JP2004269019A - Food container formed of styrene resin expansion-molded body - Google Patents

Food container formed of styrene resin expansion-molded body Download PDF

Info

Publication number
JP2004269019A
JP2004269019A JP2003065366A JP2003065366A JP2004269019A JP 2004269019 A JP2004269019 A JP 2004269019A JP 2003065366 A JP2003065366 A JP 2003065366A JP 2003065366 A JP2003065366 A JP 2003065366A JP 2004269019 A JP2004269019 A JP 2004269019A
Authority
JP
Japan
Prior art keywords
styrene
particles
steam
pressure
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003065366A
Other languages
Japanese (ja)
Inventor
Ichiro Horiyama
一郎 堀山
伸治 ▲高▼倉
Shinji Takakura
Hiroyuki Yamagata
裕之 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2003065366A priority Critical patent/JP2004269019A/en
Publication of JP2004269019A publication Critical patent/JP2004269019A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a returnable food container which undergoes very small dimensional shrinkage even if sterilizing cleaning is carried out by spraying warm water at about 80 °C after use thereof, eliminates a fear of incapability of fitting thereof to its cover body or formation of a gap between the container and the cover body, and ensures repeated use thereof about 10 times while maintaining high heat insuring properties. <P>SOLUTION: The food container is produced by impregnating styrene resin particles with carbon dioxide gas, then pre-expanding the particles, and further subjecting the resultant styrene resin pre-expanded particles to in-mold expansion molding. The container has the dimensional shrinkage as small as 0.5 % or less after repeated cleaning the same 10 times with hot water at 80°C. The styrene resin pre-expanded particles for use in molding is obtained by impregnating the styrene resin particles with carbon dioxide gas to obtain expandable styrene resin particles, supplying steam to the resultant particles at a charging pressure of 0.5 to 5.0 kg/cm<SP>2</SP>G from a steam charging line, discharging atmospheric gas containing steam from an exhaust line, and carrying out the pre-expansion while maintaining the pressure in an expansion machine to a value lower than the steam charging pressure by 0.05 to 1.0 kg/cm<SP>2</SP>G during the charging and discharging. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は食品用容器、特に、食品の輸送、保冷、保温、保管、梱包等に繰り返し使用される食品用容器に関する。
【0002】
【従来の技術】
食品用の容器として、高発泡倍率の発泡成形品を比較的簡単に得ることができることから、スチレン系樹脂を原料とした発泡成形体が汎用されている。また、スチレン系樹脂を使用すると、スチレン系樹脂予備発泡粒子を経由して所望の形状の発泡成形容器を得ることができる利点もある。さらに、スチレン系樹脂からなる発泡成形容器は、高倍率であるにもかかわらず強靱であり、しかも独立気泡を有していることから断熱性に優れ、保冷、保温が必要な食品容器としては最適である。また、スチレン系樹脂単独樹脂からなる容器は、使用後には再度スチレン系樹脂としてリサイクルすることも可能であり、環境保全の観点からも推奨されている。
【0003】
しかし、一般的に知られているスチレン系樹脂発泡体からなる食品用容器は、ブタンやペンタン等の有機化合物を発泡剤として含むスチレン系樹脂予備発泡粒子を型内発泡成形して得られたものが多く、このような発泡樹脂成形体は、発泡剤にブタンやペンタン等を用いているため、経時的に寸法収縮を起こす。また、耐熱性が十分でなく、80℃程度の温度雰囲気下で使用したりまたは温水洗浄を行うと、変形する場合がある。変形が生じると、蓋と容器本体との嵌合ができなくなったり、できたとしても、間に隙間が生じて断熱性を低下させるので、特に保温用の食品用容器としては好ましくない。
【0004】
リターナブルな食品用容器のように各使用時ごとに洗浄し殺菌することが求められる容器の場合、洗浄を例えば80℃程度の温水で行うと、上記のように変形して再使用に適さなくなることが起こり得る。殺菌剤あるいは低温で洗浄可能な薬剤を使用して洗浄を行うことは可能であるが、殺菌剤あるいは薬剤を完全に洗い流すことは容易でなく、食品用容器には適さない。そのようなことから、スチレン系樹脂発泡体からなる食品用容器はリターナブルな容器としては使用されないか、使用する場合でも温水洗浄に十分な注意を払う必要がある。
【0005】
特許文献1(特公平2−49333号公報)には、高い耐熱性を備えたスチレン系発泡性樹脂粒子として、スチレン系樹脂にポリフェニレンエーテルを混合してなるものが記載されている。この発泡性樹脂粒子を用いて成形した成形体は、95℃前後の温度で168時間連続加熱しても、発泡倍率30倍のものであっては、成形体の最大寸法収縮率が0.8%以下であることが報告されている。
【0006】
また、特許文献2(特開平4−351646号公報)には、ブタンやペンタン等の有機化合物に替えて、発泡剤に炭酸ガスを用いた発泡性スチレン系樹脂粒子が提案されている。これを加熱して得た予備発泡粒子を型内発泡して得た成形品は、発泡剤に炭酸ガスを用いていることから残留ガス量は少なく、長日数使用した後でも、寸法変化率が小さく、±0.8%程度に抑えることができる。
【0007】
【特許文献1】
特公平2−49333号公報
【特許文献2】
特開平4−351646号公報
【0008】
【発明が解決しようとする課題】
特許文献1(特公平2−49333号公報)に記載の発泡性樹脂粒子からなる発泡成形品は、該公報に記載のように、ブタンやペンタン等の有機化合物を発泡剤として用い、かつ、発泡助剤として、残存モノマー、トルエン、エチルベンゼン等を添加することが必要とされており、これら成分の揮発により寸法収縮が生じるので、経時による寸法収縮率は0.8%以下とすることができない。
【0009】
前記したように高い断熱性あるいは保温性が求められる食品用容器では、変形が生じると容器本体に対して蓋をすることができなくなったり、蓋をした場合でも隙間が生じて断熱性が低下してしまう。そのために、本発明者らの経験では、高い断熱性を求める食品用容器では、寸法収縮率が0.5%以内であることが必要であり、それを超えると断熱性を有効に確保できないことを経験した。特に、リターナブルな食品容器の場合、殺菌のために前記のように80℃程度の温水で洗浄することが行われるが、そのような温水洗浄により0.5%を超える寸法収縮が生じないことが食品用容器として必要となる。特許文献2(特公平2−49333号公報)に記載の発泡性スチレン系樹脂粒子を用いた成形品は寸法収縮率は0.8%程度が限度であり、この場合も、満足したものは得られない。
