JP2003201615A - Shock absorbing material for helmet and helmet provided with the shock absorbing material - Google Patents

Shock absorbing material for helmet and helmet provided with the shock absorbing material

Info

Publication number
JP2003201615A
JP2003201615A JP2001393314A JP2001393314A JP2003201615A JP 2003201615 A JP2003201615 A JP 2003201615A JP 2001393314 A JP2001393314 A JP 2001393314A JP 2001393314 A JP2001393314 A JP 2001393314A JP 2003201615 A JP2003201615 A JP 2003201615A
Authority
JP
Japan
Prior art keywords
styrene
helmet
absorbing material
resin particles
shock absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001393314A
Other languages
Japanese (ja)
Inventor
Shinji Takakura
伸治 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2001393314A priority Critical patent/JP2003201615A/en
Publication of JP2003201615A publication Critical patent/JP2003201615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Helmets And Other Head Coverings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock absorbing material for a helmet made of a styrene- based resin expansion molded product having extremely stable dimensions over a long period even under a high-temperature atmosphere and an ultralow content of volatile organic compounds and the helmet using the shock absorbing material. <P>SOLUTION: This shock absorbing material having a hollow nearly hemispherical shape is obtained by carrying out in-mold expansion molding of preexpanded styrene-based resin particles prepared by impregnating styrene-based resin particles with gaseous carbon dioxide. The rate of dimensional change before and after heating is ≤±0.5% when the expansion molded product is heated at 80°C for 600 h. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ヘルメット用衝撃
吸収材及び該衝撃吸収材を備えたヘルメットに関し、更
に詳しくは、二輪自動車搭乗時の安全確保、高所その他
現場作業時での安全確保、あるいは、銃器等からの防弾
等を目的としたヘルメットの内装体として用いられるヘ
ルメット用衝撃吸収材及び該衝撃吸収材を備えたヘルメ
ットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock absorbing material for a helmet and a helmet provided with the shock absorbing material, and more specifically, ensuring safety when riding a two-wheeled vehicle, ensuring safety when working at a high place or on site. Alternatively, the present invention relates to a shock absorber for a helmet used as an inner body of a helmet for the purpose of preventing bullets from a firearm and the like, and a helmet including the shock absorber.

【0002】[0002]

【従来の技術】一般的に上記のような用途で使用される
ヘルメットのための衝撃吸収材して、発泡ポリエチレ
ン、ウレタン系のスポンジ、ゴム系のスポンジ、ゲル状
のもの、等が使用され、所要形状とされた衝撃吸収材を
繊維強化プラスチック製や金属製である帽体の内側に接
着や両面テープ等で固定しているのが普通である。材料
として、高い剛性と高い緩衝性の双方を満足することの
できる発泡ポリスチレン等のスチレン系樹脂発泡成形体
で作った衝撃吸収材は、頭蓋骨骨折等人体に重大な影響
を与える可能性がある場所で使用するヘルメットの衝撃
吸収材として、高い評価が得られている。
2. Description of the Related Art Generally, foamed polyethylene, urethane type sponge, rubber type sponge, gel type, etc. are used as impact absorbing materials for helmets used in the above-mentioned applications. It is usual that the shock absorber having the required shape is fixed to the inside of a cap body made of fiber reinforced plastic or metal with adhesive or double-sided tape. As a material, shock absorbers made of styrene-based resin foam moldings such as expanded polystyrene that can satisfy both high rigidity and high shock-absorbing properties may cause serious effects on the human body such as skull fractures. It has been highly evaluated as a shock absorber for helmets used in.

【0003】[0003]

【発明が解決しようとする課題】通常、スチレン系樹脂
の発泡成形品は、ブタンやペンタン等を発泡剤として含
む発泡性スチレン系樹脂粒子を蒸気等により加熱して得
た予備発泡粒子を型内発泡成形用型のキャビティ内に充
填し、蒸気で加熱して該スチレン系樹脂予備発泡粒子を
型内発泡成形することによって製造される。しかし、発
泡剤としてブタンやペンタンを用いることが一般的であ
り、80℃程度の高温環境下に一定時間放置したときの
寸法変化率が±1.5%程度と大きく、帽体の内側に固
定されたスチレン系樹脂発泡成形体で作った衝撃吸収材
がはがれてしまうという問題が発生することがあった。
ヘルメットには80℃以上という高温環境に長時間にわ
たって置かれる場合もあり、高温かつ長時間の雰囲気下
でも寸法変化率が小さい衝撃吸収材が強く望まれてい
る。
Generally, a foamed molded article of a styrene resin is obtained by heating pre-expanded particles obtained by heating expandable styrene resin particles containing butane, pentane or the like as a foaming agent with steam or the like. It is produced by filling the cavity of a foam molding mold and heating with steam to subject the styrene resin pre-expanded particles to foam molding in the mold. However, it is common to use butane or pentane as a foaming agent, and when left in a high temperature environment of about 80 ° C for a certain period of time, the dimensional change rate is as large as ± 1.5%, and it is fixed inside the cap body. There was a problem that the shock absorbing material made of the foamed styrene resin foamed product was peeled off.
A helmet may be placed in a high temperature environment of 80 ° C. or higher for a long time, and a shock absorber having a small dimensional change rate even under a high temperature and long time atmosphere is strongly desired.

【0004】一方、近年、シックハウス(室内空気汚
染)に係わるとされる残留揮発性有機化合物の含有量を
極めて少なくすることが強く求められるようになってき
ており、ブタンやペンタン等の有機化合物に替えて、発
泡剤に炭酸ガスを用いたスチレン系樹脂予備発泡粒子が
提案されている(特開平4−351646号公報参
照)。この種の予備発泡粒子を型内発泡させた成形品
は、発泡剤に炭酸ガスを用いていることから残留ガス量
は少なく、80℃程度の高温下に長時間放置したときの
寸法変化率は±0.8%程度に抑えることができ、ブタ
ンやペンタンを発泡剤に用いたものよりも優れている。
しかし、本発明者らの実験では、ヘルメットの衝撃吸収
材としては、高温環境下での寸法変化率を±0.8%程
度にまで改善できたとしてもまだ不十分であり、帽体か
らのはがれを防いで、種々の使用環境下での装着者の安
全性を配慮すると、該寸法変化率は士0.5%以下とす
ることが求められている。
On the other hand, in recent years, there has been a strong demand for reducing the content of residual volatile organic compounds related to sick houses (indoor air pollution), and organic compounds such as butane and pentane have been strongly demanded. Instead, styrene-based resin pre-expanded particles using carbon dioxide as a blowing agent have been proposed (see Japanese Patent Laid-Open No. 4-351646). A molded product obtained by foaming pre-expanded particles of this kind in a mold has a small amount of residual gas because carbon dioxide is used as a foaming agent, and the dimensional change rate when left at a high temperature of about 80 ° C. for a long time is small. It can be suppressed to about ± 0.8%, which is superior to that using butane or pentane as the foaming agent.
However, in the experiments conducted by the present inventors, as a shock absorbing material for a helmet, it is still insufficient even if the dimensional change rate in a high temperature environment can be improved to about ± 0.8%. Considering the safety of the wearer in various usage environments while preventing peeling, the dimensional change rate is required to be 0.5% or less.

