JP2004268096A - Hydroforming method - Google Patents

Hydroforming method Download PDF

Info

Publication number
JP2004268096A
JP2004268096A JP2003063197A JP2003063197A JP2004268096A JP 2004268096 A JP2004268096 A JP 2004268096A JP 2003063197 A JP2003063197 A JP 2003063197A JP 2003063197 A JP2003063197 A JP 2003063197A JP 2004268096 A JP2004268096 A JP 2004268096A
Authority
JP
Japan
Prior art keywords
tube
hydroforming
pipe
metal
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003063197A
Other languages
Japanese (ja)
Other versions
JP4133465B2 (en
Inventor
Masaaki Mizumura
正昭 水村
Yukihisa Kuriyama
幸久 栗山
Keinosuke Iguchi
敬之助 井口
Itsuro Hiroshige
逸朗 弘重
Koichi Sato
浩一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003063197A priority Critical patent/JP4133465B2/en
Publication of JP2004268096A publication Critical patent/JP2004268096A/en
Application granted granted Critical
Publication of JP4133465B2 publication Critical patent/JP4133465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydroforming method which attains a forming upto a large tube expansion ratio without causing burst or buckling. <P>SOLUTION: In the hydroforming method in which a metallic tube is set in a die and in which, after clamping, an internal pressure and an axial thrusting force are imparted to the metallic tube; while being expanded in one direction of the tube cross section, the metallic tube is deformed for two times the wall thickness to 1.4 times the diameter of the base tube (except the equal diameter) in the direction orthogonal to that one direction. Then, while being expanded in the direction orthogonal to that one direction in the cross section, the metallic tube is formed to two times the wall thickness to 1.4 times the post-deformation width in that one direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用の排気系部品やサスペンション系部品等の製造に用いられるもので、金属管を分割した金型に入れ、当該金型を型締めした後、金属管内に内圧と管軸方向の押し力を負荷することにより所定形状に成形するハイドロフォーム加工方法に関する。
【0002】
【従来の技術】
近年ハイドロフォーム技術は、部品数削減によるコスト削減や軽量化等の手段の一つとして自動車分野で注目を浴びており、欧米では数年前から既に実車に採用され、国内でも1999年から実車への適用も開始した。それ以降、ハイドロフォーム加工の適用部品は年々増加し、その市場規模は大幅に拡大してきた。
【0003】
【発明が解決しようとする課題】
ハイドロフォーム加工とプレス加工を比較した際、技術的にハイドロフォーム加工の方が優れる点の一つに、大変形が可能であるということが挙げられる。図1にハイドロフォーム加工(●印)とプレス加工(□印)において発生する歪状態図を示す。一般にプレス加工では、等2軸引張状態から平面歪状態を経て単軸引張状態までの領域で変形が行われる。等2軸引張状態とは、X方向の引張歪がX方向と直角方向の引張歪と等しく働く状態をいい、平面歪状態とは、X方向の歪が0で、X方向と直角方向の引張歪のみ働く状態をいい、単軸引張状態とは、X方向の引張応力が0で、X方向と直角方向の引張応力のみ働く状態をいう。従って、プレス加工では材料の成形限界から見ると変形能が少ない領域での変形となり、特に平面歪状態で歪が進行すると破断しやすい。それに対し、ハイドロフォーム加工では内圧を負荷すると同時に軸押しを負荷するため、材料に剪断変形を与えることが可能になり、歪の状態も単軸引張から純粋剪断状態の領域で変形が進行する。純粋剪断状態とは、X方向の圧縮歪がX方向と直角方向の引張歪と等しく働く状態をいう。従って、材料の成形限界から見ると、変形能が非常に広い領域での加工となるため、その結果、大変形が可能になる。すなわち言い換えると、ハイドロフォーム加工で大変形の加工を実現するためには、いかに純粋剪断側に歪の状態をもっていくかにかかっていると言っても過言ではない。
【0004】
