JP2002356576A - Polystyrene resin pre-foamed particle, production method and foamed molded material - Google Patents

Polystyrene resin pre-foamed particle, production method and foamed molded material

Info

Publication number
JP2002356576A
JP2002356576A JP2001297896A JP2001297896A JP2002356576A JP 2002356576 A JP2002356576 A JP 2002356576A JP 2001297896 A JP2001297896 A JP 2001297896A JP 2001297896 A JP2001297896 A JP 2001297896A JP 2002356576 A JP2002356576 A JP 2002356576A
Authority
JP
Japan
Prior art keywords
styrene
particles
expanded
resin
expanded particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001297896A
Other languages
Japanese (ja)
Inventor
Katsunori Nishijima
克典 西嶋
Hiroyuki Yamagata
裕之 山形
Ikuo Morioka
郁雄 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2001297896A priority Critical patent/JP2002356576A/en
Publication of JP2002356576A publication Critical patent/JP2002356576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polystyrene resin foamed molded material, containing little of a volatile organic compound, and stable in dimension even used at a high temperature for a long term. SOLUTION: The polystyrene resin pre-foamed particles have many island-like indeterminated projections on the surface of the foamed particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スチレン系樹脂予
備発泡粒子、その製造方法および発泡成形体に関する。
更に詳しくは、揮発性有機化合物の含有量が極めて少な
く、かつ高温の雰囲気下でも長期にわたって寸法が非常
に安定し、更に成形に要する時間が短く、内部融着率が
低くても適度な機械的強度を備えたスチレン系樹脂発泡
成形体、その成形体を提供しうるスチレン系樹脂予備発
泡粒子およびその製造方法に関するものである。本発明
のスチレン系樹脂発泡成形体は、特に断熱建材として好
適である。
The present invention relates to a pre-expanded styrene resin particle, a method for producing the same, and an expanded molded article.
More specifically, the content of the volatile organic compound is extremely low, and the dimensions are very stable over a long period of time even in a high-temperature atmosphere, and the molding time is short. The present invention relates to a styrene-based resin foam molded article having strength, a styrene-based resin pre-expanded particle capable of providing the molded article, and a method for producing the same. The styrenic resin foam molded article of the present invention is particularly suitable as a heat insulating building material.

【0002】[0002]

【従来の技術】発泡剤を1〜15重量%含んだ発泡性ス
チレン系樹脂粒子を、蒸気などにより軟化点以上に加熱
すると、独立気泡を有する粒子状の予備発泡粒子が得ら
れる。この予備発泡粒子を、小さな孔やスリットをもつ
閉鎖型金型の中に充填してから更に蒸気などで内部を加
熱するいわゆる型内成形によって、予備発泡粒子が膨張
して粒子間の隙間を埋めながら互いに融着して目的の発
泡成形体が得られる。このような発泡成形体は、断熱
性、形状の自由性、軽量性、耐水性などの特性に優れる
ため、住宅などの断熱建材として多く用いられている。
2. Description of the Related Art When expandable styrene resin particles containing 1 to 15% by weight of a foaming agent are heated to a softening point or higher by steam or the like, particulate pre-expanded particles having closed cells are obtained. The pre-expanded particles are filled into a closed mold having small holes and slits, and then heated inside with so-called in-mold molding in which the pre-expanded particles expand to fill gaps between the particles. While being fused together, the desired foam molded article is obtained. Such a foamed molded article is widely used as a heat insulating building material for houses and the like because of its excellent properties such as heat insulation, freedom of shape, light weight, and water resistance.

【0003】近年、戸建て住宅やマンションにおいて、
温水、電熱その他の加熱手段によって床を直接暖める床
暖房装置が普及しており、この装置においては加熱手段
から下方の室外へ熱が逃げるのを防止して、室内(床面
から上)を効率的に暖房するために上記断熱建材を組み
込むことが行われている。
In recent years, in detached houses and condominiums,
Floor heating devices that directly heat the floor with hot water, electric heat, or other heating means have become widespread. In this device, heat is prevented from escaping from the heating means to the lower outdoor area, and the room (from the floor surface) is made more efficient. It has been practiced to incorporate the above-mentioned heat-insulating building material for the purpose of heating.

【0004】[0004]

【発明が解決しようとする課題】この床暖房装置に用い
られる断熱建材には、運転時の高温環境下(およそ70
℃)でも長期間寸法が安定していて、熱膨張や熱収縮に
よって床材などとの間に隙間が生じ難いことが望まれて
いるだけでなく、特に最近ではシックハウス(室内空気
汚染)に係わるとされる揮発性有機化合物の含有量が極
めて少ないことが強く求められるようになってきた。
The heat-insulating building materials used in this floor heating device include a high-temperature environment during operation (approximately 70
℃), the dimensions are stable for a long period of time, and it is not only desired that a gap between the floor material and the like does not easily occur due to thermal expansion or thermal contraction, but it is particularly concerned with a sick house (indoor air pollution) recently. It has been strongly required that the content of volatile organic compounds is extremely low.

【0005】揮発性有機化合物としては、スチレン単量
体、トルエン、エチルベンゼン、キシレンなどの芳香族
有機化合物のみならず、炭素数16(常圧沸点287
℃)までの脂肪族炭化水素、シクロヘキサン、メチルシ
クロヘキサンなどの環式脂肪族炭化水素、酢酸メチル、
酢酸ブチルなどの酢酸エステルなどが対象に挙げられて
いる。そして、これらの有機化合物はいずれも発泡性ポ
リスチレン系樹脂粒子の発泡能力や融着性を高める効果
を有しているので、これらの含有量を低下させると発泡
性が低下して低密度化が困難になるだけでなく、発泡成
形体の融着性も悪くなるため、その機械的強度も低下す
るという問題がある。
The volatile organic compounds include not only aromatic organic compounds such as styrene monomer, toluene, ethylbenzene and xylene but also those having 16 carbon atoms (normal pressure boiling point of 287).
C), cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, methyl acetate,
Acetates such as butyl acetate are mentioned as targets. And since all of these organic compounds have the effect of increasing the foaming ability and the fusing property of the expandable polystyrene resin particles, when the content thereof is reduced, the foamability is reduced and the density is reduced. Not only becomes difficult, but also the fusion-bonding property of the foamed molded article is deteriorated, so that there is a problem that its mechanical strength is also reduced.

【0006】この問題を改善する方法として、例えば特
開平11−106548号公報には、分子量が22万〜
35万のポリスチレン粒子中に、残留スチレンが1〜3
00ppm、SP値が7〜10の可塑剤および発泡剤を
含有させた発泡性スチレン系樹脂粒子が提案されてい
る。しかし、この発泡性スチレン系樹脂粒子は、発泡剤
としてブタンやペンタンなどの揮発性物質(揮発性有機
化合物の一種)を用いており、得られた発泡成形体中に
は発泡剤が多量に存在し、徐々に揮発するという欠点が
あった。また、ここで得られた発泡成形体は、例えば4
0〜60℃で揮発性有機化合物を加熱逸散させる処理を
施しても、揮発性有機化合物の含有量を合計で1000
ppm以下にするのは困難であると共に、高温環境下で
の寸法安定性も劣っている。
As a method for solving this problem, for example, Japanese Patent Application Laid-Open No. H11-106548 discloses that the molecular weight is 220,000 to 200,000.
In 350,000 polystyrene particles, residual styrene is 1 to 3
Expandable styrene-based resin particles containing a plasticizer and a foaming agent having an ppm value of 00 ppm and an SP value of 7 to 10 have been proposed. However, these expandable styrenic resin particles use a volatile substance (a kind of volatile organic compound) such as butane or pentane as a blowing agent, and a large amount of the blowing agent is present in the obtained foamed molded article. However, there is a drawback that it evaporates gradually. In addition, the foam molded article obtained here is, for example, 4
Even when a treatment of dissipating the volatile organic compound by heating at 0 to 60 ° C. is performed, the content of the volatile organic compound is 1000
It is difficult to reduce the content to less than ppm, and the dimensional stability under a high temperature environment is poor.

【0007】そこで、本発明者は、発泡剤として、低沸
点の脂肪族炭化水素ではなく、窒素、炭酸ガスなどの無
機ガスを使用する方法について研究した。特開平4−3
51646号公報には、無機ガスを使った高発泡の予備
発泡粒子を製造する方法が開示されている。更に、特開
平5−310986号公報には、表面に難燃剤を付着さ
せたスチレン系樹脂粒子に無機ガスを圧入して発泡性樹
脂粒子とし、これに蒸気を接触させて予備発泡粒子を作
り、この予備発泡粒子を金型内に入れて、金型内に蒸気
を吹き込んで発泡成形体とする方法が開示されている。
Therefore, the present inventor has studied a method of using an inorganic gas such as nitrogen or carbon dioxide instead of an aliphatic hydrocarbon having a low boiling point as a blowing agent. JP-A-4-3
No. 51646 discloses a method for producing highly foamed pre-expanded particles using an inorganic gas. Further, Japanese Patent Application Laid-Open No. Hei 5-310986 discloses that styrene-based resin particles having a flame retardant adhered to the surface are pressurized with an inorganic gas to form expandable resin particles, and then contacted with steam to form pre-expanded particles. A method is disclosed in which the pre-expanded particles are placed in a mold, and steam is blown into the mold to form a foamed molded article.

【0008】しかしながら、これらの方法においては、
次の欠点があることがわかった。すなわち、使用される
予備発泡粒子の表面には気泡の形状が浮き出ることで凹
凸が形成され、この予備発泡粒子を用いて融着の良い発
泡成形体とするには予備発泡粒子を非常に高い温度(例
えば130℃以上)で加熱成形したり、加熱時間を長く
したりするなどの方法を取る必要がある。
However, in these methods,
The following disadvantages were found. That is, irregularities are formed on the surface of the used pre-expanded particles by embossing the shape of the air bubbles. In order to use the pre-expanded particles to form an expanded molded article with good fusion, the pre-expanded particles are heated to a very high temperature. (Eg, at 130 ° C. or higher), it is necessary to take a method such as molding by heating or extending the heating time.

