JP2004269714A - Flame-retardant epoxy resin composition, and semiconductor-sealing material and semiconductor device using the same - Google Patents

Flame-retardant epoxy resin composition, and semiconductor-sealing material and semiconductor device using the same Download PDF

Info

Publication number
JP2004269714A
JP2004269714A JP2003063135A JP2003063135A JP2004269714A JP 2004269714 A JP2004269714 A JP 2004269714A JP 2003063135 A JP2003063135 A JP 2003063135A JP 2003063135 A JP2003063135 A JP 2003063135A JP 2004269714 A JP2004269714 A JP 2004269714A
Authority
JP
Japan
Prior art keywords
flame
epoxy resin
resin composition
group
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063135A
Other languages
Japanese (ja)
Inventor
Toshimitsu Fukase
利光 深瀬
Hiroshi Hirose
浩 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003063135A priority Critical patent/JP2004269714A/en
Publication of JP2004269714A publication Critical patent/JP2004269714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant epoxy resin composition having high-degree flame retardancy without using a halogen-based compound and a phosphorus-based flame retardant, further having an improved fluidity, and hardly reducing the characteristics of the product; and to provide a semiconductor-sealing material using the composition. <P>SOLUTION: The flame-retardant epoxy resin composition comprises (A) an epoxy resin, (B) a curing agent and (C) a compound obtained by bonding a divalent metal atom to a hydroxydiphenylsulfone compound represented by general formula (1) [wherein, R1 to R7 are each an H group or an OH group] by an ion bond or a coordinate bond as essential components. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、難燃性エポキシ樹脂組成物およびそれを用いた半導体封止材料並びに半導体装置に関するものである。更に詳しくは、ハロゲン系化合物やリン系難燃剤を使用することなしに、優れた難燃性を示す難燃性エポキシ樹脂組成物、およびそれを用いた半導体封止材料並びに半導体装置に関するものである。
【0002】
【従来の技術】
エポキシ樹脂は、不飽和ポリエステル樹脂、フェノール樹脂など他の熱硬化性樹脂に比べて、硬化の際の収縮が少ないことから、金属や無機物との接着性が良く、半導体封止材料として用いられている。従来、これらの樹脂の難燃化において、難燃剤として、臭素化エポキシ樹脂などのハロゲン系化合物の単独使用またはアンチモン系化合物と併用するが一般的であった。
【0003】
しかし、これらの難燃剤に代わる難燃剤の使用が求められ、ハロゲン系化合物に代わる難燃剤として、リン系難燃剤が広く検討されてきた。しかし、エポキシ樹脂系組成物にリン酸エステルなどを加えた場合は、良好な難燃性を付与できるが、ブリードや加水分解により、電気的特性や信頼性を著しく低下させるという欠点を生じていた。そこで、ハロゲン系化合物に代わる難燃剤として、金属原子を有する化合物を用いた難燃技術が提案されている(例えば、特許文献1参照。)。しかしながら、添加量を増やしても、さほど難燃性が向上せず、また、添加量の増加により、硬化性が低下することから、難燃性の更なる向上が望まれていた。
【0004】
また、シクロペンタジエン鉄(フェロセン)を難燃剤として用いたエポキシ樹脂組成物も開示されている(例えば、特許文献2参照。)が、シクロペンタジエン鉄は昇華性が高く、実用上問題が生じやすい。
【0005】
【特許文献1】
特開2000−204227号公報(第2頁〜第3頁)
【特許文献2】
特開平11−269349号公報(第2頁〜第3頁)
【0006】
【発明が解決しようとする課題】
本発明は、ハロゲン系化合物やリン系難燃剤を添加することなく、しかも、硬化性や流動性及び硬化物特性を低下させることなく、高度な難燃性を有する難燃性エポキシ樹脂組成物、およびそれを用いた半導体封止材料並びにその硬化物により封止された半導体装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、エポキシ樹脂の難燃化におけるこのような現状に鑑み、鋭意検討を重ねた結果、特定の金属化合物をエポキシ樹脂組成物に添加することにより、硬化性は維持し、樹脂の分解温度が高く、IRリフロー時も熱的に安定で、他の物性に悪影響を及ぼすこともなく、燃焼時には難燃剤として効果を発揮し、より高い難燃性を発現でき、更に流動性をも向上させ得ることを見出し、本発明を完成するに至ったものである。
【0008】
即ち本発明は、エポキシ樹脂(A)、硬化剤(B)、および、2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)を、必須成分として含有することを特徴とする難燃性エポキシ樹脂組成物であり、また、前記難燃性エポキシ樹脂組成物と充填剤を含むことを特徴とする半導体封止材料、さらには、前記半導体封止材料の硬化物によって、半導体素子を封止してなることを特徴とする半導体装置である。
【化2】

Figure 2004269714
[式中、R〜Rは、それぞれ、H基またはOH基を表す。]
【0009】
また、前記難燃性エポキシ樹脂組成物において、前記硬化剤(B)は、1分子内に少なくとも2個のフェノール性水酸基を有する化合物であることが好ましく、前記2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)は、周期律表における2族ならびに、7族、8族、9族、10族、11族および12族の遷移金属の中から選ばれる2価の金属原子を有するものであることが好ましい。
【0010】
【発明の実施の形態】
本発明に用いるエポキシ樹脂(A)は、1分子内に少なくとも2個のエポキシ基を有するものであれば良く、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、芳香族アミンおよび複素環式窒素塩基から導かれるN−グリシジル化合物、例えば、N,N−ジグリシジルアニリン、トリグリシジルイソシアヌレート、N,N,N’,N’−テトラグリシジル−ビス(パラ−アミノフェニル)−メタン等が例示されるが、特にこれらに限定されるものではない。また、これらは単独でも、何種類かを併用して用いることもできる。また、臭素化ビスフェノールA型エポキシ樹脂や臭素化ノボラック型エポキシ樹脂などのハロゲン化エポキシ樹脂を主体とするものは、原則として除外する。
【0011】
本発明に用いる硬化剤(B)は、当業者において公知のものはすべて用いることができる。具体的には、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなどのC〜C20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジシクロヘキサン、ビス(4−アミノフェニル)フェニルメタン、1,5−ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1−ビス(4−アミノフェニル)シクロヘキサン、ジシアノジアミドなどのアミン類、アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂などのレゾール型フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、ターシャリー−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂などのノボラック型フェノール樹脂、ポリパラオキシスチレンなどのポリオキシスチレン、フェノールアラルキル樹脂などのフェノール樹脂や、酸無水物などが例示されるが、特にこれらに限定されるものではない。
【0012】
また、半導体封止材料用の硬化剤としては、耐湿信頼性等の点から、1分子内に少なくとも2個のフェノール性水酸基を有する化合物が好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ターシャリー−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂などのノボラック型フェノール樹脂と、フェノールアラルキル樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレンなどが例示される。
【0013】