純粋剪断側で変形させるには、単純に軸押しを積極的に負荷させることが効果的であることは言うまでもない。しかし単純に軸押しを増加させると当然座屈という問題が発生する。この座屈を防止するには内圧を高めることが効果的であるが、内圧を高めると言うことは、歪状態が剪断側から平面歪側に移動することを意味するため、破断しやすくなる。従って、図2のように金型がない自由バルジにおいては、座屈を起こさないためには単軸引張状態よりも平面歪側でしか成形できない(非特許文献1より抜粋)。
【0005】
それでは前述の図1のようなT−成形(ハイドロフォーム加工)で剪断変形が実現できていた理由は、金型の拘束による効果のためである。周囲に金型が存在するため、自由バルジの場合よりも座屈を抑制することが可能になる。また金型があるため自由バルジの場合よりも内圧を高圧にすることが可能になり、それによって更に金型との密着が高まり、座屈抑制に効果がある。このようにT−成形においては、金型の存在ゆえに座屈を抑えながら剪断変形を実現することができるため、大変形が可能になる。
【0006】
またT−成形以外にも、剪断変形させやすい形状として図3のような例がある。しかし、これらの例に共通していることは、何れもある1つの面上で拡管或いは枝管張出しをしているという点である。例えば、長方形拡管の例では、素管をYZ平面上でY方向にのみ拡管しており、Z方向には拡管していない。
【0007】
上記に対し、図4の例では、拡管する方向が1つの面上だけに制限されていない。例えば正方形拡管や半球拡管の例では素管をYZ平面上で、Y方向に拡管するだけでなくZ方向にも拡管している。このような例では、素管の一部が金型に接触するまでは、自由バルジと同じ状態になるため、座屈を起こさずに剪断変形を実現することができなくなり、その結果、拡管率は大きくできなかった。
【0008】
本発明は、上述のように、面内で拡管する方向が一方向に制限されない形状の部品をハイドロフォームによって加工することを可能にしたハイドロフォーム加工方法を提供することを目的とする。
【0009】
【非特許文献1】
塑性と加工、森ら:vol.29 no.325(1988) p.131
【0010】
【課題を解決するための手段】
係る課題を解決するため、本発明の要旨とするところは下記の通りである。
(1)金属管を分割した金型に装着し、型締めした後で、前記金属管に内圧と管軸方向押し込み力を負荷するハイドロフォーム加工方法において、前記金属管断面の一方向に前記金属管を拡管させながら前記一方向と直角方向に前記金属管の板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、前記金属管断面において前記一方向と直角方向に前記金属管を拡管させながら前記一方向に前記金属管の板厚の2倍〜前記変形後の幅の1.4倍に成形することを特徴とするハイドロフォーム加工方法。
(2)金属管を金属管断面の一方向に拡管させながら前記一方向と直角方向に前記金属管の板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、最終製品形状の金型に装着し、前記金属管断面において前記一方向と直角方向に金属管を拡管させながら前記一方向に前記金属管の板厚の2倍〜前記変形後の幅の1.4倍に成形することを特徴とする(1)記載のハイドロフォーム加工方法。
(3)金属管を分割した金型に装着し、型締めした後で、前記金属管に内圧と管軸方向押し込み力を負荷するハイドロフォーム加工方法において、前記金属管断面の一方向に前記金属管を拡管させながら前記一方向と直角方向に前記金属管の板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、前記金属管断面において前記一方向と直角方向に金属管を拡管させながら前記一方向に前記金属管の板厚の2倍〜前記変形後の幅の1.4倍に成形させ中間製品とし、その中間製品を最終製品形状の金型に装着し、ハイドロフォーム加工することを特徴とするハイドロフォーム加工方法。
【0011】
【発明の実施の形態】
図5の例では、まず、金属管1を下金型2に装着し、上金型3を閉める。この時、金型2、3の空洞部の形状は、金属管1の径に対して、水平方向に拡管されると共に、垂直方向にも素管径の1倍より大きく最大で元の素管径(幅)の1.4倍まで拡管されるような形状にしておく。元の素管径(幅)の1.4倍までであれば、ある程度材料に剪断変形を負荷することが可能である。次に、セットされた管1の内部に内圧を負荷すると同時に左右の端部を軸押しパンチ4、5で管軸方向に押し込み、中間製品6の形状まで仕上げる。ここまでを、第1ハイドロフォーム工程とする。
【0012】
次に、中間製品6を第1ハイドロフォーム金型2、3から取り出し、最終製品形状に対応する別の下金型7に装着し、別の上金型8を閉める。この時、金型7、8の空洞部の形状は、中間製品6の形状に対して、垂直方向に拡管されると共に、水平方向にも最大で第1ハイドロフォーム成形後の管の径(幅)の1〜1.4倍まで拡管されるような形状にしておく。垂直方向の空洞部の形状(高さ)を第1ハイドロフォーム成形後の管の径(幅)の1.4倍を超えると、材料に剪断変形を負荷することが難しくなるからである。次に、セットされた中間製品6の内部に内圧を負荷すると同時に左右の端部を軸押しパンチ9、10で管軸方向に押し込み、最終製品11の形状まで仕上げる。この結果、最終的には、管1に対して水平方向および垂直方向とも拡管された最終製品11が完成される。
【0013】
上記の例では、第1ハイドロフォーム工程で主に水平方向に拡管し、第2ハイドロフォーム工程で主に垂直方向に拡管したが、当然その逆でも構わなく、すなわち、第1ハイドロフォーム工程で主に垂直方向、第2ハイドロフォーム工程で主に水平方向に拡管しても、本発明の効果を同様に得ることができる。
また、第1ハイドロフォーム工程で成形した中間製品を第2ハイドロフォーム工程にセットする際に、同じ向きに入れる必要はなく、例えば90°傾けた方向で中間製品をセットしても良い。この場合、第2ハイドロフォーム工程の金型空洞部の方向は、第1ハイドロフォーム工程の金型空洞部の方向と同じになる。
【0014】