【0009】しかし、冷却工程を含めた成形時間が長く
なり、製造コストが高くなるなどの問題が残されてい
る。また、このような問題は、スチレン系樹脂粒子に残
留するスチレン系単量体が少ないほど顕著となり、従来
の技術ではこれらの課題を満足した発泡成形体を得るこ
とはできなかった。
However, there remain problems such as a long molding time including a cooling step and a high manufacturing cost. Further, such a problem becomes more remarkable as the amount of the styrene-based monomer remaining in the styrene-based resin particles decreases, and it was not possible to obtain a foamed molded article satisfying these problems by the conventional technology.

【0010】[0010]

【課題を解決するための手段】本発明者らは、炭酸ガス
を含有させた発泡性スチレン系樹脂粒子を、実質的に発
泡しない温度で加熱処理することで、発泡性スチレン系
樹脂粒子の表面のガスを逸散させて、その後予備発泡し
て得られる予備発泡粒子の表面には不定形島状の突起が
形成されていることを意外にも見い出した。この予備発
泡粒子を加熱成形すると蒸気圧が低くあるいは成形に要
する時間が短くなること、更に内部融着率が低くても機
械的強度に優れた発泡成形体が得られることを見い出し
本発明を完成させるに至った。更にまた発泡成形体中の
揮発性有機化合物は予備発泡および成形の過程で炭酸ガ
スにより抽出除去されて1000ppm以下と極めて少
なくなっていること、加えて高温の雰囲気下でも長期に
わたって寸法変化が小さく、非常に安定しているという
特徴をも有する。
Means for Solving the Problems The present inventors heat-treat expandable styrene-based resin particles containing carbon dioxide gas at a temperature at which substantially no foaming occurs, thereby obtaining the surface of the expandable styrene-based resin particles. It was surprisingly found that irregular-shaped island-like projections were formed on the surface of the pre-expanded particles obtained by dissipating the gas and then pre-expanding. It has been found that when the pre-expanded particles are subjected to heat molding, the vapor pressure is low or the time required for molding is reduced, and furthermore, a foam molded article having excellent mechanical strength can be obtained even if the internal fusion rate is low. It led to. Furthermore, the volatile organic compound in the foamed molded product is extracted and removed by carbon dioxide gas in the process of pre-foaming and molding, and is extremely reduced to 1000 ppm or less. It also has the feature of being very stable.

【0011】かくして本発明によれば、発泡粒子表面に
不定形島状の突起が多数形成されてなることを特徴とす
るスチレン系樹脂予備発泡粒子が提供される。
Thus, according to the present invention, there are provided styrene resin pre-expanded particles characterized in that a large number of irregular island-shaped projections are formed on the surface of the expanded particles.

【0012】また、本発明によれば、上記スチレン系樹
脂予備発泡粒子を発泡成形して得られたスチレン系樹脂
発泡成形体が提供される。
Further, according to the present invention, there is provided a foamed styrene-based resin article obtained by subjecting the styrene-based resin pre-expanded particles to foam molding.

【0013】また、本発明によれば、残留スチレン系単
量体の量が500ppm以下であるスチレン系樹脂粒子
に、炭酸ガスを含有させた発泡性スチレン系樹脂粒子を
40〜100℃で3〜90秒間加熱処理し、その後加熱
することでスチレン系予備発泡粒子を製造する工程から
なることを特徴とするスチレン系樹脂予備発泡粒子の製
造方法が提供される。
According to the present invention, foamable styrene resin particles containing carbon dioxide gas are added to styrene resin particles having a residual styrene monomer content of not more than 500 ppm at a temperature of 40 to 100 ° C. A method for producing styrene-based resin pre-expanded particles, comprising a step of producing styrene-based pre-expanded particles by heating for 90 seconds and then heating.

【0014】[0014]

【発明の実施の形態】本発明で用いられる発泡性スチレ
ン系樹脂粒子(以下、「発泡性樹脂粒子」という)を構
成するスチレン系樹脂粒子(以下、「樹脂粒子」という)
としては、一般に知られているスチレン系樹脂の粒状物
を使用することができる。具体的には、このような樹脂
粒子としては、スチレン、α−メチルスチレン、パラメ
チルスチレン、t−ブチルスチレン、クロルスチレン、
ジビニルベンゼン(2官能性単量体)などのスチレン系
単量体の単独重合粒子またはこれら単量体を2種以上組
み合わせた共重合体粒子、メチルアクリレート、ブチル
アクリレート、メチルメタクリレート、エチルメタクリ
レート、セチルメタクリレートなどのアクリル酸および
メタクリル酸のエステル、あるいはアクリロニトリル、
ジメチルフマレート、エチルフマレート、アルキレング
リコールジメタクリレート(2官能性単量体)などのス
チレン系単量体以外の単量体との共重合体粒子などが挙
げられる。更に、これらスチレン系樹脂粒子中のスチレ
ン成分が50重量%を超える範囲内でスチレン系樹脂以
外の樹脂と押出しブレンドして得られた樹脂粒子であっ
てもよい。スチレン系樹脂以外の樹脂としては、ポリフ
ェニルエーテル系樹脂、ポリオレフィン系樹脂、ゴム成
分などが挙げられる。特にスチレン系樹脂粒子として
は、ポリスチレン樹脂粒子が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Styrene resin particles (hereinafter, referred to as "resin particles") constituting the expandable styrene resin particles (hereinafter, referred to as "expandable resin particles") used in the present invention.
As such, a generally known granular material of a styrene resin can be used. Specifically, such resin particles include styrene, α-methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene,
Homopolymer particles of styrene-based monomers such as divinylbenzene (bifunctional monomer) or copolymer particles obtained by combining two or more of these monomers, methyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, cetyl Esters of acrylic acid and methacrylic acid such as methacrylate, or acrylonitrile,
Copolymer particles with monomers other than styrene-based monomers such as dimethyl fumarate, ethyl fumarate, and alkylene glycol dimethacrylate (bifunctional monomer) are included. Further, resin particles obtained by extruding and blending with a resin other than the styrene resin within a range where the styrene component in these styrene resin particles exceeds 50% by weight may be used. Examples of the resin other than the styrene resin include a polyphenyl ether resin, a polyolefin resin, and a rubber component. In particular, polystyrene resin particles are preferable as the styrene resin particles.

【0015】樹脂粒子の粒径は、用途に応じて適宜選択
でき、例えば、0.2〜5mmの粒径のものを使用する
ことができる。
The particle size of the resin particles can be appropriately selected according to the application, and for example, a particle having a particle size of 0.2 to 5 mm can be used.

【0016】更に、最近特に問題となっているシックハ
ウス(室内空気汚染)は揮発性有機化合物が係わってい
るとされているため、その含有量をできるだけ小さくす
ることが望まれている。この観点から、樹脂粒子は、残
留スチレン系単量体の量ができるだけ少ないことが好ま
しく、樹脂粒子中、0〜500ppmであることが特に
好ましい。残留スチレン系単量体の含有量が500pp
mを越えた樹脂粒子に炭酸ガスを含有させて発泡ならび
に成形を行うと、得られた成形品中の残留スチレン系単
量体を含む揮発性有機化合物の含有量が多くなる恐れが
ある。加えて、残留スチレン系単量体の含有量が多い
と、寸法変化率も大きくなりやすいので好ましくない。
Furthermore, since it is said that volatile organic compounds are involved in sick houses (indoor air pollution), which have recently become a particular problem, it is desired to reduce the content thereof as much as possible. In this respect, it is preferable that the amount of the residual styrene monomer in the resin particles is as small as possible, and it is particularly preferable that the amount of the resin particles be 0 to 500 ppm in the resin particles. 500 pp residual styrene monomer content
If foaming and molding are carried out by including carbon dioxide in resin particles exceeding m, the content of volatile organic compounds containing residual styrene-based monomers in the resulting molded article may increase. In addition, when the content of the residual styrene monomer is large, the dimensional change rate is apt to increase, which is not preferable.

【0017】樹脂粒子中の揮発性有機化合物としては、
残留スチレン系単量体だけでなく、原料のスチレンに含
まれているトルエン、エチルベンゼン、クメン、プロピ
ルベンゼンなどの芳香族炭化水素などがある。より具体
的には、ガスクロマトグラフィで測定して得られるクロ
マトグラフにおいて、炭素数16の脂肪族炭化水素であ
るn−ヘキサデカン(常圧沸点が286℃)より短い時
間で現われる炭化水素系の有機化合物であって、トルエ
ン、スチレンなどの芳香族炭化水素、ブタン、ペンタン
などの脂肪族炭化水素、シクロペンタン、シクロヘキサ
ンなどの環式脂肪族炭化水素などの炭化水素類が挙げら
れる。
The volatile organic compounds in the resin particles include
Not only residual styrene-based monomers but also aromatic hydrocarbons such as toluene, ethylbenzene, cumene, and propylbenzene contained in the raw material styrene. More specifically, in a chromatograph obtained by measuring by gas chromatography, a hydrocarbon-based organic compound which appears in a shorter time than n-hexadecane (normal pressure boiling point: 286 ° C.) which is an aliphatic hydrocarbon having 16 carbon atoms And hydrocarbons such as aromatic hydrocarbons such as toluene and styrene, aliphatic hydrocarbons such as butane and pentane, and cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane.

