JP2003194289A - Pipe thermal insulating material - Google Patents

Pipe thermal insulating material

Info

Publication number
JP2003194289A
JP2003194289A JP2001393316A JP2001393316A JP2003194289A JP 2003194289 A JP2003194289 A JP 2003194289A JP 2001393316 A JP2001393316 A JP 2001393316A JP 2001393316 A JP2001393316 A JP 2001393316A JP 2003194289 A JP2003194289 A JP 2003194289A
Authority
JP
Japan
Prior art keywords
styrene
resin particles
particles
foaming
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001393316A
Other languages
Japanese (ja)
Inventor
Shinji Takakura
伸治 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2001393316A priority Critical patent/JP2003194289A/en
Publication of JP2003194289A publication Critical patent/JP2003194289A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipe thermal insulating material made of styrene-based resin foam molding element, stabilizing dimensions thereof under high temperature atmosphere for the long term, and including a finite amount of volatile organic compound. <P>SOLUTION: Styrene-based resin reserve foaming grains obtained by impregnating styrene-based resin grains with carbon dioxide gas is in-mold foamed to be a pipe thermal insulating material. When being heated at 85 for 168 hours, the rate of change in dimensions is made to be within ±0.5%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、主として給水・給
湯用のパイプ配管を保温するのに用いられるパイプ用保
温材に関する。 【0002】 【従来の技術】冷水源あるいは温水源から建物の内外に
わたって給水・給湯用のパイプが配管され、冷水・温水
が消費場所まで導かれる。管路での熱損失を少なくする
ために、給水・給湯用のパイプには保温材が取り付けら
れる(特開2000−154900号公報等参照)。例
えば、図3は、円筒体を放射方向で2分割した形状であ
る樹脂発泡成形体製の保温材の一例であり、パイプ51
の周囲に密着できる寸法の内径を持つように成形された
保温材52、52が接着剤を用いて、あるいは粘着テー
プのような適宜の固定具を用いて、パイプ51の外周面
に固定される。 【0003】 【発明が解決しようとする課題】断熱性に優れているこ
と、強度や成形性に優れていること、低コストであるこ
となどから、スチレン系樹脂発泡成形体による保温材が
多く用いられている。これらの保温材は、ブタンやペン
タン等を発泡剤として含む発泡性スチレン系樹脂粒子を
蒸気等の熱により加熱して得た予備発泡粒子を、型内発
泡成形用型のキャビティ内に充填し、蒸気等で加熱して
該予備発泡粒子を型内発泡成形することによって製造さ
れている。しかし、発泡剤にブタンやペンタンを用いた
ものは、給湯用バイブ内を流れる温水の最高温度である
85℃程度の高温環境下に長時間さらされると、その寸
法変化率が±1.5%程度と大きいことがわかった。 【0004】一般的には80℃程度の温水を流すことを
目的に設計された給湯用パイプであっても、何らかの事
情で最高85℃程度の温水が流れたような場合には、前
述のごとく寸法変化率が±1.5%程度と大きいことか
ら、パイプと保温材との間に隙間が形成されたり、時に
は、パイプ用保温材に亀裂が生じ、断熱性能が損なわれ
る。 【0005】 【課題を解決するための手段】本発明は、上記のような
課題を解決すべくなされたものであり、本発明によるパ
イプ用保温材は、スチレン系樹脂粒子に炭酸ガスを含浸
させて得たスチレン系樹脂予備発泡粒子の型内発泡成形
品であり、85℃で168時間加熱したとき、その加熱
前と加熱後における寸法変化率が±0.5%以内であ
る、円筒体形状又は円筒体を放射方向で分割した形状で
あるパイプ用保温材であることを特徴とする。 【0006】本発明において、「85℃で168時間加
熱」なる条件は、給湯用のパイプ等の保温材として当業
者で求められる指標の1つである。また、このときの寸
法変化率が±0.5%以内を満足するものは、上述した
理由による断熱状態の低下を防止することができる。 【0007】上記の範囲の寸法変化率を持つスチレン系
樹脂発泡成形体(すなわち、パイプ用保温材)は、以下
のようにして製造されるスチレン系樹脂予備発泡粒子を
型内発泡することにより得ることができる。すなわち、
最初に、スチレン系樹脂粒子に炭酸ガスを含浸させて発
泡性スチレン系樹脂粒子とし、次工程で蒸気投入ライン
と排気ラインを備えた予備発泡機内に前記発泡性スチレ
ン系樹脂粒子を投入し、蒸気投入ラインから蒸気を0.
5〜5.0kg/cm2Gの投入圧力で供給すると共
に、排気ラインから蒸気を含む雰囲気ガスを排気し、か
つその間、発泡機内圧力を蒸気の投入圧力より0.05
〜1.0kg/cm2G低く維持しながら予備発泡させ
てスチレン系樹脂予備発泡粒子とする。 【0008】上記のスチレン系樹脂予備発泡粒子を用い
ることにより、上記寸法変化率が±0.5%以下である
型内発泡によるスチレン系樹脂発泡成形体を得ることが
できる。従って、このようにして製造したパイプ用保温
材は、上記したパイプ用保温材に係る要求性能を満足し
たパイプ用保温材となり、断熱性能の低下を長時間にわ
たって抑制することができる。また、同時に、残留揮発
性有機化合物の含有量をきわめて少量に抑制することが
できる。なお、型内発泡成形条件は、従来のスチレン系
樹脂予備発泡粒子を用いた型内発泡成形条件と同じであ
ってよい。以下、さらに詳細に説明する。 【0009】上記スチレン系樹脂粒子としては、一般に
知られているスチレン系樹脂の粒状物を使用することが
できる。具体的には、このような樹脂粒子としては、ス
チレン、α−メチルスチレン、パラメチルスチレン、t
−ブチルスチレン、クロルスチレン、ジビニルベンゼン
(2官能性単量体)等のスチレン系単量体の単独重合粒
子又はこれら単量体を2種以上組み合わせた共重合体粒
子、メチルアクリレート、ブチルアクリレート、メチル
メタクリレート、エチルメタクリレート、セチルメタク
リレート等のアクリル酸及びメタクリル酸のエステル、
あるいはアクリロニトリル、ジメチルフマレート、エチ
ルフマレート、アルキレングリコールジメタクリレート
(2官能性単量体)等のスチレン系単量体以外の単量体
との共重合体粒子等が挙げられる。更に、これらスチレ
ン系樹脂粒子中のスチレン成分が50重量%を超える範
囲内でスチレン系樹脂以外の樹脂と押出しブレンドして
得られた樹脂粒子であってもよい。スチレン系樹脂以外
の樹脂としては、ポリフェニルエーテル系樹脂、ポリオ
レフィン系樹脂、ゴム成分等が挙げられる。特にスチレ
ン系樹脂粒子としては、ポリスチレン樹脂粒子が好まし
い。樹脂粒子の粒径は、例えば、0.2〜5mmの粒径