【0010】
本発明は上記のような事情に鑑みてなされたものであり、使用後の温水散布による洗浄によって過度の寸法収縮が生じることがなく、それにより、リターナブルな断熱性食品容器として有効に用いることのできるスチレン系樹脂発泡成形体からなる食品用容器を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明による食品用容器は、スチレン系樹脂粒子に炭酸ガスを含浸させた後に予備発泡させて得たスチレン系樹脂予備発泡粒子を型内発泡成形して得た、底部と底部に起立して設けた4つの側壁部とを有する上方開放の容器本体とこれに嵌合可能な蓋体とから構成される食品用容器であって、80℃の温水を使用した10回繰り返し洗浄後の容器本体開口部における寸法収縮率が0.5%以内であることを特徴とする。
【0012】
本発明において、寸法収縮率の条件を「80℃の温水を使用した10回繰り返し洗浄後」としたのは、現在の発泡樹脂成形体からなる食品用容器を温水にて殺菌洗浄するときの温度は80℃程度が必要とされており、そのような温水を数秒間シャワリングすることにより所望の洗浄効果が得られていること、および、リターナブル食品用容器の場合、平均7〜8回程度の反復使用が行われていることによる。従って、この条件下で、寸法収縮率が0.5%以内の条件を満足するスチレン系樹脂発泡成形体からなる食品用容器は、高い断熱性を維持した状態で10回程度の反復使用が可能となり、高い実用性を備えた食品用容器となる。
【0013】
上記の範囲の寸法収縮率を持つスチレン系樹脂発泡成形体(食品用容器)は、以下のようにして製造されるスチレン系樹脂予備発泡粒子を型内発泡することにより得ることができる。すなわち、最初に、スチレン系樹脂粒子に炭酸ガスを含浸させて発泡性スチレン系樹脂粒子とし、次工程で蒸気投入ラインと排気ラインを備えた予備発泡機内に前記発泡性スチレン系樹脂粒子を投入し、蒸気投入ラインから蒸気を0.5〜5.0kg/cmGの投入圧力で供給すると共に、排気ラインから蒸気を含む雰囲気ガスを排気し、かつその間、発泡機内圧力を蒸気の投入圧力より0.05〜1.0kg/cmG低く維持しながら予備発泡させて得られるスチレン系樹脂予備発泡粒子である。
【0014】
上記の発泡性スチレン系樹脂粒子(以下、「発泡性粒子」という)を構成するスチレン系樹脂粒子(以下、「樹脂粒子」という)としては、一般に知られているスチレン系樹脂の粒状物を使用することができる。具体的には、このような樹脂粒子としては、スチレン、α−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレン、ジビニルベンゼン(2官能性単量体)等のスチレン系単量体の単独重合粒子又はこれら単量体を2種以上組み合わせた共重合体粒子、メチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレート、セチルメタクリレート等のアクリル酸及びメタクリル酸のエステル、あるいはアクリロニトリル、ジメチルフマレート、エチルフマレート、アルキレングリコールジメタクリレート(2官能性単量体)等のスチレン系単量体以外の単量体との共重合体粒子等が挙げられる。更に、これらスチレン系樹脂粒子中のスチレン成分が50重量%を超える範囲内でスチレン系樹脂以外の樹脂と押し出しブレンドして得られた樹脂粒子であってもよい。特にスチレン系樹脂粒子としてはポリスチレン樹脂粒子が好ましい。樹脂粒子の粒径は、食品用容器の用途に応じて適宜選択でき、例えば、0.2〜2mmの粒径のものを使用することができる。
【0015】
樹脂粒子は、残留スチレン系単量体の量ができるだけ少ないことが好ましく、樹脂粒子中に含まれるスチレン系単量体の量は0〜500ppmであることが好ましい。このような樹脂粒子を用いることにより、発泡樹脂成形体に含まれる揮発性有機化合物の量を1000ppm以下としたものを得ることができる。
【0016】
樹脂粒子中の残留スチレン系単量体を低減するには、例えば懸濁重合においては、スチレン系単量体に対して0.05重量%以上の高温開始型の重合触媒を用い、最終の重合温度を115℃以上とするのが好ましい。高温開始型の重合触媒としては、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2、2−t−ブチルパーオキシブタン等の半減期10時間を得るための温度が100〜115℃のものが特に好ましい。ただし、これらを必要以上に用いるとt−ブタノール等分解副生成物を含有することになるため、重合触媒の種類によって異なるが、使用量の上限は、0.5重量%であることが好ましい。
【0017】
樹脂粒子の分子量は、GPC法による重量平均分子量で20万〜40万であるのが好ましい。20万を下回ると、発泡樹脂成形体の強度が低下する場合があり、40万を上回ると、十分な発泡性を得ることが難しいので好ましくない。
【0018】
上記の樹脂粒子に発泡剤としての炭酸ガスを含浸させて発泡性粒子を得る。発泡剤としての炭酸ガスは、炭酸ガス100%でもよいが、本発明の効果を阻害しない範囲で、他の発泡剤を加えてもよい。他の発泡剤としては、空気、窒素等の無機発泡剤、プロパン、ブタン、ペンタン等の脂肪族炭化水素、シクロブタン、シクロペンタン等の脂環族炭化水素、フッ化炭化水素等の有機発泡剤を混合することもできる。フッ化炭化水素としては、オゾン破壊係数がゼロであるジフルオロエタン、テトラフルオロエタン等を使用することが好ましい。ここで、有機発泡剤は、発泡剤の全体量の20重量%を超えない範囲で使用することが好ましい。発泡性粒子中の炭酸ガスの含有割合は、1〜15重量%が好ましい。
【0019】
樹脂粒子中に炭酸ガスを含浸させるには、例えば、耐圧密閉容器に樹脂粒子を入れた後、炭酸ガスを圧入して、樹脂粒子を加圧された炭酸ガスと接触させることによって行うことができる。含浸温度は、樹脂粒子どうしが互いに合着して団塊化しない温度まで高くしてもよいが、通常0〜40℃である。樹脂粒子に炭酸ガスを含浸させるときの圧力は、10kg/cmG以上であることが好ましく、より好ましくは15〜40kg/cmGである。含浸時間は、樹脂粒子が前記の炭酸ガス含有量となるように適宜調整することができ、1〜20時間が好ましく、2〜8時間がより好ましい。
【0020】
樹脂粒子に炭酸ガスを含浸させるに際し、樹脂粒子の表面には各種の表面処理剤を塗布しておくことが好ましい。そのような表面処理剤としては、例えば加熱発泡時の予備発泡粒子の結合を防止する結合防止剤、成形時の融着促進剤、帯電防止剤、展着剤等が挙げられる。
【0021】
結合防止剤としては、例えばタルク、炭酸カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルシリコン、ジンクステアレート等が挙げられる。
【0022】
融着促進剤としては、例えばステアリン酸、ステアリン酸トリグリセリド、ヒドロキシステアリン酸トリグリセリド、ステアリン酸ソルビタンエステル、ポリエチレンワックス等が挙げられる。
【0023】
帯電防止剤としては、例えばポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド等が挙げられる。展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイル等が挙げられる。
【0024】
予備発泡粒子は、以下のようにして製造される。上記したように、スチレン系樹脂粒子に炭酸ガスを含浸させて発泡性スチレン系樹脂粒子とし、次工程で、蒸気投入ラインと排気ラインを備えた予備発泡機内に、前記発泡性スチレン系樹脂粒子を投入し、蒸気投入ラインから蒸気を0.5〜5.0kg/cmGの投入圧力で連続して供給すると共に、排気ラインから蒸気を含む雰囲気ガスを排気し、かつその間、発泡機内圧力を蒸気の投入圧力より0.05〜1.0kg/cmG低く維持しながら予備発泡させてスチレン系樹脂予備発泡粒子を得る方法である。この方法において、炭酸ガスを含浸させる工程に次いで、直ちに予備発泡を行うことが好ましい。
【0025】
この方法、すなわち本発明によるスチレン系樹脂予備発泡粒子を製造するのに使用できる予備発泡機の一例を、図1により説明する。図中、100は予備発泡機、102は撹拌モーター、103は撹拌翼、104は邪魔棒、105は発泡槽上面検出器、106は発泡性粒子輸送器、107は発泡性粒子計量槽、108は発泡性粒子投入器、109は蒸気吹込制御弁、110は蒸気チャンバー、111は凝縮水排出弁、112は排気制御弁、113は予備発泡粒子排出口、114は予備発泡粒子一時受器、115は空気輸送設備、116は内圧検出・制御装置、117は蒸気吹込孔、118は蒸気投入圧力計、119は減圧弁、120は蒸気元圧力計を意味する。
【0026】
詳細には、一定量の蒸気が常に予備発泡機100内に供給されるように排気制御弁112等で予備発泡機100内の圧力(内圧検出・制御装置116で圧力検出)が常に供給圧力を下回るように制御を行う。例えば、蒸気の投入圧力を1.2kg/cmG(蒸気投入圧力計118で検出)、予備発泡機内の圧力を0.8kg/cmGに設定した場合、予備発泡機100内の圧力を内圧検出・制御装置116にて検出し、制御信号が排気制御弁112へ送られ、排気ラインから0.4kg/cmG圧分の圧力を抜きながら圧力の制御を行うこととなる。このように、予備発泡機100内圧力と排気制御弁112とをリンクさせて制御することにより、予備発泡機100内圧力の調整することができる。
【0027】