本発明において、2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)としては、2価の金属原子が、周期律表(IUPAC無機化学命名法改訂版:1989を参照)の2族ならびに、7族、8族、9族、10族、11族および12族の遷移金属の中から選ばれるのが好ましく、更に好ましくは、周期律表の2族は、3s3p〜6sの電子軌道を有する原子で、マグネシウム、カルシウムとバリウムなどが例示され、周期律表の7族、8族、9族、10族、11族および12族は、4s3dの電子軌道を有する原子で、マンガン、鉄、コバルト、ニッケル、銅と亜鉛などが例示されるより選ばれる2価の金属原子である。
【0014】
また、2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)におけるヒドロキシジフェニルスルホン化合物は、一分子内に少なくとも1個以上のフェノール性水酸基を有するものであればよく、当業者において公知のものはすべて用いることができる。具体的には、2,4’−ジヒドロキシジフェニルスルホン、2,2’,5,5’−テトラヒドロキシジフェニルスルホンなどのフェノール性水酸基含有置換ジフェニルスルホンなどが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、また2種類以上を組み合わせて使用してもよい。
【0015】
また、本発明における2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)として、特に好ましいのは、2,4’−ジヒドロキシジフェニルスルホン鉄(II)、2,2’,5,5’−テトラヒドロキシジフェニルスルホン鉄(II)より選ばれる、少なくとも1つの化合物である。この場合、これら化合物は高分子量化していても良い。
【0016】
また、本発明における2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)の製造方法としては、まず、加熱撹拌が可能な装置にて、予め、アルカリ性水溶液の入った容器中に、一般式(1)で表されるヒドロキシジフェニルスルホン化合物を添加し、撹拌しながら溶解させる。続いて、前記金属の硫酸塩水溶液を滴下しながら添加し、暫くの間、室温下で、撹拌混合した後に、所定時間、加熱混合して得られる。
【0017】
本発明において、エポキシ樹脂(A)と硬化剤(B)の配合割合は、硬化剤(B)がフェノール系化合物である場合、エポキシ樹脂(A)のエポキシ当量に対する硬化剤(B)の水酸基当量の割合が、0.5〜2.0の範囲で配合することが好ましい。硬化剤(B)が酸無水物の場合は、エポキシ当量に対する酸無水物当量の割合が、0.8〜1.4の範囲で配合することが好ましい。また、硬化剤(B)がアミン系化合物の場合は、エポキシ当量に対するアミン系化合物活性水素当量の割合が、0.5〜2.0の範囲で配合することが好ましい。
【0018】
本発明における2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)の配合量は、エポキシ樹脂(A)と硬化剤(B)との合計100重量部に対して、0.01〜15重量部が好ましいが、実用的には、0.1〜10重量部の範囲とするのが好ましい。0.01重量部以下では難燃性の効果が小さく、一方、15重量部を越えると硬化性が低下する傾向を示す。
【0019】
本発明の半導体封止材料は、前記本発明の難燃性樹脂組成物と充填剤とを含むものである。充填剤の具体例としては、シリカ粉末、アルミナ、タルク、炭酸カルシウム、クレー、マイカなどが挙げられ、特にシリカ粉末は、溶融シリカが好ましい。
【0020】
本発明における充填剤(D)の配合量は、全樹脂組成物100重量部に対して60〜95重量部が好ましいが、実用的には、65〜90重量部の範囲とするのが好ましい。
【0021】
本発明の難燃性エポキシ樹脂組成物及び半導体封止材料には、上記成分以外に、さらに必要に応じて天然ワックス類、合成ワックス類、直鎖脂肪族酸の金属酸化物、酸アミド類、エステル類、パラフィン類などの離型剤、カーボンブラック、ベンガラなどの着色剤、トリフェニルフォスフィンなど種々の硬化促進剤、カップリング剤など、当業者において公知の添加剤を配合ことができる。
【0022】
本発明の難燃性エポキシ樹脂組成物は、前記成分(A)、成分(B)及び成分(C)を必須とし、必要に応じて、前記添加剤を配合し、混合して得られるが、分散性を向上させるために、予めエポキシ樹脂(A)や硬化剤(B)を溶融、混合して用いてもよい。
また、本発明の難燃性エポキシ樹脂組成物と充填剤(D)、およびその他の成分を、所定の組成比に選択し、ミキサーなどにより十分に均一になるように混合した後、熱ロールによる混練、またはコニーダなどによる混練処理を行い、冷却、固化させ、適当な大きさに粉砕することで、半導体封止材料を得ることができる。得られた半導体封止材料を、トランスファー成形や射出成形等の成形方法で硬化成形することにより、半導体素子を封止する。これにより、本発明の半導体装置が得られる。
【0023】
また、本発明の難燃性エポキシ樹脂組成物は、ハロゲン系化合物やリン系難燃剤を含まず、優れた難燃性を示し、硬化性、流動性、耐湿信頼性を大きく低下させることがないことから、半導体素子を初め、電子部品や電機部品の封止材料として使用できる他、被膜材料、絶縁材料、積層板、金属張り積層板などの用途にも好適に使用することが出来る。
【0024】
【実施例】
以下、実施例により本発明を詳しく説明するが、本発明はこれによって何ら限定されるものではない。
【0025】
ここでは先ず、所定の配合により半導体封止材料を調製し、その特性を評価するため、スパイラルフロー、バーコル硬度、および難燃性を測定し、耐湿信頼性、耐半田性の試験を行なった。各特性の測定方法および条件は次の通りとし、特性の評価結果はまとめて表1に示した。
【0026】
(1)流動性
EMMI−1−66に準じた金型を使用し、トランスファー成形機により、金型温度175℃、注入圧力6.86MPa、硬化時間120秒の条件で、成形し、スパイラルフローを測定した。得られた測定値は、大きい方が流動性の良いことを示す。
【0027】
(2)硬化性
トランスファー成形機により、金型温度175℃で120秒間成形し、金型の型開き10秒後の成形品のバーコル硬度(#935)で評価した。
【0028】
(3)難燃性
試験片(127mm×12.7mm×1.0mm,1.6mm,3.2mm)をトランスファー成形機を用いて、金型温度175℃、注入圧力6.86MPa、硬化時間120秒で成形し、175℃、8時間で後硬化し、UL−94垂直法に準じて測定し、難燃性を判定した。
【0029】
(4)耐湿信頼性
調製した半導体封止材料を用いて、金型温度175℃、注入圧力6.86MPa、硬化時間120秒の条件で、アルミ模擬素子を搭載したモニターIC(16ピンDIP(Dual Inline Package)を成形し、175℃、8時間で後硬化させた半導体装置を用いた。これに125℃、相対湿度100%、2.3気圧の温室条件下で5.5V電圧を印加したまま、200時間放置した後、導通試験を行い、1端子でも導通しないものを不良と判定した。不良の生じたパッケージがa個であるとき、a/20とした。
【0030】
(5)耐半田性
トランスファー成形機を用いて、金型温度175℃、注入圧力7.35MPa、硬化時間2分で、80ピンQFP(Quad Flat Package)(2mm厚、チップサイズ9.0mm×9.0mm)を成形し、175℃、8時間で後硬化し、得られた20個のICパッケージを85℃、相対湿度85%で168時間放置し、その後240℃の半田槽に10秒間浸漬した。顕微鏡でパッケージに生じた外部クラックを観察した。また、超音波探傷装置を用いて内部剥離と内部クラックも観察した。一箇所でもクラックまたは内部剥離があるICパッケージを不良と判定した。不良の生じたパッケージがb個であるとき、b/20と表示した。
【0031】
(2,4’−ジヒドロキシジフェニルスルホン鉄の合成)
セパラブルフラスコに蒸留水300mlを入れて、水酸化ナトリウム7.2gを加えて溶解し、次いで2,4’−ジヒドロキシジフェニルスルホン(小西化学製24BS)22.5gを加えて溶解した。また別に、硫酸鉄・七水和物75.1gを蒸留水450mlに加えて撹拌し、硫酸鉄(II)水溶液を得た。この硫酸鉄(II)水溶液を、先の2,4’−ジヒドロキシジフェニルスルホン(以後、24BSと略す)が溶解した溶液に添加後、120℃に加熱したオイルバスにセパレブルフラスコを浸漬し、60分撹拌後冷却して、濾過し、沈殿物である2,4’−ジヒドロキシジフェニルスルホン鉄(以後、鉄(II)/24BSと略す)を得た。
【0032】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホン鉄の合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを2,2’,5,5’−テトラヒドロキシジフェニルスルホン(小西化学製4HBPS)25.4gに代えた他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホン鉄(以後、鉄(II)/4HBPSと略す)を得た。
【0033】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホン銅の合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを4HBPSの25.4gに代えて溶解し、また別に、硫酸鉄・七水和物を硫酸銅・五水和物67.5gに代えて蒸留水540mlを加えて撹拌し、硫酸銅(II)水溶液を得た他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホン銅(以後、銅(II)/4HBPSと略す)を得た。
【0034】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホンコバルトの合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを4HBPSの25.4gに代えて溶解し、また別に、硫酸鉄・七水和物を塩化コバルト・六水和物)64.2gに代えて蒸留水200mlを加えて撹拌し、塩化コバルト(II)水溶液を得た他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホンコバルト(以後、コバルト(II)/4HBPSと略す)を得た。