【0005】[0005]

【課題を解決するための手段】本発明は、上記のような
要請に応えるべくなされたものであり、本発明によるヘ
ルメット用衝撃吸収材は、スチレン系樹脂粒子に炭酸ガ
スを含浸させて得たスチレン系樹脂予備発泡粒子を型内
発泡成形して得た、80℃で600時間加熱したとき、
その加熱前と加熱後における寸法変化率が±0.5%以
内である中空略半球形状を有するスチレン系樹脂発泡成
形体からなるヘルメット用衝撃吸収材であることを特徴
とする。
The present invention has been made in order to meet the above demands, and the shock absorbing material for helmets according to the present invention is obtained by impregnating styrene resin particles with carbon dioxide gas. Styrene-based resin pre-expanded particles obtained by in-mold foam molding, when heated at 80 ° C. for 600 hours,
The shock absorbing material for a helmet is characterized in that it is a shock absorbing material for a helmet, which is made of a styrene resin foam molded product having a hollow approximately hemispherical shape with a dimensional change rate within ± 0.5% before and after heating.

【0006】本発明において、「80℃で600時間加
熱」としたのは、ヘルメットが使用される温度環境の最
高値である80℃を上限値とし、かつ、充分な安全率を
とって600時間この高温領域で加熱する条件において
も、上記した課題を解決することが求められていること
による。この環境において、寸法変化率が±0.5%以
下を満足するものは、このような問題を解決することが
できる。
In the present invention, “heating at 80 ° C. for 600 hours” means that the maximum value of the temperature environment in which the helmet is used is 80 ° C. and the safety factor is 600 hours. This is because it is required to solve the above problems even under the condition of heating in this high temperature region. In this environment, the one in which the dimensional change rate satisfies ± 0.5% or less can solve such a problem.

【0007】上記の範囲の寸法変化率を持つヘルメット
用衝撃吸収材は、以下のようにして製造されるスチレン
系樹脂予備発泡粒子を型内発泡することにより得ること
ができる。すなわち、最初に、スチレン系樹脂粒子に炭
酸ガスを含浸させて発泡性スチレン系樹脂粒子とし、次
工程で蒸気投入ラインと排気ラインを備えた予備発泡機
内に前記発泡性スチレン系樹脂粒子を投入し、蒸気投入
ラインから蒸気を0.5〜5.0kg/cm2Gの投入
圧力で供給すると共に、排気ラインから蒸気を含む雰囲
気ガスを排気し、かつその間、発泡機内圧力を蒸気の投
入圧力より0.05〜1.0kg/cm2G低く維持し
ながら予備発泡させて得られるスチレン系樹脂予備発泡
粒子を使用する。
The impact absorbing material for a helmet having a dimensional change rate within the above range can be obtained by in-mold foaming of styrene resin pre-expanded particles produced as follows. That is, first, carbon dioxide gas is impregnated into styrene-based resin particles to form expandable styrene-based resin particles, and in the next step, the expandable styrene-based resin particles are charged into a pre-expanding machine equipped with a steam charging line and an exhaust line. , While supplying steam from the steam charging line at a charging pressure of 0.5 to 5.0 kg / cm 2 G, exhausting the atmospheric gas containing steam from the exhaust line, and during that time, the foaming machine internal pressure from the steam charging pressure Styrenic resin pre-expanded particles obtained by pre-expanding while maintaining a low level of 0.05 to 1.0 kg / cm 2 G are used.

【0008】上記のスチレン系樹脂予備発泡粒子を用い
ることにより、上記寸法変化率が±0.5%以下である
型内発泡によるスチレン系樹脂発泡成形体を得ることが
できる。従って、このようにして製造したヘルメットの
衝撃吸収材は、上記したヘルメットに関する要求性能を
満たしたヘルメット用衝撃吸収材となる。また、ヘルメ
ット用衝撃吸収材における残留揮発性有機化合物の含有
量をきわめて少量とすることも可能である。以下、さら
に詳細に説明する。
By using the styrene resin pre-expanded particles described above, it is possible to obtain a styrene resin foam molded article having a dimensional change rate of ± 0.5% or less by in-mold foaming. Therefore, the shock absorbing material for the helmet manufactured in this manner is a shock absorbing material for a helmet that satisfies the above-mentioned required performances for the helmet. Further, it is possible to make the content of the residual volatile organic compound in the impact absorbing material for helmet extremely small. The details will be described below.

【0009】上記スチレン系樹脂粒子としては、一般に
知られているスチレン系樹脂の粒状物を使用することが
できる。具体的には、このような樹脂粒子としては、ス
チレン、α−メチルスチレン、パラメチルスチレン、t
−ブチルスチレン、クロルスチレン、ジビニルベンゼン
(2官能性単量体)等のスチレン系単量体の単独重合粒
子又はこれら単量体を2種以上組み合わせた共重合体粒
子、メチルアクリレート、ブチルアクリレート、メチル
メタクリレート、エチルメタクリレート、セチルメタク
リレート等のアクリル酸及びメタクリル酸のエステル、
あるいはアクリロニトリル、ジメチルフマレート、エチ
ルフマレート、アルキレングリコールジメタクリレート
(2官能性単量体)等のスチレン系単量体以外の単量体
との共重合体粒子等が挙げられる。更に、これらスチレ
ン系樹脂粒子中のスチレン成分が50重量%を超える範
囲内でスチレン系樹脂以外の樹脂と押出しブレンドして
得られた樹脂粒子であってもよい。スチレン系樹脂以外
の樹脂としては、ポリフェニルエーテル系樹脂、ポリオ
レフィン系樹脂、ゴム成分等が挙げられる。特にスチレ
ン系樹脂粒子としては、ポリスチレン樹脂粒子が好まし
い。樹脂粒子の粒径は、ヘルメットの用途に応じて適宜
選択でき、例えば、0.2〜5mmの粒径のものを使用
することができる。スチレン系樹脂粒子は、残留スチレ
ン系単量体の量ができるだけ少ないことが好ましく、樹
脂粒子中、0〜500ppmであることが特に好まし
い。
As the styrene resin particles, generally known styrene resin particles can be used. Specifically, such resin particles include styrene, α-methylstyrene, paramethylstyrene, t
-Homopolymer particles of styrene-based monomers such as butylstyrene, chlorostyrene, divinylbenzene (bifunctional monomer) or copolymer particles in which two or more kinds of these monomers are combined, methyl acrylate, butyl acrylate, Ester of acrylic acid and methacrylic acid such as methyl methacrylate, ethyl methacrylate, cetyl methacrylate,
Alternatively, copolymer particles with a monomer other than a styrene-based monomer such as acrylonitrile, dimethyl fumarate, ethyl fumarate, and alkylene glycol dimethacrylate (bifunctional monomer) can be used. Further, it may be resin particles obtained by extrusion-blending with a resin other than the styrene resin within a range in which the styrene component in these styrene resin particles exceeds 50% by weight. Examples of the resin other than the styrene resin include a polyphenyl ether resin, a polyolefin resin, and a rubber component. In particular, polystyrene resin particles are preferable as the styrene resin particles. The particle size of the resin particles can be appropriately selected according to the application of the helmet, and for example, particles having a particle size of 0.2 to 5 mm can be used. It is preferable that the amount of residual styrene monomer in the styrene resin particles is as small as possible, and it is particularly preferable that the amount of the residual styrene monomer is 0 to 500 ppm.