また、型締め時に型締め方向に断面を扁平にしてから、拡管しても同様の効果が得られる。図6の例では、まず、金属管1を下金型2に装着し、上金型3を閉める。この時、金型2、3の空洞部の形状は、金属管1の径に対して、水平方向に拡管されると共に、垂直方向にも板厚の2倍以上から元の素管径(幅)より小さくなるような形状にしておく。板厚の2倍以上から元の素管径(幅)より小さくすれば剪断変形を付与することができるが、金型との密着が高まるため、高潤滑性の潤滑剤を塗布する等、金属管1と上下金型2、3との間の潤滑をよくしておくことが好ましい。次に、セットされた管1の内部に内圧を負荷すると同時に左右の端部を軸押しパンチ4、5で管軸方向に押し込み、中間製品6の形状まで仕上げる。ここまでを、第1ハイドロフォーム工程とする。
【0015】
次に、中間製品6を第1ハイドロフォーム金型2、3から取り出し、最終製品形状に対応する別の下金型7に装着し、別の上金型8を閉める。図6の例では、第1ハイドロフォーム工程で成形した中間製品を第2ハイドロフォーム工程にセットする際に、90°傾けた方向で中間製品をセットした。
すなわち、この場合は、金型7、8の空洞部の形状は、中間製品6の形状に対して、水平方向に拡管されると共に、拡管する方向に垂直な方向(図6の場合、垂直方向)の変形が、板厚の2倍から第1ハイドロフォーム工程における変形後の幅(図6の場合、高さ)の1.4倍までとなるような形状とした(図6参照)。型締めが板厚の2倍より小さいと剪断変形を付与することが困難になるからである。また、変形後の幅の1.4倍を超えると、材料に剪断変形を負荷することが難しくなるからである。
【0016】
次に、セットされた中間製品6の内部に内圧を負荷すると同時に左右の端部を軸押しパンチ9、10で管軸方向に押し込み、最終製品11の形状まで仕上げる。この結果、最終的には、管1に対して水平方向および垂直方向とも拡管された最終製品11が完成させる。
【0017】
上記の例では、第1ハイドロフォーム工程で成形した中間製品を第2ハイドロフォーム工程にセットする際に90°傾けたが、傾けずに中間製品をセットしても良い。この場合、第2ハイドロフォーム工程の金型空洞部の方向は、第1ハイドロフォーム工程の金型空洞部の方向と直角になる。この際、第1ハイドロフォーム工程で水平方向に拡管し、第2ハイドロフォーム工程で垂直方向に拡管しても良いし、当然その逆でも構わない。すなわち、第1ハイドロフォーム工程で主に垂直方向、第2ハイドロフォーム工程で水平方向に拡管しても、本発明の効果を同様に得ることができる。
【0018】
図5及び図6に説明した発明を総合すると、拡管する方向に垂直な方向の変形は、板厚の2倍までの縮小から当該工程の元の径(幅)の1.4倍まで(第1ハイドロフォーム工程では素管径の1倍を除く)の拡大であれば、当該発明の効果が同様に得られる。
【0019】
また、成形中のバーストや座屈を防ぎ、拡管率を上げる方法に図7のようなカウンターパンチや管軸方向に可動する可動金型等がある(SchulerのMetal Forming Handbookより抜粋)が、それらの方法を各ハイドロフォーム工程に使用すると、各工程における拡管率を更に上げることが可能になり、最終的な拡管率も更に向上できる。
【0020】
更に図8の例は、第1ハイドロフォーム工程でカウンターパンチ12、13を、第2ハイドロフォーム工程で可動金型14、15、16、17を使用した例である。
【0021】
また、第1ハイドロフォーム工程と第2ハイドロフォーム工程を同一金型20、21内で加工した例が図9である。一対の金型20、21は金属管1が拡管可能な空洞部を水平方向に有し、空洞部に対応する拡管方向と直角方向(上下方向)に、成形初期の金属管外面から最終形状の金属管外面まで位置制御自在な可動金型24、25を有する。このようにすると、金型機構は複雑になるが、金型数が削減できてコスト的には有利である。
また、一体型金型においても図7の例のようなカウンターパンチや可動金型を併用すると、より大きな拡管率まで成形可能になり有利な成形となる。
【0022】
また、図8、図9の例は、第1ハイドロフォーム工程においても第2ハイドロフォーム工程においても、拡管する方向に垂直な方向には全く変形しない例である。但し、当該工程の元の径(幅)の1.4倍以下までの変形であれば、ほとんど同様の効果が得られるのは言うまでもない(図5参照)。
【0023】
上述のいずれの例も、水平方向に拡管している際には垂直方向の拡管を制限しており、また垂直方向に拡管している際には水平方向の拡管を制限しているため、どうしても最終製品形状は単純な形状になってしまう場合が多い。そこで自動車部品のように複雑な形状に仕上げるには更にもう一工程加えると有効である。すなわち、上述の第1・第2ハイドロフォーム工程(或いは一体型金型による加工工程)によって最終製品相当の拡管率まで管を拡管し、中間製品26とした後で、最終部品形状の金型に装着し、形状のみ整えるようなハイドロフォーム加工を行う(図10参照)。当該方法により複雑形状でかつ拡管率の大きな部品のハイドロフォーム加工も可能になる。中間製品26の成形は第1、第2ハイドロフォーム工程を同一の金型で実施しても良い。
金属管として、鋼管、ステンレス管、アルミニウム管、チタン管等を使用できる。
【0024】
【実施例】
下記に本発明の実施例を示す。
素管は、外径63.5mm、板厚2.3mm、長さ500mm、材質JIS規格STKM11A(機械構造用炭素鋼鋼管)を用いた。図5に示すように、加工する製品形状としては、正方形に拡管する形状で、正方形の1辺の長さを150mm、コーナーRは8mm、拡管部の管軸方向長さを100mmとした。
【0025】
まず、第1ハイドロフォーム工程において、水平方向に拡管すると共に垂直方向にも拡管し中間製品を得た。その際、軸押し量は、左右とも50mmで内圧は最大30MPaで成形した。この第1ハイドロフォーム工程により、素管径に対して水平方向に約1.9倍、垂直方向に約1.1倍に拡管された。
次に、上記で成形された中間製品を最終製品形状となる第2ハイドロフォーム金型に装着し、垂直方向に拡管した。その際、軸押し量は、左右とも40mmで内圧は最大30MPaで成形した。この第2ハイドロフォーム工程により、第1ハイドロフォーム成形後の管の径(幅)に対して水平方向に約1.2倍、垂直方向に約2.1倍に拡管された。
【0026】
また、比較のため、本発明のような方法でない従来方法でも成形を行った。すなわち、第1ハイドロフォーム工程を省略し、素管を、第2ハイドロフォーム工程の金型に直接挿入して成形した。その結果、軸押しと内圧をどんなに調整しても、拡管箇所の金型まで接触することもなく、バーストあるいは座屈が生じて成形ができなかった。