投入圧力と予備発泡機内圧力との差が、0.05kg/cmG未満であると低密度の予備発泡粒子が得られ難いばかりか、発泡樹脂成形体の外観、内部融着が悪く、非常に商品価値の低いものになってしまう。また、1.0kg/cmGを超えると予備発泡時の結合が増加するばかりか、表面光沢度が低く、発泡体表面の凹凸も大きくなり好ましくない。より好ましい圧力差は、0.1〜0.5kg/cmGである。
【0028】
予備発泡粒子の粒径は、0.3〜5mm程度が好ましく、また、予備発泡粒子の嵩密度は、0.015〜0.5g/cm程度が好ましい。そして、予備発泡機内の発泡性樹脂粒子は、通常110〜160℃程度に加熱されることが好ましく、より好ましい加熱温度は110〜130℃である。加熱温度が110℃を下回ると、嵩密度0.5g/cm以下の予備発泡粒子は得られ難いので好ましくない。また、加熱温度が160℃を上回ると予備発泡粒子同士が合着する傾向が強くなるので好ましくない。
【0029】
上記の予備発泡粒子を発泡成形することで得られる食品用容器は、80℃での高温洗浄を繰り返し行っても寸法安定性に優れており、実施例にも記載したとおり、80℃の温水を使用した10回の繰り返し洗浄後の寸法収縮率を0.5%以内とすることができる。また、長期にわたる寸法安定性に優れている。
【0030】
発泡成形法としては、特に限定されず、公知の方法をいずれも使用することができる。例えば、予備発泡粒子を成形用型内に充填し、蒸気により加熱する。蒸気との接触によって予備発泡粒子が加熱されると、予備発泡粒子は膨張するが、成形用型によって発泡できる空間が限定されているので、互いに密着すると共に融着一体化して所望の発泡樹脂成形体を得ることができる。発泡樹脂成形体の密度は、0.015〜0.5g/cm程度が好ましく、特に、0.02〜0.1g/cm程度が好ましい。
【0031】
本発明による食品用容器は、上記のスチレン系樹脂予備発泡粒子を用いた型内発泡成形により成形された容器本体と蓋体とで構成されるが、蓋体は容器本体に対して内嵌合する形態でもよく、外嵌合する形態でもよい。いずれの場合も、寸法収縮率が小さいことから、容器本体と蓋体との嵌合状態は、複数回の反復使用後であっても、当所の気密状態を維持しており、高い断熱性は継続する。
【0032】
【実施例】
以下に、本発明を実施例及び比較例に基づき詳しく説明するが、本発明はこれらにより限定されることはない。なお、以下に示す実施例及び比較例において、図2に示すような形状と寸法である容器本体1Aと蓋体1Bからなる食品用容器1を発泡成形し、容器本体1Aについての寸法収縮率を以下のようにして評価した。すなわち、図2において、容器本体1Aは、底部11と、底部11に起立して設けた4つの側壁部12とを有する上方開放型のものであり、蓋体1Bは容器本体1Aの上方開放部に内嵌合する突出部13を有する。食品用容器1の容器本体1Aは、高さh:300mm,長手方向の外側長さa:680mm,短手方向の外側長さb:480mm、側壁と底部の肉厚c:40mm、である。
【0033】
<寸法収縮率>
発泡成形用型から取り出した発泡樹脂成形体(実際には、図2に示す形状の容器本体1A)を、温度23℃、相対湿度50%の恒温恒湿室(JIS−K7100の標準温湿度状態)に24時間放置した後、JIS−K6767に従う試験サンプルとした。
【0034】
この試験サンプルを、図3に示すように、上下反転した状態でシャワリング室にセットし、80℃の温水Wを20秒間にわたって上下から吹き付けて殺菌洗浄した。その後、圧力3kg/cmの空気を15秒間吹き付けてエアレーションを行い水滴を除去した。それを雰囲気温度50℃の室内に1時間放置して乾燥させた。上記の洗浄工程を10回繰り返した後、乾燥後の試験サンプルの容器上縁における長手方向の内寸側にノギスを当て、最も寸法が小さくなっている部位の寸法a2を測定し、次式により寸法収縮率P%を求めた。10個の試験サンプルについて同様に収縮率Pを求め、その平均PL%を表1に示した。
寸法収縮率P(%)=(a2−a1)×100/a1
なお、a1は試験サンプルの温水洗浄前の容器上部長手方向の内寸法である。
【0035】
[実施例1]
100リットルの反応器に、純水40kg、ドデシルベンゼンスルホン酸ソーダ4.0g、ピロリン酸マグネシウム60gを入れ水性媒体とした。次にベンゾイルパーオキサイド(純度75%)150g、t−ブチルパーオキシベンゾエート30g及びポリエチレンワックス(分子量1000)22gを溶解したスチレン44kgを撹拌しながら加えて懸濁させ、90℃に昇温して重合を開始した。比重法で測定した重合転化率が99.8重量%まで進行した時点で、反応器を125℃に昇温して3時間保持した後、常温まで冷却して、スチレン樹脂粒子を取り出した。ここで得られたスチレン樹脂粒子中の残留スチレンをガスクロマトグラフで測定したところ、404ppmであり、また、GPC法で測定した重量平均分子量は257000であった。
【0036】
スチレン樹脂粒子のうち、粒径0.7〜1.0mmのもの15kgを、内容量が30リットルの回転式耐圧容器に入れた後、展着剤としてポリエチレングリコール300を7.5g、グリセリンモノステアリン酸エステルを7.5g、結合防止剤として炭酸カルシウム30gを添加して容器を回転させ、樹脂粒子の表面に付着させた。次いで回転を停止してから容器内に炭酸ガスを圧入して、25℃、30kg/cmGに6時間保って樹脂粒子内に炭酸ガスを含浸させ、発泡性スチレン樹脂粒子を得た。
【0037】
こうして得られた発泡性スチレン樹脂粒子を耐圧容器から取り出し、次工程で撹拌機付き発泡機内に投入した後、投入圧力が1.2kg/cmGの蒸気を発泡機缶内に導入した。この時の発泡機内の圧力は0.8kg/cmGになるように、排気制御弁の開度を電気信号でコントロールしながら、排気ラインを使って余分な圧力を外部に逃がした(投入圧力と発泡機内圧力との差は0.4kg/cmG)。このように、蒸気を発泡機内に連続して導入しながら予備発泡させてスチレン樹脂予備発泡粒子とした。この予備発泡粒子の粒径は2.3〜4.0mmであった。
【0038】
予備発泡してから6時間後、型締め後のキャビティ形状が、図2で示す発泡樹脂成形体(容器本体1A)の形状に設計された発泡成形用型内に、予備発泡粒子を充填し蒸気で加熱して、図2に示す形状のスチレン系樹脂発泡成形体(容器本体1A)を複数個得た。得られた容器本体1Aから10個を選抜し、平均密度を測定した。また、その10個の容器本体1Aについて、上記の評価方法により寸法収縮率P(%)及び平均寸法収縮率PL(%)を評価した。得られた結果(PL)を表1に示す。10個のうち、寸法収縮率Pが0.5%を超えた数も表1に示す。
【0039】
[実施例2]
発泡性スチレン樹脂粒子を耐圧容器から取り出して直ちに、投入圧力が0.85kg/cmGの蒸気を発泡機内に導入し、発泡機内の圧力が0.8kg/cmGになるように(投入圧力と発泡機内圧力との差は0.05g/cmG)調整したこと以外は、実施例1と同様にして予備発泡粒子及び発泡樹脂成形体(容器本体1A)を複数個得た。実施例1と同様に、得られた容器本体1Aから10個を選抜し、平均密度を測定した。また、その10個の容器本体1Aについて、上記の評価方法により寸法収縮率P(%)及び平均寸法収縮率PL(%)を評価した。得られた結果(PL)を表1に示す。10個のうち、寸法収縮率Pが0.5%を超えた数も表1に示す。
【0040】
[比較例1]
発泡性スチレン樹脂粒子を耐圧容器から取り出して直ちに、投入圧力が2.0kg/cmGの蒸気を発泡機内に導入し、発泡機内の圧力は0.8kg/cmGになるように(投入圧力と発泡機内圧力との差は1.2kg/cmG)調整したこと以外は、実施例1と同様にして予備発泡粒子及び発泡樹脂成形体(容器本体1A)を複数個得た。実施例1と同様に、得られた容器本体1Aから10個を選抜し、実施例1と同様にして平均密度を測定した。また、その10個の容器本体1Aについて、実施例1と同様に、上記の評価方法により寸法収縮率P(%)及び平均寸法収縮率PL(%)を評価した。得られた結果(PL)を表1に示す。10個のうち、寸法収縮率Pが0.5%を超えた数も表1に示す。
【0041】
[比較例2]
発泡性スチレン樹脂粒子を耐圧容器から取り出して直ちに、投入圧力が0.8kg/cmGの蒸気を発泡機内に導入し、発泡機内の圧力は0.8kg/cmGになるように(投入圧力と発泡機内圧力との差は0kg/cmG)調整したこと以外は、実施例1と同様にして予備発泡粒子及び発泡樹脂成形体(容器本体1A)を複数個得た。実施例1と同様に、得られた容器本体1Aから10個を選抜し、実施例1と同様にして平均密度を測定した。また、その10個の容器本体1Aについて、実施例1と同様に、上記の評価方法により寸法収縮率P(%)及び平均寸法収縮率PL(%)を評価した。得られた結果(PL)を表1に示す。10個のうち、寸法収縮率Pが0.5%を超えた数も表1に示す。
【0042】
[比較例3]
内容積5リットルの撹拌機付き耐圧容器に、実施例1で得られたスチレン樹脂粒子のうち、粒径0.7〜1.0mmのもの2.0kg、イオン交換水2.2リットル、第三りん酸カルシウム6.0g、及びドデシルベンゼンスルホン酸ナトリウム0.2gを入れて撹拌を開始した。次に90℃に昇温した後、ブタン140gを圧入して5時間保持した。次いで、30℃まで冷却し、ブタン含有発泡性スチレン樹脂粒子を得た。取り出したブタン含有発泡性粒子を乾燥後、15℃の恒温室で5日間熟成させた。そして、予備発泡時の結合防止剤としてジンクステアレート、融着促進剤としてヒドロキシステアリン酸トリグリセライドを粒子表面に被膜処理した後、撹拌機付き発泡機内に投入した後、投入圧力が0.5kg/cmGの蒸気を発泡機内に導入した。この時の発泡機内の圧力は0.1kg/cmGになるように、排気制御弁の開度を電気信号でコントロールしながら、排気ラインを使って余分な圧力を外部に逃がした(投入圧力と発泡機内圧力との差は0.4kg/cmG)。このように、蒸気を発泡機内に連続して導入しながら予備発泡させてブタン含有のスチレン樹脂予備発泡粒子とした。