【0010】スチレン系樹脂粒子中の残留スチレン系単
量体を低減するには、例えば懸濁重合においては、スチ
レン系単量体に対して0.05重量%以上の高温開始型
の重合触媒を用い、最終の重合温度を115℃以上とす
るのが好ましい。高温開始型の重合触媒としては、t−
ブチルパーオキシベンゾエート、t−ブチルパーオキシ
ピバレート、t−ブチルパーオキシイソプロピルカーボ
ネート、t−ブチルパーオキシアセテート、2,2−t
−ブチルパーオキシブタン等の半減期10時間を得るた
めの温度が100〜115℃のものが特に好ましい。た
だし、これらを必要以上に用いるとt−ブタノール等分
解副生成物を含有することになるため、重合触媒の種類
によって異なるが、使用量の上限は、0.5重量%であ
ることが好ましい。
In order to reduce the amount of residual styrenic monomer in the styrenic resin particles, for example, in suspension polymerization, 0.05% by weight or more of a high temperature initiation type polymerization catalyst is used with respect to the styrenic monomer. It is preferable to use the final polymerization temperature of 115 ° C. or higher. As the high temperature initiation type polymerization catalyst, t-
Butyl peroxybenzoate, t-butyl peroxypivalate, t-butyl peroxy isopropyl carbonate, t-butyl peroxy acetate, 2,2-t
It is particularly preferable that the temperature for obtaining a half-life of 10 hours such as -butylperoxybutane is 100 to 115 ° C. However, if they are used more than necessary, they will contain decomposition by-products such as t-butanol, and therefore, depending on the type of polymerization catalyst, the upper limit of the amount used is preferably 0.5% by weight.

【0011】スチレン系樹脂粒子の分子量は、GPC法
による重量平均分子量で20万〜40万であるのが好ま
しい。20万を下回ると、発泡成形体の強度が低下する
場合があり、40万を上回ると、十分な発泡性を得るこ
とが難しいので好ましくない。
The molecular weight of the styrene resin particles is preferably 200,000 to 400,000 as a weight average molecular weight measured by the GPC method. When it is less than 200,000, the strength of the foamed molded product may be lowered, and when it exceeds 400,000, it is difficult to obtain sufficient foaming property, which is not preferable.

【0012】上記のスチレン系樹脂粒子に発泡剤として
の炭酸ガスを含浸させて発泡性スチレン系樹脂粒子を得
る。発泡剤としての炭酸ガスは、炭酸ガス100%でも
よいが、本発明の効果を阻害しない範囲で、他の発泡剤
を加えてもよい。他の発泡剤としては、空気、窒素等の
無機発泡剤、プロパン、ブタン、ペンタン、ヘキサン等
の脂肪族炭化水素、シクロブタン、シクロペンタン、シ
クロヘキサン等の脂環族炭化水素、フッ化炭化水素等の
有機発泡剤を混合することもできる。フッ化炭化水素と
しては、オゾン破壊係数がゼロであるジフルオロエタ
ン、テトラフルオロエタン等を使用することが好まし
い。ここで、有機発泡剤は、発泡剤の全体量の20重量
%を超えない範囲で使用することが好ましい。スチレン
系樹脂粒子中の炭酸ガスの含有割合は、1〜15重量%
が好ましい。
The above-mentioned styrene resin particles are impregnated with carbon dioxide gas as a foaming agent to obtain expandable styrene resin particles. The carbon dioxide gas as the foaming agent may be 100% carbon dioxide gas, but other foaming agents may be added as long as the effect of the present invention is not impaired. Other blowing agents include air, inorganic blowing agents such as nitrogen, aliphatic hydrocarbons such as propane, butane, pentane and hexane, alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane, and fluorohydrocarbons. It is also possible to mix an organic blowing agent. As the fluorohydrocarbon, it is preferable to use difluoroethane, tetrafluoroethane or the like, which has an ozone depletion potential of zero. Here, the organic foaming agent is preferably used in a range not exceeding 20% by weight of the total amount of the foaming agent. The content ratio of carbon dioxide gas in the styrene resin particles is 1 to 15% by weight.
Is preferred.

【0013】スチレン系樹脂粒子中に炭酸ガスを含浸さ
せるには、例えば、耐圧密閉容器にスチレン系樹脂粒子
を入れた後、炭酸ガスを圧入して、樹脂粒子を加圧され
た炭酸ガスと接触させることによって行うことができ
る。含浸温度は、スチレン系樹脂粒子どうしが互いに合
着して団塊化しない温度まで高くしてもよいが、通常0
〜40℃である。
To impregnate the styrene resin particles with carbon dioxide gas, for example, after putting the styrene resin particles in a pressure-resistant airtight container, the carbon dioxide gas is injected under pressure and the resin particles are contacted with the pressurized carbon dioxide gas. Can be done. The impregnation temperature may be increased to a temperature at which the styrenic resin particles do not agglomerate with each other, but usually 0
-40 ° C.

【0014】スチレン系樹脂粒子に炭酸ガスを含浸させ
るときの圧力は、10kg/cm2G以上であることが
好ましく、より好ましくは15〜40kg/cm2Gで
ある。含浸時間は、スチレン系樹脂粒子が前記の炭酸ガ
ス含有量となるように適宜調整することができ、1〜2
0時間が好ましく、2〜8時間がより好ましい。
The pressure for impregnating the styrene resin particles with carbon dioxide is preferably 10 kg / cm 2 G or more, more preferably 15 to 40 kg / cm 2 G. The impregnation time can be appropriately adjusted so that the styrene-based resin particles have the above-mentioned carbon dioxide gas content.
0 hours is preferable, and 2 to 8 hours is more preferable.

【0015】スチレン系樹脂粒子に炭酸ガスを含浸させ
るに際し、樹脂粒子の表面には各種の表面処理剤を塗布
しておくことができる。そのような表面処理剤として
は、例えば加熱発泡時の予備発泡粒子の結合を防止する
結合防止剤、成形時の融着促進剤、帯電防止剤、展着剤
等が挙げられる。
When impregnating the styrene resin particles with carbon dioxide gas, various surface treatment agents can be applied to the surfaces of the resin particles. Examples of such a surface treatment agent include an anti-bonding agent that prevents the pre-expanded particles from bonding during heat-foaming, a fusion promoter during molding, an antistatic agent, and a spreading agent.

【0016】結合防止剤としては、例えばタルク、炭酸
カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミ
ニウム、エチレンビスステアリン酸アミド、第三リン酸
カルシウム、ジメチルシリコン等が挙げられる。融着促
進剤としては、例えばステアリン酸、ステアリン酸トリ
グリセリド、ヒドロキシステアリン酸トリグリセリド、
ステアリン酸ソルビタンエステル、ポリエチレンワック
ス等が挙げられる。帯電防止剤としては、例えばポリオ
キシエチレンアルキルフェノールエーテル、ステアリン
酸モノグリセリド等が挙げられる。展着剤としては、ポ
リブテン、ポリエチレングリコール、シリコンオイル等
が挙げられる。
Examples of the binding inhibitor include talc, calcium carbonate, silica, zinc stearate, aluminum hydroxide, ethylenebisstearic acid amide, tribasic calcium phosphate, dimethyl silicon and the like. Examples of the fusion promoter include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride,
Examples thereof include sorbitan stearate and polyethylene wax. Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride. Examples of the spreading agent include polybutene, polyethylene glycol, silicone oil and the like.

【0017】また、他の添加剤として、スチレン系樹脂
粒子中には所望によりヘキサブロモシクロドデカン、テ
トラブロモシクロオクタン等の難燃剤、メタクリル酸エ
ステル系共重合ポリマー、エチレンビスステアリン酸ア
ミド、ポリエチレンワックス、エチレン−酢酸ビニル共
重合体等の気泡調整剤等を予め含有させておいてもよ
い。上記結合防止剤、成形時の融着促進剤、帯電防止
剤、展着剤及び他の添加剤は、単独もしくは2種以上を
混合して用いることができる。
As other additives, flame retardants such as hexabromocyclododecane and tetrabromocyclooctane, methacrylic acid ester-based copolymers, ethylenebisstearic acid amide, and polyethylene wax may be optionally added to the styrene resin particles. A bubble regulator such as ethylene-vinyl acetate copolymer may be contained in advance. The above-mentioned binding inhibitor, fusion promoter during molding, antistatic agent, spreading agent and other additives may be used alone or in admixture of two or more.

