JP2004269706A - Organic el element material and organic el element using the same - Google Patents

Organic el element material and organic el element using the same Download PDF

Info

Publication number
JP2004269706A
JP2004269706A JP2003062941A JP2003062941A JP2004269706A JP 2004269706 A JP2004269706 A JP 2004269706A JP 2003062941 A JP2003062941 A JP 2003062941A JP 2003062941 A JP2003062941 A JP 2003062941A JP 2004269706 A JP2004269706 A JP 2004269706A
Authority
JP
Japan
Prior art keywords
organic
present
carbon
layer
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003062941A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Watanabe
史宜 渡邉
Takasuke Shigematsu
隆助 重松
Takatsugu Fujiura
隆次 藤浦
Takashi Kojima
孝 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003062941A priority Critical patent/JP2004269706A/en
Publication of JP2004269706A publication Critical patent/JP2004269706A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient organic EL element material which is excellent in durability and an organic EL element using the same. <P>SOLUTION: The organic EL element material which is obtained through polycondensation of a fused polycyclic aromatic hydrocarbon and has a molecular weight of ≤800 is used. Here, the ratio of SP<SP>2</SP>carbon to total cyclic skeletal carbons is ≥0.85. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エレクトロルミネッセンス(EL)素子材料およびそれを用いた素子に関するものである。
【0002】
【従来の技術】
有機材料を使用したEL素子は固体発光型の安価な大面積表示素子として注目されている。有機EL素子は有機発光層を二つの電極で挟んだ構造を有し、両電極間に電界が印加された際に陰極側から注入された電子と陽極側から注入された正孔が発光層において再結合する際に光を発することを利用した自発発光素子である。従来の有機EL素子は、無機EL素子に比べて駆動電圧が高く、発光輝度や発光効率も十分とは言えず、特性劣化も著しく実用化には至っていなかった。
【0003】
近年、駆動電圧の低電圧化、発光輝度、発光効率の向上や素子構成の改善が図られた結果、小型から中型のディスプレイ(2−15インチ)が試作されるまでに至っている。ここで用いられている素子用材料としては、低分子系ないしは高分子系に大別されるが、本発明の有機EL用素子材料は低分子系材料に属する。従来の低分子系発光材料としては、多環縮合芳香族化合物やキノリノール基、ヒドロキシフェニルオキサゾール基、ヒドロキシフェニルチアゾール基、2−フェニルピリジン等を配位子とするAl、Mg、Be、Ir錯体やフタロシアニン化合物、スチリルベンゼン誘導体、オキサジアゾール系化合物、オキソベンズアントラセン染料などの染料類およびこれらの組み合わせなどが報告されている。また正孔輸送層や注入層として用いられる低分子系正孔輸送材料としては、トリフェニルアミン類を中心としたアミン系の他、ヒドラゾン系、スチルベン系、スターバスト系など多くの化合物が知られている。
【0004】
上記の各種発光材料や正孔輸送材料の中で、縮合多環芳香族炭化水素を主骨格とする化合物としては、例えば、ペリレン化合物(例えば、特許文献1参照。)、クマリン化合物(例えば、特許文献2参照。)、ピレン系化合物(例えば、特許文献3参照。)、フェニルアントラセン基を有する化合物(例えば、特許文献4参照。)、アミノアントラセン基を有する化合物(例えば、特許文献5参照。)、フルオランテン及びその誘導体(例えば、特許文献6、7参照。)等がある。しかしながら、これらの有機EL素子の初期発光効率はいまだ十分でなく、使用材料の耐久性に乏しいこと、特に発光材料や正孔輸送性材料の耐久性の低さが実用上大きな問題であり、更に高い信頼性と発光効率を有した素子の開発が望まれている。また、分子量500以下の低分子量化合物を用いると結晶粒の出現・成長が起こり膜性が著しく低下することも問題とされている(例えば、特許文献8参照。)。
【0005】
【特許文献1】特開平3−791号公報
【特許文献2】特開平3−792号公報
【特許文献3】特開平6−240246号公報
【特許文献4】特開平8−12600号公報
【特許文献5】特開平10−72579号公報
【特許文献6】特開平10−189247号公報
【特許文献7】特開2002−69044号公報
【特許文献8】特開平8−12600号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、高効率で耐久性に優れた有機EL素子用材料ならびにこれを用いた有機EL素子を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、従来の有機EL素子が抱えている上述の問題点を解決すべく鋭意検討した結果、縮合多環芳香族炭化水素を重縮合して得られる特定の骨格構造を有する化合物を用いることにより、高効率な有機EL素子が得られることを見出し本発明の完成に至った。
【0008】
即ち本発明の第一は、縮合多環芳香族炭化水素を重縮合して得られる環状骨格構造を有し、その環状骨格部の分子量が800以下であり、かつ13C−NMRで求めた環状骨格炭素中に占めるSP炭素の割合が0.85以上である有機EL素子用材料に関する。