【0027】
【発明の効果】
本発明により、従来バーストや座屈がネックとなり加工できなかった大拡管率のハイドロフォーム加工が可能になり、その結果ハイドロフォーム適用部品の範囲が拡大する。それにより、冒頭に述べたような自動車部品のコスト削減や軽量化の効果に寄与できる。
【図面の簡単な説明】
【図1】プレス加工とハイドロフォーム加工における歪状態の説明図。
【図2】自由バルジ加工における成形限界の説明図。
【図3】剪断変形に適した場合のハイドロフォーム形状例の説明図。
【図4】剪断変形が困難な場合のハイドロフォーム形状例の説明図。
【図5】拡管する方向に垂直な方向の変形が、元の径(幅)の1倍から1.4倍の場合の本発明の説明図。
【図6】拡管する方向に垂直な方向の変形が、板厚の2倍から元の径(幅)の1倍の場合の本発明の説明図。
【図7】カウンターパンチと可動金型の説明図。
【図8】ハイドロフォーム加工方法にカウンターパンチや可動金型を併用した場合の説明図。
【図9】一体型金型を用いたハイドロフォーム加工方法例の説明図。
【図10】本発明の第3ハイドロフォーム工程を追加したハイドロフォーム加工方法例の説明図。
【符号の説明】
1……金属管
2……第1ハイドロフォーム工程下金型
3……第1ハイドロフォーム工程上金型
4……第1ハイドロフォーム工程左軸押しパンチ
5……第1ハイドロフォーム工程右軸押しパンチ
6……第1ハイドロフォーム工程後の中間製品
7……第2ハイドロフォーム工程下金型
8……第2ハイドロフォーム工程上金型
9……第2ハイドロフォーム工程左軸押しパンチ
10……第2ハイドロフォーム工程右軸押しパンチ
11……最終製品
12……第1ハイドロフォーム工程前側カウンターパンチ
13……第1ハイドロフォーム工程後側カウンターパンチ
14……第2ハイドロフォーム工程左下側可動金型
15……第2ハイドロフォーム工程右下側可動金型
16……第2ハイドロフォーム工程左上側可動金型
17……第2ハイドロフォーム工程右上側可動金型
18……第2ハイドロフォーム工程左側金型軸押し工具
19……第2ハイドロフォーム工程右側金型軸押し工具
20……第1第2工程一体型下金型
21……第1第2工程一体型上金型
22……第1第2工程一体型左軸押しパンチ
23……第1第2工程一体型右軸押しパンチ
24……第1第2工程一体型前側カウンターパンチ(可動金型)
25……第1第2工程一体型前側カウンターパンチ(可動金型)
26……第2ハイドロフォーム工程後の中間製品
27……第3ハイドロフォーム工程下金型
28……第3ハイドロフォーム工程上金型
29……第3ハイドロフォーム工程左軸押しパンチ
30……第3ハイドロフォーム工程右軸押しパンチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is used for manufacturing exhaust system parts, suspension system parts, and the like for automobiles. A metal pipe is put into a divided mold, and after clamping the mold, the internal pressure and the pipe axial direction are filled in the metal pipe. The present invention relates to a hydroforming method for forming into a predetermined shape by applying a pressing force.
[0002]
[Prior art]
In recent years, hydroforming technology has been attracting attention in the automotive field as one of the means of cost reduction and weight reduction by reducing the number of parts, and has been adopted in actual vehicles in Europe and the United States for several years, and in Japan since 1999 Application has also started. Since then, the number of parts to which hydroforming has been applied has been increasing year by year, and the market size has been greatly expanded.
[0003]
[Problems to be solved by the invention]
One of the technical advantages of hydroforming when comparing hydroforming and pressing is that large deformation is possible. FIG. 1 shows a distortion state diagram generated in hydroforming (marked by ●) and press working (marked by □). In general, in press working, deformation is performed in a region from a biaxial tension state to a uniaxial tension state through a plane strain state. The equibiaxial tension state refers to a state in which the tensile strain in the X direction acts equally to the tensile strain in the direction perpendicular to the