【0043】
予備発泡してから6時間後、実施例1で用いたと同じ成形用型を使用して実施例1と同様に発泡樹脂成形体(容器本体1A)を複数個成形した。実施例1と同様に、得られた容器本体1Aから10個を選抜し、実施例1と同様にして平均密度を測定した。また、その10個の容器本体1Aについて、実施例1と同様に、上記の評価方法により寸法収縮率P(%)及び平均寸法収縮率PL(%)を評価した。得られた結果(PL)を表1に示す。10個のうち、寸法収縮率Pが0.5%を超えた数も表1に示す。
【0044】
[比較例4]
PPO[(ポリ2,6−ジメチルフェニレン−1,4−オキサイド)(重合度200)]20部、ポリスチレン樹脂(スタイロン−666旭ダウ社製)80部、エチレンビスステアリルアミド0.1部を40m/mベントタイプ押出機で直径1mm,長さ1〜2mmのペレットにし、このペレット100部を攪拌機を備えたオートクレープに入れ、水100部、第3リン酸カルシウム0.3部、α−オレフィンスルフホン酸ソーダ0.01部を加えて90度に加熱し、さらにトルエン1.5部を加えて2時間放置した。しかる後、発泡剤としてブタンを90部添加して110℃に昇温させた。昇温後6時間放置してブタンがペレット中に含浸するのを待った。このようにして得られたビーズを脱水、乾燥し、発泡性ポリスチレン系樹脂粒子を得た。
【0045】
そして、予備発泡時の結合防止剤としてジンクステアレート、融着促進剤としてヒドロキシステアリン酸トリグリセライドを粒子表面に被膜処理した後、攪拌機付き発泡機内に投入し、導入圧力が2.0kg/cmGの蒸気を発泡機内に導入した。この時の発泡機内の圧力は1.6kg/cmGになるように、排気制御弁の開度を電気信号でコントロールしながら、排気ラインを使って余分な圧力を外部に逃がした(投入圧力と発泡機内圧力との差は0.4kg/cmG)。このように、蒸気を発泡機内に連続して導入しながら予備発泡させてブタン含有のスチレン系樹脂予備発泡粒子とした。
【0046】
このスチレン系樹脂予備発泡粒子を用いて、実施例1と同様にして発泡樹脂成形体(容器本体1A)を複数個得た。実施例1と同様に、得られた容器本体1Aから10個を選抜し、実施例1と同様にして平均密度を測定した。また、その10個の容器本体1Aについて、実施例1と同様に、上記の評価方法により寸法収縮率P(%)及び平均寸法収縮率PL(%)を評価した。得られた結果(PL)を表1に示す。10個のうち、寸法収縮率Pが0.5%を超えた数も表1に示す。
【0047】
【表1】

Figure 2004269019
【0048】
表1に示すように、比較例1と2では、成形に用いたスチレン樹脂予備発泡粒子を調製するときに、蒸気の投入圧力と発泡機内圧力との差が本発明の範囲と異なることから、寸法収縮率が0.5%を超える容器が大半となる。また、比較例3では発泡剤にブタンを用いていることから蒸気の投入圧力と発泡機内圧力との差を本発明の範囲内であっても、寸法収縮率が0.5%に収まるものはない。比較例4では発泡剤にブタンを用いかつ発泡助剤としてトルエンを含有していることもあり、やはり寸法収縮率が0.5%を超えている容器が出てくる。
【0049】
以上の結果から、スチレン系樹脂粒子に炭酸ガスを含浸させて得たスチレン系樹脂予備発泡粒子の型内発泡成形品において、スチレン系樹脂予備発泡粒子として、炭酸ガスを有する発泡性スチレン系樹脂粒子を投入圧力と発泡機内圧力との差を調整して予備発泡粒子としたものを用いて発泡成形することにより、高い温度に晒されたときの寸法安定性が優れたスチレン系樹脂発泡成形体が得られることがわかる。特に、80℃の温水を使用して10回繰り返し洗浄した後と洗浄前との寸法収縮率が0.5%以内であり、本発明による食品用容器は、各使用時毎に温水による殺菌洗浄を行っても、高い断熱性を維持した状態で10回程度の反復使用が可能となり、高い実用性を備えた食品用容器が得られることがわかる。
【0050】
【発明の効果】
本発明による食品用容器は、使用後に80℃程度の温水散布によって殺菌洗浄を行っても寸法収縮がきわめて小さい。そのために、蓋体との嵌合ができなくなったり、隙間が生じたりすることはなく、リターナブルな断熱性食品容器としてきわめて有効となる。
【図面の簡単な説明】
【図1】本発明で使用できるチレン系樹脂予備発泡粒子を製造するのに用いられる予備発泡機の概略説明図である。
【図2】食品用容器の一例を示す図。
【図3】温水洗浄の仕方を概説する図。
【符号の説明】
1 食品用容器
1A 食品用容器の容器本体
1B 食品用容器の蓋体
102 撹拌モーター
103 撹拌翼
104 邪魔棒
105 発泡槽上面検出器
106 発泡性粒子輸送器
107 発泡性粒子計量槽
108 発泡性粒子投入器
109 蒸気吹込制御弁
110 蒸気チャンバー
111 凝縮水排出弁
112 排気制御弁
113 予備発泡粒子排出口
114 予備発泡粒子一時受器
115 空気輸送設備
116 内圧検出・制御装置
117 蒸気吹込孔
118 蒸気投入圧力計
119 減圧弁
120 蒸気元圧力計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a food container, and more particularly to a food container repeatedly used for transporting, cooling, keeping warm, storing, packing, and the like of food.
[0002]
[Prior art]
As a food container, a foam molded article made of a styrene resin is widely used because a foam molded article having a high expansion ratio can be relatively easily obtained. In addition, when a styrene resin is used, there is an advantage that a foam molded container having a desired shape can be obtained via the styrene resin pre-expanded particles. In addition, foam molded containers made of styrene-based resin are tough despite high magnification, and have excellent thermal insulation due to having closed cells, making them ideal as food containers that require cooling and heat retention. It is. Further, a container made of a styrene-based resin alone can be recycled again as a styrene-based resin after use, and is recommended from the viewpoint of environmental conservation.
[0003]
However, a commonly known food container made of a styrene-based resin foam is obtained by in-mold foam-forming styrene-based resin pre-expanded particles containing an organic compound such as butane or pentane as a blowing agent. Since such a foamed resin molded article uses butane, pentane, or the like as a foaming agent, it shrinks in size over time. In addition, heat resistance is not sufficient, and when used in an atmosphere at a temperature of about 80 ° C. or washed with hot water, deformation may occur. If the deformation occurs, the lid and the container body cannot be fitted with each other, or even if the deformation occurs, a gap is formed between the lid and the heat insulating property, which is not preferable as a food container for keeping heat.