【0018】上記スチレン系樹脂予備発泡粒子は、難燃
剤を含有させてもよい。難燃剤を含有したスチレン系樹
脂予備発泡粒子を得る方法としては、例えば、スチレン
系樹脂粒子と水との懸濁液中、水中に溶解又は懸濁した
難燃剤の融点以上の温度雰囲気下で樹脂粒子中に難燃剤
を含有させる方法、あるいは押出しブレンドによりスチ
レン系樹脂粒子中に難燃剤を含有させる方法等により難
燃剤を含むスチレン系樹脂粒子を得、これを用いて発泡
剤の含浸及び予備発泡する方法が挙げられる。この時に
使用できる難燃剤としては、ヘキサブロモシクロドデカ
ン、テトラブロモシクロオクタン等が挙げられる。難燃
剤含有量としては樹脂粒子全体に対して0.1〜4重量
%であることが好ましく、0.5〜3.0重量%である
のが特に好ましい。難燃剤含有量が0.1重量%を下回
ると、充分な難燃効果を得ることが困難となるので好ま
しくない。また、難燃剤含有量が4重量%を上回るとス
チレン系樹脂予備発泡粒子同士が合着する傾向が強くな
るので好ましくない。予備発泡粒子の粒径は、0.3〜
10mm程度が好ましい。
The styrenic resin pre-expanded particles may contain a flame retardant. As a method for obtaining pre-expanded styrenic resin particles containing a flame retardant, for example, in a suspension of styrene resin particles and water, resin under a temperature atmosphere of the melting point or higher of the flame retardant dissolved or suspended in water. Styrene resin particles containing a flame retardant are obtained by a method of incorporating a flame retardant in the particles, or a method of incorporating a flame retardant in a styrene resin particle by extrusion blending, etc. There is a method of doing. Examples of flame retardants that can be used at this time include hexabromocyclododecane and tetrabromocyclooctane. The flame retardant content is preferably 0.1 to 4% by weight, more preferably 0.5 to 3.0% by weight, based on the entire resin particles. When the flame retardant content is less than 0.1% by weight, it becomes difficult to obtain a sufficient flame retardant effect, which is not preferable. If the flame retardant content exceeds 4% by weight, the pre-expanded styrenic resin particles tend to adhere to each other, which is not preferable. The particle size of the pre-expanded particles is 0.3 to
About 10 mm is preferable.

【0019】上記スチレン系樹脂予備発泡粒子は次のよ
うにして製造される。すなわち、上記したように、スチ
レン系樹脂粒子に炭酸ガスを含浸させて発泡性スチレン
系樹脂粒子とし、次工程で、蒸気投入ラインと排気ライ
ンを備えた予備発泡機内に、前記発泡性スチレン系樹脂
粒子を投入し、蒸気投入ラインから蒸気を0.5〜5.
0kg/cm2Gの投入圧力で供給すると共に、排気ラ
インから蒸気を含む雰囲気ガスを排気し、かつその間、
発泡機内圧力を蒸気の投入圧力より0.05〜1.0k
g/cm2G低く維持しながら予備発泡させてスチレン
系樹脂予備発泡粒子を得る。この方法において、炭酸ガ
スを含浸させる工程に次いで、直ちに予備発泡を行うこ
とが好ましい。
The styrenic resin pre-expanded particles are produced as follows. That is, as described above, the expandable styrene resin particles are obtained by impregnating the styrene resin particles with carbon dioxide gas, and in the next step, the expandable styrene resin particles are placed in a pre-expanding machine equipped with a steam injection line and an exhaust line. Particles are charged, and steam is injected from the steam injection line for 0.5 to 5.
While supplying with an input pressure of 0 kg / cm 2 G, atmospheric gas containing steam is exhausted from the exhaust line, and during that time,
The pressure inside the foaming machine is 0.05 to 1.0k from the steam input pressure.
Pre-expanding is performed while maintaining low g / cm 2 G to obtain pre-expanded styrenic resin particles. In this method, it is preferable to perform prefoaming immediately after the step of impregnating carbon dioxide gas.

【0020】また、この方法では、蒸気が常に発泡機内
に供給されるように、排気制御弁等で予備発泡機内の圧
力が常に供給圧力を下回るように制御をする必要があ
る。例えば蒸気の投入圧力を1.2kg/cm2G、予
備発泡機内の圧力を0.8kg/cm2Gに設定した場
合、排気ラインから0.4kg/cm2G圧分の圧力を
抜きながら圧力の制御を行うこととなる。具体的には、
発泡機内圧力と排気制御弁とをリンクさせ、制御するこ
とにより圧力の調整することができる。
Further, in this method, it is necessary to control so that the pressure in the pre-foaming machine is always lower than the supply pressure by an exhaust control valve or the like so that the steam is always supplied into the foaming machine. For example, when the steam input pressure is set to 1.2 kg / cm 2 G and the pressure in the pre-foaming machine is set to 0.8 kg / cm 2 G, the pressure is released while removing 0.4 kg / cm 2 G pressure from the exhaust line. Will be controlled. In particular,
The pressure can be adjusted by linking and controlling the pressure inside the foaming machine and the exhaust control valve.

【0021】投入圧力と発泡機内圧力との差が、0.0
5kg/cm2G未満であると低嵩密度のスチレン系樹
脂予備発泡粒子が得られ難いばかりか、発泡成形体の外
観、内部融着が悪く、商品価値の低いものになる。ま
た、1.0kg/cm2Gを超えると予備発泡時の結合
が増加するので好ましくない。より好ましい圧力差は、
0.1〜0.7kg/cm2Gである。
The difference between the input pressure and the pressure inside the foaming machine is 0.0
If it is less than 5 kg / cm 2 G, it is difficult to obtain styrene-based resin pre-expanded particles having a low bulk density, and the appearance and internal fusion of the foamed molded product are poor, resulting in low commercial value. Further, if it exceeds 1.0 kg / cm 2 G, bonding during pre-foaming increases, which is not preferable. A more preferable pressure difference is
It is 0.1 to 0.7 kg / cm 2 G.

【0022】予備発泡機内の発泡性スチレン系樹脂粒子
は、通常110〜160℃程度に加熱されることが好ま
しく、より好ましい加熱温度は110〜130℃であ
る。加熱温度が110℃を下回ると、嵩密度0.5g/
cm3以下のスチレン系樹脂予備発泡粒子は得られ難い
ので好ましくない。また、加熱温度が160℃を上回る
とスチレン系樹脂予備発泡粒子同士が合着する傾向が強
くなるので好ましくない。
The expandable styrenic resin particles in the pre-expansion machine are usually preferably heated to about 110 to 160 ° C, and more preferably heating temperature is 110 to 130 ° C. When the heating temperature is lower than 110 ° C, the bulk density is 0.5 g /
Pre-expanded styrenic resin particles having a size of 3 cm 3 or less are difficult to obtain, which is not preferable. If the heating temperature exceeds 160 ° C, the pre-expanded styrenic resin particles tend to adhere to each other, which is not preferable.