本発明の第二は、上述の縮合多環芳香族炭化水素が、ナフタレン、アントラセン、フェナンスレン、ピレンおよびこれらの二種類以上の混合物からなる群より選ばれることを特徴とする有機EL素子用材料に関する。
本発明の第三は、本発明の第一及び第二記載の有機EL素子用材料において、その環状骨格上に炭素数1以上24以下の鎖状脂肪族炭化水素置換基を少なくても一つ以上有することを特徴とする本発明の第一および第二に記載の有機EL素子用材料に関する。
本発明の第四は、本発明の第一から第三の有機EL素子材料を0.1重量パーセント以上含有する層を有することを特徴とする有機EL素子に関する。
本発明の第五は、正孔輸送層を有し、この正孔輸送層に本発明の第一から第三の有機EL素子材料が含まれていることを特徴とする本発明の第四に記載の有機EL素子に関する。
本発明の第六は、発光層を有し、この発光層に本発明の第一から第三の有機EL素子材料が含まれていることを特徴とする本発明の第四又は第五記載の有機EL素子に関する。
更に本発明の第七は、正孔注入層を有し、この正孔注入層に本発明の第一から第三の有機EL素子材料が含まれていることを特徴とする本発明の第四〜第六のいずれかに記載の有機EL素子に関する。
【0009】
【発明の実施の形態】
以下、本発明を具体的に説明する。
本発明で重縮合反応に用いられる縮合多環芳香族炭化水素としては、ナフタレン、アセナフテン、アセナフチレン、アントラセン、フェナントレン、ピレン、クリセン、ペリレンおよびこれらに鎖状脂肪族炭化水素側鎖が置換された化合物などが例示される。特にナフタレン、アントラセン、フェナントレン、ピレンが工業的に入手が容易なことから特に好ましい。これらは単独で用いられてもよく二種類以上が混合されて用いられてもよい。これらの縮合多環芳香族炭化水素類を重縮合し、二つ以上の分子が結合した骨格構造を得る方法としては、縮合多環芳香族炭化水素類をハロゲン化物にした後に二量化する方法、金属カリウムや酸などの触媒を用いて重縮合する方法などが挙げられるが特に制限はない。
【0010】
例えば、酸触媒の存在下に縮合多環芳香族炭化水素類を重縮合する方法としては、弗化水素/三弗化ホウ素触媒を用いる方法を挙げることができる。弗化水素や三弗化ホウ素は低沸点であることから反応後の触媒成分の分離が容易で、得られた生成物中への触媒成分の残留を実質的にゼロにすることができるという点で有利な方法である。またこの触媒は超強酸として知られており強い酸触媒として作用することから、縮合多環芳香族炭化水素を低温でかつ実質的に開環反応を併発することなく重縮合することができる。弗化水素/三弗化ホウ素触媒を用いた縮合多環芳香族炭化水素の重縮合反応で得られる化合物の構造は、持田らにより報告されている(“STRUCTURE AND CARBONIZATION PROPERTIES OF PICHES PRODUCED CATALYTICALLY FROM AROMATIC HYDROCARBONS WITH HF/BF3”, Carbon, Vol.26, No.6, pp.843−852, 1988, Pergamon Press plc )。
【0011】
なおこの方法によれば、原料縮合多環芳香族炭化水素が脱水素反応により重縮合した生成物以外に、付加重合的に結合された脂環構造を有した生成物も得られる。本発明ではこれらの異なった環状構造を有したオリゴマーの混合物から必要により特定成分の分離や分取を行なったり、あるいは/さらに(脱)水素化反応等を施し、本発明に規定される骨格構造になるように調整される。
【0012】
特定成分を分離・分取するには、一般に有機溶媒による抽出や有機溶媒を用いたカラム分離などの方法が用いられる。また、(脱)水素化は試薬や触媒を用いた公知の方法を適用できるが、これらは縮重合反応直後に得られたオリゴマーに直接行ってもよく、また分離や分取を行った後に施してもよい。
【0013】
本発明における有機EL素子用材料の環状骨格部の分子量は800以下である。また2種類以上のオリゴマー混合物を採用する場合にも、分子量800を超える骨格構造を有する分子を実質的に含まないことが重要である。これを超える過度に高い分子量の骨格構造を有する化合物では、蒸気圧が著しく小さくなり溶媒溶解性も極端に低下することから、蒸着法や湿式法による製膜が困難となる。また高分子量の骨格構造を有する化合物は結晶粒界等の不均質部を生成しやすく、そのためにその部分への電界集中を起こし素子の劣化や破壊に繋がりやすいので好ましくない。オリゴマー域の分子量測定には、電界脱離イオン化質量スペクトル法(FD−MS)が好適に用いられる。
【0014】
また本発明の有機EL素子用材料の環状骨格部は、その芳香族環構造(SP炭素)と脂肪族環構造(SP炭素)の割合が特定範囲にあることを特徴とする。化合物分子中の脂肪族環構造は、一般に有機溶媒等に対する溶解性を向上させたり、塗膜や蒸着膜形成時の結晶粒の生成を防止するなどの好作用が期待されるが、その一方で、あまり多くの脂肪族環構造を有した分子では熱安定性に劣り、素子駆動中の発熱により劣化してしまうという結果を起こしやすくなる。本発明において環状骨格中の芳香族環構造と脂肪族環構造の割合は、全環状骨格炭素に占めるSP炭素の割合(以下「SP炭素指数」と称する)として定義される。これは、13C−NMRで測定される(SP炭素に由来するピーク面積の和)/(全環状炭素のピーク面積の和)から求められる。但し、SP炭素のケミカルシフトは115.0〜150ppmの範囲とする。二種類以上の混合物を有機EL素子材料として用いる場合のSP炭素指数は、その混合物の平均値として定義される。
【0015】
ここでSP炭素指数は、環状骨格上に置換基を有しない化合物の場合には、全炭素中のSP炭素の割合と一致する。一方、環状骨格上に側鎖置換基を有する場合のSP炭素指数は、実施例に示した脱水素処理法により脂肪族環構造を芳香族環構造に変換して得られる化合物の13C−NMR測定により全炭素に占める側鎖SP炭素の割合を測定し、目的化合物のSP炭素から側鎖SP炭素分を補正して求められる。本発明において、用いられる有機EL素子材料のSP炭素指数は0.85以上である。SP炭素指数が0.85未満の場合には脂肪族環構造の割合が大きくなりすぎ、上述のように耐熱性の低下に伴なう素子寿命の悪化につながる。
【0016】
SP炭素指数が1に近かったりあるいは脂肪族環構造をまったく有しない場合には、耐熱性は向上するが、製膜性が徐々に低下するとともに、上述の過度に高分子の化合物を用いた場合と同様に膜内に結晶粒を発生しやすくなり、電界集中による素子寿命の悪化につながりやすくなる。この場合には、その環状骨格上に脂肪族炭化水素の置換基を導入することで、結晶粒の生成を抑制することができる。本発明において脂肪族炭化水素の置換基は必要により導入されるが、この置換基は鎖状で炭素数1〜24であることが好ましい。これらの置換基の導入法は特に制限されず、あらかじめこれらの置換基を有した縮合多環芳香族炭化水素を原料として前述の重縮合反応を行ったり、あるいは未置換の縮合多環芳香族炭化水素を重縮合反応した後に公知のアルキル化法等により置換基を導入することができ、またはこれらの両方の方法を組み合わせることも可能である。