【0035】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホンニッケルの合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを4HBPSの25.4gに代えて溶解し、また別に、硫酸鉄・七水和物を塩化ニッケル・六水和物64.2gに代えて蒸留水300mlを加えて撹拌し、塩化コバルト(II)水溶液を得た他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホンニッケル(以後、ニッケル(II)/4HBPSと略す)を得た。
【0036】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホンマンガンの合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを4HBPSの25.4gに代えて溶解し、また別に、硫酸鉄・七水和物を硫酸マンガン・五水和物65.1gに代えて蒸留水200mlを加えて撹拌し、硫酸コバルト(II)水溶液を得た他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホンマンガン(以後、マンガン(II)/4HBPSと略す)を得た。
【0037】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホン亜鉛の合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを4HBPSの25.4gに代えて溶解し、また別に、硫酸鉄・七水和物を塩化亜鉛36.8gに代えて蒸留水100mlを加えて撹拌し、塩化亜鉛(II)水溶液を得た他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホン亜鉛(以後、亜鉛(II)/4HBPSと略す)を得た。
【0038】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホンマグネシウムの合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを4HBPSの25.4gに代えて溶解し、また別に、硫酸鉄・七水和物を硫酸マグネシウム・七水和物66.6gに代えて蒸留水200mlを加えて撹拌し、硫酸マグネシウム(II)水溶液を得た他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホンマグネシウム(以後、マグネシウム(II)/4HBPSと略す)を得た。
【0039】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホンカルシウムの合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを4HBPSの25.4gに代えて溶解し、また別に、硫酸鉄・七水和物を塩化カルシウム・六水和物59.2gに代えて蒸留水300mlを加えて撹拌し、塩化カルシウム(II)水溶液を得た他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホンカルシウム(以後、カルシウム(II)/4HBPSと略す)を得た。
【0040】
(2,2’,5,5’−テトラヒドロキシジフェニルスルホンバリウムの合成)
鉄/24BS合成において、水酸化ナトリウムを14.4gに代えて、24BSを4HBPSの25.4gに代えて溶解し、また別に、硫酸鉄・七水和物を塩化バリウム・二水和物66.0gに代えて蒸留水540mlを加えて撹拌し、塩化バリウム(II)水溶液を得た他は同様にして、2,2’,5,5’−テトラヒドロキシジフェニルスルホンバリウム(以後、バリウム(II)/4HBPSと略す)を得た。
【0041】
(実施例1)
球状溶融シリカ(平均粒径20μm、最大粒径100μm) 85.00重量部
ビフェニル型エポキシ樹脂 7.03重量部
(油化シェルエポキシ社製YX−4000HK、エポキシ当量195g/eq)
フェノールアラルキル樹脂 6.30重量部
(三井化学製XL−225、水酸基当量175g/eq)
2,4’−ジヒドロキシジフェニルスルホン鉄 0.67重量部
(エポキシ樹脂と硬化剤の合計100重量部に対して5重量部)
トリフェニルホスフィン 0.30重量部
離型剤(天然カルナバワックス) 0.30重量部
着色剤(カーボンブラック) 0.20重量部
エポキシシランカップリング剤(日本ユニカー製A−186) 0.30重量部
を配合し、熱ロールを用いて混練して、半導体封止材料を得た。
【0042】
(実施例2)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホン鉄を使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0043】
(実施例3)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホン銅を使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0044】
(実施例4)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホンコバルトを使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0045】
(実施例5)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホンニッケルを使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0046】
(実施例6)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホンマンガンを使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0047】
(実施例7)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホン亜鉛を使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0048】
(実施例8)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホンマグネシウムを使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0049】
(実施例9)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホンカルシウムを使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0050】
(実施例10)
実施例1における2,4’−ジヒドロキシジフェニルスルホン鉄に代えて、2,2’,5,5’−テトラヒドロキシジフェニルスルホンバリウムを使用し、表1に従って配合した以外は、実施例1と同様にして、半導体封止材料を調製した。
【0051】
(比較例1〜5)
比較例1は難燃剤を含まない配合例、比較例2〜3はリン系難燃剤を含む配合例、比較例4〜5は有機金属難燃剤を含む配合例を示す。なお、リン系難燃剤は、レゾルシンジフェニルホスフェート(大八化学製CDP)、とトリフェニルホスフィンオキシド(大八化学製TPP)、有機金属化合物難燃剤は、ナフテン酸コバルト(関東化学製)、とシクロペンタジエニル鉄(フェロセン,関東化学製)を用いた。各成分を表1に従って配合した以外は、実施例1と同様にして、成形材料を調製し、スパイラルフロー、硬化性、難燃性、信頼性及び耐半田性を評価した。
【0052】
【表1】
Figure 2004269714
【0053】
表1に示した結果から分かるように、比較例1は、フローや硬化性は問題ないものの、難燃性はすべての厚みの試験片において全焼するものがあり、UL94に該当しない。比較例2は、フロー,硬化性,難燃性は問題ないものの、耐湿信頼性、耐半田性が著しく低い。比較例3では、流動性は良いが、硬化性,難燃性,耐湿信頼性、耐半田性に劣る結果であった。また、比較例4では、難燃性は1.0mm,3.2mm厚の試験片においてUL94のV−0に到達(V−1)しなかった。比較例5では、すべての試験片厚のUL94試験においてV−0を達成したが、耐半田性が著しく低下する結果であった。
【0054】
これに対して、本発明の2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物がイオン結合または配位結合で結合した化合物(C)を難燃剤とする実施例1〜4では、いずれも難燃性はUL94 V−0を示し、従来のものに比べて、難燃性だけでなく、良好な流動性、硬化性、耐湿信頼性、耐半田性を示す非常に良い結果であった。
【0055】
【発明の効果】
本発明によれば、ハロゲン系化合物やリン系難燃剤を添加することなく高度な難燃性を有し、かつ、製品の特性を悪化させることがなく、従来から用いられているリン系難燃剤を配合する場合に比べて、耐湿信頼性が優れ、特に流動性が良好な難燃性エポキシ樹脂組成物が提供できる。今後要求されるノンハロゲン、ノンリン材料による、難燃性エポキシ樹脂組成物を実現出来るもので、半導体封止用の材料として極めて有用なものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flame-retardant epoxy resin composition, a semiconductor sealing material using the same, and a semiconductor device. More particularly, the present invention relates to a flame-retardant epoxy resin composition exhibiting excellent flame retardancy without using a halogen-based compound or a phosphorus-based flame retardant, and a semiconductor sealing material and a semiconductor device using the same. .