【0023】上記のようなスチレン系樹脂予備発泡粒子
を製造するのに使用できる予備発泡機の一例を図1に示
す。図中、2は撹拌モーター、3は撹拌翼、4は邪魔
棒、5は発泡槽上面検出器、6は発泡性粒子輸送器、7
は発泡性粒子計量槽、8は発泡性粒子投入器、9は蒸気
吹込制御弁、10は蒸気チャンバー、11は凝縮水排出
弁、12は排気制御弁、13は予備発泡粒子排出口、1
4は予備発泡粒子一時受器、15は空気輸送設備、16
は内圧検出・制御装置、17は蒸気吹込孔、18は蒸気
投入圧力計、19は減圧弁、20は蒸気元圧力計を意味
する。
FIG. 1 shows an example of a pre-foaming machine which can be used for producing the styrene resin pre-expanded particles as described above. In the figure, 2 is a stirring motor, 3 is a stirring blade, 4 is a baffle bar, 5 is a foam tank upper surface detector, 6 is a foamable particle transporter, and 7
Is an expandable particle metering tank, 8 is an expandable particle feeder, 9 is a steam injection control valve, 10 is a steam chamber, 11 is a condensed water discharge valve, 12 is an exhaust control valve, 13 is a pre-expanded particle discharge port, 1
4 is a temporary receiver for pre-expanded particles, 15 is pneumatic transportation equipment, 16
Is an internal pressure detection / control device, 17 is a steam injection hole, 18 is a steam injection pressure gauge, 19 is a pressure reducing valve, and 20 is a steam source pressure gauge.

【0024】上記のスチレン系樹脂予備発泡粒子を発泡
成形することで得られる発泡成形体は、長期にわたる寸
法安定性に優れている。特に、80℃で、600時間加
熱したときの寸法変化率を±0.5%以内にすることが
できる。また、揮発性有機化合物の含有量を1000p
pm以下と、極めて少なくすることができる。
The foamed molded product obtained by foaming the above-mentioned styrene resin pre-expanded particles is excellent in dimensional stability for a long period of time. In particular, the dimensional change rate when heated at 80 ° C. for 600 hours can be kept within ± 0.5%. In addition, the content of volatile organic compounds is 1000p
It can be extremely reduced to pm or less.

【0025】発泡成形法としては特に限定されず、公知
の方法をいずれも使用することができる。例えば、スチ
レン系樹脂予備発泡粒子を発泡成形用型のキャビティ内
に充填し、蒸気を吹き込んで予備発泡粒子を加熱するこ
とで、該粒子同士が互いに密着すると共に融着一体化し
て所望の発泡成形体を得ることができる。発泡成形体の
密度は0.015〜0.5g/cm程度が好ましい。
The foam molding method is not particularly limited, and any known method can be used. For example, by filling the pre-expanded styrene resin particles into the cavity of the foam molding die and blowing the steam to heat the pre-expanded particles, the particles are brought into close contact with each other and fused together to form the desired foamed molding. You can get the body. The density of the foamed molded product is preferably about 0.015 to 0.5 g / cm 3 .

【0026】[0026]

【実施例】以下、本発明を実施例及び比較例に基づき更
に詳しく説明するが、本発明はこれらにより限定される
ことはない。なお、実施例において、寸法変化率及び揮
発性有機化合物の含有量の評価は以下のようにして行っ
た。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the examples, the dimensional change rate and the content of the volatile organic compound were evaluated as follows.

【0027】<寸法変化率>発泡成形用型から取り出し
た発泡成形体(実際には、図2に示す形状の中空略半球
形状を有するヘルメット用衝撃吸収材で、厚さh:20
mm、長手方向の外径長さa:260mm、短手方向の
外径長さb:220mm)を、温度23℃、相対湿度5
0%の恒温恒湿室(JIS−K7100の標準温湿度状
態)に24時間放置した後、JIS−K6767に従う
試験サンプルとした。
<Dimensional change rate> A foam molded article taken out from the foam molding die (actually, a shock absorbing material for a helmet having a hollow, substantially hemispherical shape shown in FIG. 2, and a thickness h: 20).
mm, outer diameter length a in the longitudinal direction: 260 mm, outer diameter length in the lateral direction b: 220 mm), temperature 23 ° C., relative humidity 5
After leaving it in a 0% constant temperature and humidity room (standard temperature and humidity state of JIS-K7100) for 24 hours, it was used as a test sample according to JIS-K6767.

【0028】この試験サンプルを80℃に保った熱風循
環式乾燥機の中に水平に置き、600時間加熱した後に
取り出し、再び恒温恒湿室に1時間放置した。加熱前と
加熱後における試験サンプルの寸法測定をJIS−K6
767に準拠して実施した。測定には、図3aに示すよ
うに、加熱前の試験サンプルSの外形形状と同じ形状の
窪み51を持つアルミ製検具50を使用し、図3bに示
すように、加熱前と加熱後における試験サンプルSの長
手方向の長さでの収縮度合いtを隙間ゲージを差し込む
ことにより求めた。寸法変化率は次の式にしたがって求
めた。
This test sample was placed horizontally in a hot air circulation dryer maintained at 80 ° C., heated for 600 hours, taken out, and then left in the constant temperature and constant humidity chamber again for 1 hour. JIS-K6 measures the dimensions of test samples before and after heating.
It carried out according to 767. For the measurement, as shown in FIG. 3a, an aluminum inspection tool 50 having a recess 51 having the same shape as the outer shape of the test sample S before heating was used, and as shown in FIG. 3b, before and after heating. The degree of shrinkage t of the test sample S in the lengthwise direction was determined by inserting a gap gauge. The dimensional change rate was obtained according to the following formula.

【0029】 寸法変化率P(%)=(a2−a1)×100/a1 (ただし、a1は、型内成形後に23℃、相対湿度50
%で24時間放置された試験サンプルの長手方向の外径
長さ、a2は該試験サンプルを80℃で600時間加熱
した後の試験サンプルの長手方向の外径長さである)。
Dimensional change rate P (%) = (a2-a1) × 100 / a1 (where a1 is 23 ° C. and relative humidity 50 after in-mold molding)
%, The outer diameter length in the longitudinal direction of the test sample left for 24 hours, a2 is the outer diameter length in the longitudinal direction of the test sample after heating the test sample at 80 ° C. for 600 hours).

【0030】<揮発性有機化合物の含有量>発泡成形用
型から取り出した発泡成形体を50℃の恒温室で7日間
乾燥させた後、以下に示す三種類の測定法によって得ら
れた値を合計して求めた。 a.(炭素数5以下の炭化水素の測定) 発泡成形体を150℃の熱分解炉に入れ、揮発した炭化
水素をガスクロマトグラフィーにて測定した。 ガスクロマトグラフィー(GC):島津製作所社製 G
C−14B 熱分解炉:島津製作所社製 PYR−1A カラム:ポラパックQ 80/100(3mmφ×1.
5m) カラム温度:100℃ 検出器(FID)温度:120℃
<Content of Volatile Organic Compound> The foamed molded product taken out from the foam molding mold was dried in a thermostatic chamber at 50 ° C. for 7 days, and then the values obtained by the following three kinds of measuring methods were measured. Totally calculated. a. (Measurement of Hydrocarbons Having 5 or Less Carbons) The foamed molded article was placed in a thermal decomposition furnace at 150 ° C., and the vaporized hydrocarbons were measured by gas chromatography. Gas chromatography (GC): Shimadzu G
C-14B Pyrolysis furnace: PYR-1A manufactured by Shimadzu Corporation Column: Porapack Q 80/100 (3 mmφ × 1.
5m) Column temperature: 100 ° C Detector (FID) temperature: 120 ° C

【0031】b.(炭素数6以上の炭化水素であって、
ガスクロマトグラムに現われるスチレンのピークまでの
炭化水素の測定) 発泡成形体をジメチルホルムアミドに溶解し、内部標準
液(シクロペンタノール)を加えてGCにより測定し
た。ただし、特定できないピークについてはトルエンの
検出量に換算して定量した。
B. (A hydrocarbon having 6 or more carbon atoms,
Measurement of hydrocarbon up to styrene peak appearing in gas chromatogram) The foamed molded product was dissolved in dimethylformamide, an internal standard solution (cyclopentanol) was added, and measurement was performed by GC. However, peaks that could not be identified were quantified by converting to the amount of toluene detected.