【0017】
本発明の有機EL素子の構成としては特に限定するものでなく各種態様があるが、一対の電極間に本発明の有機EL素子用材料を含有する有機層を挟時した構造であり、所望により正孔注入輸送層や電子注入輸送層を適宜設けたものである。具体的構成としては、例えば、1)陽極/本発明の有機EL素子材料含有層/陰極、2)陽極/本発明の有機EL素子材料含有層/発光層/陰極、3)陽極/正孔注入層/本発明の有機EL素子材料含有層/発光層/陰極、4)陽極/正孔注入層/正孔輸送層/本発明の有機EL素子材料含有層/陰極、5)陽極/正孔注入層/正孔輸送層/本発明の有機EL素子材料含有層/電子注入層/陰極等の積層構造を挙げることができる。
【0018】
これらの正孔注入輸送層、発光層、電子注入輸送層の形成方法に関しては、特に限定するものではなく、例えば真空蒸着法、イオン化蒸着法、溶液塗布法(たとえば、スピンコート法、キャスト法、ディップコート法、バーコート法、ロールコート法など)により薄膜を形成することにより作製することができる。このように形成された各層の膜厚については特に制限なく、素材の性質により適宜選択されるが、通常は2nm〜5000nmの範囲で選定される。
【0019】
蒸着法により各層を形成する場合の蒸着条件は、特に限定するものではないが、一般にボート温度50〜400℃、真空度10−6〜10−3Pa、蒸着速度0.01〜50nm/秒、基板温度50〜400℃程度の条件で実施することが好ましい。
【0020】
また溶液塗布法により各層を形成する場合、各層を形成する成分あるいはその成分とバインダー樹脂等を、溶媒に溶解または分散させた塗布液が用いられる。本発明の有機EL素子用材料はバインダー樹脂を用いることなくそれ自体で薄膜化することができるが、併用する他の材料との関係等から必要によりバインダー樹脂を用いてもよい。この場合に用いうるバインダー樹脂としては、例えば、ポリアリレート、ポリスチレン、ポリエステル、ポリシロキサン、ポリ−N−ビニルカルバゾール、ポリエーテル、ポリカーボネート、ポリアミド、ポリイミド等の高分子化合物が挙げられる。
【0021】
本発明の有機EL素子用材料は、EL素子の電極間に挟時される何れかの有機層に0.1重量パーセント以上含有されて用いられる。特に正孔注入層、正孔輸送層、発光層に好ましく用いられる。本発明の有機EL素子用材料以外の層材料や電極材料については、有機EL素子に使用される公知のものの中から任意のものを選択して用いることができる。
【0022】
【実施例】
以下、本発明を実施例により更に具体的に説明する。
(実施例1)
HF−BFを用いてフェナントレン53.4g(触媒モル比:フェナントレン/HF/BF=1/6/0.5)を反応温度20℃で自生圧下に3時間重合させた後、氷水内に抜き出した。この溶液をジクロロメタンで抽出した。この有機層を水で洗浄し触媒を完全に取り除いた後に有機溶媒をエバポレーターで蒸発させることにより重合物を得た。この重合物をアセトン、メタノールを用いて分画し高分子量成分を除去した。得られた精製サンプルはフェナントレンの2,3,4量体相当(分子量352〜708:図1)であった。13C−NMRより求めたSP炭素指数は、0.91であった。この重合物はクロロホルム、トルエン等の有機溶媒に対して1wt%程度溶解した。
【0023】
株式会社アルバック製OELD作成装置SOLSIET装置を用いて有機EL素子を作成した。まずITO透明電極を有するガラス基板上に、ジフェニルナフチルジアミン(NPD)をボート温度270℃、真空度1.8×10−4Pa、蒸着速度0.08nm/secの条件下で1500Åの厚さに蒸着し正孔輸送層とした。次いで該重合物をボート温度230℃、真空度5〜7×10−4Pa、蒸着速度0.04nm/secの条件下で300Åの厚さに蒸着し発光層とした。次いで、トリス(8−キノリノラト)アルミニウム(Alq3)をボート温度280℃、真空度1.5×10−4Pa、蒸着速度0.5nm/secの条件下で300Åの厚さに蒸着し電子輸送層とした。最後にLiFとAlの各々をボート温度630℃、真空度8×10−5Pa、蒸着速度0.001nm/secならびにボート温度1200℃、真空度2×10−4Pa、蒸着速度1nm/secの条件下で、膜圧7Åならびに1500Åに蒸着し、これを金属電極とすることで有機EL素子を得た。このEL素子に直流電圧を8V印加したときの電流は8.3mA/cmであり、発光輝度320cd/m、発光効率1.5lm/Wを得た。発光色は黄緑色でピーク波長は535nm、CIE色度座標は、x=0.42、y=0.56であった。またこの素子を1ヶ月間室温で保存した後にも、明瞭な発光が認められた。
【0024】
(実施例2)
HF−BFを用いてピレン60.6g(触媒モル比:ピレン/HF/BF=1/6/0.5)を反応温度20℃で自生圧下に3時間重合させた後、氷水内に抜き出した。この溶液をジクロロメタンで抽出した。この有機層を水で洗浄し触媒を完全に取り除いた後に有機溶媒をエバポレーターで蒸発させた後、エタノールで洗浄してモノマーを取り除いた。得られた生成物はピレンの2量体相当(分子量402、404:図2)であり、13C−NMRより求めたSP炭素指数は0.92であった。この重合物はクロロホルム、トルエン等の有機溶媒に対して0.01wt%程度溶解した。発光層を該重合物とした以外は、実施例1と同じ構成のEL素子を同様の条件で作成した。このEL素子に直流電圧を10V印加したときの電流は2.0mA/cmであり、発光輝度273cd/m、発光効率0.48lm/Wを得た。発光色は黄色でピーク波長は550nm、CIE色度座標は、x=0.45、Y=0.53であった。またこの素子を1ヶ月間室温で保存した後にも、明瞭な発光が認められた。
【0025】
【発明の効果】
本発明の有機EL用素子材料から得られた薄膜は安定なアモルファス状態を示すことから、高効率で安定した正孔輸送能や発光能を示す。
【図面の簡単な説明】
【図1】実施例1で用いた有機EL素子用材料の分子量分布を示すFD−MSスペクトラムである。
【図2】実施例2で用いた有機EL素子用材料の分子量分布を示すFD−MSスペクトラムである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electroluminescence (EL) device material and a device using the same.
[0002]
[Prior art]