[0002]
[Prior art]
Epoxy resins have less shrinkage during curing than other thermosetting resins such as unsaturated polyester resins and phenolic resins, so they have good adhesion to metals and inorganic substances and are used as semiconductor encapsulation materials. I have. Conventionally, in making these resins flame-retardant, it has been common to use a halogen-based compound such as a brominated epoxy resin alone or in combination with an antimony-based compound as a flame retardant.
[0003]
However, the use of flame retardants instead of these flame retardants has been demanded, and phosphorus-based flame retardants have been widely studied as flame retardants instead of halogenated compounds. However, when a phosphoric acid ester or the like is added to the epoxy resin-based composition, good flame retardancy can be imparted, but bleeding or hydrolysis causes a drawback that electrical characteristics and reliability are significantly reduced. . Therefore, a flame retardant technique using a compound having a metal atom as a flame retardant instead of a halogen compound has been proposed (for example, see Patent Document 1). However, even if the addition amount is increased, the flame retardancy does not improve so much, and the curability is reduced by the increase in the addition amount. Therefore, further improvement in the flame retardancy has been desired.
[0004]
An epoxy resin composition using cyclopentadiene iron (ferrocene) as a flame retardant is also disclosed (see, for example, Patent Document 2), but cyclopentadiene iron has high sublimability and is likely to cause problems in practical use.
[0005]
[Patent Document 1]
JP-A-2000-204227 (pages 2 to 3)
[Patent Document 2]
JP-A-11-269349 (pages 2 to 3)
[0006]
[Problems to be solved by the invention]
The present invention is a flame-retardant epoxy resin composition having a high degree of flame retardancy, without adding a halogen-based compound or a phosphorus-based flame retardant, and without reducing curability, fluidity and cured product properties, And a semiconductor sealing material using the same and a semiconductor device sealed with a cured product thereof.
[0007]
[Means for Solving the Problems]
The present inventors have made intensive studies in view of the current situation of flame retardancy of epoxy resins, and as a result, by adding a specific metal compound to the epoxy resin composition, the curability is maintained and the resin is cured. It has a high decomposition temperature, is thermally stable even during IR reflow, has no adverse effect on other physical properties, exhibits an effect as a flame retardant at the time of combustion, can exhibit higher flame retardancy, and has more fluidity. It has been found that the present invention can be improved, and the present invention has been completed.
[0008]
That is, the present invention provides an epoxy resin (A), a curing agent (B), and a compound in which a divalent metal atom is bonded to a hydroxydiphenylsulfone compound represented by the general formula (1) by an ionic bond or a coordinate bond. (C) a flame-retardant epoxy resin composition characterized by containing as an essential component, and a semiconductor encapsulating material comprising the flame-retardant epoxy resin composition and a filler; Further, there is provided a semiconductor device wherein a semiconductor element is sealed with a cured product of the semiconductor sealing material.
Embedded image
Figure 2004269714
[Wherein, R 1 ~ R 7 Represents an H group or an OH group, respectively. ]
[0009]
In the flame-retardant epoxy resin composition, the curing agent (B) is preferably a compound having at least two phenolic hydroxyl groups in one molecule, and the divalent metal atom and the general formula ( The compound (C) in which the hydroxydiphenylsulfone compound represented by 1) is bonded by an ionic bond or a coordination bond is a compound belonging to Group 2 of the periodic table, Group 7, 8, 9, 10, 11, or It is preferable that the compound has a divalent metal atom selected from the group 12 transition metals.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The epoxy resin (A) used in the present invention may be any resin having at least two epoxy groups in one molecule, and specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin N-glycidyl compounds derived from resins, phenol novolak epoxy resins, cresol novolak epoxy resins, naphthalene epoxy resins, biphenyl epoxy resins, aromatic amines and heterocyclic nitrogen bases, for example, N, N-diglycidylaniline , Triglycidyl isocyanurate, N, N, N ', N'-tetraglycidyl-bis (para-aminophenyl) -methane, and the like, but are not particularly limited thereto. These can be used alone or in combination of several kinds. In addition, those mainly containing a halogenated epoxy resin such as a brominated bisphenol A type epoxy resin and a brominated novolak type epoxy resin are excluded in principle.
[0011]
As the curing agent (B) used in the present invention, all those known to those skilled in the art can be used. Specifically, C such as ethylenediamine, trimethylenediamine, tetramethylenediamine, and hexamethylenediamine 2 ~ C 20 Linear aliphatic diamine, metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylether, 4,4'-diamino Diphenylsulfone, 4,4′-diaminodicyclohexane, bis (4-aminophenyl) phenylmethane, 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, Amines such as dicyanodiamide, resole type phenolic resins such as aniline-modified resole resin and dimethyl ether resole resin, phenol novolak resin, cresol novolak resin, tertiary-butylphenol novolak resin, nonylphenol Novolak type phenol resins such as novolak resins, polyoxyethylene styrene such as poly-p-hydroxystyrene, and phenolic resins such as phenol aralkyl resins and acid anhydride is exemplified, but the invention is not particularly limited thereto.