【0032】GC:島津製作所社製 GC−14A カラム:PEG−20M PT25% 60/80
(2.5m) カラム温度:105℃ 検出器(FID)温度:220℃
GC: Shimadzu Corporation GC-14A column: PEG-20M PT25% 60/80
(2.5m) Column temperature: 105 ° C Detector (FID) temperature: 220 ° C

【0033】c.(ガスクロマトグラムに現われるスチ
レンの次のピークから炭素数16(n−ヘキサデカン)
までの炭化水素の測定) 発泡成形体をクロロホルムに溶解し、ガスクロマトグラ
フ質量分析計(GCMS)にて測定した。ただし、試験
サンプルを溶解しない溶剤のみの空試験を行い、空試験
の検出物質量を差し引いた。更に、特定できないピーク
についてはトルエンの検出量に換算して定量した。
C. (From the next peak of styrene that appears in the gas chromatogram, the carbon number is 16 (n-hexadecane).
Measurement of hydrocarbons up to) The foamed molded product was dissolved in chloroform and measured with a gas chromatograph mass spectrometer (GCMS). However, a blank test was performed only with a solvent that did not dissolve the test sample, and the amount of the detected substance in the blank test was subtracted. Furthermore, peaks that could not be identified were quantified by converting to the amount of toluene detected.

【0034】GCMS:島津製作所社製 QP5000 カラム:J&W Scientific社製 DB−1
(1μm×60m 0.25mmφ) 測定条件:カラム温度(60℃で1分保持した後、10
℃/分で300℃まで昇温) スプリット比:10 キャリヤガス:He(1ml/min) インターフェイス温度:260℃
GCMS: Shimadzu QP5000 column: J & W Scientific DB-1
(1 μm × 60 m 0.25 mmφ) Measurement conditions: Column temperature (after holding at 60 ° C. for 1 minute, 10
Temperature rises to 300 ° C at ℃ / min) Split ratio: 10 Carrier gas: He (1 ml / min) Interface temperature: 260 ° C

【0035】[実施例1]100リットルの反応器に、純
水40kg、ドデシルベンゼンスルホン酸ソーダ2.5
g、ピロリン酸マグネシウム58gを入れ水性媒体とし
た。次にベンゾイルパーオキサイド(純度75%)16
7g、t−ブチルパーオキシベンゾエート30g及びポ
リエチレンワックス(分子量1000)22gを溶解し
たスチレン44kgを撹拌しながら加えて懸濁させ、9
0℃に昇温して重合を開始した。比重法で測定した重合
転化率が95重量%まで進行した時点で、反応器を12
3℃に昇温して2.5時間保持した後、常温まで冷却し
て、スチレン樹脂粒子を取り出した。ここで得られたス
チレン樹脂粒子中の残留スチレンをガスクロマトグラフ
で測定したところ、452ppmであり、また、GPC
法で測定した重量平均分子量は278000であった。
[Example 1] 40 kg of pure water and 2.5 parts of sodium dodecylbenzenesulfonate were placed in a 100-liter reactor.
g and 58 g of magnesium pyrophosphate were added to obtain an aqueous medium. Next, benzoyl peroxide (purity 75%) 16
44 g of styrene in which 7 g, 30 g of t-butyl peroxybenzoate and 22 g of polyethylene wax (molecular weight 1000) were dissolved was added with stirring to suspend it.
The temperature was raised to 0 ° C. to initiate polymerization. When the polymerization conversion measured by the specific gravity method reached 95% by weight, the reactor was cooled to 12%.
After heating to 3 ° C. and holding for 2.5 hours, the temperature was cooled to room temperature, and styrene resin particles were taken out. The residual styrene in the styrene resin particles obtained here was measured by gas chromatography and found to be 452 ppm.
The weight average molecular weight measured by the method was 278,000.

【0036】スチレン樹脂粒子のうち、粒径0.7〜
1.0mmのもの15kgを、内容量が30リットルの
回転式耐圧容器に入れた後、展着剤としてポリエチレン
グリコール300を7.5g、グリセリンモノステアリ
ン酸エステルを7.5g、結合防止剤として炭酸カルシ
ウム30gを添加して容器を回転させ、樹脂粒子の表面
に付着させた。次いで回転を停止してから容器内に炭酸
ガスを圧入して、25℃、30kg/cm2Gに6時間
保って樹脂粒子内に炭酸ガスを含浸させ、発泡性スチレ
ン樹脂粒子を得た。
Of the styrene resin particles, the particle size is from 0.7 to
After placing 15 kg of 1.0 mm in a rotary pressure-resistant container having an internal capacity of 30 liters, 7.5 g of polyethylene glycol 300 as a spreading agent, 7.5 g of glycerin monostearate and carbonic acid as a binding inhibitor. 30 g of calcium was added, the container was rotated, and it was made to adhere to the surface of the resin particle. Then, after the rotation was stopped, carbon dioxide gas was pressed into the container and kept at 25 ° C. and 30 kg / cm 2 G for 6 hours to impregnate the carbon dioxide gas into the resin particles to obtain expandable styrene resin particles.

【0037】こうして得られた発泡性スチレン樹脂粒子
を耐圧容器から取り出し、次工程で攪拌機付き発泡機内
に投入した後、投入圧力が1.2kg/cm2Gの蒸気
を発泡機缶内に導入した。この時の発泡機内の圧力は
0.8kg/cm2Gになるように、排気制御弁の開度
を電気信号でコントロールしながら、排気ラインを使っ
て余分な圧力を外部に逃がした(投入圧力と発泡機内圧
力との差は0.4kg/cm2G)。このように、蒸気
を発泡機内に連続して導入しながら予備発泡させてスチ
レン樹脂予備発泡粒子とした。この予備発泡粒子の粒径
は2.3〜4.0mmであった。
The expandable styrene resin particles thus obtained were taken out of the pressure vessel and charged into a foaming machine equipped with a stirrer in the next step, and then steam having a charging pressure of 1.2 kg / cm 2 G was introduced into the foaming machine can. . The pressure inside the foaming machine at this time was controlled to 0.8 kg / cm 2 G, and while controlling the opening of the exhaust control valve with an electric signal, excess pressure was released to the outside using the exhaust line (input pressure). And the pressure inside the foaming machine is 0.4 kg / cm 2 G). In this way, the steam was continuously introduced into the foaming machine and pre-expanded to obtain styrene resin pre-expanded particles. The particle size of the pre-expanded particles was 2.3 to 4.0 mm.

【0038】予備発泡してから6時間後、型締め後のキ
ャビティ形状が、図2に示したヘルメット用衝撃吸収材
の形状に設計された発泡成形用型のキャビティ内に、ス
チレン樹脂予備発泡粒子を充填し蒸気で加熱して、図2
に示す形状である密度0.020g/cm3の発泡成形
体を得た。得られた発泡成形体について、上記した評価
方法により、寸法変化率及び揮発性有機化合物の含有量
を評価した。得られた結果を表1に示す。
Six hours after the pre-foaming, the styrene resin pre-foamed particles were placed in the cavity of the foam molding die whose cavity shape after mold clamping was designed to have the shape of the impact absorbing material for helmet shown in FIG. Fig. 2
A foamed molded body having a density of 0.020 g / cm 3 having the shape shown in FIG. With respect to the obtained foamed molded product, the dimensional change rate and the content of the volatile organic compound were evaluated by the above-described evaluation methods. The results obtained are shown in Table 1.