【0018】樹脂粒子中の残留スチレン系単量体の量を
低減するには、例えば、懸濁重合で、スチレンに対して
0.05重量%以上の高温開始型の重合触媒を用い、最
終の重合温度を115℃以上とするのが好ましい。高温
開始型の重合触媒としては、例えばt−ブチルパーオキ
シベンゾエート、t−ブチルパーオキシピバレート、t
−ブチルパーオキシイソプロピルカーボネート、t−ブ
チルパーオキシアセテート、2,2−t−ブチルパーオ
キシブタンなどの半減期10時間を得るための温度が1
00〜115℃のものが特に好ましい。ただし、これら
の高温開始型の重合触媒を必要以上に用いると、t−ブ
タノールなど分解副生成物を含有することになり好まし
くない。
In order to reduce the amount of the residual styrenic monomer in the resin particles, for example, a high-temperature-initiated polymerization catalyst of 0.05% by weight or more based on styrene is used in suspension polymerization, The polymerization temperature is preferably set to 115 ° C. or higher. Examples of the high temperature initiation type polymerization catalyst include t-butyl peroxybenzoate, t-butyl peroxypivalate,
The temperature for obtaining a half-life of 10 hours such as -butylperoxyisopropyl carbonate, t-butylperoxyacetate, 2,2-t-butylperoxybutane is 1
Those having a temperature of 00 to 115 ° C are particularly preferred. However, if these high-temperature-initiated polymerization catalysts are used more than necessary, decomposition by-products such as t-butanol are contained, which is not preferable.

【0019】樹脂粒子の分子量は、GPC(ゲルパーミ
エイションクロマトグラフィ)法による重量平均分子量
で20万〜40万であるのが好ましい。20万を下回る
と、発泡成形体の強度が低下し、40万を上回ると、十
分な発泡性を得ることが難しいので好ましくない。上記
の樹脂粒子に発泡剤としての炭酸ガスを含有させて発泡
性樹脂粒子を得る。発泡剤としての炭酸ガスは、炭酸ガ
ス100%でもよいが、本発明の効果を阻害しない範囲
で、他の発泡剤を加えてもよい。他の発泡剤としては、
空気、窒素などの無機ガス、プロパン、ブタン、ペンタ
ン、ヘキサンなどの脂肪族炭化水素、シクロブタン、シ
クロペンタン、シクロヘキサンなどの脂環族炭化水素、
フッ化炭化水素などの有機ガスを混合することもでき
る。フッ化炭化水素としては、オゾン破壊係数がゼロで
あるジフルオロエタン、テトラフルオロエタンなどを使
用することが好ましい。ここで、有機ガスは、発泡剤の
全体量の20重量%を超えない範囲で使用することが好
ましい。
The molecular weight of the resin particles is preferably from 200,000 to 400,000 in terms of weight average molecular weight by GPC (gel permeation chromatography). If it is less than 200,000, the strength of the foamed molded article is reduced, and if it is more than 400,000, it is difficult to obtain sufficient foamability, which is not preferable. Foamable resin particles are obtained by adding carbon dioxide as a foaming agent to the above resin particles. The carbon dioxide gas as the foaming agent may be 100% carbon dioxide gas, but other foaming agents may be added as long as the effects of the present invention are not impaired. As other blowing agents,
Air, inorganic gases such as nitrogen, aliphatic hydrocarbons such as propane, butane, pentane, and hexane; alicyclic hydrocarbons such as cyclobutane, cyclopentane, and cyclohexane;
An organic gas such as a fluorocarbon may be mixed. As the fluorinated hydrocarbon, it is preferable to use difluoroethane, tetrafluoroethane, or the like having an ozone depletion potential of zero. Here, the organic gas is preferably used within a range not exceeding 20% by weight of the total amount of the foaming agent.

【0020】樹脂粒子に炭酸ガスを含有させるに際し、
樹脂粒子の表面には各種の表面処理剤を塗布しておくの
が好ましく、そのような表面処理剤としては、例えば加
熱発泡時の予備発泡粒子の結合を防止する結合防止剤、
成形時の融着促進剤、帯電防止剤、展着剤などが挙げら
れる。
When carbon dioxide is contained in the resin particles,
It is preferable to apply various surface treatment agents on the surface of the resin particles, and examples of such surface treatment agents include a binding inhibitor that prevents the bonding of the pre-expanded particles during heating and foaming,
Examples include a fusion promoter during molding, an antistatic agent, and a spreading agent.

【0021】結合防止剤としては、例えばタルク、炭酸
カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミ
ニウム、エチレンビスステアリン酸アミド、第三リン酸
カルシウム、ジメチルシリコンなどが挙げられる。融着
促進剤としては、例えばステアリン酸、ステアリン酸ト
リグリセリド、ヒドロキシステアリン酸トリグリセリ
ド、ステアリン酸ソルビタンエステル、ポリエチレンワ
ックスなどが挙げられる。
Examples of the binding inhibitor include talc, calcium carbonate, silica, zinc stearate, aluminum hydroxide, ethylenebisstearic acid amide, tribasic calcium phosphate, dimethyl silicon and the like. Examples of the fusion promoter include stearic acid, triglyceride stearic acid, triglyceride hydroxystearate, sorbitan stearate, and polyethylene wax.

【0022】帯電防止剤としては、例えばポリオキシエ
チレンアルキルフェノールエーテル、ステアリン酸モノ
グリセリドなどが挙げられる。展着剤としては、例えば
ポリブテン、ポリエチレングリコール、シリコンオイル
などが挙げられる。また、樹脂粒子中には所望によりヘ
キサブロモシクロドデカン、テトラブロモシクロオクタ
ンなどの難燃剤、メタクリル酸エステル系共重合ポリマ
ー、エチレンビスステアリン酸アミド、ポリエチレンワ
ックス、エチレン−酢酸ビニル共重合体などの気泡調整
剤などを予め含有させておいてもよい。
Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride. Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil. In the resin particles, if necessary, bubbles such as a flame retardant such as hexabromocyclododecane and tetrabromocyclooctane, a methacrylic acid ester-based copolymer, ethylene bisstearic acid amide, polyethylene wax, and an ethylene-vinyl acetate copolymer may be used. An adjusting agent or the like may be contained in advance.

【0023】発泡性樹脂粒子中の炭酸ガスの含有割合
は、1〜15重量%が好ましい。樹脂粒子に炭酸ガスを
含有させるには、例えば、耐圧密閉容器に樹脂粒子を入
れた後、炭酸ガスを圧入して、樹脂粒子を加圧された炭
酸ガスと接触させることによって行うことができる。含
有温度は、樹脂粒子どうしが互いに合着して団塊化しな
い温度まで高くしてもよいが、通常、0〜40℃程度で
ある。
The content of carbon dioxide in the expandable resin particles is preferably 1 to 15% by weight. In order to make the resin particles contain carbon dioxide gas, for example, after putting the resin particles in a pressure-tight container, the carbon dioxide gas is press-fitted, and the resin particles are brought into contact with the pressurized carbon dioxide gas. The content temperature may be as high as a temperature at which the resin particles do not coalesce and agglomerate with each other, but are usually about 0 to 40 ° C.

【0024】樹脂粒子に炭酸ガスを含有させるときの圧
力は、通常、10kg/cm2G以上であり、好ましく
は15〜40kg/cm2Gである。含有時間は、樹脂
粒子が前記の炭酸ガス含有量をもたせるために適宜調節
され、通常、1〜20時間程度であり、2〜8時間が好
ましい。炭酸ガスを含有した発泡性樹脂粒子を耐圧密閉
容器から取り出し、発泡性樹脂粒子が実質的に発泡しな
い温度で加熱処理を施す。この処理によって発泡性樹脂
粒子表面付近のガスを選択的に逸散させ、次いで予備発
泡させて得られるスチレン系樹脂予備発泡粒子(以下、
「予備発泡粒子」という)の表面には不定形島状の突起
を形成させることができる。ここで、不定形島状の突起
とは、予備発泡粒子表面に気泡の形状が浮き出た凹凸状
態を意味するものではなく、図1〜3の写真にあるよう
な凹凸構造を意味する。このような突起を有する本発明
の予備発泡粒子を用いて型内成形を行った場合、予備発
泡粒子が互いに強固に熱融着しやすくなることを本発明
では意外にも見い出した。このことは、成形時間が従来
と同一であれば、より機械的強度に優れた成形体が得ら
れることを意味している。また、従来と同様の機械的強
度を所望する場合、通常良好と呼ばれる程度に予備発泡
粒子が内部融着しうるより短い加熱時間でその機械的強
度を得ることができるので、加熱・冷却工程を含めた成
形体の製造時間を短縮することができる。製造時間の短
縮により、熱エネルギーなどを削減できるため、製造コ
ストを大幅に削減することができる。
The pressure at which the resin particles are contained carbon dioxide gas is usually, 10 kg / cm 2 G or more, preferably 15~40kg / cm 2 G. The content time is appropriately adjusted so that the resin particles have the above-mentioned carbon dioxide content, and is usually about 1 to 20 hours, preferably 2 to 8 hours. The expandable resin particles containing carbon dioxide gas are taken out of the pressure-resistant closed container and subjected to a heat treatment at a temperature at which the expandable resin particles do not substantially expand. By this treatment, the gas near the surface of the expandable resin particles is selectively dissipated and then pre-expanded to obtain styrene-based resin pre-expanded particles (hereinafter, referred to as “pre-expanded particles”).
Irregular island-like projections can be formed on the surface of the “pre-expanded particles”. Here, the irregular island-shaped protrusion does not mean an uneven state in which the shape of air bubbles is raised on the surface of the pre-expanded particles, but means an uneven structure as shown in the photographs of FIGS. In the present invention, it has been surprisingly found that when the in-mold molding is performed using the pre-expanded particles of the present invention having such projections, the pre-expanded particles are likely to be firmly thermally fused to each other. This means that if the molding time is the same as the conventional one, a molded body having more excellent mechanical strength can be obtained. In addition, when the same mechanical strength as that of the prior art is desired, the mechanical strength can be obtained in a shorter heating time in which the pre-expanded particles can be internally fused to a degree generally referred to as good. It is possible to shorten the manufacturing time of the molded body including the molded article. By shortening the manufacturing time, heat energy and the like can be reduced, so that the manufacturing cost can be significantly reduced.

