the same operation as in Example 1 was performed except that the cleaning was not performed and the chlorine dioxide addition rate in the D stage was changed to 0.55%. The bleached pulp had a whiteness of 85.8% and a viscosity of 13.5 mPa · s.
Table 1 shows the final D-stage chlorine dioxide addition rate and the whiteness and viscosity of the bleached pulp.

比較例2
実施例6において、モノ過硫酸処理後、洗浄を行わず、D段での二酸化塩素添加率を0.40%に変更した以外は、実施例1と同様の操作を行った。なお、漂白パルプの白色度は84.4%、粘度は14.1mPa・sであった。
最終D段二酸化塩素添加率、及び漂白パルプの白色度、粘度及びを表1に示した。
Comparative Example 2
In Example 6, after the monopersulfuric acid treatment, the same operation as in Example 1 was performed except that the cleaning was not performed and the chlorine dioxide addition rate in the D stage was changed to 0.40%. The whiteness of the bleached pulp was 84.4%, and the viscosity was 14.1 mPa · s.
Table 1 shows the final D-stage chlorine dioxide addition rate and the whiteness and viscosity of the bleached pulp.

Figure 0004887900
Figure 0004887900

表1の実施例1〜5と比較例1及び実施例7と比較例2を比較することから明らかなように、リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、初段にオゾン漂白段、オゾン/二酸化塩素漂白段を有するECF漂白工程で処理する際に、無機ペルオキシ酸処理段及び洗浄段を該ECF漂白工程前に設けることにより、所望の白色度の漂白パルプを製造するのに要する二酸化塩素の使用量を削減できることがわかる。また、実施例1〜2と3〜4を比較することから明らかなように、無機ペルオキシ酸処理段のpHを2〜3にすることにより、その効果が高くなることもわかる。さらに実施例1と実施例6を比較すると明らかなように、アルカリ酸素漂白を多段で行うことにより、さらにその効果が大きくなることもわかる。   As is clear from comparing Examples 1 to 5 and Comparative Example 1 and Example 7 and Comparative Example 2 in Table 1, the unbleached pulp obtained by digesting the lignocellulosic material was bleached with alkaline oxygen, and the first stage When processing in an ECF bleaching step having an ozone bleaching step and an ozone / chlorine dioxide bleaching step, an inorganic peroxyacid treatment step and a washing step are provided before the ECF bleaching step to produce bleached pulp having a desired whiteness. It can be seen that the amount of chlorine dioxide required for the reduction can be reduced. In addition, as is clear from a comparison of Examples 1-2 and 3-4, it can also be seen that the effect is enhanced by adjusting the pH of the inorganic peroxyacid treatment stage to 2-3. Further, as apparent from a comparison between Example 1 and Example 6, it can be seen that the effect is further increased by performing alkali oxygen bleaching in multiple stages.

Claims (4)

リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、次いでキレート剤を添加することなく無機ペルオキシ酸によりpH1.5〜6.0で処理した後、洗浄し、さらにオゾン処理から始まる二酸化塩素処理を含む多段漂白処理を行うことを特徴とする漂白パルプの製造方法。 Unbleached pulp obtained by digesting lignocellulosic material is bleached with alkaline oxygen, then treated with inorganic peroxyacid at pH 1.5 to 6.0 without adding a chelating agent, washed, and further started with ozone treatment A method for producing bleached pulp, comprising performing multi-stage bleaching treatment including chlorine dioxide treatment . 前記、無機ペルオキシ酸による処理pHが2〜3であることを特徴とする請求項1記載の漂白パルプの製造方法。 The method for producing bleached pulp as claimed in claim 1, wherein the treatment pH with an inorganic peroxy acid is 2-3. 前記無機ペルオキシ酸がモノ過硫酸であることを特徴とする請求項1又は2に記載の漂白パルプの製造方法。   The method for producing bleached pulp according to claim 1 or 2, wherein the inorganic peroxyacid is monopersulfuric acid. 前記アルカリ酸素漂白を複数の反応装置で行うことを特徴とする請求項1〜3のいずれか1項記載の漂白パルプの製造方法。   The method for producing bleached pulp according to any one of claims 1 to 3, wherein the alkaline oxygen bleaching is performed in a plurality of reactors.
JP2006137141A 2006-05-17 2006-05-17 Method for producing bleached pulp Active JP4887900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137141A JP4887900B2 (en) 2006-05-17 2006-05-17 Method for producing bleached pulp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137141A JP4887900B2 (en) 2006-05-17 2006-05-17 Method for producing bleached pulp