【0039】[実施例2]発泡性スチレン樹脂粒子を耐圧
容器から取り出して直ちに、投入圧力が1.5kg/c
2Gの蒸気を発泡機内に導入し、発泡機内の圧力が
0.8kg/cm2Gになるように(投入圧力と発泡機
内圧力との差は0.7kg/cm2G)調整したこと以
外は、実施例1と同様にして予備発泡粒子及び発泡成形
体を得た。得られた発泡成形体の寸法変化率及び揮発性
有機化合物の含有量の評価結果を表1に示す。なお、予
備発泡粒子の粒径は2.3〜4.0mmで、発泡成形体
の密度は0.025g/cm3であった。
Example 2 Immediately after taking out the expandable styrene resin particles from the pressure resistant container, the charging pressure was 1.5 kg / c.
The vapor of m 2 G was introduced into the foaming machine, and the pressure inside the foaming machine was adjusted to 0.8 kg / cm 2 G (the difference between the input pressure and the pressure inside the foaming machine was 0.7 kg / cm 2 G). Except for this, the pre-expanded particles and the foamed molded product were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the dimensional change rate and the content of the volatile organic compound of the obtained foamed molded product. The particle size of the pre-expanded particles was 2.3 to 4.0 mm, and the density of the foamed molded product was 0.025 g / cm 3 .

【0040】[比較例1]発泡性スチレン樹脂粒子を耐圧
容器から取り出して直ちに、投入圧力が2.0kg/c
2Gの蒸気を発泡機内に導入し、発泡機内の圧力は
0.8kg/cm2Gになるように(投入圧力と発泡機
内圧力との差は1.2kg/cm2G)調整したこと以
外は、実施例1と同様にして予備発泡粒子及び発泡成形
体を得た。得られた発泡成形体の評価結果を表1に示
す。なお、予備発泡粒子の粒径は2.2〜3.6mm
で、発泡成形体の密度は0.025g/cm3であっ
た。
[Comparative Example 1] Immediately after taking out the expandable styrene resin particles from the pressure resistant container, the charging pressure was 2.0 kg / c.
The vapor of m 2 G was introduced into the foaming machine, and the pressure inside the foaming machine was adjusted to 0.8 kg / cm 2 G (the difference between the input pressure and the pressure inside the foaming machine was 1.2 kg / cm 2 G). Except for this, the pre-expanded particles and the foamed molded product were obtained in the same manner as in Example 1. The evaluation results of the obtained foamed molded product are shown in Table 1. The particle size of the pre-expanded particles is 2.2 to 3.6 mm.
The density of the foamed molded product was 0.025 g / cm 3 .

【0041】[比較例2]発泡性スチレン樹脂粒子を耐圧
容器から取り出して直ちに、投入圧力が0.8kg/c
2Gの蒸気を発泡機内に導入し、発泡機内の圧力は
0.8kg/cm2Gになるように(投入圧力と発泡機
内圧力との差は0kg/cm2G)調整したこと以外
は、実施例1と同様にして予備発泡粒子及び発泡成形体
を得た。得られた発泡成形体の評価結果を表1に示す。
なお、得られた予備発泡粒子の粒径は1.8〜2.8m
mで、発泡成形体の密度は0.050g/cm3であっ
た。
Comparative Example 2 Immediately after taking out the expandable styrene resin particles from the pressure resistant container, the charging pressure was 0.8 kg / c.
Except that m 2 G of steam was introduced into the foaming machine and the pressure inside the foaming machine was adjusted to 0.8 kg / cm 2 G (the difference between the input pressure and the foaming machine internal pressure was 0 kg / cm 2 G). A pre-expanded particle and a foamed molded product were obtained in the same manner as in Example 1. The evaluation results of the obtained foamed molded product are shown in Table 1.
The particle size of the obtained pre-expanded particles was 1.8 to 2.8 m.
In m, the density of the foamed molded product was 0.050 g / cm 3 .

【0042】[比較例3]内容積5リットルの攪拌機付き
耐圧容器に、実施例1で得られたスチレン樹脂粒子のう
ち、粒径0.7〜1.0mmのもの2.0kg、イオン
交換水2.2リットル、第三りん酸カルシウム6.0
g、及びドデシルベンゼンスルホン酸ナトリウム0.2
gを入れて攪拌を開始した。次に90℃に昇温した後、
ブタン140gを圧入して5時間保持した。次いで、3
0℃まで冷却し、発泡性スチレン樹脂粒子を得た。取り
出した粒子を乾燥後、15℃の恒温室で5日間熟成させ
た。そして、予備発泡時の結合防止剤としてジンクステ
アレート、融着促進剤としてヒドロキシステアリン酸ト
リグリセライドを粒子表面に被膜処理した後、攪拌機付
き発泡機内に投入した後、投入圧力が0.5kg/cm
2Gの蒸気を発泡機内に導入した。この時の発泡機内の
圧力は0.1kg/cm2Gになるように、排気制御弁
の開度を電気信号でコントロールしながら、排気ライン
を使って余分な圧力を外部に逃がした(投入圧力と発泡
機内圧力との差は0.4kg/cm2G)。このよう
に、蒸気を発泡機内に連続して導入しながら予備発泡さ
せてスチレン樹脂予備発泡粒子とした。この予備発泡粒
子の粒径は2.3〜4.0mmであった。
[Comparative Example 3] 2.0 kg of styrene resin particles having a particle size of 0.7 to 1.0 mm among the styrene resin particles obtained in Example 1 and ion-exchanged water were placed in a pressure vessel equipped with a stirrer and having an internal volume of 5 liters. 2.2 liters, tricalcium phosphate 6.0
g, and sodium dodecylbenzene sulfonate 0.2
g was added and stirring was started. Next, after raising the temperature to 90 ° C.,
140 g of butane was pressed in and held for 5 hours. Then 3
It cooled to 0 degreeC and obtained the expandable styrene resin particle. The particles taken out were dried and then aged in a thermostatic chamber at 15 ° C. for 5 days. Zinc stearate as a binding inhibitor at the time of pre-foaming and hydroxystearic acid triglyceride as a fusion promoter are coated on the surface of the particles, and then charged into a foaming machine with a stirrer, and then the charging pressure is 0.5 kg / cm.
2 G of steam was introduced into the foaming machine. While controlling the opening of the exhaust control valve with an electric signal so that the pressure in the foaming machine at this time would be 0.1 kg / cm 2 G, excess pressure was released to the outside using the exhaust line. And the pressure inside the foaming machine is 0.4 kg / cm 2 G). In this way, the steam was continuously introduced into the foaming machine and pre-expanded to obtain styrene resin pre-expanded particles. The particle size of the pre-expanded particles was 2.3 to 4.0 mm.

【0043】予備発泡してから6時間後、実施例1で用
いたと同じ発泡成形用型のキャビティ内に予備発泡粒子
を充填し、蒸気で加熱して発泡成形し、密度0.020
g/cm3である実施例1と同じ形状のスチレン樹脂発
泡成形体を得た。得られた発泡成形体の評価結果を表1
に示す。
Six hours after the pre-foaming, the pre-foamed particles were filled in the cavity of the same foam-molding mold used in Example 1 and heated with steam to foam-mold and have a density of 0.020.
A styrene resin foam molded article having the same shape as in Example 1 having g / cm 3 was obtained. The evaluation results of the obtained foamed molded product are shown in Table 1.
Shown in.