【0025】発泡性樹脂粒子の加熱処理は、通常、発泡
機内で行うのが簡便であるが、発泡機とは別の開放可能
な容器内で行ってもよい。加熱処理の温度は40〜10
0℃であり、好ましくは60〜100℃である。このと
きの加熱媒体としては、例えば、温風または蒸気と空気
とを混合したものなどが挙げられる。また加熱処理時間
としては、3〜90秒であり、好ましくは5〜60秒で
ある。処理時間が3秒未満又は温度が40℃未満では予
備発泡粒子表面には気泡の形状に由来する凹凸が現れる
だけであり、本発明の不定形島状の突起は得られ難いの
で、上記機械的強度を向上できるという効果が望めない
ので好ましくない。また、処理時間が90秒又は温度が
100℃を超えると、低密度の予備発泡粒子が得られ難
くなるので好ましくない。
The heat treatment of the expandable resin particles is usually conveniently performed in a foaming machine, but may be performed in an openable container separate from the foaming machine. The temperature of the heat treatment is 40 to 10
0 ° C, preferably 60 to 100 ° C. Examples of the heating medium at this time include hot air or a mixture of steam and air. The heating time is 3 to 90 seconds, preferably 5 to 60 seconds. If the treatment time is less than 3 seconds or the temperature is less than 40 ° C., only irregularities derived from the shape of bubbles appear on the surface of the pre-expanded particles, and the irregular island-shaped projections of the present invention are hardly obtained. It is not preferable because the effect of improving the strength cannot be expected. On the other hand, if the treatment time is 90 seconds or the temperature exceeds 100 ° C., it is difficult to obtain low-density pre-expanded particles, which is not preferable.

【0026】粒子表面付近の炭酸ガスが逸散した発泡性
樹脂粒子は、発泡機内で予備発泡処理に付される。この
ときの加熱媒体としては、例えば蒸気が用いられる。
The expandable resin particles from which carbon dioxide gas has escaped near the particle surface are subjected to a preliminary foaming treatment in a foaming machine. As a heating medium at this time, for example, steam is used.

【0027】得られる予備発泡粒子の嵩密度は、通常
0.015〜0.5g/cm3程度である。
The bulk density of the obtained pre-expanded particles is usually about 0.015 to 0.5 g / cm 3 .

【0028】上記の予備発泡粒子を型内成形して発泡成
形体を製造する。具体的には、予備発泡粒子を成形用金
型内に充填し、金型内へ蒸気を吹き込んで予備発泡粒子
を加熱する。蒸気との接触によって予備発泡粒子が加熱
されると、予備発泡粒子は膨張するが、成形用金型によ
って発泡できる空間が限定されているので、互いに密着
すると共に融着一体化して所望の発泡成形体が得られ
る。
The above-mentioned pre-expanded particles are molded in a mold to produce an expanded molded article. Specifically, the pre-expanded particles are filled in a molding die, and steam is blown into the die to heat the pre-expanded particles. When the pre-expanded particles are heated by contact with steam, the pre-expanded particles expand, but the space in which the foam can be expanded by the molding die is limited. The body is obtained.

【0029】更に、このようにして得られた発泡成形体
は、揮発性有機化合物の含有量が1000ppm以下と
極めて少なく、しかも70℃で1200時間加熱したと
きの寸法変化率が±0.2%以内と極めて小さい。した
がって、高温環境下で用いられる床暖房用断熱材などの
断熱建材用途に特に好適である。
Furthermore, the foamed molded article thus obtained has a very low content of volatile organic compounds of 1000 ppm or less, and a dimensional change rate of ± 0.2% when heated at 70 ° C. for 1200 hours. Within and extremely small. Therefore, it is particularly suitable for use as a heat insulating building material such as a floor heating heat insulating material used in a high temperature environment.

【0030】[0030]

【実施例】以下、本発明を、実施例および比較例に基づ
き更に詳しく説明するが、本発明はこれらにより限定さ
れることはない。なお、実施例および比較例により得ら
れた発泡成形体の評価方法を以下に示す。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the evaluation method of the foam molding obtained by the Example and the comparative example is shown below.

【0031】<揮発性有機化合物の含有量>以下に示す
三種類の測定法によって得られた値を合計して求める。 [炭素数5以下の炭化水素化合物の測定]発泡成形体を
150℃の熱分解炉に入れ、揮発した炭化水素をガスク
ロマトグラフィにより測定した。 ガスクロマトグラフィ(GC):島津製作所社製 GC
−14B 熱分解炉:島津製作所社製 PYR−1A カラム:ポラパックQ 80/100(3mmΦ×1.
5m) カラム温度:100℃ 検出器(FID)温度:120℃
<Content of Volatile Organic Compound> The content obtained by the following three kinds of measurement methods is determined by summing up the values. [Measurement of hydrocarbon compound having 5 or less carbon atoms] The foamed molded article was placed in a pyrolysis furnace at 150 ° C, and volatile hydrocarbons were measured by gas chromatography. Gas chromatography (GC): GC manufactured by Shimadzu Corporation
-14B Pyrolysis furnace: PYR-1A manufactured by Shimadzu Corporation Column: Polapack Q 80/100 (3 mmφ × 1.
5m) Column temperature: 100 ° C Detector (FID) temperature: 120 ° C

【0032】[炭素数6以上の炭化水素であって、ガス
クロマトグラムに現れるスチレンのピークまでの炭化水
素の測定]発泡成形体をジメチルホルムアミドに溶解
し、内部標準液(シクロペンタノール)を加えてGCに
より測定した。ただし、特定できないピークについては
トルエンの検出量に換算して定量した。 GC:島津製作所社製 GC−14A カラム:PEG−20M PT25% 60/80
(2.5m) カラム温度:105℃ 検出器(FID)温度:220℃
[Measurement of hydrocarbons having 6 or more carbon atoms up to the peak of styrene appearing in the gas chromatogram] The foamed product was dissolved in dimethylformamide, and an internal standard solution (cyclopentanol) was added. It was measured by GC. However, peaks that could not be identified were quantified by conversion to the amount of toluene detected. GC: Shimadzu GC-14A Column: PEG-20M PT25% 60/80
(2.5m) Column temperature: 105 ° C Detector (FID) temperature: 220 ° C

【0033】(ガスクロマトグラムに現われるスチレン
の次のピークから炭素数16(n−ヘキサデカン)まで
の炭化水素の測定)発泡成形体をクロロホルムに溶解
し、ガスクロマトグラフ質量分析計(GCMS)にて測
定した。ただし、試験片を溶解しない溶剤のみの空試験
を行い、空試験の検出物質量を差し引いた。更に、特定
できないピークについてはトルエンの検出量に換算して
定量した。 GCMS:島津製作所社製 QP5000 カラム:J&W Scientific社製 DB−1
(1μm×60m 0.25mmφ) 測定条件:カラム温度(60℃で1分保持した後、10
℃/分で300℃まで昇温) スプリット比:10 キャリヤガス:He(1ml/min) インターフェイス温度:260℃
(Measurement of Hydrocarbons Containing C16 (n-hexadecane) from the Next Peak of Styrene Appearing in Gas Chromatogram) The foamed product was dissolved in chloroform and measured by gas chromatography / mass spectrometry (GCMS). . However, a blank test was performed using only a solvent that did not dissolve the test piece, and the detected substance amount in the blank test was subtracted. Further, unspecified peaks were quantified in terms of the amount of toluene detected. GCMS: Shimadzu QP5000 Column: J & W Scientific DB-1
(1 μm × 60 m 0.25 mmφ) Measurement conditions: column temperature (after holding at 60 ° C. for 1 minute, 10
(The temperature is raised to 300 ° C at a rate of ° C / min.) Split ratio: 10 Carrier gas: He (1 ml / min) Interface temperature: 260 ° C

【0034】<予備発泡粒子の表面状態>予備発泡粒子
の表面状態はそれの30倍の拡大写真において、実質的
に不定形島状の突起が形成されていることを確認する。
<Surface State of Pre-expanded Particles> The surface state of the pre-expanded particles is confirmed by forming a substantially irregular island-like projection in a magnified photograph of 30 times the size of the pre-expanded particles.

【0035】<内部融着率>発泡成形体の表面にカッタ
ーナイフで深さ約5mmの切り込み線を入れた後、この
線に沿って発泡成形体を手で二分割し、その破断面にお
ける発泡粒子について、粒子内で破断している粒子の数
(a)と粒子どうしの界面で破断している粒子の数
(b)とを数え、式[(a)/((a)+(b))]×
100に代入して得られた値を内部融着率(%)とし
た。
<Internal fusion ratio> A cut line having a depth of about 5 mm was made on the surface of the foamed molded product with a cutter knife, and then the foamed molded product was divided into two along this line by hand. For the particles, the number (a) of the particles broken in the particles and the number (b) of the particles broken at the interface between the particles are counted, and the equation [(a) / ((a) + (b)] is obtained. )] ×
The value obtained by substituting 100 was used as the internal fusion rate (%).