のものを使用することができる。 【0010】スチレン系樹脂粒子は、残留スチレン系単
量体を少なく抑制したものが好ましく、樹脂粒子中、0
〜500ppmであるものは特に好ましい。スチレン系
樹脂粒子中の残留スチレン系単量体を低減するには、例
えば懸濁重合においては、スチレン系単量体に対して
0.05重量%以上の高温開始型の重合触媒を用い、最
終の重合温度を115℃以上とするのが好ましい。高温
開始型の重合触媒としては、t−ブチルパーオキシベン
ゾエート、t−ブチルパーオキシピバレート、t−ブチ
ルパーオキシイソプロピルカーボネート、t−ブチルパ
ーオキシアセテート、2,2−t−ブチルパーオキシブ
タン等の半減期10時間を得るための温度が100〜1
15℃のものが特に好ましい。ただし、これらを必要以
上に用いるとt−ブタノール等分解副生成物を含有する
ことになるため、重合触媒の種類によって異なるが、使
用量の上限は、0.5重量%であることが好ましい。ス
チレン系樹脂粒子の分子量は、GPC法による重量平均
分子量で20万〜40万であるのが好ましい。20万を
下回ると、発泡成形体の強度が低下する場合があり、4
0万を上回ると、十分な発泡性を得ることが難しいので
好ましくない。 【0011】上記のスチレン系樹脂粒子に発泡剤として
の炭酸ガスを含浸させて発泡性スチレン系樹脂粒子を得
る。発泡剤としての炭酸ガスは、炭酸ガス100%でも
よいが、本発明の効果を阻害しない範囲で、他の発泡剤
を加えてもよい。他の発泡剤としては、空気、窒素等の
無機発泡剤、プロパン、ブタン、ペンタン、ヘキサン等
の脂肪族炭化水素、シクロブタン、シクロペンタン、シ
クロヘキサン等の脂環族炭化水素、フッ化炭化水素等の
有機発泡剤を混合することもできる。フッ化炭化水素と
しては、オゾン破壊係数がゼロであるジフルオロエタ
ン、テトラフルオロエタン等を使用することが好まし
い。ここで、有機発泡剤は、発泡剤の全体量の20重量
%を超えない範囲で使用することが好ましい。スチレン
系樹脂粒子中の炭酸ガスの含有割合は、1〜15重量%
が好ましい。 【0012】スチレン系樹脂粒子中に炭酸ガスを含浸さ
せるには、例えば、耐圧密閉容器にスチレン系樹脂粒子
を入れた後、炭酸ガスを圧入して、樹脂粒子を加圧され
た炭酸ガスと接触させることによって行うことができ
る。含浸温度は、スチレン系樹脂粒子どうしが互いに合
着して団塊化しない温度まで高くしてもよいが、通常0
〜40℃である。 【0013】スチレン系樹脂粒子に炭酸ガスを含浸させ
るときの圧力は、10kg/cm2G以上であることが
好ましく、より好ましくは15〜40kg/cm2Gで
ある。含浸時間は、スチレン系樹脂粒子が前記の炭酸ガ
ス含有量となるように適宜調整することができ、1〜2
0時間が好ましく、2〜8時間がより好ましい。 【0014】スチレン系樹脂粒子に炭酸ガスを含浸させ
るに際し、樹脂粒子の表面には各種の表面処理剤を塗布
しておくことができる。そのような表面処理剤として
は、例えば加熱発泡時の予備発泡粒子の結合を防止する
結合防止剤、成形時の融着促進剤、帯電防止剤、展着剤
等が挙げられる。 【0015】結合防止剤としては、例えばタルク、炭酸
カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミ
ニウム、エチレンビスステアリン酸アミド、第三リン酸
カルシウム、ジメチルシリコン等が挙げられる。融着促
進剤としては、例えばステアリン酸、ステアリン酸トリ
グリセリド、ヒドロキシステアリン酸トリグリセリド、
ステアリン酸ソルビタンエステル、ポリエチレンワック
ス等が挙げられる。帯電防止剤としては、例えばポリオ
キシエチレンアルキルフェノールエーテル、ステアリン
酸モノグリセリド等が挙げられる。展着剤としては、ポ
リブテン、ポリエチレングリコール、シリコンオイル等
が挙げられる。 【0016】また、他の添加剤として、スチレン系樹脂
粒子中には所望によりヘキサブロモシクロドデカン、テ
トラブロモシクロオクタン等の難燃剤、メタクリル酸エ
ステル系共重合ポリマー、エチレンビスステアリン酸ア
ミド、ポリエチレンワックス、エチレン−酢酸ビニル共
重合体等の気泡調整剤等を予め含有させておいてもよ
い。上記結合防止剤、成形時の融着促進剤、帯電防止
剤、展着剤及び他の添加剤は、単独もしくは2種以上を
混合して用いることができる。 【0017】上記した発泡性スチレン系樹脂粒子は、難
燃剤を含有させてもよい。難燃剤を含有したスチレン系
樹脂予備発泡粒子を得る方法としては、例えば、スチレ
ン系樹脂粒子と水との懸濁液中、水中に溶解又は懸濁し
た難燃剤の融点以上の温度雰囲気下で樹脂粒子中に難燃
剤を含有させる方法、あるいは押出しブレンドによりス
チレン系樹脂粒子中に難燃剤を含有させる方法等により
難燃剤を含むスチレン系樹脂粒子を得、これを用いて発
泡剤の含浸及び予備発泡する方法が挙げられる。この時
に使用できる難燃剤としては、ヘキサブロモシクロドデ
カン、テトラブロモシクロオクタン等が挙げられる。難
燃剤含有量としては樹脂粒子全体に対して0.1〜4重
量%であることが好ましく、0.5〜3.0重量%であ
るのが特に好ましい。難燃剤含有量が0.1重量%を下
回ると、充分な難燃効果を得ることが困難となるので好
ましくない。 【0018】また、難燃剤含有量が4重量%を上回ると
スチレン系樹脂予備発泡粒子同士が合着する傾向が強く
なるので好ましくない。スチレン系樹脂予備発泡粒子の
粒径は、0.3〜10mm程度が好ましい。 【0019】上記スチレン系樹脂予備発泡粒子は好まし
くは次のようにして製造される。すなわち、上記したよ
うに、スチレン系樹脂粒子に炭酸ガスを含浸させて発泡
性スチレン系樹脂粒子とし、次工程で、蒸気投入ライン
と排気ラインを備えた予備発泡機内に、前記発泡性スチ
レン系樹脂粒子を投入し、蒸気投入ラインから蒸気を
0.5〜5.0kg/cm2Gの投入圧力で供給すると
共に、排気ラインから蒸気を含む雰囲気ガスを排気し、
かつその間、発泡機内圧力を蒸気の投入圧力より0.0
5〜1.0kg/cm2G低く維持しながら予備発泡さ
せてスチレン系樹脂予備発泡粒子を得る。この方法にお
いて、炭酸ガスを含浸させる工程に次いで、直ちに予備
発泡を行うことが好ましい。 【0020】また、この方法では、蒸気が常に発泡機内
に供給されるように、排気制御弁等で予備発泡機内の圧
力が常に供給圧力を下回るように制御をする必要があ
る。例えば蒸気の投入圧力を1.2kg/cm2G、予
備発泡機内の圧力を0.8kg/cm2Gに設定した場
合、排気ラインから0.4kg/cm2G圧分の圧力を
抜きながら圧力の制御を行うこととなる。具体的には、
発泡機内圧力と排気制御弁とをリンクさせ、制御するこ
とにより圧力の調整することができる。 【0021】投入圧力と発泡機内圧力との差が、0.0
5kg/cm2G未満であると低嵩密度のスチレン系樹
脂予備発泡粒子が得られ難いばかりか、発泡成形体の外
観、内部融着が悪く、商品価値の低いものになる。ま
た、1.0kg/cm2Gを超えると予備発泡時の結合
が増加するので好ましくない。より好ましい圧力差は、
0.1〜0.7kg/cm2Gである。 【0022】予備発泡機内の発泡性スチレン系樹脂粒子
は、通常110〜160℃程度に加熱されることが好ま
しく、より好ましい加熱温度は110〜130℃であ
る。加熱温度が110℃を下回ると、嵩密度0.5g/
cm3以下のスチレン系樹脂予備発泡粒子は得られ難い
ので好ましくない。また、加熱温度が160℃を上回る
とスチレン系樹脂予備発泡粒子同士が合着する傾向が強
くなるので好ましくない。 【0023】上記のようなスチレン系樹脂予備発泡粒子
を製造するのに使用できる予備発泡機の一例を図1に示
す。図中、2は撹拌モーター、3は撹拌翼、4は邪魔
棒、5は発泡槽上面検出器、6は発泡性粒子輸送器、7
は発泡性粒子計量槽、8は発泡性粒子投入器、9は蒸気
吹込制御弁、10は蒸気チャンバー、11は凝縮水排出
弁、12は排気制御弁、13は予備発泡粒子排出口、1
4は予備発泡粒子一時受器、15は空気輸送設備、16
は内圧検出・制御装置、17は蒸気吹込孔、18は蒸気
投入圧力計、19は減圧弁、20は蒸気元圧力計を意味
する。 【0024】上記のスチレン系樹脂予備発泡粒子を発泡
成形することで得られる発泡成形体は、長期にわたる寸
法安定性に優れている。実施例にも記載したとおり、8
5℃で、168時間加熱したときの寸法変化率を±0.