[0012]
Further, as a curing agent for a semiconductor encapsulating material, a compound having at least two phenolic hydroxyl groups in one molecule is preferable from the viewpoint of moisture resistance reliability and the like. Specifically, a phenol novolak resin, a cresol novolak resin And tertiary-butylphenol novolak resins and nonylphenol novolak resins, and phenol aralkyl resins, resole type phenol resins, and polyparaoxystyrene.
[0013]
In the present invention, as the compound (C) in which a divalent metal atom and a hydroxydiphenylsulfone compound represented by the general formula (1) are bonded by an ionic bond or a coordination bond, the divalent metal atom has a periodic rule. It is preferably selected from the group 2 and 7, 7, 8, 10, 11 and 12 transition metals of the table (IUPAC revised version of inorganic chemical nomenclature: 1989), and more preferably. Is group 2 in the periodic table, which is an atom having an electron orbit of 3s3p to 6s, and examples thereof include magnesium, calcium and barium. Group 12 is an atom having an electron orbit of 4s3d, and is a divalent metal atom selected from manganese, iron, cobalt, nickel, copper and zinc.
[0014]
In addition, at least one hydroxydiphenylsulfone compound in the compound (C) in which a divalent metal atom and the hydroxydiphenylsulfone compound represented by the general formula (1) are bonded by an ionic bond or a coordination bond is included in one molecule. What is necessary is just to have the above-mentioned phenolic hydroxyl group, and all those known to those skilled in the art can be used. Specific examples include substituted phenolic hydroxyl group-containing diphenylsulfones such as 2,4'-dihydroxydiphenylsulfone and 2,2 ', 5,5'-tetrahydroxydiphenylsulfone, but are not limited thereto. Absent. These may be used alone or in combination of two or more.
[0015]
Further, as the compound (C) in which the divalent metal atom and the hydroxydiphenylsulfone compound represented by the general formula (1) in the present invention are bonded by an ionic bond or a coordinate bond, 2,4 ′ is particularly preferable. At least one compound selected from iron- (II) -dihydroxydiphenylsulfone and iron (II) -2,2 ', 5,5'-tetrahydroxydiphenylsulfone. In this case, these compounds may have a high molecular weight.
[0016]
In the present invention, as a method for producing a compound (C) in which a divalent metal atom and a hydroxydiphenylsulfone compound represented by the general formula (1) are bonded by an ionic bond or a coordinate bond, first, heating and stirring are performed. In a possible device, a hydroxydiphenylsulfone compound represented by the general formula (1) is added in advance to a container containing an alkaline aqueous solution, and dissolved with stirring. Subsequently, the above-mentioned metal sulfate aqueous solution is added dropwise, and the mixture is stirred and mixed at room temperature for a while, and then heated and mixed for a predetermined time to obtain the aqueous solution.
[0017]
In the present invention, the mixing ratio of the epoxy resin (A) and the curing agent (B) is such that when the curing agent (B) is a phenolic compound, the hydroxyl equivalent of the curing agent (B) relative to the epoxy equivalent of the epoxy resin (A). Is preferably blended in the range of 0.5 to 2.0. When the curing agent (B) is an acid anhydride, it is preferable to mix the acid anhydride equivalent to the epoxy equivalent in a range of 0.8 to 1.4. In addition, when the curing agent (B) is an amine compound, it is preferable that the ratio of the amine compound active hydrogen equivalent to the epoxy equivalent is in the range of 0.5 to 2.0.
[0018]
The compounding amount of the compound (C) in which a divalent metal atom and the hydroxydiphenylsulfone compound represented by the general formula (1) are bound by an ionic bond or a coordinate bond in the present invention is such that the epoxy resin (A) and the curing agent The amount is preferably 0.01 to 15 parts by weight with respect to 100 parts by weight in total with (B), but practically preferably 0.1 to 10 parts by weight. If the amount is less than 0.01 part by weight, the effect of flame retardancy is small, while if it exceeds 15 parts by weight, the curability tends to decrease.
[0019]
The semiconductor encapsulating material of the present invention contains the flame-retardant resin composition of the present invention and a filler. Specific examples of the filler include silica powder, alumina, talc, calcium carbonate, clay, and mica. Particularly, the silica powder is preferably fused silica.
[0020]
The compounding amount of the filler (D) in the present invention is preferably from 60 to 95 parts by weight based on 100 parts by weight of the whole resin composition, but is practically preferably from 65 to 90 parts by weight.
[0021]
The flame-retardant epoxy resin composition and the semiconductor encapsulating material of the present invention, in addition to the above components, if necessary, natural waxes, synthetic waxes, metal oxides of linear aliphatic acids, acid amides, Additives known to those skilled in the art such as release agents such as esters and paraffins, coloring agents such as carbon black and red iron, various curing accelerators such as triphenylphosphine, and coupling agents can be blended.
[0022]
The flame-retardant epoxy resin composition of the present invention comprises the above components (A), (B) and (C) as essential components, and, if necessary, is obtained by blending and mixing the above additives. In order to improve dispersibility, the epoxy resin (A) and the curing agent (B) may be melted and mixed in advance and used.
Further, the flame-retardant epoxy resin composition of the present invention, the filler (D), and other components are selected to have a predetermined composition ratio, mixed sufficiently by a mixer or the like, and then mixed with a hot roll. A semiconductor encapsulating material can be obtained by performing kneading or kneading with a co-kneader, cooling, solidifying, and pulverizing to an appropriate size. The semiconductor element is sealed by subjecting the obtained semiconductor encapsulating material to curing molding by a molding method such as transfer molding or injection molding. Thereby, the semiconductor device of the present invention is obtained.
[0023]
Further, the flame-retardant epoxy resin composition of the present invention does not contain a halogen-based compound or a phosphorus-based flame retardant, exhibits excellent flame-retardancy, and does not significantly reduce curability, fluidity, and moisture-resistance reliability. Therefore, it can be used not only as a sealing material for semiconductor elements but also for electronic parts and electric parts, and can also be suitably used for applications such as coating materials, insulating materials, laminates, and metal-clad laminates.
[0024]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0025]
Here, first, a semiconductor encapsulating material was prepared with a predetermined formulation, and in order to evaluate its characteristics, a spiral flow, a Barcol hardness, and a flame retardancy were measured, and tests for moisture resistance reliability and solder resistance were performed. The measuring method and conditions of each characteristic are as follows, and the evaluation results of the characteristic are collectively shown in Table 1.
[0026]
(1) Liquidity
Using a mold conforming to EMMI-1-66, molding was performed by a transfer molding machine under the conditions of a mold temperature of 175 ° C., an injection pressure of 6.86 MPa, and a curing time of 120 seconds, and the spiral flow was measured. The measured values obtained indicate that the larger the value, the better the fluidity.