【0036】<寸法変化率>成形金型から取り出した発
泡成形体を、温度23℃、相対湿度50%の恒温恒湿室
(JIS−K7100の標準温湿度状態)に24時間放
置した後、この発泡成形体から上下面が平行で正方形状
の平板(長さ150mm、幅150mm、厚み30m
m)を切り出し、その中央部に縦および横方向にそれぞ
れ互いに平行に3本の直線を50mm間隔になるよう記
入してJIS−K6767に従う試験片とした。この試
験片を70℃に保った熱風循環式乾燥機の中に水平に置
き、1200時間加熱試験を行った後に取り出し、再び
恒温恒湿室に1時間放置した。
<Dimensional change rate> The foamed molded product taken out of the molding die was left in a thermo-hygrostat at a temperature of 23 ° C and a relative humidity of 50% (standard temperature and humidity according to JIS-K7100) for 24 hours. Square plate with upper and lower surfaces parallel to each other (150 mm long, 150 mm wide, 30 m thick)
m) was cut out, and three straight lines parallel to each other in the vertical and horizontal directions were written in the center thereof at 50 mm intervals to obtain a test piece according to JIS-K6767. The test piece was placed horizontally in a hot air circulating drier maintained at 70 ° C., subjected to a heating test for 1200 hours, taken out, and left again in a constant temperature and humidity chamber for 1 hour.

【0037】加熱試験の前後における寸法測定はJIS
−K6767に準拠して実施し、寸法変化率は次の式に
従って求めた。 寸法変化率(%)=(L2−L1)×100/L1 (ただし、L1は、型内成形後に温度23℃、相対湿度
50%で24時間放置された発泡成形体の寸法、L2
は、該発泡成形体を70℃で1200時間加熱した後の
発泡成形体の寸法である)なお、寸法とは、発泡成形体
に記入した縦横それぞれ3本の直線の長さの平均値であ
る。
Dimension measurement before and after the heating test is based on JIS
The dimensional change was determined according to the following equation. Dimensional change rate (%) = (L2−L1) × 100 / L1 (where L1 is the dimension of the foam molded article left at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours after molding in the mold, L2
Is the dimension of the foam molded article after heating the foam molded article at 70 ° C. for 1200 hours.) The dimension is the average value of the length of three straight lines in each of the vertical and horizontal directions written on the foam molded article. .

【0038】<曲げ強度>JIS A9511に準拠し
た方法によって測定した。すなわち、得られた測定値を
以下の式に代入し、平均値を算出した。 曲げ強度(kgf/cm2)=3FL/2bh2 F:最大点荷重 支点間距離(L):20cm 試験片の幅(b):7.5cm 試験片の高さ(h):2.5cm 試験片の長さ:30cm 測定数:3ヶ 試験速度:10mm/分
<Bending strength> The bending strength was measured by a method according to JIS A9511. That is, the obtained measured values were substituted into the following formula, and the average value was calculated. Flexural strength (kgf / cm 2 ) = 3FL / 2bh 2 F: Maximum point load Distance between fulcrums (L): 20 cm Specimen width (b): 7.5 cm Specimen height (h): 2.5 cm Test Piece length: 30cm Measurement number: 3 Test speed: 10mm / min

【0039】実施例1 100リットルの反応器に、純水40kg、ドデシルベ
ンゼンスルホン酸ナトリウム2.2g、ピロリン酸マグ
ネシウム60gを入れ水性媒体とした。次にベンゾイル
パーオキサイド(純度75%)176g、t−ブチルパ
ーオキシベンゾエート30gおよびポリエチレンワック
ス(分子量1000)22gを溶解したスチレン44k
gを撹拌しながら加えて懸濁させ、90℃に昇温して重
合を開始した。比重法で測定した重合転化率が95重量
%まで重合が進行した時点で、反応器を125℃に昇温
して2時間保持した後、常温まで冷却して、スチレン系
樹脂粒子を取り出した。ここで得られたスチレン系樹脂
粒子中の残留スチレン単量体の量をガスクロマトグラフ
で測定したところ、430ppmであり、またスチレン
以外の揮発性有機化合物の含有量は合計1174ppm
であった。また、GPC法で測定した重量平均分子量は
246000であった。
Example 1 A 100-liter reactor was charged with 40 kg of pure water, 2.2 g of sodium dodecylbenzenesulfonate, and 60 g of magnesium pyrophosphate, and used as an aqueous medium. Then, 176 g of styrene in which 176 g of benzoyl peroxide (purity: 75%), 30 g of t-butylperoxybenzoate and 22 g of polyethylene wax (molecular weight: 1000) were dissolved.
g was added with stirring and suspended, and the temperature was raised to 90 ° C. to initiate polymerization. When the polymerization progressed to a polymerization conversion rate of 95% by weight as measured by a specific gravity method, the temperature of the reactor was raised to 125 ° C. and maintained for 2 hours, and then cooled to room temperature to take out styrene resin particles. When the amount of the residual styrene monomer in the obtained styrene-based resin particles was measured by gas chromatography, it was 430 ppm, and the content of volatile organic compounds other than styrene was 1,174 ppm in total.
Met. The weight average molecular weight measured by the GPC method was 246,000.

【0040】スチレン系樹脂粒子のうち、粒径0.7〜
1.0mmのもの15kgを、内容量が30リットルの
回転式耐圧容器に入れた後、展着剤としてポリエチレン
グリコール300を7.5g、グリセリンモノステアリ
ン酸エステルを7.5g、結合防止剤として炭酸カルシ
ウム30gを添加して容器を回転させ、樹脂粒子の表面
に付着させた。次いで回転を停止してから容器内に炭酸
ガスを圧入して、25℃、30kg/cm2Gに6時間
保って樹脂粒子内に炭酸ガスを含有させた。
Of the styrene resin particles, a particle size of 0.7 to
After putting 15 kg of 1.0 mm into a rotary pressure-resistant container having a content of 30 liters, 7.5 g of polyethylene glycol 300 as a spreading agent, 7.5 g of glycerin monostearate, and carbonic acid as a binding inhibitor are used. 30 g of calcium was added, and the container was rotated to adhere to the surface of the resin particles. Next, after stopping the rotation, carbon dioxide gas was injected into the container, and kept at 25 ° C. and 30 kg / cm 2 G for 6 hours to contain carbon dioxide gas in the resin particles.

【0041】こうして得られた発泡性スチレン系樹脂粒
子を耐圧容器から取り出し、直ちに蒸気と空気の混合気
体によって缶内温度60℃に保たれた攪拌機付き発泡機
内に投入し、80秒間加熱処理した。次に発泡機内へ蒸
気を導入し、この発泡性樹脂粒子に蒸気を接触させて予
備発泡させてスチレン系樹脂予備発泡粒子とした。ま
た、この予備発泡粒子の表面をその30倍の拡大写真に
おいて確認した。この拡大写真を図1に示す。
The expandable styrene resin particles thus obtained were taken out of the pressure-resistant container, immediately put into a foaming machine equipped with a stirrer maintained at a temperature of 60 ° C. in a can with a mixed gas of steam and air, and heated for 80 seconds. Next, steam was introduced into the foaming machine, and the foamed resin particles were brought into contact with the steam and prefoamed to obtain styrene resin prefoamed particles. Further, the surface of the pre-expanded particles was confirmed in a 30-times enlarged photograph. This enlarged photograph is shown in FIG.

【0042】予備発泡してから6時間後、予備発泡粒子
を長さ400mm×幅300mm×厚さ30mmの型窩
をもった成形用金型内に充填し、この金型内に1.0k
g/cm2Gの加熱蒸気圧力で40秒間(加熱のピーク
温度が維持される時間:加熱時間)蒸気を吹き込んで膨
張させて、嵩密度0.025g/cm3のスチレン系樹
脂発泡成形体を得た。この際の、成形製造時間(加熱開
始から冷却終了までの時間の合計)は105秒であっ
た。得られた発泡成形体を50℃の恒温室で7日間乾燥
させた後、揮発性有機化合物の含有量をガスクロマトグ
ラフで測定すると共に、内部融着率、曲げ強度および寸
法変化率を評価した。得られた予備発泡粒子と発泡成形
体の評価結果を表1に示す。
Six hours after the pre-expansion, the pre-expanded particles are filled into a molding die having a mold cavity of 400 mm in length × 300 mm in width × 30 mm in thickness, and 1.0 k
At a heating steam pressure of g / cm 2 G, steam is blown for 40 seconds (time during which the peak temperature of heating is maintained: heating time) to expand the styrene resin foam molded article having a bulk density of 0.025 g / cm 3. Obtained. At this time, the molding production time (total time from the start of heating to the end of cooling) was 105 seconds. After the obtained foam molded article was dried in a constant temperature room at 50 ° C. for 7 days, the content of the volatile organic compound was measured by gas chromatography, and the internal fusion rate, bending strength, and dimensional change rate were evaluated. Table 1 shows the evaluation results of the obtained pre-expanded particles and the expanded molded article.

【0043】実施例2 予備発泡粒子の嵩密度を0.05g/cm3になるよう
に、予備発泡させたこと以外は実施例1と同様にして予
備発泡粒子及び発泡成形体を得た。得られた予備発泡粒
子及び発泡成形体の評価結果を表1に示す。また、この
予備発泡粒子の表面をその30倍及び300倍の拡大写
真において確認した。この30倍の拡大写真を図2に、
300倍の拡大写真を図3に示す。
Example 2 Pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1, except that the pre-expanded particles were pre-expanded so that the bulk density of the particles was 0.05 g / cm 3 . Table 1 shows the evaluation results of the obtained pre-expanded particles and the foamed molded article. Also, the surface of the pre-expanded particles was confirmed in enlarged photographs of 30 times and 300 times. Fig. 2 shows this 30 times enlarged photograph.
FIG. 3 shows an enlarged photograph of 300 times.