5%以内にすることができる。また、揮発性有機化合物
の含有量を1000ppm以下と、極めて少なくするこ
とができる。 【0025】発泡成形法としては特に限定されず、公知
の方法をいずれも使用することができる。例えば、スチ
レン系樹脂予備発泡粒子を発泡成形用型のキャビティ内
に充填し、蒸気を吹き込んで予備発泡粒子を加熱するこ
とで、該粒子同士が互いに密着すると共に融着一体化し
て所望の発泡成形体を得ることができる。発泡成形体の
密度は0.015〜0.5g/cm程度が好ましい。 【0026】 【実施例】以下、本発明を実施例及び比較例に基づき更
に詳しく説明するが、本発明はこれらにより限定される
ことはない。なお、実施例において、寸法変化率及び揮
発性有機化合物の含有量の評価は以下のようにして行っ
た。 【0027】<寸法変化率>発泡成形用型から取り出し
たスチレン系樹脂発泡成形体(実際には、図2に示すよ
うに、厚さh:30mm、内径a:200mm、外径
b:260mm、長さc:1000mmの半円筒形状で
あるスチレン系樹脂発泡成形体)を、温度23℃、相対
湿度50%の恒温恒湿室(JIS−K7100の標準温
湿度状態)に24時間放置した後、この発泡成形体をJ
IS−K6767に従う試験サンプルとした。 【0028】この試験サンプルを85℃に保った熱風循
環式乾燥機の中に水平に置き、168時間加熱試験を行
った後に取り出し、再び恒温恒湿室に1時間放置した。
加熱前と加熱後における試験サンプルの寸法測定をJI
S−K6767に準拠して実施した。寸法変化率Pは次
の式にしたがって求めた。なお、ここで寸法とは、前記
試験サンプルの長さcである。 【0029】 寸法変化率P(%)=(c2−c1)×100/c1 (ただし、c1は、型内成形後に23℃、相対湿度50
%で24時間放置された試験サンプルの寸法、c2は該
試験サンプルを85℃で168時間加熱した後の試験サ
ンプルの寸法である)。 【0030】<揮発性有機化合物の含有量>発泡成形用
型から取り出した発泡成形体を50℃の恒温室で7日間
乾燥させた後、以下に示す三種類の測定法によって得ら
れた値を合計して求めた。 a.(炭素数5以下の炭化水素の測定) 発泡成形体を150℃の熱分解炉に入れ、揮発した炭化
水素をガスクロマトグラフィーにて測定した。 ガスクロマトグラフィー(GC):島津製作所社製 G
C−14B 熱分解炉:島津製作所社製 PYR−1A カラム:ポラパックQ 80/100(3mmφ×1.
5m) カラム温度:100℃ 検出器(FID)温度:120℃ 【0031】b.(炭素数6以上の炭化水素であって、
ガスクロマトグラムに現われるスチレンのピークまでの
炭化水素の測定) 発泡成形体をジメチルホルムアミドに溶解し、内部標準
液(シクロペンタノール)を加えてGCにより測定し
た。ただし、特定できないピークについてはトルエンの
検出量に換算して定量した。 【0032】GC:島津製作所社製 GC−14A カラム:PEG−20M PT25% 60/80
(2.5m) カラム温度:105℃ 検出器(FID)温度:220℃ 【0033】c.(ガスクロマトグラムに現われるスチ
レンの次のピークから炭素数16(n−ヘキサデカン)
までの炭化水素の測定) 発泡成形体をクロロホルムに溶解し、ガスクロマトグラ
フ質量分析計(GCMS)にて測定した。ただし、試験
サンプルを溶解しない溶剤のみの空試験を行い、空試験
の検出物質量を差し引いた。更に、特定できないピーク
についてはトルエンの検出量に換算して定量した。 【0034】GCMS:島津製作所社製 QP5000 カラム:J&W Scientific社製 DB−1
(1μm×60m 0.25mmφ) 測定条件:カラム温度(60℃で1分保持した後、10
℃/分で300℃まで昇温) スプリット比:10 キャリヤガス:He(1ml/min) インターフェイス温度:260℃ 【0035】[実施例1]100リットルの反応器に、純
水40kg、ドデシルベンゼンスルホン酸ソーダ1.8
g、ピロリン酸マグネシウム70gを入れ水性媒体とし
た。次にベンゾイルパーオキサイド(純度75%)18
2g、t−ブチルパーオキシベンゾエート30g及びポ
リエチレンワックス(分子量1000)22gを溶解し
たスチレン44kgを撹拌しながら加えて懸濁させ、9
0℃に昇温して重合を開始した。比重法で測定した重合
転化率が95重量%まで進行した時点で、反応器を12
2℃に昇温して2時間保持した後、常温まで冷却して、
スチレン樹脂粒子を取り出した。ここで得られたスチレ
ン樹脂粒子中の残留スチレンをガスクロマトグラフで測
定したところ、460ppmであり、また、GPC法で
測定した重量平均分子量は222000であった。 【0036】スチレン樹脂粒子のうち、粒径0.7〜
1.0mmのもの15kgを、内容量が30リットルの
回転式耐圧容器に入れた後、展着剤としてポリエチレン
グリコール300を7.5g、グリセリンモノステアリ
ン酸エステルを7.5g、結合防止剤として炭酸カルシ
ウム30gを添加して容器を回転させ、樹脂粒子の表面
に付着させた。次いで回転を停止してから容器内に炭酸
ガスを圧入して、25℃、30kg/cm2Gに6時間
保って樹脂粒子内に炭酸ガスを含浸させ、発泡性スチレ
ン樹脂粒子を得た。 【0037】こうして得られた発泡性スチレン樹脂粒子
を耐圧容器から取り出し、次工程で攪拌機付き発泡機内
に投入した後、投入圧力が1.2kg/cm2Gの蒸気
を発泡機缶内に導入した。この時の発泡機内の圧力は
0.8kg/cm2Gになるように、排気制御弁の開度
を電気信号でコントロールしながら、排気ラインを使っ
て余分な圧力を外部に逃がした(投入圧力と発泡機内圧
力との差は0.4kg/cm2G)。このように、蒸気
を発泡機内に連続して導入しながら予備発泡させてスチ
レン樹脂予備発泡粒子とした。この予備発泡粒子の粒径
は2.3〜4.0mmであった。 【0038】予備発泡してから6時間後、型締め後のキ
ャビティ形状が、図2で示す半円筒形状のパイプ用断熱
材の形状に設計された発泡成形用型内に、スチレン樹脂
予備発泡粒子を充填し蒸気で加熱して、図2に示す形状