【0044】[0044]

【表1】 [Table 1]

【0045】以上の結果から、スチレン系樹脂粒子に炭
酸ガスを含浸させて得たスチレン系樹脂予備発泡粒子の
型内発泡成形品において、スチレン系樹脂予備発泡粒子
として、炭酸ガスを有する発泡性スチレン系樹脂粒子を
投入圧力と発泡機内圧力との差を調整して予備発泡粒子
としたものを用いて発泡成形することにより、高温の雰
囲気下でも長期にわたって寸法安定性に優れたスチレン
系樹脂成形体が得られることがわかる。また、揮発性有
機化合物の含有量も極めて少なくすることができる。
From the above results, in-mold expansion-molded articles of styrene resin pre-expanded particles obtained by impregnating styrene resin particles with carbon dioxide gas, expandable styrene having carbon dioxide gas as styrene resin pre-expanded particles. Styrene-based resin molded product with excellent dimensional stability for a long period of time even in a high temperature atmosphere by foam molding using pre-expanded particles by adjusting the difference between the input pressure of the resin-based resin particles and the pressure inside the foaming machine. It can be seen that Further, the content of the volatile organic compound can be extremely reduced.

【0046】[0046]

【発明の効果】本発明によるヘルメット用衝撃吸収材
は、高い剛性と高い緩衝性の双方を満足することのでき
る発泡ポリスチレン製のものでありながら、高温の雰囲
気下でも長期にわたって寸法が非常に安定したものであ
る。そのために、この衝撃吸収材を帽体の内側に固定し
たヘルメットは、使用途中に衝撃吸収材と帽体とが分離
するというような事態が生じるのを回避できるので、安
全性に富んだヘルメットとなる。また、衝撃吸収材の揮
発性有機化合物の含有量を極めて少なくすることができ
る。
INDUSTRIAL APPLICABILITY The impact absorbing material for a helmet according to the present invention is made of expanded polystyrene which can satisfy both high rigidity and high cushioning property, but its dimensions are very stable for a long time even in a high temperature atmosphere. It was done. Therefore, the helmet with the shock absorbing material fixed to the inside of the cap body can avoid a situation in which the shock absorbing material and the cap body are separated from each other during use. Become. Further, the content of the volatile organic compound in the shock absorbing material can be extremely reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用できるチレン系樹脂予備発泡粒子
を製造するのに用いられる予備発泡機の概略説明図であ
る。
FIG. 1 is a schematic explanatory view of a pre-foaming machine used for producing pre-expanded particles of a ethylene resin that can be used in the present invention.

【図2】実施例及び比較例で用いたヘルメット用衝撃吸
収材としての発泡成形品の概略を示す図。
FIG. 2 is a diagram showing an outline of a foam molded article as a shock absorbing material for a helmet used in Examples and Comparative Examples.

【図3】寸法変化率の求めるために、試験サンプルの長
手方向の長さでの収縮度合いを測定した実際例を説明す
る図。
FIG. 3 is a diagram illustrating an actual example in which the degree of shrinkage of the test sample in the lengthwise direction is measured in order to obtain the dimensional change rate.

【符号の説明】[Explanation of symbols]

2 撹拌モーター 3 撹拌翼 4 邪魔棒 5 発泡槽上面検出器 6 発泡性粒子輸送器 7 発泡性粒子計量槽 8 発泡性粒子投入器 9 蒸気吹込制御弁 10 蒸気チャンバー 11 凝縮水排出弁 12 排気制御弁 13 予備発泡粒子排出口 14 予備発泡粒子一時受器 15 空気輸送設備 16 内圧検出・制御装置 17 蒸気吹込孔 18 蒸気投入圧力計 19 減圧弁 20 蒸気元圧力計 50 アルミ製検具 S 試験サンプル 2 stirring motor 3 stirring blades 4 baffles 5 Foam tank top detector 6 Effervescent particle transporter 7 Effervescent particle measuring tank 8 Expandable particle feeder 9 Steam injection control valve 10 Steam chamber 11 Condensed water discharge valve 12 Exhaust control valve 13 Pre-expanded particles outlet 14 Pre-expanded particle temporary receiver 15 Air transportation equipment 16 Internal pressure detection / control device 17 Steam injection hole 18 Steam input pressure gauge 19 Pressure reducing valve 20 Steam source pressure gauge 50 Aluminum inspection tool S test sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スチレン系樹脂粒子に炭酸ガスを含浸さ
せて得たスチレン系樹脂予備発泡粒子を型内発泡成形し
て得た、80℃で600時間加熱したとき、その加熱前
と加熱後における寸法変化率が±0.5%以内である中
空略半球形状を有するスチレン系樹脂発泡成形体からな
るヘルメット用衝撃吸収材。
1. A styrene-based resin pre-expanded particle obtained by impregnating styrene-based resin particles with carbon dioxide gas, obtained by in-mold foam molding, and when heated at 80 ° C. for 600 hours, before and after heating. A shock absorber for a helmet, which is made of a styrene resin foam molded product having a hollow substantially hemispherical shape with a dimensional change rate of ± 0.5% or less.
【請求項2】 請求項1に記載のヘルメット用衝撃吸収
材を帽体の内側に備えているヘルメット。
2. A helmet comprising the helmet shock absorbing material according to claim 1 inside a cap body.
JP2001393314A 2001-12-26 2001-12-26 Shock absorbing material for helmet and helmet provided with the shock absorbing material Pending JP2003201615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393314A JP2003201615A (en) 2001-12-26 2001-12-26 Shock absorbing material for helmet and helmet provided with the shock absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393314A JP2003201615A (en) 2001-12-26 2001-12-26 Shock absorbing material for helmet and helmet provided with the shock absorbing material

Publications (1)

Publication Number Publication Date
JP2003201615A true JP2003201615A (en) 2003-07-18

Family

ID=27639482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393314A Pending JP2003201615A (en) 2001-12-26 2001-12-26 Shock absorbing material for helmet and helmet provided with the shock absorbing material

Country Status (1)

Country Link
JP (1) JP2003201615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043379A (en) * 2008-08-13 2010-02-25 Midori Anzen Co Ltd Protective cap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043379A (en) * 2008-08-13 2010-02-25 Midori Anzen Co Ltd Protective cap

Similar Documents

Publication Publication Date Title
JP2008075076A (en) Styrene-modified polypropylenic resin particle and its foamable resin particle, their production method, pre-foamed particle and foam-molded article
JP4834316B2 (en) Carbon-containing styrene-modified polyethylene-based expandable resin particles, method for producing the same, pre-expanded particles, and expanded molded article
JP3732418B2 (en) Expandable styrene resin particles
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
JPH04183706A (en) Production of styrene-modified polyethylene resin particle
JP2003201615A (en) Shock absorbing material for helmet and helmet provided with the shock absorbing material
JP3970652B2 (en) Heat-insulating returnable box
JPWO2014157538A1 (en) Composite resin foam molding
JP4065795B2 (en) Heat-resistant styrenic resin foam molding
JP2004082836A (en) Shock absorbing material made from molded styrene foam for automobile interior
JP3910855B2 (en) Thermal insulation for floor heating
JP3805209B2 (en) Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
JP3836062B2 (en) Styrenic resin pre-expanded particles, molded body, and method for producing pre-expanded particles
JPH05255531A (en) Production of molded polymer foam
JP2004018782A (en) Foaming polystyrene-based resin particle
JP2002356576A (en) Polystyrene resin pre-foamed particle, production method and foamed molded material
JP2003237883A (en) Base carrying container
JP3999150B2 (en) Thermal insulation panel
JP2004269019A (en) Food container formed of styrene resin expansion-molded body
JP2003211478A (en) Tray for parts
JP2003194289A (en) Pipe thermal insulating material
JP7339833B2 (en) Expandable styrene resin particles, method for producing the same, pre-expanded styrene resin particles and styrene resin foam molded product
JP2004217875A (en) Self-extinguishable styrenic resin foamed particle and self-extinguishable foamed molded product
JP4832716B2 (en) Small particle size styrenic expandable resin particles, expanded beads and molded products
JP2003191270A (en) Decorative material comprising styrenic resin foamed molded object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205