【0044】実施例3 発泡性樹脂粒子を耐圧容器から取り出して直ちに、蒸気
と空気の混合気体によって内部温度が95℃に保たれた
攪拌機付き発泡機内に投入し、10秒間加熱処理した以
外は、実施例1と同様にして予備発泡粒子および発泡成
形体を得た。得られた予備発泡粒子および発泡成形体の
評価結果を表1に示す。
Example 3 Except that the expandable resin particles were taken out of the pressure-resistant container and immediately introduced into a foaming machine equipped with a stirrer whose internal temperature was kept at 95 ° C. by a mixed gas of steam and air, and heat-treated for 10 seconds, Pre-expanded particles and an expanded molded article were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained pre-expanded particles and the expanded molded article.

【0045】実施例4 実施例1で得られた予備発泡粒子を成形用金型内に充填
し、0.9kg/cm 2Gの加熱蒸気圧力で成形したこ
と以外は、実施例1と同様にして、予備発泡粒子および
発泡成形体を得た。得られた予備発泡粒子および発泡成
形体の評価結果を表1に示す。なお、発泡成形体の嵩密
度は0.025g/cm3であった。
Example 4 The pre-expanded particles obtained in Example 1 were filled in a molding die.
And 0.9kg / cm TwoMolded with heated steam pressure of G
Except for the above, the pre-expanded particles and
A foam molded article was obtained. Obtained pre-expanded particles and expanded foam
Table 1 shows the evaluation results of the shapes. The bulk density of the foam
The degree is 0.025 g / cmThreeMet.

【0046】実施例5 100リットルの反応器に、純水40kg、ドデシルベ
ンゼンスルホン酸ナトリウム2.2g、ピロリン酸マグ
ネシウム60gを入れ水性媒体とした。次に、ベンゾイ
ルパーオキサイド(純度75%)148g、t−ブチル
パーオキシベンゾエート30gおよびポリエチレンワッ
クス(分子量1000)22gを溶解したスチレン4
1.8kgとアクリル酸ブチルエステル2.2kgを撹
拌しながら加えて懸濁させ、85℃に昇温して重合を開
始した。比重法で測定した重合転化率が95重量%まで
重合が進行した時点で、反応器を120℃に昇温して2
時間保持した後、常温まで冷却して、スチレン系樹脂粒
子を取り出した。ここで得られた樹脂粒子中の残留スチ
レン単量体の量をガスクロマトグラフで測定したところ
392ppmであり、スチレン以外の揮発性有機化合物
の含有量は合計992ppmであった。また、GPC法
(ポリスチレン換算)で測定した重量平均分子量は29
7000であった。
Example 5 A 100-liter reactor was charged with 40 kg of pure water, 2.2 g of sodium dodecylbenzenesulfonate, and 60 g of magnesium pyrophosphate, and used as an aqueous medium. Next, styrene 4 in which 148 g of benzoyl peroxide (purity 75%), 30 g of t-butylperoxybenzoate and 22 g of polyethylene wax (molecular weight 1000) were dissolved.
1.8 kg and 2.2 kg of butyl acrylate were added with stirring and suspended, and the temperature was raised to 85 ° C. to initiate polymerization. When the polymerization conversion reached 95% by weight as measured by the specific gravity method, the reactor was heated to 120 ° C.
After holding for a time, the mixture was cooled to room temperature, and styrene resin particles were taken out. The amount of residual styrene monomer in the resin particles obtained here was measured by gas chromatography, and was 392 ppm, and the content of volatile organic compounds other than styrene was 992 ppm in total. The weight average molecular weight measured by the GPC method (in terms of polystyrene) is 29.
7000.

【0047】このスチレン系樹脂粒子のうち、粒径0.
7〜1.0mmのもの15kgを、内容量が30リット
ルの回転式耐圧容器に入れた後、展着剤としてポリエチ
レングリコール300を7.5g、グリセリンモノステ
アリン酸エステルを7.5g、結合防止剤として炭酸カ
ルシウム30gを添加して、容器を回転させ、樹脂粒子
の表面に付着させた。次いで回転を停止してから容器内
に炭酸ガスを圧入して、25℃、30kg/cm2Gで
4時間保って樹脂粒子内に炭酸ガスを含有させた。
Among the styrene-based resin particles, a particle size of 0.
After putting 15 kg of 7 to 1.0 mm into a rotary pressure-resistant container having a content of 30 liters, 7.5 g of polyethylene glycol 300, 7.5 g of glycerin monostearate as a spreading agent, and a binding inhibitor Was added and 30 g of calcium carbonate was added, and the container was rotated to adhere to the surface of the resin particles. Then, after stopping the rotation, carbon dioxide gas was injected into the container, and kept at 25 ° C. and 30 kg / cm 2 G for 4 hours to contain carbon dioxide gas in the resin particles.

【0048】このようにして得られた発泡性スチレン系
樹脂粒子を耐圧容器から取り出し、直ちに蒸気と空気の
混合気体によって缶内温度が60℃に保たれた攪拌機付
き発泡機内に投入し、10秒間加熱処理した。次に、発
泡機内へ蒸気を導入し、この粒子に蒸気を接触させ、で
予備発泡させてスチレン系樹脂予備発泡粒子を得た。
The expandable styrene-based resin particles thus obtained are taken out of the pressure-resistant container, immediately put into a foaming machine equipped with a stirrer whose inside temperature is maintained at 60 ° C. by a mixed gas of steam and air, and placed for 10 seconds. Heat treated. Next, steam was introduced into the foaming machine, the particles were brought into contact with the steam, and pre-foamed to obtain styrene-based resin pre-foamed particles.

【0049】予備発泡してから6時間後、長さ400m
m×幅300mm×厚さ30mmの型窩をもった成形用
金型内に予備発泡粒子を充填し、この金型内に0.9k
g/cm2Gの加熱蒸気圧力で40秒間蒸気を吹き込ん
で、で再び膨張させて嵩密度0.025g/cm3のス
チレン系樹脂発泡成形体を得た。得られた発泡成形体を
50℃の恒温室で7日間乾燥させた後、揮発性有機化合
物の含有量をガスクロマトグラフで測定すると共に、内
部融着率、曲げ強度および寸法変化率を評価した。得ら
れた予備発泡粒子と発泡成形体の評価結果を表1に示
す。
6 hours after prefoaming, 400 m long
The pre-expanded particles are filled in a molding die having a mold cavity of mx 300 mm wide x 30 mm thick, and 0.9 k
Steam was blown in at a heating steam pressure of g / cm 2 G for 40 seconds, and the mixture was expanded again to obtain a foamed styrene-based resin having a bulk density of 0.025 g / cm 3 . After the obtained foam molded article was dried in a constant temperature chamber at 50 ° C. for 7 days, the content of the volatile organic compound was measured by gas chromatography, and the internal fusion rate, bending strength, and dimensional change rate were evaluated. Table 1 shows the evaluation results of the obtained pre-expanded particles and the expanded molded article.

【0050】実施例6 単軸押出機により、200℃にて溶融し、直径0.6m
m、長さ1.0mmのペレット状としたハイインパクト
ポリスチレン樹脂粒子(ブタジエン含有量8%)15k
gを、内容量が30リットルの回転式耐圧容器に入れた
後、展着剤としてポリエチレングリコール300を7.
5g、グリセリンモノステアリン酸エステルを7.5
g、結合防止剤として炭酸カルシウム30gを添加して
容器を回転させ、樹脂粒子の表面に付着させた。次いで
回転を停止してから容器内に炭酸ガスを圧入して、25
℃、30kg/cm2Gに6時間保って樹脂粒子内に炭
酸ガスを含有させ、発泡性スチレン系樹脂粒子を得た。
ここで得られたスチレン系樹脂粒子中の残留スチレンを
ガスクロマトグラフで測定したところ、450ppmで
あり、スチレン系単量体以外の揮発性有機化合物の量は
合計1252ppmであった。
Example 6 Melted at 200 ° C. by a single screw extruder to a diameter of 0.6 m.
high impact polystyrene resin particles (butadiene content 8%) in the form of pellets having a length of 1.0 mm and a length of 15 k
g in a rotary pressure-resistant container having a content of 30 liters, and then polyethylene glycol 300 as a spreading agent.
5 g, glycerin monostearate 7.5
g, 30 g of calcium carbonate was added as a binding inhibitor, and the container was rotated to adhere to the surface of the resin particles. Next, the rotation was stopped, and then carbon dioxide gas was injected into the container, and 25
° C., kept 30kg / cm 2 6 h G is contained carbon dioxide gas into the resin particles, to obtain a foamed styrene resin particles.
The residual styrene in the obtained styrene-based resin particles was measured by gas chromatography to be 450 ppm, and the total amount of volatile organic compounds other than the styrene-based monomer was 1252 ppm.

【0051】このようにして得られた発泡性スチレン系
樹脂粒子を耐圧容器から取り出し、直ちに、蒸気と空気
の混合気体によって缶内温度が60℃に保たれた攪拌機
付き発泡機内に投入し、80秒間加熱処理した。次に、
発泡機内へ蒸気を導入し、この発泡性樹脂粒子に蒸気を
接触させることで発泡させてスチレン系樹脂予備発泡粒
子とした。
The expandable styrene resin particles thus obtained are taken out of the pressure-resistant container and immediately put into a foaming machine equipped with a stirrer whose inside temperature is maintained at 60 ° C. by a mixed gas of steam and air. Heat treatment was performed for seconds. next,
Steam was introduced into a foaming machine, and the foamed resin particles were brought into contact with steam to foam the particles, thereby obtaining styrene-based resin pre-expanded particles.