[0027]
(2) Curability
Molding was performed at a mold temperature of 175 ° C. for 120 seconds using a transfer molding machine, and the Barcol hardness (# 935) of the molded product 10 seconds after opening the mold was evaluated.
[0028]
(3) Flame retardancy
A test piece (127 mm × 12.7 mm × 1.0 mm, 1.6 mm, 3.2 mm) was molded using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 6.86 MPa, and a curing time of 120 seconds. The composition was post-cured at 8 ° C. for 8 hours, and measured in accordance with the UL-94 vertical method to determine the flame retardancy.
[0029]
(4) Humidity reliability
Using the prepared semiconductor encapsulating material, a monitor IC (16-pin DIP (Dual Inline Package)) mounted with an aluminum simulated element was molded under the conditions of a mold temperature of 175 ° C., an injection pressure of 6.86 MPa, and a curing time of 120 seconds. A semiconductor device which was post-cured at 175 ° C. for 8 hours was used, and left standing for 200 hours while applying a 5.5 V voltage under a greenhouse condition of 125 ° C., 100% relative humidity and 2.3 atm. A continuity test was carried out, and a device that did not conduct even at one terminal was determined to be defective.
[0030]
(5) Solder resistance
Using a transfer molding machine, an 80-pin QFP (Quad Flat Package) (2 mm thick, chip size 9.0 mm × 9.0 mm) was molded at a mold temperature of 175 ° C., an injection pressure of 7.35 MPa, and a curing time of 2 minutes. After curing at 175 ° C. for 8 hours, the obtained 20 IC packages were left at 85 ° C. and a relative humidity of 85% for 168 hours, and then immersed in a 240 ° C. solder bath for 10 seconds. External cracks generated in the package were observed with a microscope. Also, internal peeling and internal cracks were observed using an ultrasonic flaw detector. An IC package having a crack or internal peeling at one location was determined to be defective. When the number of defective packages was b, it was indicated as b / 20.
[0031]
(Synthesis of iron 2,4'-dihydroxydiphenylsulfone)
300 ml of distilled water was put into a separable flask, 7.2 g of sodium hydroxide was added and dissolved, and 22.5 g of 2,4'-dihydroxydiphenylsulfone (24BS, manufactured by Konishi Chemical) was added and dissolved. Separately, 75.1 g of iron sulfate heptahydrate was added to 450 ml of distilled water and stirred to obtain an aqueous solution of iron (II) sulfate. After adding this aqueous solution of iron (II) sulfate to the solution in which 2,4′-dihydroxydiphenylsulfone (hereinafter abbreviated as 24BS) was dissolved, the separable flask was immersed in an oil bath heated to 120 ° C. After stirring for a minute, the mixture was cooled and filtered to obtain 2,4′-dihydroxydiphenylsulfone iron (hereinafter abbreviated as iron (II) / 24BS) as a precipitate.
[0032]
(Synthesis of 2,2 ', 5,5'-tetrahydroxydiphenylsulfone iron)
In the iron / 24BS synthesis, the procedure was the same except that sodium hydroxide was replaced with 14.4 g and 24BS was replaced with 25.4 g of 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone (4HBPS manufactured by Konishi Chemical). , 2,2 ', 5,5'-tetrahydroxydiphenylsulfone iron (hereinafter abbreviated as iron (II) / 4HBPS).
[0033]
(Synthesis of 2,2 ′, 5,5′-tetrahydroxydiphenyl sulfone copper)
In the iron / 24BS synthesis, sodium hydroxide was dissolved instead of 14.4 g, and 24BS was replaced with 25.4 g of 4HBPS. Separately, iron sulfate heptahydrate was replaced with copper sulfate pentahydrate. In place of 5 g, 540 ml of distilled water was added and stirred, and a 2,2 ′, 5,5′-tetrahydroxydiphenyl sulfone copper (hereinafter, copper (II)) was obtained in the same manner except that an aqueous solution of copper (II) sulfate was obtained. / 4HBPS).
[0034]
(Synthesis of 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone cobalt)
In the iron / 24BS synthesis, sodium hydroxide was dissolved instead of 14.4 g and 24BS was replaced with 25.4 g of 4HBPS, and separately iron sulfate sulfate heptahydrate was cobalt chloride hexahydrate. 0.2 g of distilled water, 200 ml of distilled water was added and stirred to obtain an aqueous solution of cobalt (II) chloride. Similarly, 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone cobalt (hereinafter referred to as cobalt (II) ) / 4HBPS).
[0035]
(Synthesis of 2,2 ', 5,5'-tetrahydroxydiphenylsulfone nickel)
In the iron / 24BS synthesis, the sodium hydroxide was dissolved in place of 14.4 g and the 24BS was replaced with 25.4 g of 4HBPS. Separately, iron sulfate heptahydrate was nickel chloride hexahydrate. Instead of 2 g, 300 ml of distilled water was added and stirred, and a 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone nickel (hereinafter nickel (II)) was obtained in the same manner except that an aqueous solution of cobalt (II) chloride was obtained. / 4HBPS).
[0036]
(Synthesis of 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone manganese)
In the iron / 24BS synthesis, sodium hydroxide was dissolved in place of 14.4 g and 24BS in place of 25.4 g of 4HBPS. Separately, iron sulfate heptahydrate was replaced with manganese sulfate pentahydrate. Instead of 1 g, 200 ml of distilled water was added and stirred to obtain an aqueous solution of cobalt (II) sulfate. Similarly, 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone manganese (hereinafter referred to as manganese (II) / 4HBPS).
[0037]
(Synthesis of 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone zinc)
In the iron / 24BS synthesis, 24BS was dissolved in place of 14.4 g of sodium hydroxide and 25.4 g of 4HBPS was dissolved, and distillation was carried out in place of 36.8 g of zinc chloride for iron sulfate heptahydrate. 100 ml of water was added and stirred, and a zinc (II) chloride aqueous solution was obtained in the same manner, except that zinc 2,2 ', 5,5'-tetrahydroxydiphenylsulfone (hereinafter abbreviated as zinc (II) / 4HBPS) was obtained. Got.
[0038]
(Synthesis of 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone magnesium)
In the iron / 24BS synthesis, 24BS was dissolved instead of 14.4 g of sodium hydroxide and 25.4 g of 4HBPS, and iron sulfate heptahydrate was replaced by magnesium sulfate heptahydrate. Instead of 6 g, 200 ml of distilled water was added and stirred to obtain 2,2 ', 5,5'-tetrahydroxydiphenylsulfone magnesium (hereinafter magnesium (II)) except that an aqueous solution of magnesium (II) sulfate was obtained. / 4HBPS).
[0039]
(Synthesis of 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone calcium)
In the iron / 24BS synthesis, sodium hydroxide was dissolved in place of 14.4 g and 24BS in place of 25.4 g of 4HBPS. Separately, iron sulfate heptahydrate was replaced with calcium chloride hexahydrate 59. Instead of 2 g, 300 ml of distilled water was added and stirred to obtain 2,2 ', 5,5'-tetrahydroxydiphenylsulfone calcium (hereinafter calcium (II)) except that an aqueous solution of calcium chloride (II) was obtained. / 4HBPS).