のスチレン樹脂発泡成形体を得た。密度0.020g/
cm3であった。得られた発泡成形体について、上記し
た評価方法により、寸法変化率及び揮発性有機化合物の
含有量を評価した。得られた結果を表1に示す。 【0039】[実施例2]発泡性スチレン樹脂粒子を耐圧
容器から取り出して直ちに、投入圧力が1.5kg/c
2Gの蒸気を発泡機内に導入し、発泡機内の圧力が
0.8kg/cm2Gになるように(投入圧力と発泡機
内圧力との差は0.7kg/cm2G)調整したこと以
外は、実施例1と同様にして予備発泡粒子及び半円筒状
の発泡成形体を得た。得られた発泡成形体の寸法変化率
及び揮発性有機化合物の含有量の評価結果を表1に示
す。なお、予備発泡粒子の粒径は2.3〜4.0mm
で、発泡成形体の密度は0.025g/cm3であっ
た。 【0040】[比較例1]発泡性スチレン樹脂粒子を耐圧
容器から取り出して直ちに、投入圧力が2.0kg/c
2Gの蒸気を発泡機内に導入し、発泡機内の圧力は
0.8kg/cm2Gになるように(投入圧力と発泡機
内圧力との差は1.2kg/cm2G)調整したこと以
外は、実施例1と同様にして予備発泡粒子及び半円筒状
の発泡成形体を得た。得られた発泡成形体の評価結果を
表1に示す。なお、予備発泡粒子の粒径は2.2〜3.
6mmで、発泡成形体の密度は0.025g/cm3
あった。 【0041】[比較例2]発泡性スチレン樹脂粒子を耐圧
容器から取り出して直ちに、投入圧力が0.8kg/c
2Gの蒸気を発泡機内に導入し、発泡機内の圧力は
0.8kg/cm2Gになるように(投入圧力と発泡機
内圧力との差は0kg/cm2G)調整したこと以外
は、実施例1と同様にして予備発泡粒子及び半円筒形状
の発泡成形体を得た。得られた発泡成形体の評価結果を
表1に示す。なお、得られた予備発泡粒子の粒径は1.
8〜2.8mmで、発泡成形体の密度は0.050g/
cm3であった。 【0042】[比較例3]内容積5リットルの攪拌機付き
耐圧容器に、実施例1で得られたスチレン樹脂粒子のう
ち、粒径0.7〜1.0mmのもの2.0kg、イオン
交換水2.2リットル、第三りん酸カルシウム6.0
g、及びドデシルベンゼンスルホン酸ナトリウム0.2
gを入れて攪拌を開始した。次に90℃に昇温した後、
ブタン140gを圧入して5時間保持した。次いで、3
0℃まで冷却し、発泡性スチレン樹脂粒子を得た。取り
出した粒子を乾燥後、15℃の恒温室で5日間熟成させ
た。そして、予備発泡時の結合防止剤としてジンクステ
アレート、融着促進剤としてヒドロキシステアリン酸ト
リグリセライドを粒子表面に被膜処理した後、攪拌機付
き発泡機内に投入した後、投入圧力が0.5kg/cm
2Gの蒸気を発泡機内に導入した。この時の発泡機内の
圧力は0.1kg/cm2Gになるように、排気制御弁
の開度を電気信号でコントロールしながら、排気ライン
を使って余分な圧力を外部に逃がした(投入圧力と発泡
機内圧力との差は0.4kg/cm2G)。このよう
に、蒸気を発泡機内に連続して導入しながら予備発泡さ
せてスチレン樹脂予備発泡粒子とした。この予備発泡粒
子の粒径は2.3〜4.0mmであった。予備発泡して
から6時間後、実施例1で用いたと同じ発泡成形用型を
使用して発泡成形し、密度0.020g/cm3である
実施例1と同じ形状の発泡成形体を得た。得られた発泡
成形体の評価結果を表1に示す。 【0043】 【表1】 【0044】以上の結果から、スチレン系樹脂粒子に炭
酸ガスを含浸させて得たスチレン系樹脂予備発泡粒子の
型内発泡成形品において、スチレン系樹脂予備発泡粒子
として、炭酸ガスを有する発泡性スチレン系樹脂粒子を
投入圧力と発泡機内圧力との差を調整して予備発泡粒子
としたものを用いて発泡成形することにより、高温の雰
囲気下でも長期にわたって寸法安定性に優れたスチレン
系樹脂成形体が得られることがわかる。また、揮発性有
機化合物の含有量も極めて少なくすることができる。 【0045】 【発明の効果】本発明によるパイプ用保温材は、断熱性
に優れ、かつ強度や成形性にも優れており、低コストで
もある発泡ポリスチレン製品でありながら、高温の雰囲
気下でも長期にわたって寸法が非常に安定している。そ
のために、このパイプ用保温材を周囲に取り付けた冷水
・温水パイプでは、高い断熱性能を長期間にわたって維
持できる。また、残留揮発性有機化合物の含有量もきわ
めて少量とすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating material for a pipe mainly used for keeping the temperature of a pipe for water supply or hot water supply. 2. Description of the Related Art Pipes for water supply and hot water supply are provided from inside a cold water source or a hot water source to inside and outside a building, and cold water and hot water are led to a consumption place. In order to reduce the heat loss in the pipeline, a heat insulating material is attached to the water supply / hot water supply pipe (see JP-A-2000-154900). For example, FIG. 3 shows an example of a heat insulating material made of a resin foam molded article having a shape obtained by dividing a cylindrical body into two parts in a radial direction.