2. Description of the Related Art An EL element using an organic material has attracted attention as a solid-state light-emitting inexpensive large-area display element. The organic EL element has a structure in which an organic light emitting layer is sandwiched between two electrodes, and when an electric field is applied between the two electrodes, electrons injected from the cathode side and holes injected from the anode side are generated in the light emitting layer. This is a spontaneous light emitting element utilizing emission of light when recombining. The conventional organic EL device has a higher driving voltage than the inorganic EL device, cannot be said to have sufficient light emission luminance and light emission efficiency, and has not been practically remarkably deteriorated in characteristics.
[0003]
In recent years, the drive voltage has been reduced, the light emission luminance and the light emission efficiency have been improved, and the element configuration has been improved. As a result, small to medium sized displays (2 to 15 inches) have been manufactured as prototypes. The element material used here is roughly classified into a low molecular weight material or a high molecular weight material, but the organic EL element material of the present invention belongs to the low molecular weight material. Conventional low-molecular light-emitting materials include polycyclic fused aromatic compounds, quinolinol groups, hydroxyphenyloxazole groups, hydroxyphenylthiazole groups, and Al, Mg, Be, and Ir complexes having 2-phenylpyridine as ligands. Dyes such as phthalocyanine compounds, styrylbenzene derivatives, oxadiazole compounds, oxobenzanthracene dyes, and combinations thereof have been reported. Many low molecular weight hole transporting materials used as the hole transporting layer and the injection layer include many compounds such as hydrazone type, stilbene type, star bust type, etc., in addition to amine type including triphenylamines. ing.
[0004]
Among the above various light emitting materials and hole transport materials, examples of the compound having a condensed polycyclic aromatic hydrocarbon as a main skeleton include a perylene compound (for example, see Patent Document 1) and a coumarin compound (for example, Literature 2), pyrene-based compounds (for example, see Patent Literature 3), compounds having a phenylanthracene group (for example, see Patent Literature 4), and compounds having an aminoanthracene group (for example, see Patent Literature 5). , Fluoranthene and derivatives thereof (for example, see Patent Documents 6 and 7). However, the initial luminous efficiency of these organic EL devices is not yet sufficient, and the durability of the materials used is poor, and particularly the low durability of the luminescent material and the hole transporting material is a serious problem in practical use. It is desired to develop a device having high reliability and luminous efficiency. Further, when a low molecular weight compound having a molecular weight of 500 or less is used, the appearance and growth of crystal grains are caused and the film properties are remarkably deteriorated (for example, see Patent Document 8).