[0040]
(Synthesis of 2,2 ', 5,5'-tetrahydroxydiphenylsulfone barium)
In the iron / 24BS synthesis, 24BS was dissolved instead of 14.4 g of sodium hydroxide and 25.4 g of 4HBPS was dissolved, and iron sulfate heptahydrate was replaced by barium chloride dihydrate 66. Instead of 0 g, 540 ml of distilled water was added and stirred, and a barium (II) chloride aqueous solution was obtained in the same manner as in 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone barium (hereinafter barium (II) / 4HBPS).
[0041]
(Example 1)
Spherical fused silica (average particle diameter 20 μm, maximum particle diameter 100 μm) 85.00 parts by weight
7.03 parts by weight of biphenyl type epoxy resin
(YX-4000HK manufactured by Yuka Shell Epoxy Co., epoxy equivalent 195 g / eq)
6.30 parts by weight of phenol aralkyl resin
(XL-225, manufactured by Mitsui Chemicals, hydroxyl equivalent: 175 g / eq)
2,4'-dihydroxydiphenylsulfone iron 0.67 parts by weight
(5 parts by weight based on 100 parts by weight of epoxy resin and curing agent in total)
0.30 parts by weight of triphenylphosphine
Release agent (natural carnauba wax) 0.30 parts by weight
0.20 parts by weight of colorant (carbon black)
Epoxysilane coupling agent (Nippon Unicar A-186) 0.30 parts by weight
Was mixed and kneaded using a hot roll to obtain a semiconductor sealing material.
[0042]
(Example 2)
In the same manner as in Example 1 except that 2,2 ′, 5,5′-tetrahydroxydiphenylsulfoneiron was used in place of 2,4′-dihydroxydiphenylsulfoneiron in Example 1 and blended according to Table 1. Thus, a semiconductor sealing material was prepared.
[0043]
(Example 3)
In the same manner as in Example 1 except that copper 2,2 ', 5,5'-tetrahydroxydiphenylsulfone was used instead of iron 2,4'-dihydroxydiphenylsulfone in Example 1 and blended according to Table 1, Thus, a semiconductor sealing material was prepared.
[0044]
(Example 4)
In the same manner as in Example 1 except that 2,2 ′, 5,5′-tetrahydroxydiphenylsulfone cobalt was used in place of 2,4′-dihydroxydiphenylsulfoneiron in Example 1 and blended according to Table 1, Thus, a semiconductor sealing material was prepared.
[0045]
(Example 5)
In the same manner as in Example 1 except that nickel 2,2 ', 5,5'-tetrahydroxydiphenylsulfone was used instead of iron 2,4'-dihydroxydiphenylsulfone in Example 1 and blended according to Table 1. Thus, a semiconductor sealing material was prepared.
[0046]
(Example 6)
In the same manner as in Example 1 except that 2,2 ', 5,5'-tetrahydroxydiphenylsulfonemanganese was used instead of 2,4'-dihydroxydiphenylsulfoneiron in Example 1 and blended according to Table 1, Thus, a semiconductor sealing material was prepared.
[0047]
(Example 7)
In the same manner as in Example 1 except that zinc 2,2 ', 5,5'-tetrahydroxydiphenylsulfone was used in place of iron 2,4'-dihydroxydiphenylsulfone in Example 1 and blended according to Table 1, Thus, a semiconductor sealing material was prepared.
[0048]
(Example 8)
In the same manner as in Example 1 except that magnesium 2,2 ', 5,5'-tetrahydroxydiphenylsulfone was used instead of iron 2,4'-dihydroxydiphenylsulfone in Example 1 and blended according to Table 1, Thus, a semiconductor sealing material was prepared.
[0049]
(Example 9)
In the same manner as in Example 1 except that calcium 2,2 ', 5,5'-tetrahydroxydiphenylsulfone was used in place of 2,4'-dihydroxydiphenylsulfoneiron in Example 1 and blended according to Table 1, Thus, a semiconductor sealing material was prepared.
[0050]
(Example 10)
In the same manner as in Example 1 except that 2,2 ', 5,5'-tetrahydroxydiphenylsulfone barium was used in place of 2,4'-dihydroxydiphenylsulfoneiron in Example 1 and blended according to Table 1, Thus, a semiconductor sealing material was prepared.
[0051]
(Comparative Examples 1 to 5)
Comparative Example 1 shows a formulation example containing no flame retardant, Comparative Examples 2 and 3 show formulation examples containing a phosphorus-based flame retardant, and Comparative Examples 4 and 5 show formulation examples containing an organometallic flame retardant. The phosphorus-based flame retardants were resorcin diphenyl phosphate (CDP manufactured by Daihachi Chemical) and triphenylphosphine oxide (TPP manufactured by Daihachi Chemical), and the organometallic compound flame retardants were cobalt naphthenate (Kanto Chemical) and cyclohexane. Pentadienyl iron (ferrocene, manufactured by Kanto Chemical) was used. A molding material was prepared and the spiral flow, curability, flame retardancy, reliability and solder resistance were evaluated in the same manner as in Example 1 except that the components were blended according to Table 1.
[0052]
[Table 1]
Figure 2004269714
[0053]
As can be seen from the results shown in Table 1, in Comparative Example 1, although there was no problem with the flow and the curability, the flame retardancy was completely burned in test specimens of all thicknesses and did not correspond to UL94. In Comparative Example 2, although there was no problem in flow, curability, and flame retardancy, moisture resistance reliability and solder resistance were extremely low. In Comparative Example 3, although the fluidity was good, the results were inferior in curability, flame retardancy, moisture resistance reliability, and solder resistance. Further, in Comparative Example 4, the flame retardancy did not reach (V-1) V-0 of UL94 in the test pieces having a thickness of 1.0 mm and 3.2 mm. In Comparative Example 5, V-0 was achieved in the UL94 test for all test piece thicknesses, but the result was that the solder resistance was significantly reduced.
[0054]
In contrast, Examples 1 to 4 in which the compound (C) in which the divalent metal atom of the present invention and the hydroxydiphenylsulfone compound represented by the general formula (1) are bonded by an ionic bond or a coordinate bond are used as the flame retardant. In each of Examples 4, the flame retardancy is UL94 V-0, which is very good compared to the conventional one, showing not only the flame retardancy but also good fluidity, curability, moisture resistance reliability, and solder resistance. It was a result.
[0055]
【The invention's effect】
According to the present invention, a phosphorus-based flame retardant which has a high degree of flame retardancy without adding a halogen-based compound or a phosphorus-based flame retardant, and which does not deteriorate the properties of a product, is conventionally used. As compared with the case where the compound is blended, it is possible to provide a flame-retardant epoxy resin composition having excellent moisture resistance reliability and particularly good fluidity. A flame-retardant epoxy resin composition using non-halogen and non-phosphorus materials required in the future can be realized, and is extremely useful as a material for semiconductor encapsulation.