Publications (2)

Publication Number Publication Date
JP2007308815A JP2007308815A (en) 2007-11-29
JP4887900B2 true JP4887900B2 (en) 2012-02-29

Family

ID=38841934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137141A Active JP4887900B2 (en) 2006-05-17 2006-05-17 Method for producing bleached pulp

Country Status (1)

Country Link
JP (1) JP4887900B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997905B2 (en) * 2006-10-10 2012-08-15 三菱瓦斯化学株式会社 Method for producing coated paper for printing
JP5285896B2 (en) * 2007-12-05 2013-09-11 大王製紙株式会社 Process for producing bleached alkaline chemical pulp
CA2709526C (en) 2007-12-20 2016-02-02 Mitsubishi Gas Chemical Company Inc. Process for production of bleached pulp
JP5515409B2 (en) * 2009-05-15 2014-06-11 三菱瓦斯化学株式会社 Method for producing ECF bleached pulp
JP2011001637A (en) * 2009-06-16 2011-01-06 Mitsubishi Gas Chemical Co Inc Method for producing bleached pulp
CN105579473A (en) * 2013-09-12 2016-05-11 三菱瓦斯化学株式会社 Method for producing cellulose

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69312127T2 (en) * 1992-03-09 1998-02-12 Solvay Interox Sa Process for decolorizing and bleaching waste paper
JP2000273782A (en) * 1999-03-29 2000-10-03 Oji Paper Co Ltd Production of bleached pulp
JP2000290887A (en) * 1999-04-02 2000-10-17 Oji Paper Co Ltd Bleaching of lignocellulose
JP2002173885A (en) * 2000-12-04 2002-06-21 Oji Paper Co Ltd Method for producing bleached hardwood pulp
JP2002266271A (en) * 2001-03-15 2002-09-18 Oji Paper Co Ltd Bleached pulp improved in color fading tendency
JP3754687B2 (en) * 2003-09-26 2006-03-15 大王製紙株式会社 Process for producing bleached kraft pulp with improved thermal fading
JP4321273B2 (en) * 2004-01-19 2009-08-26 王子製紙株式会社 Method for bleaching pulp for papermaking

Also Published As

Publication number Publication date
JP2007308815A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4967451B2 (en) Method for producing bleached pulp
JP4887900B2 (en) Method for producing bleached pulp
JP4893210B2 (en) Method for producing bleached pulp
JP5487974B2 (en) Method for producing bleached pulp
JP5471049B2 (en) Method for producing TCF bleached pulp
JPH1181173A (en) Production of bleached pulp
JP5515409B2 (en) Method for producing ECF bleached pulp
JP5526604B2 (en) ECF bleaching method
JP5471050B2 (en) TCF bleaching method
JP5915263B2 (en) Pulp manufacturing method
JP3915682B2 (en) Method for producing bleached pulp
JP2000290887A (en) Bleaching of lignocellulose
JP3656905B2 (en) Process for producing bleached pulp with improved fading
CN114174589B (en) Method for producing bleached pulp
JP5888151B2 (en) Method for producing bleached pulp
JP4645093B2 (en) Method for producing bleached pulp
JP2004339628A (en) Method for producing bleached pulp
JP4039308B2 (en) Method for producing bleached pulp
JPH0987985A (en) Bleaching of chemical pulp for paper making
JP2002173885A (en) Method for producing bleached hardwood pulp
JP3627542B2 (en) Method for producing softwood bleached pulp
JP2000110089A (en) Production of bleached pulp
JP2000303375A (en) Production of bleached pulp
JP2005068567A (en) Method for producing bleached pulp
JP2007231440A (en) Alkali oxygen bleaching method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4887900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3