[0005]
[Patent Document 1] JP-A-3-791 [Patent Document 2] JP-A-3-792 [Patent Document 3] JP-A-6-240246 [Patent Document 4] JP-A-8-12600 [Patent] Reference 5: Japanese Patent Application Laid-Open No. 10-72579 [Patent Document 6] Japanese Patent Application Laid-Open No. 10-189247 [Patent Document 7] Japanese Patent Application Laid-Open No. 2002-69044 [Patent Document 8] Japanese Patent Application Laid-Open No. 8-12600
[Problems to be solved by the invention]
An object of the present invention is to provide a material for an organic EL device having high efficiency and excellent durability and an organic EL device using the same.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-described problems of the conventional organic EL device, and as a result, have found that a compound having a specific skeleton structure obtained by polycondensing a condensed polycyclic aromatic hydrocarbon is obtained. It has been found that by using such a compound, a highly efficient organic EL device can be obtained, and the present invention has been completed.
[0008]
That is, the first of the present invention has a cyclic skeleton structure obtained by polycondensation of a condensed polycyclic aromatic hydrocarbon, the molecular weight of the cyclic skeleton portion is 800 or less, and the cyclic skeleton determined by 13 C-NMR. the ratio of SP 2 carbon occupying the backbone carbon relates to an organic EL device material is at least 0.85.
A second aspect of the present invention relates to a material for an organic EL device, wherein the condensed polycyclic aromatic hydrocarbon is selected from the group consisting of naphthalene, anthracene, phenanthrene, pyrene, and a mixture of two or more of these. .
A third aspect of the present invention is the material for an organic EL device according to the first and second aspects of the present invention, wherein at least one linear aliphatic hydrocarbon substituent having 1 to 24 carbon atoms is provided on the cyclic skeleton. The present invention relates to the materials for organic EL devices according to the first and second aspects of the present invention characterized by having the above.
A fourth aspect of the present invention relates to an organic EL element having a layer containing 0.1% by weight or more of the first to third organic EL element materials of the present invention.
According to a fifth aspect of the present invention, there is provided a hole transporting layer, wherein the hole transporting layer contains the first to third organic EL device materials of the present invention. The organic EL device described in the above.
A sixth aspect of the present invention is the fourth or fifth aspect of the present invention, which has a light emitting layer, and the light emitting layer contains the first to third organic EL element materials of the present invention. The present invention relates to an organic EL device.
A seventh aspect of the present invention is the fourth aspect of the present invention, characterized by having a hole injection layer, wherein the hole injection layer contains the first to third organic EL device materials of the present invention. To an organic EL device according to any one of the first to sixth aspects.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
As the condensed polycyclic aromatic hydrocarbon used in the polycondensation reaction in the present invention, naphthalene, acenaphthene, acenaphthylene, anthracene, phenanthrene, pyrene, chrysene, perylene and compounds in which the linear aliphatic hydrocarbon side chain is substituted for these And the like. Particularly, naphthalene, anthracene, phenanthrene, and pyrene are particularly preferable because they are industrially easily available. These may be used alone or as a mixture of two or more. As a method of polycondensing these condensed polycyclic aromatic hydrocarbons and obtaining a skeleton structure in which two or more molecules are bonded, a method of dimerizing the condensed polycyclic aromatic hydrocarbons after converting them into halides, Examples include a method of performing polycondensation using a catalyst such as metal potassium or an acid, but there is no particular limitation.
[0010]
For example, as a method of polycondensing condensed polycyclic aromatic hydrocarbons in the presence of an acid catalyst, a method using a hydrogen fluoride / boron trifluoride catalyst can be mentioned. Hydrogen fluoride and boron trifluoride have a low boiling point, so that the catalyst components after the reaction can be easily separated, and the residual catalyst components in the obtained product can be substantially reduced to zero. This is an advantageous method. Further, since this catalyst is known as a super strong acid and acts as a strong acid catalyst, it is possible to polycondensate the condensed polycyclic aromatic hydrocarbon at a low temperature without substantially causing a ring-opening reaction. The structure of a compound obtained by the polycondensation reaction of a condensed polycyclic aromatic hydrocarbon using a hydrogen fluoride / boron trifluoride catalyst has been reported by Mochida et al. HYDROCARBONS WITH HF / BF3 ", Carbon, Vol. 26, No. 6, pp. 843-852, 1988, Pergamon Press plc).
[0011]
According to this method, a product having an alicyclic structure bonded in an addition polymerization manner can be obtained in addition to a product obtained by polycondensation of a raw material condensed polycyclic aromatic hydrocarbon by a dehydrogenation reaction. In the present invention, if necessary, a specific component is separated or separated from a mixture of the oligomers having these different cyclic structures, or / and further (de) hydrogenation reaction or the like is carried out to obtain a skeletal structure defined in the present invention. It is adjusted to become.
[0012]
In order to separate and fractionate a specific component, a method such as extraction with an organic solvent or column separation using an organic solvent is generally used. Known methods using reagents and catalysts can be applied for (de) hydrogenation, but these methods may be directly applied to the oligomer obtained immediately after the condensation polymerization reaction, or may be applied after separation or fractionation. You may.
[0013]
The molecular weight of the cyclic skeleton of the material for an organic EL device in the present invention is 800 or less. Also, when employing a mixture of two or more oligomers, it is important that molecules having a skeletal structure having a molecular weight of more than 800 are not substantially contained. Compounds having a skeletal structure with an excessively high molecular weight exceeding this range have extremely low vapor pressure and extremely low solvent solubility, making it difficult to form a film by a vapor deposition method or a wet method. Further, a compound having a high molecular weight skeleton structure is not preferable because it tends to generate an inhomogeneous portion such as a crystal grain boundary and the like, which tends to cause an electric field concentration at that portion and lead to deterioration or breakage of the device. For the measurement of the molecular weight in the oligomer region, electric field desorption / ionization mass spectrometry (FD-MS) is suitably used.