【0052】予備発泡してから6時間後、長さ400m
m×幅300mm×厚さ30mmの型窩をもった成形用
金型内に予備発泡粒子を充填し、この金型内に0.9k
g/cm2Gの加熱蒸気圧力で40秒間蒸気を吹き込ん
で膨張させて、嵩密度0.025g/cm3のスチレン
系樹脂発泡成形体を得た。得られた発泡成形体を50℃
の恒温室で7日間乾燥させた後、揮発性有機化合物の含
有量をガスクロマトグラフで測定すると共に、内部融着
率、曲げ強度および寸法変化率を評価した。得られた予
備発泡粒子と発泡成形体の評価結果を表1に示す。
Six hours after prefoaming, 400 m long
The pre-expanded particles are filled in a molding die having a mold cavity of mx 300 mm wide x 30 mm thick, and 0.9 k
Steam was blown in for 40 seconds at a heated steam pressure of g / cm 2 G for expansion to obtain a foamed styrene-based resin having a bulk density of 0.025 g / cm 3 . 50 ° C.
After drying in a constant temperature room for 7 days, the content of volatile organic compounds was measured by gas chromatography, and the internal fusion rate, bending strength and dimensional change rate were evaluated. Table 1 shows the evaluation results of the obtained pre-expanded particles and the expanded molded article.

【0053】[0053]

【表1】 [Table 1]

【0054】以上の結果から、残留スチレン単量体の量
が500ppm以下のスチレン系樹脂粒子を用い、炭酸
ガスを含有させて発泡し予備発泡粒子とすることで、ス
チレン系単量体を含めた揮発性有機化合物の含有量は1
000ppm以下と極めて少ない発泡成形体を得ること
ができた。しかも表面に不定形島状の突起を有する予備
発泡粒子を低温度で成形した結果、内部融着が少なくて
も充分な機械的強度を備えた発泡成形体が得られること
がわかった。また、これらの発泡成形体は、高温下にお
ける加熱寸法変化が非常に小さかった。
From the above results, by using styrene-based resin particles having an amount of residual styrene monomer of 500 ppm or less and containing carbon dioxide gas and foaming to obtain pre-expanded particles, the styrene-based monomer was included. The content of volatile organic compounds is 1
It was possible to obtain an extremely small foam molded article of 000 ppm or less. Moreover, as a result of molding the pre-expanded particles having irregular island-shaped projections on the surface at a low temperature, it was found that a foam molded article having sufficient mechanical strength was obtained even if internal fusion was small. In addition, these foamed molded articles had a very small change in heating dimension at high temperatures.

【0055】比較例1 実施例1において得られた発泡性スチレン系樹脂粒子を
加熱処理せずに予備発泡したこと以外は実施例1と同様
にして予備発泡粒子および発泡成形体を得た。得られた
予備発泡粒子と発泡成形体の評価結果を表1に示す。こ
の予備発泡粒子の表面をその30倍の拡大写真において
確認した。この拡大写真を図4に示す。この比較例によ
り、使用する予備発泡粒子の表面が、その内部の気泡に
由来する凹凸形状を有している場合、成形体の内部融着
は低下し、その結果機械的強度も大幅に低下することが
わかった。
Comparative Example 1 Pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1, except that the expandable styrene resin particles obtained in Example 1 were pre-expanded without heat treatment. Table 1 shows the evaluation results of the obtained pre-expanded particles and the expanded molded article. The surface of the pre-expanded particles was confirmed in a 30-times enlarged photograph. This enlarged photograph is shown in FIG. According to this comparative example, when the surface of the pre-expanded particles to be used has an uneven shape derived from bubbles therein, the internal fusion of the molded article is reduced, and as a result, the mechanical strength is also significantly reduced. I understand.

【0056】比較例2 実施例1において得られた発泡性スチレン系樹脂粒子を
加熱処理せずに予備発泡した。更に、その予備発泡粒子
を型内成形して得られる成形体の内部融着率が実施例1
と同じ80%になるように成形加熱条件を変更したこと
以外は実施例1と同様にして予備発泡粒子および発泡成
形体を得た。得られた予備発泡粒子と発泡成形体の評価
結果を表1に示す。この比較例により、実施例1と同等
の内部融着率になるが、機械的強度を同等にするには実
施例1よりも加熱蒸気圧力を高くしなければならず、こ
のときの成形製造時間は実施例1よりも大幅に長くなる
ことがわかった。
Comparative Example 2 The expandable styrene resin particles obtained in Example 1 were prefoamed without heat treatment. Further, the internal fusion ratio of the molded product obtained by molding the pre-expanded particles in the mold was determined in Example 1.
Pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1 except that the molding heating conditions were changed to 80%, which is the same as in Example 1. Table 1 shows the evaluation results of the obtained pre-expanded particles and the expanded molded article. According to this comparative example, the internal fusion rate becomes equal to that of Example 1. However, in order to make the mechanical strength equal, the heating steam pressure must be higher than that of Example 1, and the molding manufacturing time Was found to be significantly longer than in Example 1.

【0057】比較例3 実施例1において得られた発泡性スチレン系樹脂粒子を
耐圧容器から取り出し、直ちに蒸気と空気の混合ガスに
よって内部の温度が60℃に保たれた撹拌器付き発泡機
内に投入し、120秒間加熱処理した。更に、その予備
発泡粒子を型内成形して得られる成形加熱条件を変更し
たこと以外は実施例1と同様にして予備発泡粒子および
発泡成形体を得た。得られた予備発泡粒子と発泡成形体
の評価結果を表1に示す。この比較例により得られた予
備発泡粒子の表面は樹脂化した状態で気泡が形成されて
いない状態であり、嵩密度は0.05g/cm3と高い
ものであった。更に、この予備発泡粒子を型内成形した
ところ、成形体の内部融着は低く、その結果、機械的強
度も大幅に低下することがわかった。
Comparative Example 3 The expandable styrene resin particles obtained in Example 1 were taken out of the pressure-resistant container and immediately put into a foaming machine equipped with a stirrer whose internal temperature was maintained at 60 ° C. by a mixed gas of steam and air. Then, heat treatment was performed for 120 seconds. Further, pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1, except that the molding heating conditions obtained by molding the pre-expanded particles in a mold were changed. Table 1 shows the evaluation results of the obtained pre-expanded particles and the expanded molded article. Surface of the pre-expanded particles obtained by the comparative example shows a state in which in a state of resinification is not bubbles formed, the bulk density was as high as 0.05 g / cm 3. Furthermore, when the pre-expanded particles were molded in a mold, it was found that the internal fusion of the molded body was low, and as a result, the mechanical strength was significantly reduced.

【0058】比較例4 t−ブチルパーオキシベンゾエートの使用量を10gと
したこと以外は、実施例1と同様にして予備発泡粒子お
よび発泡成形体を得た。得られた予備発泡粒子と発泡成
形体の評価結果を表1に示す。この比較例により、使用
するスチレン系樹脂粒子中の残留スチレン単量体の含有
量が多いと、発泡成形体の内部融着性は良好となるが、
寸法変化率は著しく劣ったものとなる。更に、このとき
の成形製造時間は実施例1よりも大幅に長くなることが
わかった。
Comparative Example 4 Pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1, except that the amount of t-butyl peroxybenzoate used was changed to 10 g. Table 1 shows the evaluation results of the obtained pre-expanded particles and the expanded molded article. According to this comparative example, when the content of the residual styrene monomer in the styrene-based resin particles used is large, the internal fusing property of the foamed molded article is improved,
The dimensional change rate is significantly inferior. Further, it was found that the molding production time at this time was significantly longer than that of Example 1.

【0059】表1から、比較例1では、予備発泡粒子の
表面に不定形島状の突起が形成されていないものは内部
融着が劣るだけでなく、機械的強度が大幅に低下するこ
とがわかった。また、比較例2では、成形体に充分な機
械的強度を付与するためには、加熱蒸気圧力を上げる必
要があり、熱エネルギーの上昇を招き、更に、成形製造
時間が長くなるため、製造コストが高くなることがわか
った。また、比較例3では、得られた予備発泡粒子の表
面が樹脂化し、気泡膜が形成されていないために、内部
融着が劣るだけでなく、機械的強度が大幅に低下するこ
とがわかった。
From Table 1, it can be seen that, in Comparative Example 1, the pre-expanded particles having no irregular island-like projections formed on the surface not only have poor internal fusion but also have a significant decrease in mechanical strength. all right. Further, in Comparative Example 2, in order to impart sufficient mechanical strength to the molded body, it is necessary to increase the heating steam pressure, which leads to an increase in heat energy, and furthermore, the molding production time becomes longer, so that the production cost is increased. Was found to be higher. In Comparative Example 3, it was found that the surface of the obtained pre-expanded particles was resinified and no cell membrane was formed, so that not only internal fusion was inferior, but also mechanical strength was significantly reduced. .

【0060】また、比較例4では、スチレン系樹脂粒子
中の残留スチレン単量体の含有量が1892ppm、ス
チレン系単量体以外の揮発性有機化合物の含有量が10
93ppmと多いので、得られる発泡成形体の寸法変化
率は劣ったものであった。
In Comparative Example 4, the content of the residual styrene monomer in the styrene resin particles was 1892 ppm, and the content of the volatile organic compound other than the styrene monomer was 10%.
Since it was as high as 93 ppm, the dimensional change rate of the obtained foamed molded article was inferior.