The heat insulating materials 52, 52 formed so as to have an inner diameter that can be closely adhered to the periphery of the pipe 51 are fixed to the outer peripheral surface of the pipe 51 using an adhesive or an appropriate fixing tool such as an adhesive tape. . [0003] Due to its excellent heat insulating properties, excellent strength and moldability, and low cost, a styrene-based resin foam molded article is often used. Have been. These heat insulating materials are filled with pre-expanded particles obtained by heating expandable styrene resin particles containing butane or pentane as a foaming agent by heat such as steam, into the cavity of the in-mold foam molding die, It is manufactured by subjecting the pre-expanded particles to foam molding in a mold by heating with steam or the like. However, those using butane or pentane as the blowing agent have a dimensional change rate of ± 1.5% when exposed to a high-temperature environment of about 85 ° C., which is the maximum temperature of hot water flowing in the hot water supply vibrator, for a long time. It turned out to be large. Generally, even if a hot water supply pipe is designed for flowing hot water of about 80 ° C., if hot water of up to about 85 ° C. flows for some reason, as described above. Since the dimensional change rate is as large as about ± 1.5%, a gap is formed between the pipe and the heat insulating material, and sometimes a crack occurs in the heat insulating material for the pipe, thereby impairing the heat insulating performance. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a heat insulating material for pipes according to the present invention is obtained by impregnating styrene resin particles with carbon dioxide gas. Cylindrical molded article obtained by heating at 85 ° C. for 168 hours, the dimensional change before and after heating is within ± 0.5%. Alternatively, it is a pipe heat insulating material having a shape obtained by dividing a cylindrical body in a radial direction. In the present invention, the condition of “heating at 85 ° C. for 168 hours” is one of the indices required by those skilled in the art as a heat insulating material such as a hot water supply pipe. In addition, when the dimensional change rate at this time satisfies ± 0.5% or less, it is possible to prevent the heat insulation state from being lowered for the above-described reason. A foamed styrene-based resin having a dimensional change rate in the above range (ie, a heat insulating material for pipes) is obtained by in-mold foaming of pre-expanded styrene-based resin particles produced as follows. be able to. That is,
First, styrene-based resin particles are impregnated with carbon dioxide to form expandable styrene-based resin particles, and in the next step, the expandable styrene-based resin particles are charged into a pre-foaming machine having a steam input line and an exhaust line, and steam is injected. Steam from the input line
The gas is supplied at an input pressure of 5 to 5.0 kg / cm 2 G, and the atmosphere gas containing steam is exhausted from the exhaust line.
Pre-expanded while maintaining a low 1.0 kg / cm 2 G to obtain pre-expanded styrene resin particles. By using the above-mentioned styrene-based resin pre-expanded particles, it is possible to obtain a styrene-based resin foam molded article by in-mold foaming having the dimensional change rate of ± 0.5% or less. Therefore, the heat insulating material for pipes manufactured in this way becomes a heat insulating material for pipes that satisfies the above-described required properties of the heat insulating material for pipes, and can suppress a decrease in heat insulation performance for a long time. At the same time, the content of the residual volatile organic compound can be suppressed to an extremely small amount. The in-mold foam molding conditions may be the same as the conventional in-mold foam molding conditions using styrene resin pre-expanded particles. The details will be described below. As the styrene resin particles, generally known styrene resin particles can be used. Specifically, such resin particles include styrene, α-methylstyrene, paramethylstyrene, t
-Homopolymer particles of styrene monomers such as butylstyrene, chlorostyrene, divinylbenzene (bifunctional monomer) or copolymer particles obtained by combining two or more of these monomers, methyl acrylate, butyl acrylate, Methyl methacrylate, ethyl methacrylate, esters of acrylic acid and methacrylic acid such as cetyl methacrylate,
Alternatively, copolymer particles with a monomer other than a styrene-based monomer such as acrylonitrile, dimethyl fumarate, ethyl fumarate, and alkylene glycol dimethacrylate (a bifunctional monomer) may be used. Further, resin particles obtained by extrusion blending with a resin other than the styrene resin within a range in which the styrene component in the styrene resin particles exceeds 50% by weight may be used. Examples of the resin other than the styrene resin include a polyphenyl ether resin, a polyolefin resin, and a rubber component. In particular, polystyrene resin particles are preferable as the styrene resin particles. Resin particles having a particle size of, for example, 0.2 to 5 mm can be used. The styrene-based resin particles are preferably those in which the residual styrene-based monomer is suppressed to a small extent.
Those having a concentration of from 500 to 500 ppm are particularly preferred. In order to reduce the residual styrene-based monomer in the styrene-based resin particles, for example, in suspension polymerization, a high-temperature-initiated polymerization catalyst of 0.05% by weight or more based on the styrene-based monomer is used. Is preferably 115 ° C. or higher. Examples of the high temperature initiation type polymerization catalyst include t-butyl peroxybenzoate, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy acetate, 2,2-t-butyl peroxybutane, and the like. Temperature to obtain a half-life of 10 hours
Those at 15 ° C. are particularly preferred. However, if these are used more than necessary, they will contain decomposition by-products such as t-butanol, so that they vary depending on the type of polymerization catalyst, but the upper limit of the amount used is preferably 0.5% by weight. The molecular weight of the styrene-based resin particles is preferably 200,000 to 400,000 in terms of weight average molecular weight according to the GPC method. If it is less than 200,000, the strength of the foamed molded article may be reduced.
If it exceeds 10,000, it is difficult to obtain a sufficient foaming property, which is not preferable. The styrene resin particles are impregnated with carbon dioxide as a foaming agent to obtain expandable styrene resin particles. The carbon dioxide gas as the foaming agent may be 100% carbon dioxide gas, but other foaming agents may be added as long as the effects of the present invention are not impaired. Other blowing agents include air, inorganic blowing agents such as nitrogen, aliphatic hydrocarbons such as propane, butane, pentane, and hexane; cycloaliphatic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane; and fluorocarbons. Organic blowing agents can also be mixed. As the fluorinated hydrocarbon, it is preferable to use difluoroethane, tetrafluoroethane, or the like having an ozone depletion potential of zero. Here, the organic foaming agent is preferably used in a range not exceeding 20% by weight of the total amount of the foaming agent. The content ratio of carbon dioxide in the styrene resin particles is 1 to 15% by weight.
Is preferred. In order to impregnate the styrene-based resin particles with carbon dioxide gas, for example, after putting the styrene-based resin particles into a pressure-resistant closed container, carbon dioxide gas is injected and the resin particles are brought into contact with the pressurized carbon dioxide gas. This can be done by causing The impregnation temperature may be raised to a temperature at which the styrene resin particles do not coalesce and agglomerate with each other,
4040 ° C. The pressure at which the styrene resin particles are impregnated with carbon dioxide gas is preferably 10 kg / cm 2 G or more, more preferably 15 to 40 kg / cm 2 G. The impregnation time can be appropriately adjusted so that the styrene-based resin particles have the above-mentioned carbon dioxide content.