[0014]
The cyclic skeleton of the material for an organic EL device of the present invention is characterized in that the ratio of the aromatic ring structure (SP 2 carbon) to the aliphatic ring structure (SP 3 carbon) is in a specific range. Aliphatic ring structures in compound molecules are generally expected to have favorable effects such as improving solubility in organic solvents and the like, and preventing the formation of crystal grains during the formation of coatings and vapor-deposited films. However, molecules having too many aliphatic ring structures are inferior in thermal stability, and are likely to be degraded by heat generation during driving of the element. In the present invention, the ratio of the aromatic ring structure to the aliphatic ring structure in the cyclic skeleton is defined as the ratio of SP 2 carbon to the total cyclic skeleton carbon (hereinafter referred to as “SP 2 carbon index”). This is determined from (sum of peak areas derived from SP 2 carbon) / (sum of peak areas of all cyclic carbons) measured by 13 C-NMR. However, the chemical shift of SP 2 carbon is in the range of 115.0~150ppm. SP 2 carbon index when a mixture of two or more organic EL device material is defined as the average value of the mixture.
[0015]
Here SP 2 carbon index, in the case of compounds having no substituent on the cyclic skeleton is consistent with the proportion of SP 2 carbon in total carbon. On the other hand, the SP 2 carbon index in the case of having a side chain substituent on the cyclic skeleton is the 13 C-index of the compound obtained by converting an aliphatic ring structure to an aromatic ring structure by the dehydrogenation method shown in Examples. The ratio of the side chain SP 3 carbon in the total carbon is measured by NMR measurement, and the ratio is determined by correcting the side chain SP 3 carbon content from the target compound SP 3 carbon. In the present invention, SP 2 carbon index of the organic EL element material used is 0.85 or more. If SP 2 Carbon Index is less than 0.85 becomes too large proportion of the alicyclic structure, leading to deterioration of the accompanying element lifetime to a reduction in heat resistance as described above.
[0016]
When the SP 2 carbon index is close to 1 or has no aliphatic ring structure, the heat resistance is improved, but the film-forming property is gradually reduced and the above-mentioned excessively high molecular compound is used. As in the case, crystal grains are easily generated in the film, which tends to shorten the element life due to electric field concentration. In this case, the introduction of a substituent of an aliphatic hydrocarbon on the cyclic skeleton can suppress the generation of crystal grains. In the present invention, a substituent of an aliphatic hydrocarbon is introduced as necessary, and this substituent is preferably a chain having 1 to 24 carbon atoms. The method for introducing these substituents is not particularly limited, and the above-mentioned polycondensation reaction may be carried out using a condensed polycyclic aromatic hydrocarbon having these substituents in advance as a raw material, or an unsubstituted condensed polycyclic aromatic hydrocarbon may be used. After the polycondensation reaction of hydrogen, a substituent can be introduced by a known alkylation method or the like, or both methods can be combined.
[0017]
The configuration of the organic EL device of the present invention is not particularly limited, and has various modes. However, the organic EL device has a structure in which an organic layer containing the material for an organic EL device of the present invention is sandwiched between a pair of electrodes. A hole injection / transport layer or an electron injection / transport layer is appropriately provided. Specific configurations include, for example, 1) anode / layer containing organic EL element material of the present invention / cathode, 2) anode / layer containing organic EL element material of the present invention / light emitting layer / cathode, 3) anode / hole injection. Layer / organic EL device material-containing layer of the present invention / light-emitting layer / cathode, 4) anode / hole injection layer / hole transport layer / organic EL device material-containing layer of the present invention / cathode, 5) anode / hole injection Examples of the layer structure include a layer / hole transport layer / organic EL device material-containing layer of the present invention / electron injection layer / cathode.
[0018]
The method for forming the hole injecting and transporting layer, the light emitting layer, and the electron injecting and transporting layer is not particularly limited. For example, a vacuum evaporation method, an ionization evaporation method, a solution coating method (for example, a spin coating method, a casting method, (A dip coating method, a bar coating method, a roll coating method, etc.). The thickness of each layer thus formed is not particularly limited and is appropriately selected depending on the properties of the material, but is usually selected in the range of 2 nm to 5000 nm.
[0019]
The vapor deposition conditions for forming each layer by vapor deposition are not particularly limited, but generally, the boat temperature is 50 to 400 ° C., the degree of vacuum is 10 −6 to 10 −3 Pa, the vapor deposition rate is 0.01 to 50 nm / sec, It is preferable to carry out the process at a substrate temperature of about 50 to 400 ° C.
[0020]
When each layer is formed by a solution coating method, a coating solution in which a component for forming each layer or the component and a binder resin or the like are dissolved or dispersed in a solvent is used. The material for an organic EL device of the present invention can be made into a thin film by itself without using a binder resin. However, a binder resin may be used if necessary in view of the relationship with other materials used together. Examples of the binder resin that can be used in this case include high molecular compounds such as polyarylate, polystyrene, polyester, polysiloxane, poly-N-vinylcarbazole, polyether, polycarbonate, polyamide, and polyimide.