【0061】[0061]

【本発明の効果】本発明のスチレン系樹脂発泡成形体
は、揮発性有機化合物の含有量が極めて少なく、かつ内
部融着率が低くても、適度な機械的強度を有するもので
ある。更に、製造における熱エネルギーの削減、成形製
造時間の短縮が可能となり、商品価値の非常に高いもの
である。この発泡成形体は、例えばマンションや戸建て
住宅などに使用されるガス温水式あるいは電気式の床暖
房用断熱材など、比較的高温下で使用される建築用断熱
材として用いるのに特に好適である。
The foamed styrenic resin article of the present invention has an extremely low content of volatile organic compounds and a moderate mechanical strength even if the internal fusion rate is low. Further, it is possible to reduce the heat energy in the production and the molding production time, and the product value is very high. This foamed molded product is particularly suitable for use as a heat insulating material for buildings used at relatively high temperatures, such as a gas hot water type or electric type heat insulating material for floor heating used in condominiums and detached houses. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた予備発泡粒子表面の電子顕
微鏡写真である。
FIG. 1 is an electron micrograph of the surface of pre-expanded particles obtained in Example 1.

【図2】実施例2で得られた予備発泡粒子表面の電子顕
微鏡写真である。
FIG. 2 is an electron micrograph of the surface of pre-expanded particles obtained in Example 2.

【図3】実施例2で得られた予備発泡粒子表面の電子顕
微鏡写真である。
FIG. 3 is an electron micrograph of the surface of the pre-expanded particles obtained in Example 2.

【図4】比較例1で得られた予備発泡粒子表面の電子顕
微鏡写真である。
4 is an electron micrograph of the surface of the pre-expanded particles obtained in Comparative Example 1. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山形 裕之 滋賀県草津市西大路町10−5−462 (72)発明者 森岡 郁雄 滋賀県近江八幡市中小森町659−15 Fターム(参考) 4F074 AA32 AC20 AC26 AC31 AC32 AD10 AD17 AG07 AG10 AG11 BA32 BC11 BC15 CA30 CA32 CA49 CA51  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Yamagata 10-5-462, Nishiojimachi, Kusatsu-shi, Shiga Prefecture (72) Ikuo Morioka 659-15, Nakakomori-cho, Omihachiman-shi, Shiga Prefecture F-term (reference) 4F074 AA32 AC20 AC26 AC31 AC32 AD10 AD17 AG07 AG10 AG11 BA32 BC11 BC15 CA30 CA32 CA49 CA51

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 発泡粒子表面に不定形島状の突起が多数
形成されてなることを特徴とするスチレン系樹脂予備発
泡粒子。
1. A pre-expanded styrene-based resin particle comprising a large number of irregularly shaped island-shaped projections formed on the surface of an expanded particle.
【請求項2】 スチレン系予備発泡粒子が、炭酸ガスを
含有させた発泡性スチレン系樹脂粒子を40〜100℃
で3〜90秒間加熱処理し、その後前記発泡性スチレン
系樹脂粒子を予備発泡させて得られた請求項1に記載の
スチレン系樹脂予備発泡粒子。
2. The styrenic pre-expanded particles are prepared by heating carbon dioxide-containing expandable styrenic resin particles at 40 to 100 ° C.
The styrene-based resin pre-expanded particles according to claim 1, which is obtained by pre-expanding the expandable styrene-based resin particles after heating for 3 to 90 seconds.
【請求項3】 発泡性スチレン系樹脂粒子が、残留スチ
レン系単量体の量が500ppm以下のスチレン系樹脂
粒子に炭酸ガスを含有させた粒子である請求項1または
2に記載のスチレン系樹脂予備発泡粒子。
3. The styrene resin according to claim 1, wherein the expandable styrene resin particles are particles obtained by adding carbon dioxide to styrene resin particles having a residual styrene monomer content of 500 ppm or less. Pre-expanded particles.
【請求項4】 請求項1〜3のいずれか1つに記載のス
チレン系樹脂予備発泡粒子を発泡成形して得られたスチ
レン系樹脂発泡成形体。
4. A foamed styrene-based resin article obtained by foam-forming the styrene-based resin pre-expanded particles according to claim 1.
【請求項5】 70℃で1200時間加熱したとき、次
式で示される寸法変化率が±0.2%以内である請求項
4に記載のスチレン系樹脂発泡成形体。 寸法変化率(%)=(L2−L1)×100/L1 (ただし、L1は、型内成形後に温度23℃、相対湿度
50%で24時間放置されたスチレン系樹脂発泡成形体
の寸法、L2は、該スチレン系樹脂発泡成形体を70℃
で1200時間加熱したときのスチレン系樹脂発泡成形
体の寸法である)
5. The styrenic resin foam according to claim 4, wherein a dimensional change rate represented by the following equation is within ± 0.2% when heated at 70 ° C. for 1200 hours. Dimensional change rate (%) = (L2−L1) × 100 / L1 (where L1 is the dimension of the styrene-based resin foam molded article left at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours after in-mold molding, L2 Is obtained by heating the foamed styrene resin to 70 ° C.
Is the size of the foamed styrene resin when heated for 1200 hours at
【請求項6】 揮発性有機化合物の含有量が1000p
pm以下である請求項4または5に記載のスチレン系樹
脂発泡成形体。
6. The content of the volatile organic compound is 1000 p.
The styrenic resin foam according to claim 4 or less.
【請求項7】 残留スチレン系単量体の量が500pp
m以下であるスチレン系樹脂粒子に、炭酸ガスを含有さ
せた発泡性スチレン系樹脂粒子を40〜100℃で3〜
90秒間加熱処理し、その後加熱することでスチレン系
予備発泡粒子を製造する工程からなることを特徴とする
スチレン系樹脂予備発泡粒子の製造方法。
7. The amount of the residual styrene monomer is 500 pp.
m or less, and expandable styrene-based resin particles containing carbon dioxide gas in styrene-based resin particles
A method for producing styrene-based resin pre-expanded particles, comprising a step of producing styrene-based pre-expanded particles by heating for 90 seconds and then heating.
JP2001297896A 2001-03-26 2001-09-27 Polystyrene resin pre-foamed particle, production method and foamed molded material Pending JP2002356576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297896A JP2002356576A (en) 2001-03-26 2001-09-27 Polystyrene resin pre-foamed particle, production method and foamed molded material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001088292 2001-03-26
JP2001-88292 2001-03-26
JP2001297896A JP2002356576A (en) 2001-03-26 2001-09-27 Polystyrene resin pre-foamed particle, production method and foamed molded material

Publications (1)

Publication Number Publication Date
JP2002356576A true JP2002356576A (en) 2002-12-13

Family

ID=26612082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297896A Pending JP2002356576A (en) 2001-03-26 2001-09-27 Polystyrene resin pre-foamed particle, production method and foamed molded material

Country Status (1)

Country Link
JP (1) JP2002356576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223002A (en) * 2003-01-23 2004-08-12 Sekisui Plastics Co Ltd Cushioning material
US20080292900A1 (en) * 2007-05-24 2008-11-27 Kabushiki Kaisha Kobe Seiko Sho Metal-resin composite and method for producing the same
WO2009057432A1 (en) * 2007-10-31 2009-05-07 Jsp Corporation Expanded styrene resin beads and molded object formed from expanded styrene resin beads

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223002A (en) * 2003-01-23 2004-08-12 Sekisui Plastics Co Ltd Cushioning material
US20080292900A1 (en) * 2007-05-24 2008-11-27 Kabushiki Kaisha Kobe Seiko Sho Metal-resin composite and method for producing the same
US8765219B2 (en) * 2007-05-24 2014-07-01 Kobe Steel, Ltd. Method of making a metal-resin composite
WO2009057432A1 (en) * 2007-10-31 2009-05-07 Jsp Corporation Expanded styrene resin beads and molded object formed from expanded styrene resin beads
JP2009108237A (en) * 2007-10-31 2009-05-21 Jsp Corp Expanded styrene resin bead and molded object formed from expanded styrene resin bead
EP2208752A1 (en) * 2007-10-31 2010-07-21 Jsp Corporation Expanded styrene resin beads and molded object formed from expanded styrene resin beads
EP2208752A4 (en) * 2007-10-31 2011-01-05 Jsp Corp Expanded styrene resin beads and molded object formed from expanded styrene resin beads

Similar Documents

Publication Publication Date Title
MXPA06014840A (en) Container and method of manufacturing it.
JPH073068A (en) Expandable styrene polymer bead
JPH0739502B2 (en) Expandable polyvinyl (vinylidene) aromatic particles and method for producing the same
JP3732418B2 (en) Expandable styrene resin particles
JP2012532978A (en) Insulating foam article and composition for its preparation
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JPS6377947A (en) Production of expanded particle of styrene-acrylonitrile-butadiene copolymer
JP2002356576A (en) Polystyrene resin pre-foamed particle, production method and foamed molded material
JP2020094186A (en) Foamable thermoplastic resin particle, thermoplastic pre-foamed particle, thermoplastic foamed molded body and production methods thereof
JP2003327739A (en) Foamable polystyrene resin particle
WO1996000257A1 (en) Foaming method
JP3979883B2 (en) Expandable polystyrene resin particles
JP4065795B2 (en) Heat-resistant styrenic resin foam molding
TW201235398A (en) Use of polar additives for enhancing blowing agent solubility in polystyrene
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JP6799388B2 (en) Method for manufacturing foamable polystyrene resin particles
JP3910855B2 (en) Thermal insulation for floor heating
JP4777677B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin foam particles and foamed molded article
JPH06100724A (en) Production of synthetic resin expansion molded body good in dimensional stability
JP3836062B2 (en) Styrenic resin pre-expanded particles, molded body, and method for producing pre-expanded particles
JPH05255531A (en) Production of molded polymer foam
JPH05310986A (en) Production of synthetic resin expansion molded body good in dimensional stability
KR100682241B1 (en) Expandable Polystyrene Resin, Process for Preparing Thereof and Expanded Product Produced by Using Said Resin Particules
JP5377917B2 (en) Flame retardant expandable polystyrene resin particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Effective date: 20070313

Free format text: JAPANESE INTERMEDIATE CODE: A02