0 hours is preferable, and 2 to 8 hours is more preferable. When impregnating the styrene resin particles with carbon dioxide, various surface treatment agents can be applied to the surfaces of the resin particles. Examples of such a surface treatment agent include an anti-binding agent for preventing the bonding of the pre-expanded particles at the time of heat expansion, a fusion promoting agent at the time of molding, an antistatic agent, and a spreading agent. Examples of the binding inhibitor include talc, calcium carbonate, silica, zinc stearate, aluminum hydroxide, ethylene bisstearic acid amide, tribasic calcium phosphate, dimethyl silicon and the like. As the fusion promoter, for example, stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride,
And sorbitan stearate, polyethylene wax and the like. Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride. Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil. [0016] As other additives, flame retardants such as hexabromocyclododecane and tetrabromocyclooctane, methacrylic acid ester copolymers, ethylenebisstearic acid amide, and polyethylene wax may be incorporated into the styrene resin particles, if desired. And a cell regulator such as ethylene-vinyl acetate copolymer or the like. The above-mentioned binding inhibitor, fusion promoter during molding, antistatic agent, spreading agent and other additives can be used alone or in combination of two or more. The above-mentioned expandable styrene resin particles may contain a flame retardant. As a method for obtaining styrene-based resin pre-expanded particles containing a flame retardant, for example, in a suspension of styrene-based resin particles and water, the resin in a temperature atmosphere above the melting point of the flame retardant dissolved or suspended in water Styrene resin particles containing a flame retardant are obtained by a method of including a flame retardant in particles, or a method of including a flame retardant in styrene resin particles by extrusion blending, and impregnation and prefoaming of a foaming agent using this. Method. Examples of the flame retardant that can be used at this time include hexabromocyclododecane and tetrabromocyclooctane. The content of the flame retardant is preferably from 0.1 to 4% by weight, particularly preferably from 0.5 to 3.0% by weight, based on the whole resin particles. When the content of the flame retardant is less than 0.1% by weight, it is difficult to obtain a sufficient flame retarding effect, which is not preferable. On the other hand, if the flame retardant content exceeds 4% by weight, the tendency of the pre-expanded particles of the styrene resin to coalesce with each other increases, which is not preferable. The particle diameter of the styrene resin pre-expanded particles is preferably about 0.3 to 10 mm. The styrene resin pre-expanded particles are preferably produced as follows. That is, as described above, the styrene-based resin particles are impregnated with carbon dioxide to form expandable styrene-based resin particles, and in the next step, the expandable styrene-based resin is placed in a preliminary foaming machine having a steam input line and an exhaust line. The particles are charged, steam is supplied from a steam charging line at a charging pressure of 0.5 to 5.0 kg / cm 2 G, and an atmosphere gas containing steam is exhausted from an exhaust line,
In the meantime, the pressure in the foaming machine is set at 0.0
Pre-foaming is performed while maintaining a low level of 5 to 1.0 kg / cm 2 G to obtain pre-foamed styrene resin particles. In this method, it is preferred that prefoaming be performed immediately after the step of impregnating with carbon dioxide gas. Further, in this method, it is necessary to control the pressure in the preliminary foaming machine to be always lower than the supply pressure by using an exhaust control valve or the like so that the steam is always supplied to the foaming machine. For example, if the steam input pressure is set to 1.2 kg / cm 2 G and the pressure in the prefoaming machine is set to 0.8 kg / cm 2 G, the pressure is reduced while removing 0.4 kg / cm 2 G pressure from the exhaust line. Is performed. In particular,
The pressure can be adjusted by linking and controlling the pressure inside the foaming machine and the exhaust control valve. The difference between the input pressure and the pressure inside the foaming machine is 0.0
If it is less than 5 kg / cm 2 G, not only is it difficult to obtain styrene resin pre-expanded particles having a low bulk density, but the appearance and internal fusion of the expanded molded article are poor, and the commercial value is low. On the other hand, if it exceeds 1.0 kg / cm 2 G, the bonding at the time of preliminary foaming increases, which is not preferable. A more preferred pressure difference is
0.1 to 0.7 kg / cm 2 G. The expandable styrene resin particles in the prefoaming machine are preferably heated to about 110 to 160 ° C., more preferably 110 to 130 ° C. When the heating temperature is lower than 110 ° C., the bulk density is 0.5 g /
Pre-expanded styrene resin particles of cm 3 or less are not preferred because they are difficult to obtain. On the other hand, when the heating temperature is higher than 160 ° C., the tendency of the styrene-based resin pre-expanded particles to coalesce increases, which is not preferable. FIG. 1 shows an example of a pre-expansion machine which can be used for producing the pre-expanded styrene resin particles as described above. In the figure, 2 is a stirring motor, 3 is a stirring blade, 4 is a baffle bar, 5 is a detector for the top of the foaming tank, 6 is a foaming particle transporter, 7
Is an expandable particle measuring tank, 8 is an expandable particle injector, 9 is a steam blowing control valve, 10 is a steam chamber, 11 is a condensed water discharge valve, 12 is an exhaust control valve, 13 is a pre-expanded particle discharge port,
4 is a pre-expanded particle temporary receiver, 15 is a pneumatic transportation facility, 16
Denotes an internal pressure detection / control device, 17 denotes a steam injection hole, 18 denotes a steam input pressure gauge, 19 denotes a pressure reducing valve, and 20 denotes a steam source pressure gauge. The foam molded article obtained by foam molding the above-mentioned styrene resin pre-expanded particles has excellent long-term dimensional stability. As described in the examples, 8
The dimensional change when heated at 5 ° C. for 168 hours is ± 0.1%.
It can be within 5%. Further, the content of the volatile organic compound can be extremely reduced to 1000 ppm or less. The foam molding method is not particularly limited, and any known method can be used. For example, by filling styrenic resin pre-expanded particles into the cavity of the foaming mold and heating the pre-expanded particles by blowing steam, the particles adhere to each other and are fused and integrated to form the desired foamed molding. You can get the body. The density of the foam molded body is preferably about 0.015 to 0.5 g / cm 3 . The present invention will be described below in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In the examples, the dimensional change rate and the content of the volatile organic compound were evaluated as follows. <Dimensional change rate> A styrenic resin foam molded article taken out of a foaming mold (actually, as shown in FIG. 2, thickness h: 30 mm, inner diameter a: 200 mm, outer diameter b: 260 mm, After leaving a semi-cylindrical styrene resin foam molded product having a length c: 1000 mm in a semi-cylindrical shape) in a constant temperature and humidity room (standard temperature and humidity condition of JIS-K7100) at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours, This foamed molded article is
A test sample according to IS-K6767 was used. The test sample was placed horizontally in a hot air circulating drier kept at 85 ° C., subjected to a heating test for 168 hours, taken out, and left again in a constant temperature and humidity room for 1 hour.
JI measures dimensions of test samples before and after heating
It carried out based on SK6767. The dimensional change P was determined according to the following equation. Here, the dimension is the length c of the test sample. Dimensional change rate P (%) = (c2−c1) × 100 / c1 (where c1 is 23 ° C. and 50% relative humidity after in-mold molding)
%, The dimension of the test sample left for 24 hours, c2 is the dimension of the test sample after heating the test sample at 85 ° C. for 168 hours). <Content of Volatile Organic Compound> After the foamed molded article taken out of the foaming mold was dried in a constant temperature room at 50 ° C. for 7 days, the values obtained by the following three measurement methods were measured. The total was determined. a. (Measurement of hydrocarbons having 5 or less carbon atoms) The foamed molded article was placed in a pyrolysis furnace at 150 ° C, and volatile hydrocarbons were measured by gas chromatography. Gas chromatography (GC): G manufactured by Shimadzu Corporation
C-14B Pyrolysis furnace: PYR-1A manufactured by Shimadzu Corporation Column: Polapack Q 80/100 (3 mmφ × 1.