[0004]
In the case of containers that are required to be washed and sterilized each time they are used, such as returnable food containers, if the washing is performed with warm water of, for example, about 80 ° C., the deformed shape described above may render the container unsuitable for reuse. Can occur. Although it is possible to perform cleaning using a disinfectant or a medicine that can be washed at a low temperature, it is not easy to completely wash off the disinfectant or the medicine and is not suitable for a food container. For this reason, food containers made of a styrene resin foam are not used as returnable containers, or even when used, it is necessary to pay sufficient attention to washing with warm water.
[0005]
Patent Literature 1 (Japanese Patent Publication No. 2-49333) describes, as styrene-based foamable resin particles having high heat resistance, a mixture of styrene-based resin and polyphenylene ether. A molded article molded using the expandable resin particles, even if continuously heated at a temperature of about 95 ° C. for 168 hours, has a maximum dimensional shrinkage of 0.8 when the expansion ratio is 30 times. % Or less.
[0006]
Patent Document 2 (Japanese Patent Application Laid-Open No. 4-351646) proposes expandable styrene resin particles using carbon dioxide as a blowing agent instead of organic compounds such as butane and pentane. The molded product obtained by heating the pre-expanded particles in the mold has a small residual gas amount because carbon dioxide gas is used as a blowing agent, and the dimensional change rate is reduced even after long days of use. It is small and can be suppressed to about ± 0.8%.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 2-49333
[Patent Document 2]
JP-A-4-351646
[0008]
[Problems to be solved by the invention]
The foamed molded article made of the expandable resin particles described in Patent Literature 1 (Japanese Patent Publication No. 2-49333) uses an organic compound such as butane or pentane as a foaming agent and foams as described in the publication. It is necessary to add a residual monomer, toluene, ethylbenzene or the like as an auxiliary agent, and since the volatilization of these components causes dimensional shrinkage, the dimensional shrinkage rate with time cannot be reduced to 0.8% or less.
[0009]
As described above, in food containers that require high heat insulation or heat retention, when deformation occurs, it becomes impossible to close the container body, or even when the lid is closed, a gap is generated and the heat insulation is reduced. Would. Therefore, according to the experience of the present inventors, in a food container requiring high heat insulation, the dimensional shrinkage ratio needs to be within 0.5%, and if it exceeds that, heat insulation cannot be effectively secured. experienced. In particular, in the case of a returnable food container, washing with warm water of about 80 ° C. is performed as described above for sterilization, but such warm water washing may not cause dimensional shrinkage exceeding 0.5%. Required as a food container. The molded article using the expandable styrene resin particles described in Patent Document 2 (Japanese Patent Publication No. 2-49333) has a dimensional shrinkage ratio of about 0.8%, which is satisfactory even in this case. I can't.
[0010]
The present invention has been made in view of the above circumstances, and does not cause excessive dimensional shrinkage due to washing by spraying with hot water after use, thereby effectively using it as a returnable insulated food container. It is an object of the present invention to provide a food container made of a foamed styrene-based resin molded article.
[0011]
[Means for Solving the Problems]
The food container according to the present invention is obtained by foaming in-mold styrene-based resin pre-expanded particles obtained by impregnating the styrene-based resin particles with carbon dioxide gas and then pre-foaming them. A food container comprising a container body having an open top having four side walls and a lid capable of being fitted thereto, wherein the container body opening after repeated washing 10 times using hot water of 80 ° C. The dimensional shrinkage ratio in the portion is within 0.5%.
[0012]
In the present invention, the condition of the dimensional shrinkage ratio is defined as “after repeated washing 10 times using hot water of 80 ° C.” because the temperature at which food containers made of foamed resin molded articles are sterilized and washed with hot water is used. Is required to be about 80 ° C., and the desired cleaning effect is obtained by showering such warm water for several seconds, and in the case of a returnable food container, about 7 to 8 times on average Due to repeated use. Therefore, under these conditions, a food container made of a foamed styrene resin satisfying the condition that the dimensional shrinkage ratio is within 0.5% can be used repeatedly about 10 times while maintaining high heat insulation. Thus, a food container having high practicality is obtained.
[0013]
The foamed styrene-based resin article (food container) having the dimensional shrinkage ratio in the above range can be obtained by foaming the styrene-based resin pre-expanded particles produced as follows in a mold. That is, first, styrene-based resin particles are impregnated with carbon dioxide to form expandable styrene-based resin particles, and in the next step, the expandable styrene-based resin particles are charged into a prefoaming machine having a steam input line and an exhaust line. 0.5 to 5.0 kg / cm of steam from the steam input line 2 G is supplied at an input pressure of G, and an atmosphere gas containing steam is exhausted from an exhaust line, and during that time, the pressure in the foaming machine is set to 0.05 to 1.0 kg / cm from the input pressure of steam. 2 G Pre-expanded styrene resin particles obtained by pre-expanding while maintaining a low level.
[0014]
As the styrene resin particles (hereinafter, referred to as “resin particles”) constituting the expandable styrene resin particles (hereinafter, referred to as “expandable particles”), generally known styrene resin particles are used. can do. Specifically, such resin particles include styrene-based monomers such as styrene, α-methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene, and divinylbenzene (bifunctional monomer). Homopolymer particles or copolymer particles obtained by combining two or more of these monomers, methyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, esters of acrylic acid and methacrylic acid such as cetyl methacrylate, or acrylonitrile, dimethyl fumarate, Copolymer particles with monomers other than styrene monomers such as ethyl fumarate and alkylene glycol dimethacrylate (bifunctional monomer) are exemplified. Further, resin particles obtained by extrusion blending with a resin other than the styrene resin within a range in which the styrene component in the styrene resin particles exceeds 50% by weight may be used. Particularly, styrene resin particles are preferably polystyrene resin particles. The particle size of the resin particles can be appropriately selected according to the use of the food container. For example, a particle size of 0.2 to 2 mm can be used.
[0015]
It is preferable that the amount of the residual styrene monomer in the resin particles is as small as possible, and the amount of the styrene monomer contained in the resin particles is preferably 0 to 500 ppm. By using such resin particles, it is possible to obtain a foamed resin molded article in which the amount of the volatile organic compound contained is 1000 ppm or less.
[0016]
In order to reduce the residual styrene monomer in the resin particles, for example, in the case of suspension polymerization, a high-temperature-initiated polymerization catalyst of 0.05% by weight or more based on the styrene monomer is used, Preferably, the temperature is 115 ° C. or higher. Examples of the high temperature-initiated polymerization catalyst include t-butyl peroxybenzoate, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy acetate, and 2,2-t-butyl peroxybutane. Particularly, those having a temperature of 100 to 115 ° C. for obtaining a half-life of 10 hours are preferred. However, if these are used more than necessary, they will contain decomposition by-products such as t-butanol, so that they vary depending on the type of polymerization catalyst, but the upper limit of the amount used is preferably 0.5% by weight.
[0017]
The molecular weight of the resin particles is preferably from 200,000 to 400,000 in terms of weight average molecular weight according to the GPC method. If it is less than 200,000, the strength of the foamed resin molded article may decrease. If it is more than 400,000, it is difficult to obtain sufficient foaming properties, which is not preferable.
[0018]
The resin particles are impregnated with carbon dioxide as a foaming agent to obtain foamable particles. The carbon dioxide gas as the foaming agent may be 100% carbon dioxide gas, but other foaming agents may be added as long as the effects of the present invention are not impaired. Other blowing agents include air, inorganic blowing agents such as nitrogen, aliphatic hydrocarbons such as propane, butane, and pentane, alicyclic hydrocarbons such as cyclobutane and cyclopentane, and organic blowing agents such as fluorinated hydrocarbons. They can also be mixed. As the fluorinated hydrocarbon, it is preferable to use difluoroethane, tetrafluoroethane, or the like having an ozone depletion potential of zero. Here, the organic foaming agent is preferably used in a range not exceeding 20% by weight of the total amount of the foaming agent. The content ratio of carbon dioxide in the expandable particles is preferably 1 to 15% by weight.
[0019]
The impregnation of the resin particles with carbon dioxide gas can be performed, for example, by putting the resin particles into a pressure-tight container, press-fitting the carbon dioxide gas, and bringing the resin particles into contact with the pressurized carbon dioxide gas. . The impregnation temperature may be raised to a temperature at which the resin particles do not coalesce and agglomerate with each other, but are usually 0 to 40 ° C. The pressure when impregnating the resin particles with carbon dioxide gas is 10 kg / cm 2 G or more, more preferably 15 to 40 kg / cm 2 G. The impregnation time can be appropriately adjusted so that the resin particles have the above-mentioned carbon dioxide content, and is preferably 1 to 20 hours, more preferably 2 to 8 hours.