Claims (7)

エポキシ樹脂(A)、硬化剤(B)、および、2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)を、必須成分として含有することを特徴とする難燃性エポキシ樹脂組成物。
Figure 2004269714
[式中、R〜Rは、それぞれ、H基またはOH基を表す。]
An epoxy resin (A), a curing agent (B), and a compound (C) in which a divalent metal atom and a hydroxydiphenylsulfone compound represented by the general formula (1) are bonded by an ionic bond or a coordinate bond, A flame-retardant epoxy resin composition, which is contained as an essential component.
Figure 2004269714
[Wherein, R 1 to R 7 each represent an H group or an OH group. ]
硬化剤(B)が、1分子内に少なくとも2個のフェノール性水酸基を有する化合物である、請求項1記載の難燃性エポキシ樹脂組成物。The flame-retardant epoxy resin composition according to claim 1, wherein the curing agent (B) is a compound having at least two phenolic hydroxyl groups in one molecule. 2価の金属原子と一般式(1)で表されるヒドロキシジフェニルスルホン化合物とがイオン結合もしくは配位結合で結合した化合物(C)が、周期律表における2族ならびに、7族、8族、9族、10族、11族および12族の遷移金属の中から選ばれる、2価の金属原子を有するものである、請求項1または請求項2に記載の難燃性エポキシ樹脂組成物。Compound (C) in which a divalent metal atom and a hydroxydiphenylsulfone compound represented by the general formula (1) are bonded by an ionic bond or a coordination bond, is composed of Group 2 and Group 7 and Group 8 in the periodic table. 3. The flame-retardant epoxy resin composition according to claim 1, having a divalent metal atom selected from transition metals of Groups 9, 10, 11 and 12. 4. 2族が、3s3p〜6sの電子軌道を有する原子であり、7族、8族、9族、10族、11族および12族の遷移金属が、4s3dの電子軌道を有する原子である、請求項3記載の難燃性エポキシ樹脂組成物。The group 2 is an atom having an electron orbit of 3s3p to 6s, and the transition metal of a group 7, 8, 9, 10, 11, or 12 is an atom having an electron orbit of 4s3d. 3. The flame-retardant epoxy resin composition according to 3. 原子が、マグネシウム、カルシウム、バリウム、マンガン、鉄、コバルト、ニッケル、銅または亜鉛である請求項4記載の難燃性エポキシ樹脂組成物。The flame-retardant epoxy resin composition according to claim 4, wherein the atom is magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper or zinc. 請求項1ないし請求項5のいずれかに記載された難燃性エポキシ樹脂組成物と、充填剤とを含むことを特徴とする半導体封止材料。A semiconductor encapsulating material comprising the flame-retardant epoxy resin composition according to claim 1 and a filler. 請求項6記載の半導体封止材料の硬化物によって、半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device comprising a semiconductor element sealed with a cured product of the semiconductor sealing material according to claim 6.
JP2003063135A 2003-03-10 2003-03-10 Flame-retardant epoxy resin composition, and semiconductor-sealing material and semiconductor device using the same Pending JP2004269714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063135A JP2004269714A (en) 2003-03-10 2003-03-10 Flame-retardant epoxy resin composition, and semiconductor-sealing material and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063135A JP2004269714A (en) 2003-03-10 2003-03-10 Flame-retardant epoxy resin composition, and semiconductor-sealing material and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2004269714A true JP2004269714A (en) 2004-09-30

Family

ID=33124794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063135A Pending JP2004269714A (en) 2003-03-10 2003-03-10 Flame-retardant epoxy resin composition, and semiconductor-sealing material and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2004269714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270213A (en) * 2008-05-02 2009-11-19 Nicca Chemical Co Ltd Flame-retardant finishing agent for polyester-based fiber, flame-retardant polyester-based fiber using the same, and method for producing the same
WO2018159574A1 (en) * 2017-03-02 2018-09-07 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270213A (en) * 2008-05-02 2009-11-19 Nicca Chemical Co Ltd Flame-retardant finishing agent for polyester-based fiber, flame-retardant polyester-based fiber using the same, and method for producing the same
WO2018159574A1 (en) * 2017-03-02 2018-09-07 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JPWO2018159574A1 (en) * 2017-03-02 2019-12-19 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material
JP7014153B2 (en) 2017-03-02 2022-02-01 東レ株式会社 Epoxy resin compositions, prepregs and fiber reinforced composites

Similar Documents

Publication Publication Date Title
JP2002226678A (en) Flame retardant epoxy resin composition and semiconductor-sealing material and semiconductor device each using the same
KR100388141B1 (en) Epoxy resin composition
JP4037207B2 (en) Flame retardant epoxy resin composition, semiconductor sealing material and resin-encapsulated semiconductor device using the same
JP2003213081A (en) Epoxy resin composition and semiconductor device
JP3032528B1 (en) Sealing resin composition and semiconductor sealing device
JP2004269714A (en) Flame-retardant epoxy resin composition, and semiconductor-sealing material and semiconductor device using the same
JP3649524B2 (en) Epoxy resin composition and semiconductor device
JPS6040124A (en) Resin composition for sealing
JP2003286395A (en) Flame-retardant epoxy resin composition, and semiconductor sealing material and semiconductor device made by using it
JP2002226679A (en) Flame retardant epoxy resin composition and semiconductor-sealing material and semiconductor device each using the same
JP2002363261A (en) Flame-retardant epoxy resin composition, semiconductor sealing material and semiconductor device
JP2002265760A (en) Flame-retardant epoxy resin composition and semiconductor sealing material using the same
JP2002241587A (en) Epoxy resin composition and semiconductor device
JP2003246847A (en) Flame-retardant epoxy resin composition and semiconductor sealing material using the same, and semiconductor device
JP2002363381A (en) Flame-retardant epoxy resin composition, semiconductor sealing medium and semiconductor device
JP2003064160A (en) Curing agent for flame-retardant epoxy resin, flame- retardant epoxy resin composition and encapsulant for semiconductor and semiconductor device using the same
JP2003268069A (en) Flame-retardant epoxy resin composition and semiconductor-sealing material using the same and semiconductor
JP3072099B1 (en) Sealing resin composition and semiconductor sealing device
JP2000357765A (en) Resin composition for sealing and semiconductor sealed device
JP2002371169A (en) Flame-retardant epoxy resin composition and semiconductor-sealing material using the same
JP2000204227A (en) Flame-retardant epoxy resin composition, and semiconductor sealing material containing the same
JP2003064242A (en) Flame-retardant epoxy resin composition, semiconductor sealant and semiconductor device
JP2002256138A (en) Flame-retardant epoxy resin composition, semiconductor sealing material, and semiconductor device
JP2002030200A (en) Flame-retarded epoxy resin composition and semiconductor-sealing material using the same
JP2004300213A (en) Flame-retardant epoxy resin composition and semiconductor device using the composition