[0021]
The material for an organic EL device of the present invention is used by being contained in 0.1% by weight or more in any organic layer sandwiched between electrodes of the EL device. Particularly, it is preferably used for a hole injection layer, a hole transport layer, and a light emitting layer. As the layer material and the electrode material other than the material for the organic EL device of the present invention, any material can be selected from known materials used for the organic EL device.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example 1)
Phenanthrene 53.4g using HF-BF 3: After (catalyst molar ratio phenanthrene / HF / BF 3 = 1/ 6 / 0.5) was 3 hours the polymerization under autogenous pressure at a reaction temperature of 20 ° C., in an ice-water I took it out. This solution was extracted with dichloromethane. The organic layer was washed with water to completely remove the catalyst, and then the organic solvent was evaporated by an evaporator to obtain a polymer. The polymer was fractionated using acetone and methanol to remove high molecular weight components. The obtained purified sample was equivalent to a 2,3, tetramer of phenanthrene (molecular weight: 352 to 708: FIG. 1). The SP 2 carbon index determined from 13 C-NMR was 0.91. This polymer was dissolved in an organic solvent such as chloroform and toluene in an amount of about 1% by weight.
[0023]
An organic EL device was prepared using an OLED making device SOLSIET manufactured by ULVAC, Inc. First, diphenylnaphthyldiamine (NPD) was deposited on a glass substrate having an ITO transparent electrode to a thickness of 1500 mm under the conditions of a boat temperature of 270 ° C., a degree of vacuum of 1.8 × 10 −4 Pa, and a deposition rate of 0.08 nm / sec. Evaporation was performed to form a hole transport layer. Next, the polymer was deposited to a thickness of 300 ° at a boat temperature of 230 ° C., a degree of vacuum of 5 to 7 × 10 −4 Pa, and a deposition rate of 0.04 nm / sec to form a light emitting layer. Next, tris (8-quinolinolato) aluminum (Alq3) is vapor-deposited to a thickness of 300 ° under the conditions of a boat temperature of 280 ° C., a degree of vacuum of 1.5 × 10 −4 Pa, and a vapor deposition rate of 0.5 nm / sec. And Finally, each of LiF and Al was applied at a boat temperature of 630 ° C., a vacuum degree of 8 × 10 −5 Pa, a deposition rate of 0.001 nm / sec and a boat temperature of 1200 ° C., a vacuum degree of 2 × 10 −4 Pa, and a deposition rate of 1 nm / sec. Under these conditions, vapor deposition was performed at a film pressure of 7 ° and 1500 °, and this was used as a metal electrode to obtain an organic EL device. The current when a DC voltage of 8 V was applied to this EL element was 8.3 mA / cm 2 , and the light emission luminance was 320 cd / m 2 and the light emission efficiency was 1.5 lm / W. The emission color was yellow-green, the peak wavelength was 535 nm, and the CIE chromaticity coordinates were x = 0.42 and y = 0.56. Even after the device was stored at room temperature for one month, clear light emission was observed.
[0024]
(Example 2)
Pyrene 60.6g using HF-BF 3: After (catalyst molar ratio pyrene / HF / BF 3 = 1/ 6 / 0.5) was 3 hours the polymerization under autogenous pressure at a reaction temperature of 20 ° C., in an ice-water I took it out. This solution was extracted with dichloromethane. After the organic layer was washed with water to completely remove the catalyst, the organic solvent was evaporated by an evaporator, and then washed with ethanol to remove monomers. The obtained product was equivalent to a pyrene dimer (molecular weight 402, 404: FIG. 2), and the SP 2 carbon index determined by 13 C-NMR was 0.92. This polymer was dissolved in an organic solvent such as chloroform and toluene in an amount of about 0.01% by weight. An EL device having the same structure as in Example 1 was produced under the same conditions except that the light emitting layer was made of the polymer. The current when a DC voltage of 10 V was applied to this EL element was 2.0 mA / cm 2 , and the light-emitting luminance was 273 cd / m 2 and the light-emitting efficiency was 0.48 lm / W. The emission color was yellow, the peak wavelength was 550 nm, and the CIE chromaticity coordinates were x = 0.45 and Y = 0.53. Even after the device was stored at room temperature for one month, clear light emission was observed.
[0025]
【The invention's effect】
Since the thin film obtained from the organic EL device material of the present invention shows a stable amorphous state, it shows highly efficient and stable hole transporting ability and luminous ability.
[Brief description of the drawings]
FIG. 1 is an FD-MS spectrum showing a molecular weight distribution of a material for an organic EL device used in Example 1.
FIG. 2 is an FD-MS spectrum showing a molecular weight distribution of a material for an organic EL device used in Example 2.