[0020]
When impregnating the resin particles with carbon dioxide gas, it is preferable to apply various surface treatment agents to the surfaces of the resin particles. Examples of such a surface treatment agent include an anti-binding agent for preventing the bonding of the pre-expanded particles at the time of heat expansion, a fusion promoting agent at the time of molding, an antistatic agent, and a spreading agent.
[0021]
Examples of the binding inhibitor include talc, calcium carbonate, silica, zinc stearate, aluminum hydroxide, ethylene bisstearic acid amide, calcium triphosphate, dimethyl silicon, zinc stearate and the like.
[0022]
Examples of the fusion promoter include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride, sorbitan stearate, polyethylene wax and the like.
[0023]
Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride. Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil.
[0024]
The pre-expanded particles are manufactured as follows. As described above, the styrene-based resin particles are impregnated with carbon dioxide to form expandable styrene-based resin particles, and in the next step, the expandable styrene-based resin particles are placed in a pre-foaming machine having a steam input line and an exhaust line. Charge, steam from the steam input line 0.5-5.0kg / cm 2 G is continuously supplied at an input pressure of G, and an atmosphere gas containing steam is exhausted from an exhaust line, and during that time, the pressure in the foaming machine is 0.05 to 1.0 kg / cm higher than the input pressure of steam. 2 This is a method in which pre-expanded particles are obtained while maintaining a low G to obtain pre-expanded styrene resin particles. In this method, it is preferred that prefoaming be performed immediately after the step of impregnating with carbon dioxide gas.
[0025]
This method, ie, an example of a pre-expansion machine that can be used to produce the pre-expanded styrene resin particles according to the present invention, will be described with reference to FIG. In the figure, 100 is a prefoaming machine, 102 is a stirring motor, 103 is a stirring blade, 104 is a baffle, 105 is a foaming tank upper surface detector, 106 is a foaming particle transporter, 107 is a foaming particle measuring tank, and 108 is Expandable particle input device, 109 is a steam blowing control valve, 110 is a steam chamber, 111 is a condensed water discharge valve, 112 is an exhaust control valve, 113 is a pre-expanded particle outlet, 114 is a pre-expanded particle temporary receiver, 115 is Pneumatic transportation equipment, 116 is an internal pressure detection / control device, 117 is a steam injection hole, 118 is a steam input pressure gauge, 119 is a pressure reducing valve, and 120 is a steam source pressure gauge.
[0026]
In detail, the pressure in the prefoamer 100 (pressure detected by the internal pressure detection / control device 116) is always set to the supply pressure by the exhaust control valve 112 or the like so that a fixed amount of steam is always supplied into the prefoamer 100. Control is performed so as to fall below. For example, when the input pressure of steam is 1.2 kg / cm 2 G (detected by the steam input pressure gauge 118), and the pressure in the prefoaming machine is set to 0.8 kg / cm. 2 When set to G, the pressure in the prefoaming machine 100 is detected by the internal pressure detection / control device 116, a control signal is sent to the exhaust control valve 112, and 0.4 kg / cm 2 The pressure is controlled while releasing the pressure corresponding to the G pressure. As described above, the pressure in the prefoamer 100 can be adjusted by linking and controlling the internal pressure of the prefoamer 100 and the exhaust control valve 112.
[0027]
The difference between the input pressure and the pressure inside the prefoaming machine is 0.05 kg / cm 2 If it is less than G, not only is it difficult to obtain low-density pre-expanded particles, but the appearance and internal fusion of the foamed resin molded article are poor, resulting in a very low commercial value. 1.0 kg / cm 2 If it exceeds G, not only the bonding at the time of prefoaming will increase, but also the surface glossiness will be low, and the irregularities on the foam surface will be undesirably large. More preferable pressure difference is 0.1 to 0.5 kg / cm 2 G.
[0028]
The particle diameter of the pre-expanded particles is preferably about 0.3 to 5 mm, and the bulk density of the pre-expanded particles is 0.015 to 0.5 g / cm. 3 The degree is preferred. It is preferable that the expandable resin particles in the prefoaming machine are usually heated to about 110 to 160 ° C, and a more preferable heating temperature is 110 to 130 ° C. When the heating temperature is lower than 110 ° C., the bulk density is 0.5 g / cm. 3 The following pre-expanded particles are not preferred because they are difficult to obtain. On the other hand, if the heating temperature is higher than 160 ° C., the tendency of the pre-expanded particles to coalesce increases, which is not preferable.
[0029]
The food container obtained by subjecting the pre-expanded particles to foam molding has excellent dimensional stability even after repeated high-temperature washing at 80 ° C., and as described in Examples, hot water at 80 ° C. The dimensional shrinkage ratio after the ten repeated washings used can be within 0.5%. Also, it has excellent long-term dimensional stability.
[0030]
The foam molding method is not particularly limited, and any known method can be used. For example, the pre-expanded particles are filled in a molding die and heated by steam. When the pre-expanded particles are heated by contact with steam, the pre-expanded particles expand, but the space in which the foam can be expanded is limited by the molding die. You can get the body. The density of the foamed resin molded article is 0.015 to 0.5 g / cm. 3 Degree is preferable, and in particular, 0.02 to 0.1 g / cm 3 The degree is preferred.
[0031]
The food container according to the present invention comprises a container body and a lid formed by in-mold foam molding using the above-mentioned styrene-based resin pre-expanded particles, and the lid is fitted inside the container body. Or external fitting. In any case, since the dimensional shrinkage ratio is small, the fitting state between the container body and the lid maintains the hermetic state of the place even after repeated use a plurality of times, and high heat insulating property is obtained. continue.
[0032]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the following examples and comparative examples, the food container 1 composed of the container body 1A and the lid 1B having the shape and dimensions shown in FIG. 2 is foamed, and the dimensional shrinkage rate of the container body 1A is determined. The evaluation was performed as follows. That is, in FIG. 2, the container body 1A is of an upwardly open type having a bottom portion 11 and four side walls 12 provided upright on the bottom portion 11, and the lid 1B is an upper open portion of the container body 1A. Has a protruding portion 13 which is fitted inside. The container main body 1A of the food container 1 has a height h: 300 mm, an outer length a in the longitudinal direction a: 680 mm, an outer length b in the short direction: 480 mm, and a wall thickness c between the side wall and the bottom: 40 mm.
[0033]
<Dimension shrinkage>
The foamed resin molded product (actually, the container body 1A having the shape shown in FIG. 2) taken out of the foaming mold was placed in a constant temperature and humidity room (JIS-K7100 standard temperature and humidity condition) at a temperature of 23 ° C. and a relative humidity of 50%. ) For 24 hours, and used as a test sample according to JIS-K6767.
[0034]
As shown in FIG. 3, the test sample was set in a showering chamber in an upside-down state, and sterilized and washed by spraying hot water W of 80 ° C. from above and below for 20 seconds. Then, pressure 3kg / cm 2 Was sprayed for 15 seconds to perform aeration to remove water droplets. It was left to dry in a room at an ambient temperature of 50 ° C. for 1 hour. After repeating the above washing step 10 times, a vernier caliper is applied to the inner side in the longitudinal direction of the upper edge of the container of the test sample after drying, and the dimension a2 of the portion having the smallest dimension is measured. The dimensional shrinkage P% was determined. The shrinkage P was similarly obtained for ten test samples, and the average PL% was shown in Table 1.
Dimensional shrinkage P (%) = (a2−a1) × 100 / a1
Here, a1 is the inner dimension of the test sample in the longitudinal direction of the upper portion of the container before washing with hot water.
[0035]
[Example 1]
A 100 liter reactor was charged with 40 kg of pure water, 4.0 g of sodium dodecylbenzenesulfonate, and 60 g of magnesium pyrophosphate, and used as an aqueous medium. Next, 150 kg of benzoyl peroxide (purity 75%), 44 g of styrene in which 30 g of t-butylperoxybenzoate and 22 g of polyethylene wax (molecular weight 1000) are dissolved are added with stirring, suspended, and heated to 90 ° C. to polymerize. Started. When the polymerization conversion rate measured by the specific gravity method reached 99.8% by weight, the temperature of the reactor was raised to 125 ° C., maintained for 3 hours, and then cooled to room temperature to take out styrene resin particles. The residual styrene in the styrene resin particles obtained here was measured by gas chromatography and found to be 404 ppm, and the weight average molecular weight measured by GPC was 257000.