5m) Column temperature: 100 ° C Detector (FID) temperature: 120 ° C b. (A hydrocarbon having 6 or more carbon atoms,
Measurement of Hydrocarbon Up to Styrene Peak Appearing in Gas Chromatogram) The foamed molded product was dissolved in dimethylformamide, and an internal standard solution (cyclopentanol) was added. However, peaks that could not be identified were quantified in terms of the amount of toluene detected. GC: GC-14A manufactured by Shimadzu Corporation Column: PEG-20M PT25% 60/80
(2.5 m) Column temperature: 105 ° C. Detector (FID) temperature: 220 ° C. c. (From the next peak of styrene appearing in the gas chromatogram, the carbon number is 16 (n-hexadecane)
Measurement of hydrocarbon up to) The foamed molded product was dissolved in chloroform, and measured with a gas chromatograph mass spectrometer (GCMS). However, a blank test using only a solvent that did not dissolve the test sample was performed, and the amount of the detected substance in the blank test was subtracted. Further, unspecified peaks were quantified in terms of the amount of toluene detected. GCMS: QP5000 manufactured by Shimadzu Corporation Column: DB-1 manufactured by J & W Scientific
(1 μm × 60 m 0.25 mmφ) Measurement conditions: column temperature (after holding at 60 ° C. for 1 minute, 10
(The temperature was raised to 300 ° C. at a rate of 300 ° C./min.) Split ratio: 10 Carrier gas: He (1 ml / min) Interface temperature: 260 ° C. Example 1 In a 100-liter reactor, 40 kg of pure water, dodecylbenzene sulfone Acid soda 1.8
g and 70 g of magnesium pyrophosphate were used as an aqueous medium. Next, benzoyl peroxide (purity 75%) 18
2 g, 30 g of t-butyl peroxybenzoate and 44 kg of styrene in which 22 g of polyethylene wax (molecular weight 1000) were dissolved were added with stirring and suspended.
The temperature was raised to 0 ° C. to initiate polymerization. When the polymerization conversion measured by the specific gravity method reached 95% by weight, the reactor was cooled to 12%.
After heating to 2 ° C and holding for 2 hours, cool to room temperature,
The styrene resin particles were taken out. The residual styrene in the styrene resin particles obtained here was measured by gas chromatography and found to be 460 ppm, and the weight average molecular weight measured by GPC was 222000. [0036] Of the styrene resin particles, a particle size of 0.7 to
After putting 15 kg of 1.0 mm into a rotary pressure-resistant container having a content of 30 liters, 7.5 g of polyethylene glycol 300 as a spreading agent, 7.5 g of glycerin monostearate, and carbonic acid as a binding inhibitor are used. 30 g of calcium was added, and the container was rotated to adhere to the surface of the resin particles. Next, after stopping the rotation, carbon dioxide gas was injected into the container and kept at 25 ° C. and 30 kg / cm 2 G for 6 hours to impregnate the resin particles with carbon dioxide gas to obtain expandable styrene resin particles. The expandable styrene resin particles thus obtained were taken out of the pressure-resistant container, and charged in a foaming machine with a stirrer in the next step, and steam having a charging pressure of 1.2 kg / cm 2 G was introduced into the foaming machine can. . Excess pressure was released to the outside using the exhaust line while controlling the opening of the exhaust control valve with an electric signal so that the pressure in the foaming machine at this time was 0.8 kg / cm 2 G (input pressure). Is 0.4 kg / cm 2 G). In this way, pre-foaming was performed while continuously introducing steam into the foaming machine to obtain styrene resin pre-foamed particles. The particle size of the pre-expanded particles was 2.3 to 4.0 mm. Six hours after the pre-foaming, the styrene resin pre-foamed particles are placed in a foaming mold designed so that the cavity shape after mold clamping is the shape of a semi-cylindrical pipe heat insulating material shown in FIG. And heated with steam to obtain a styrene resin foam molded article having a shape shown in FIG. Density 0.020g /
cm 3 . With respect to the obtained foamed molded article, the dimensional change rate and the content of the volatile organic compound were evaluated by the evaluation method described above. Table 1 shows the obtained results. [Example 2] Immediately after the expandable styrene resin particles were taken out of the pressure-resistant container, the charging pressure was 1.5 kg / c.
m 2 G steam was introduced into the foaming machine, and the pressure in the foaming machine was adjusted to 0.8 kg / cm 2 G (the difference between the input pressure and the pressure in the foaming machine was 0.7 kg / cm 2 G). Except for the above, pre-expanded particles and a semi-cylindrical foamed molded product were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the dimensional change rate and the content of the volatile organic compound of the obtained foamed molded article. In addition, the particle diameter of the pre-expanded particles is 2.3 to 4.0 mm.
The density of the foam molded article was 0.025 g / cm 3 . [Comparative Example 1] Immediately after the expandable styrene resin particles were taken out of the pressure-resistant container, the charging pressure was 2.0 kg / c.
m 2 G steam was introduced into the foaming machine, and the pressure inside the foaming machine was adjusted to 0.8 kg / cm 2 G (the difference between the input pressure and the pressure inside the foaming machine was 1.2 kg / cm 2 G). Except for the above, pre-expanded particles and a semi-cylindrical foamed molded product were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained foamed molded articles. The particle size of the pre-expanded particles is 2.2 to 3.
At 6 mm, the density of the foam molded article was 0.025 g / cm 3 . [Comparative Example 2] Immediately after the expandable styrene resin particles were taken out of the pressure-resistant container, the charging pressure was 0.8 kg / c.
m 2 G steam was introduced into the foaming machine, and the pressure in the foaming machine was adjusted to 0.8 kg / cm 2 G (the difference between the input pressure and the pressure in the foaming machine was 0 kg / cm 2 G), except that In the same manner as in Example 1, pre-expanded particles and a semi-cylindrical foam molded article were obtained. Table 1 shows the evaluation results of the obtained foamed molded articles. The particle size of the obtained pre-expanded particles was 1.
8 to 2.8 mm, the density of the foam molded article is 0.050 g /
cm 3 . Comparative Example 3 2.0 kg of the styrene resin particles obtained in Example 1 having a particle size of 0.7 to 1.0 mm and ion-exchanged water were placed in a pressure-resistant container having an internal volume of 5 liters and equipped with a stirrer. 2.2 liters, tricalcium phosphate 6.0
g, and sodium dodecylbenzenesulfonate 0.2
g was added and stirring was started. Next, after heating to 90 ° C,
140 g of butane was injected and held for 5 hours. Then 3
After cooling to 0 ° C., expandable styrene resin particles were obtained. After the taken out particles were dried, they were aged in a thermostatic chamber at 15 ° C. for 5 days. Then, zinc stearate as a binding inhibitor at the time of prefoaming and hydroxystearic acid triglyceride as a fusion promoter are coated on the surface of the particles, and then charged into a foaming machine equipped with a stirrer.