Claims (7)

縮合多環芳香族炭化水素を重縮合して得られる分子量が800以下の芳香族炭化水素であって、その環状骨格炭素中に占めるSP炭素の割合が0.85以上であることを特徴とする有機EL素子用材料。An aromatic hydrocarbon having a molecular weight of 800 or less obtained by polycondensation of the condensed polycyclic aromatic hydrocarbon, wherein the proportion of SP 2 carbon in the cyclic skeleton carbon is 0.85 or more. For organic EL devices. 縮合多環芳香族炭化水素が、ナフタレン、アントラセン、フェナントレン、ピレンおよびこれらの二種類以上の混合物からなる群より選ばれることを特徴とする請求項1記載の有機EL素子用材料。2. The material for an organic EL device according to claim 1, wherein the condensed polycyclic aromatic hydrocarbon is selected from the group consisting of naphthalene, anthracene, phenanthrene, pyrene and a mixture of two or more thereof. 環状骨格上に炭素数1以上24以下の鎖状脂肪族炭化水素置換基を少なくても一つ以上有することを特徴とする請求項1および請求項2に記載の有機EL素子用材料。3. The material for an organic EL device according to claim 1, wherein the cyclic skeleton has at least one or more linear aliphatic hydrocarbon substituents having 1 to 24 carbon atoms on the cyclic skeleton. 請求項1〜請求項3記載の有機EL素子材料を0.1重量パーセント以上含有する層を有することを特徴とする有機EL素子。An organic EL device comprising a layer containing the organic EL device material according to claim 1 or more in an amount of 0.1% by weight or more. 正孔輸送層を有し、この正孔輸送層に請求項1〜3記載の有機EL素子用材料が含まれていることを特徴とする請求項4に記載の有機EL素子。An organic EL device according to claim 4, further comprising a hole transport layer, wherein the hole transport layer contains the material for an organic EL device according to any one of claims 1 to 3. 発光層を有し、この発光層に請求項1〜3記載の有機EL素子用材料が含まれていることを特徴とする請求項4又は5記載の有機EL素子。The organic EL device according to claim 4, further comprising a light emitting layer, wherein the light emitting layer contains the material for an organic EL device according to claim 1. 正孔注入層を有し、この正孔注入層に請求項1〜3記載の有機EL素子用材料が含まれていることを特徴とする請求項4〜6のいずれか1つの項に記載の有機EL素子。7. A method according to claim 4, further comprising a hole injection layer, wherein the hole injection layer contains the material for an organic EL device according to any one of claims 1 to 3. Organic EL element.
JP2003062941A 2003-03-10 2003-03-10 Organic el element material and organic el element using the same Pending JP2004269706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062941A JP2004269706A (en) 2003-03-10 2003-03-10 Organic el element material and organic el element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062941A JP2004269706A (en) 2003-03-10 2003-03-10 Organic el element material and organic el element using the same

Publications (1)

Publication Number Publication Date
JP2004269706A true JP2004269706A (en) 2004-09-30

Family

ID=33124662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062941A Pending JP2004269706A (en) 2003-03-10 2003-03-10 Organic el element material and organic el element using the same

Country Status (1)

Country Link
JP (1) JP2004269706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021665A (en) * 2005-06-22 2008-01-31 Semiconductor Energy Lab Co Ltd Light-emitting device, and electronic equipment using the same
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
WO2012124820A1 (en) * 2011-03-15 2012-09-20 住友化学株式会社 Metal complex and organic electronic element containing said metal complex
JP2014500506A (en) * 2010-12-16 2014-01-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー Formation of petroleum composition models by high resolution mass spectrometry and related analyses.
CN111372938A (en) * 2018-07-19 2020-07-03 株式会社Lg化学 Polycyclic compound and organic light emitting device including the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021665A (en) * 2005-06-22 2008-01-31 Semiconductor Energy Lab Co Ltd Light-emitting device, and electronic equipment using the same
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8252434B2 (en) 2005-06-22 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8541114B2 (en) 2005-06-22 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8815419B2 (en) 2005-06-22 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
JP2014500506A (en) * 2010-12-16 2014-01-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー Formation of petroleum composition models by high resolution mass spectrometry and related analyses.
WO2012124820A1 (en) * 2011-03-15 2012-09-20 住友化学株式会社 Metal complex and organic electronic element containing said metal complex
JP2012207018A (en) * 2011-03-15 2012-10-25 Sumitomo Chemical Co Ltd Metal complex and organic electronic element containing the same
CN111372938A (en) * 2018-07-19 2020-07-03 株式会社Lg化学 Polycyclic compound and organic light emitting device including the same
CN111372938B (en) * 2018-07-19 2023-08-08 株式会社Lg化学 Polycyclic compound and organic light emitting device including the same

Similar Documents

Publication Publication Date Title
Hohnholz et al. Applications of phthalocyanines in organic light emitting devices
EP0643118B1 (en) El element using polythiophene
JP4227628B2 (en) Compound and organic light emitting device
JP5193074B2 (en) Organic EL device
KR101711402B1 (en) Organic electroluminescent device
US20060269781A1 (en) Diarylamino substituted compounds and an electroluminescent device having the compounds
US20080160342A1 (en) Host compositions for luminescent materials
US20100244012A1 (en) Naphthyl-substituted anthracene derivatives and their use in organic light-emitting diodes
WO2007125976A1 (en) Compound and organic el device
KR100476547B1 (en) Thin film el device
JPH02213088A (en) Organic thin film el element and manufacture thereof
JP2009212201A (en) Organic light-emitting element
JP2004269706A (en) Organic el element material and organic el element using the same
JPH1025473A (en) Electroluminescent element and its production
JP5110905B2 (en) Organic compound and organic light emitting device
JP3471910B2 (en) Organic EL device
JP3490879B2 (en) Organic electroluminescence device
JP4320020B2 (en) Organic EL device
JP3614365B2 (en) Thin film EL device
JP3927221B2 (en) EL device using polythiophene
JP4109292B2 (en) Compounds for organic EL devices
JP3829848B2 (en) EL device using polythiophene
JP3793537B2 (en) Thin film EL device
van Hutten et al. A model oligomer approach to semiconducting polymers
Reddy et al. Organic light emitting devices (oleds): Working principle