[0036]
After putting 15 kg of styrene resin particles having a particle diameter of 0.7 to 1.0 mm into a rotary pressure-resistant container having a content of 30 liters, 7.5 g of polyethylene glycol 300 as a spreading agent, glycerin monostearin 7.5 g of an acid ester and 30 g of calcium carbonate as a binding inhibitor were added, and the container was rotated to adhere to the surface of the resin particles. Then, after stopping the rotation, carbon dioxide gas was injected into the container at 25 ° C. and 30 kg / cm. 2 G was maintained for 6 hours to impregnate the resin particles with carbon dioxide gas to obtain expandable styrene resin particles.
[0037]
The expandable styrene resin particles thus obtained are taken out of the pressure-resistant container and charged in the next step into a foaming machine equipped with a stirrer. 2 G steam was introduced into the foamer can. At this time, the pressure in the foaming machine is 0.8 kg / cm. 2 Excess pressure was released to the outside using the exhaust line while controlling the degree of opening of the exhaust control valve with an electric signal so as to reach G (the difference between the input pressure and the pressure inside the foaming machine was 0.4 kg / cm. 2 G). In this way, pre-foaming was performed while continuously introducing steam into the foaming machine to obtain styrene resin pre-foamed particles. The particle size of the pre-expanded particles was 2.3 to 4.0 mm.
[0038]
Six hours after the pre-foaming, the pre-foamed particles are filled into a foaming mold having a cavity shape after mold clamping designed to have the shape of the foamed resin molded article (container main body 1A) shown in FIG. To obtain a plurality of foamed styrene-based resin articles (container main body 1A) having the shape shown in FIG. Ten pieces were selected from the obtained container body 1A, and the average density was measured. The dimensional shrinkage P (%) and the average dimensional shrinkage PL (%) of the ten container bodies 1A were evaluated by the above-described evaluation method. Table 1 shows the obtained results (PL). Table 1 also shows the number of the ten pieces whose dimensional shrinkage P exceeded 0.5%.
[0039]
[Example 2]
Immediately after removing the expandable styrene resin particles from the pressure-resistant container, the charging pressure is 0.85 kg / cm. 2 G steam is introduced into the foaming machine, and the pressure in the foaming machine is 0.8 kg / cm. 2 G (the difference between the input pressure and the pressure in the foaming machine is 0.05 g / cm 2 G) Except for adjustment, a plurality of pre-expanded particles and a foamed resin molded article (container main body 1A) were obtained in the same manner as in Example 1. As in Example 1, ten pieces were selected from the obtained container body 1A, and the average density was measured. The dimensional shrinkage P (%) and the average dimensional shrinkage PL (%) of the ten container bodies 1A were evaluated by the above-described evaluation method. Table 1 shows the obtained results (PL). Table 1 also shows the number of the ten pieces whose dimensional shrinkage P exceeded 0.5%.
[0040]
[Comparative Example 1]
Immediately after removing the expandable styrene resin particles from the pressure-resistant container, the input pressure is 2.0 kg / cm. 2 G steam is introduced into the foaming machine, and the pressure inside the foaming machine is 0.8 kg / cm. 2 G (the difference between the input pressure and the pressure inside the foaming machine is 1.2 kg / cm 2 G) Except for adjustment, a plurality of pre-expanded particles and a foamed resin molded article (container main body 1A) were obtained in the same manner as in Example 1. In the same manner as in Example 1, ten pieces were selected from the obtained container body 1A, and the average density was measured in the same manner as in Example 1. The dimensional shrinkage P (%) and the average dimensional shrinkage PL (%) of the ten container bodies 1A were evaluated in the same manner as in Example 1 by the evaluation method described above. Table 1 shows the obtained results (PL). Table 1 also shows the number of the ten pieces whose dimensional shrinkage P exceeded 0.5%.
[0041]
[Comparative Example 2]
Immediately after removing the expandable styrene resin particles from the pressure-resistant container, the input pressure is 0.8 kg / cm. 2 G steam is introduced into the foaming machine, and the pressure inside the foaming machine is 0.8 kg / cm. 2 G (the difference between the input pressure and the pressure inside the foaming machine is 0 kg / cm 2 G) Except for adjustment, a plurality of pre-expanded particles and a foamed resin molded article (container main body 1A) were obtained in the same manner as in Example 1. In the same manner as in Example 1, ten pieces were selected from the obtained container body 1A, and the average density was measured in the same manner as in Example 1. The dimensional shrinkage P (%) and the average dimensional shrinkage PL (%) of the ten container bodies 1A were evaluated in the same manner as in Example 1 by the evaluation method described above. Table 1 shows the obtained results (PL). Table 1 also shows the number of the ten pieces whose dimensional shrinkage P exceeded 0.5%.
[0042]
[Comparative Example 3]
In a pressure-resistant container with a stirrer having an inner volume of 5 liters, 2.0 kg of the styrene resin particles having a particle size of 0.7 to 1.0 mm, 2.2 liters of ion-exchanged water, 6.0 g of calcium phosphate and 0.2 g of sodium dodecylbenzenesulfonate were added and stirring was started. Next, after the temperature was raised to 90 ° C., 140 g of butane was injected and held for 5 hours. Next, the mixture was cooled to 30 ° C. to obtain butane-containing expandable styrene resin particles. The butane-containing expandable particles taken out were dried and then aged in a thermostatic chamber at 15 ° C. for 5 days. Then, zinc stearate as a binding inhibitor at the time of prefoaming, and hydroxystearic acid triglyceride as a fusion promoter are coated on the particle surface, and then charged into a foaming machine equipped with a stirrer. The charging pressure is 0.5 kg / cm. 2 G steam was introduced into the foaming machine. At this time, the pressure in the foaming machine is 0.1 kg / cm. 2 Excess pressure was released to the outside using the exhaust line while controlling the degree of opening of the exhaust control valve with an electric signal so as to reach G (the difference between the input pressure and the pressure inside the foaming machine was 0.4 kg / cm. 2 G). In this way, pre-foaming was performed while continuously introducing steam into the foaming machine to obtain pre-expanded butane-containing styrene resin particles.
[0043]
Six hours after the prefoaming, a plurality of foamed resin molded articles (container main body 1A) were molded in the same manner as in Example 1 using the same molding die used in Example 1. In the same manner as in Example 1, ten pieces were selected from the obtained container body 1A, and the average density was measured in the same manner as in Example 1. The dimensional shrinkage P (%) and the average dimensional shrinkage PL (%) of the ten container bodies 1A were evaluated in the same manner as in Example 1 by the evaluation method described above. Table 1 shows the obtained results (PL). Table 1 also shows the number of the ten pieces whose dimensional shrinkage P exceeded 0.5%.
[0044]
[Comparative Example 4]
20 parts of PPO [(poly 2,6-dimethylphenylene-1,4-oxide) (degree of polymerization: 200)], 80 parts of a polystyrene resin (manufactured by Styron-666 Asahi Dow), and 0.1 part of ethylenebisstearylamide were used for 40 m. / M vent type extruder to form pellets having a diameter of 1 mm and a length of 1 to 2 mm. 100 parts of the pellets are placed in an autoclave equipped with a stirrer, and 100 parts of water, 0.3 parts of tricalcium phosphate, α-olefin sulf To the mixture was added 0.01 part of sodium sulfonate, the mixture was heated to 90 ° C, 1.5 parts of toluene was added, and the mixture was allowed to stand for 2 hours. Thereafter, 90 parts of butane was added as a foaming agent, and the temperature was raised to 110 ° C. After the temperature was raised, the mixture was left for 6 hours to wait for butane to be impregnated in the pellets. The beads thus obtained were dehydrated and dried to obtain expandable polystyrene resin particles.
[0045]
Then, zinc stearate as a binding inhibitor at the time of preliminary foaming, and hydroxystearic acid triglyceride as a fusion promoter are coated on the surface of the particles, and then charged into a foaming machine equipped with a stirrer, and the introduction pressure is 2.0 kg / cm. 2 G steam was introduced into the foaming machine. The pressure in the foaming machine at this time is 1.6 kg / cm 2 Excess pressure was released to the outside using the exhaust line while controlling the degree of opening of the exhaust control valve with an electric signal so as to reach G (the difference between the input pressure and the pressure inside the foaming machine was 0.4 kg / cm. 2 G). In this way, pre-foaming was performed while continuously introducing steam into the foaming machine to obtain pre-expanded butane-containing styrene resin particles.