2 G steam was introduced into the foaming machine. Excess pressure was released to the outside using the exhaust line while controlling the opening of the exhaust control valve with an electric signal so that the pressure in the foaming machine at this time was 0.1 kg / cm 2 G (input pressure). Is 0.4 kg / cm 2 G). In this way, pre-foaming was performed while continuously introducing steam into the foaming machine to obtain styrene resin pre-foamed particles. The particle size of the pre-expanded particles was 2.3 to 4.0 mm. Six hours after the prefoaming, foaming was performed using the same foaming mold used in Example 1 to obtain a foamed molded article having a density of 0.020 g / cm 3 and the same shape as in Example 1. . Table 1 shows the evaluation results of the obtained foamed molded articles. [Table 1] From the above results, in the in-mold foamed product of the styrene-based resin pre-expanded particles obtained by impregnating the styrene-based resin particles with carbon dioxide, as the styrene-based resin pre-expanded particles, expandable styrene having carbon dioxide was used. A styrene-based resin molded article that has excellent dimensional stability over a long period of time even in a high-temperature atmosphere by foaming using pre-expanded particles by adjusting the difference between the input pressure and the pressure in the foaming machine. Is obtained. Further, the content of the volatile organic compound can be extremely reduced. The heat insulating material for pipes according to the present invention has excellent heat insulating properties, excellent strength and moldability, and is a low-cost expanded polystyrene product. The dimensions are very stable over. Therefore, in the cold water / hot water pipe in which the heat insulating material for the pipe is mounted around, high heat insulation performance can be maintained for a long period of time. Further, the content of the residual volatile organic compound can be extremely small.

【図面の簡単な説明】 【図1】本発明で使用できるチレン系樹脂予備発泡粒子
を製造するのに用いられる予備発泡機の概略説明図であ
る。 【図2】実施例及び比較例で用いたパイプ用保温材を示
す図。 【図3】従来からのパイプ用保温材の使用態様を説明す
る図。 【符号の説明】 2 撹拌モーター 3 撹拌翼 4 邪魔棒 5 発泡槽上面検出器 6 発泡性粒子輸送器 7 発泡性粒子計量槽 8 発泡性粒子投入器 9 蒸気吹込制御弁 10 蒸気チャンバー 11 凝縮水排出弁 12 排気制御弁 13 予備発泡粒子排出口 14 予備発泡粒子一時受器 15 空気輸送設備 16 内圧検出・制御装置 17 蒸気吹込孔 18 蒸気投入圧力計 19 減圧弁 20 蒸気元圧力計 51 パイプ 52 パイプ用保温材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of a pre-expansion machine used for producing pre-expanded Tylene resin particles usable in the present invention. FIG. 2 is a view showing a heat insulating material for a pipe used in Examples and Comparative Examples. FIG. 3 is a view for explaining a usage mode of a conventional pipe heat insulating material. [Description of Signs] 2 Stirring motor 3 Stirring blade 4 Baffle bar 5 Foaming tank top detector 6 Foaming particle transporter 7 Foaming particle measuring tank 8 Foaming particle injector 9 Steam blowing control valve 10 Steam chamber 11 Condensate discharge Valve 12 Exhaust control valve 13 Pre-expanded particle outlet 14 Pre-expanded particle temporary receiver 15 Air transport facility 16 Internal pressure detection / control device 17 Steam blow-in hole 18 Steam input pressure gauge 19 Pressure reducing valve 20 Steam source pressure gauge 51 Pipe 52 For pipe Insulation material

Claims (1)

【特許請求の範囲】 【請求項1】 スチレン系樹脂粒子に炭酸ガスを含浸さ
せて得たスチレン系樹脂予備発泡粒子の型内発泡成形品
であり、85℃で168時間加熱したとき、その加熱前
と加熱後における寸法変化率が±0.5%以内である、
円筒体形状又は円筒体を放射方向で分割した形状である
パイプ用保温材。
Claims 1. An in-mold foam molded article of styrene-based resin pre-expanded particles obtained by impregnating styrene-based resin particles with carbon dioxide gas, which is heated at 85 ° C. for 168 hours. The dimensional change before and after heating is within ± 0.5%,
A heat insulator for pipes having a cylindrical shape or a shape obtained by dividing a cylindrical body in a radial direction.
JP2001393316A 2001-12-26 2001-12-26 Pipe thermal insulating material Pending JP2003194289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393316A JP2003194289A (en) 2001-12-26 2001-12-26 Pipe thermal insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393316A JP2003194289A (en) 2001-12-26 2001-12-26 Pipe thermal insulating material

Publications (1)

Publication Number Publication Date
JP2003194289A true JP2003194289A (en) 2003-07-09

Family

ID=27600345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393316A Pending JP2003194289A (en) 2001-12-26 2001-12-26 Pipe thermal insulating material

Country Status (1)

Country Link
JP (1) JP2003194289A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692931A (en) * 1979-12-26 1981-07-28 Kanegafuchi Chem Ind Co Ltd Foamed molded article of heat-resistant synthetic resin
JPS63191842A (en) * 1987-02-04 1988-08-09 Dow Kako Kk Production of low-density polystyrene resin foam
JPH0979480A (en) * 1995-09-14 1997-03-25 Shinryo Corp Piping insulation holder made of high density polystyrene form
JPH10306172A (en) * 1998-05-06 1998-11-17 Dow Kakoh Kk Low-density polystyrene resin foam
JP2001027387A (en) * 1999-07-12 2001-01-30 Sekisui Plastics Co Ltd Pipe heat retaining material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692931A (en) * 1979-12-26 1981-07-28 Kanegafuchi Chem Ind Co Ltd Foamed molded article of heat-resistant synthetic resin
JPS63191842A (en) * 1987-02-04 1988-08-09 Dow Kako Kk Production of low-density polystyrene resin foam
JPH0979480A (en) * 1995-09-14 1997-03-25 Shinryo Corp Piping insulation holder made of high density polystyrene form
JPH10306172A (en) * 1998-05-06 1998-11-17 Dow Kakoh Kk Low-density polystyrene resin foam
JP2001027387A (en) * 1999-07-12 2001-01-30 Sekisui Plastics Co Ltd Pipe heat retaining material

Similar Documents

Publication Publication Date Title
JP2004529215A5 (en)
JP3732418B2 (en) Expandable styrene resin particles
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
JP2003194289A (en) Pipe thermal insulating material
JP2011026506A (en) Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
JP2012188634A (en) Polystyrene based expandable resin particle, polystyrene based expanded resin particle and polystyrene based expanded resin molded article
JP3979883B2 (en) Expandable polystyrene resin particles
JP4065795B2 (en) Heat-resistant styrenic resin foam molding
JP3910855B2 (en) Thermal insulation for floor heating
JP3970652B2 (en) Heat-insulating returnable box
TW496882B (en) Process for the preparation of expandable polyvinylarene particles
JP6081266B2 (en) Foam molding
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
JP6698566B2 (en) Method for producing expanded beads and method for producing expanded molded article
JP2003201615A (en) Shock absorbing material for helmet and helmet provided with the shock absorbing material
JP2002356576A (en) Polystyrene resin pre-foamed particle, production method and foamed molded material
JP2011026505A (en) Expandable polystyrene-based resin particle for low density expansion molding, manufacturing method therefor, low density polystyrene-based resin pre-expanded particle, and low density polystyrene-based resin expansion molded article
JP2010121085A (en) Pre-expanded particle, production method thereof and expanded molding
JP3836062B2 (en) Styrenic resin pre-expanded particles, molded body, and method for producing pre-expanded particles
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JP2004082836A (en) Shock absorbing material made from molded styrene foam for automobile interior
US5854297A (en) Foam materials based on copolymers of styrene and 1,1-diphenylethene
JP2004269019A (en) Food container formed of styrene resin expansion-molded body
JP2003237883A (en) Base carrying container
JP3999150B2 (en) Thermal insulation panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826