[0046]
Using the styrene resin pre-expanded particles, a plurality of expanded resin molded articles (container main body 1A) were obtained in the same manner as in Example 1. In the same manner as in Example 1, ten pieces were selected from the obtained container body 1A, and the average density was measured in the same manner as in Example 1. The dimensional shrinkage P (%) and the average dimensional shrinkage PL (%) of the ten container bodies 1A were evaluated in the same manner as in Example 1 by the evaluation method described above. Table 1 shows the obtained results (PL). Table 1 also shows the number of the ten pieces whose dimensional shrinkage P exceeded 0.5%.
[0047]
[Table 1]
Figure 2004269019
[0048]
As shown in Table 1, in Comparative Examples 1 and 2, when the styrene resin pre-expanded particles used for molding were prepared, the difference between the pressure for introducing steam and the pressure in the foaming machine was different from the range of the present invention. Most of the containers have a dimensional shrinkage rate of more than 0.5%. In Comparative Example 3, since butane was used as the blowing agent, even if the difference between the steam input pressure and the pressure inside the foaming machine was within the range of the present invention, the one in which the dimensional shrinkage rate was within 0.5% was considered. Absent. In Comparative Example 4, there are cases where butane is used as a foaming agent and toluene is contained as a foaming aid, so that a container having a dimensional shrinkage rate of more than 0.5% comes out.
[0049]
From the above results, in the in-mold foam molded article of the styrene-based resin pre-expanded particles obtained by impregnating the styrene-based resin particles with carbon dioxide, as the styrene-based resin pre-expanded particles, expandable styrene-based resin particles having carbon dioxide gas By adjusting the difference between the input pressure and the internal pressure of the foaming machine and foaming using pre-expanded particles, a styrene-based resin foam with excellent dimensional stability when exposed to high temperatures is obtained. It can be seen that it can be obtained. In particular, the dimensional shrinkage after washing 10 times repeatedly using hot water at 80 ° C. and before washing is within 0.5%, and the food container according to the present invention is sterilized and washed with hot water every time it is used. , It can be used repeatedly about 10 times while maintaining high heat insulation, and it can be seen that a food container with high practicality can be obtained.
[0050]
【The invention's effect】
The food container according to the present invention has a very small dimensional shrinkage even after being sterilized and washed by spraying hot water at about 80 ° C. after use. For this reason, there is no possibility of fitting with the lid or no gap, and this is extremely effective as a returnable heat-insulating food container.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a pre-expansion machine used for producing a pre-expanded particle of a styrene resin usable in the present invention.
FIG. 2 shows an example of a food container.
FIG. 3 is a diagram outlining a method of cleaning with hot water.
[Explanation of symbols]
1 Food containers
1A Food container body
1B Food container lid
102 Stirring motor
103 stirring blade
104 Disturbing Stick
105 Foam tank top detector
106 Expandable particle transporter
107 Expandable particle measuring tank
108 Expandable particle input device
109 Steam injection control valve
110 steam chamber
111 Condensate discharge valve
112 Exhaust control valve
113 Pre-expanded particle outlet
114 Pre-expanded particle temporary receiver
115 Pneumatic transportation equipment
116 Internal pressure detection / control device
117 steam blow hole
118 Steam input pressure gauge
119 Pressure reducing valve
120 Steam source pressure gauge

Claims (2)

スチレン系樹脂粒子に炭酸ガスを含浸させた後に予備発泡させて得たスチレン系樹脂予備発泡粒子を型内発泡成形して得た、底部と底部に起立して設けた4つの側壁部とを有する上方開放の容器本体とこれに嵌合可能な蓋体とから構成される食品用容器であって、80℃の温水を使用した10回繰り返し洗浄後の容器本体開口部における寸法収縮率が0.5%以内であることを特徴とするスチレン系樹脂発泡成形体からなる食品用容器。A styrene-based resin particle is impregnated with carbon dioxide gas and then pre-foamed. The styrene-based resin pre-expanded particle is obtained by in-mold foam molding, and has a bottom portion and four side walls provided upright at the bottom portion. A food container comprising a container body which is open upward and a lid body which can be fitted thereto, wherein the dimensional shrinkage at the container body opening after the washing is repeated 10 times using warm water of 80 ° C. is 0. A food container comprising a foamed styrene-based resin product, wherein the content is 5% or less. 成形に用いたスチレン系樹脂予備発泡粒子が、スチレン系樹脂粒子に炭酸ガスを含浸させて発泡性スチレン系樹脂粒子とし、次工程で蒸気投入ラインと排気ラインを備えた予備発泡機内に前記発泡性スチレン系樹脂粒子を投入し、蒸気投入ラインから蒸気を0.5〜5.0kg/cmGの投入圧力で供給すると共に、排気ラインから蒸気を含む雰囲気ガスを排気し、かつその間、発泡機内圧力を蒸気の投入圧力より0.05〜1.0kg/cmG低く維持しながら予備発泡させて得たスチレン系樹脂予備発泡粒子であることを特徴とする請求項1記載の食品用容器。The styrene-based resin pre-expanded particles used for molding are expanded into styrene-based resin particles by impregnating the styrene-based resin particles with carbon dioxide gas. Styrene-based resin particles are charged, steam is supplied from a steam input line at an input pressure of 0.5 to 5.0 kg / cm 2 G, and an atmosphere gas containing steam is exhausted from an exhaust line. The food container according to claim 1, wherein the container is pre-expanded styrene resin particles obtained by pre-expanding while maintaining the pressure at 0.05 to 1.0 kg / cm 2 G lower than the pressure of steam.
JP2003065366A 2003-03-11 2003-03-11 Food container formed of styrene resin expansion-molded body Pending JP2004269019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065366A JP2004269019A (en) 2003-03-11 2003-03-11 Food container formed of styrene resin expansion-molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065366A JP2004269019A (en) 2003-03-11 2003-03-11 Food container formed of styrene resin expansion-molded body

Publications (1)

Publication Number Publication Date
JP2004269019A true JP2004269019A (en) 2004-09-30

Family

ID=33126408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065366A Pending JP2004269019A (en) 2003-03-11 2003-03-11 Food container formed of styrene resin expansion-molded body

Country Status (1)

Country Link
JP (1) JP2004269019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126557A (en) * 2009-12-16 2011-06-30 Sekisui Plastics Co Ltd Cold insulation container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126557A (en) * 2009-12-16 2011-06-30 Sekisui Plastics Co Ltd Cold insulation container

Similar Documents

Publication Publication Date Title
US7358280B2 (en) Process for processing expandable polymer particles and foam article thereof
AU761299B2 (en) Porous polymer particles
JP3732418B2 (en) Expandable styrene resin particles
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
US6455599B1 (en) Process for the preparation of expanded polyvinylarene particles
JP2017114987A (en) Expandable styrene resin particle with low static electrification amount, preliminary expanded particle and manufacturing method of expanded molded body
JP2004269019A (en) Food container formed of styrene resin expansion-molded body
JP3970652B2 (en) Heat-insulating returnable box
JP3979883B2 (en) Expandable polystyrene resin particles
JP3164977B2 (en) Pre-expanded thermoplastic resin particles having low thermal conductivity and molded article comprising the pre-expanded thermoplastic resin particles
JPH05255531A (en) Production of molded polymer foam
JP4065795B2 (en) Heat-resistant styrenic resin foam molding
JP3910855B2 (en) Thermal insulation for floor heating
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JP2004082836A (en) Shock absorbing material made from molded styrene foam for automobile interior
JP2003201615A (en) Shock absorbing material for helmet and helmet provided with the shock absorbing material
JP2017210538A (en) Method for producing foamable polystyrene resin particle
JP2003211478A (en) Tray for parts
JPS5940164B2 (en) Method for producing expandable thermoplastic resin particles
JP3836062B2 (en) Styrenic resin pre-expanded particles, molded body, and method for producing pre-expanded particles
JP3999150B2 (en) Thermal insulation panel
JP2003194289A (en) Pipe thermal insulating material
JP2002356576A (en) Polystyrene resin pre-foamed particle, production method and foamed molded material
JP2003237883A (en) Base carrying container