X direction. The plane strain state refers to a state in which the strain in the X direction is 0 and the tensile strain in the direction perpendicular to the X direction. The uniaxial tension state refers to a state in which only the strain acts, and the uniaxial tensile state refers to a state in which the tensile stress in the X direction is 0 and only the tensile stress in the direction perpendicular to the X direction acts. Therefore, in the press working, deformation occurs in a region where the deformability is small in view of the forming limit of the material, and it is easy to break when the strain progresses particularly in a plane strain state. On the other hand, in the hydroforming process, since the axial pressure is applied simultaneously with the application of the internal pressure, the material can be subjected to shear deformation, and the deformation progresses in the range from uniaxial tension to pure shear. The pure shear state refers to a state in which the compressive strain in the X direction works equally to the tensile strain in the direction perpendicular to the X direction. Therefore, when viewed from the forming limit of the material, processing is performed in an area where the deformability is very wide, and as a result, large deformation is possible. In other words, in other words, it is not an exaggeration to say that in order to realize a large deformation process by the hydroforming process, it depends on how a strain state is brought to the pure shear side.
[0004]
Needless to say, it is effective to simply apply the axial pushing positively in order to deform on the pure shear side. However, if the axial pushing is simply increased, the problem of buckling naturally occurs. Increasing the internal pressure is effective in preventing this buckling, but increasing the internal pressure means that the strain state shifts from the shear side to the plane strain side, and therefore, it is easy to break. Therefore, in a free bulge having no mold as shown in FIG. 2, molding can be performed only on the plane strain side from the uniaxial tension state in order to prevent buckling (extracted from Non-Patent Document 1).
[0005]
The reason why the shear deformation was realized by the T-forming (hydroforming) as shown in FIG. 1 is due to the effect of the constraint of the mold. Since the mold is present around the buckle, buckling can be suppressed more than in the case of the free bulge. In addition, since the mold is provided, the internal pressure can be made higher than in the case of the free bulge, whereby the adhesion with the mold is further increased, which is effective in suppressing buckling. As described above, in the T-molding, shear deformation can be realized while suppressing buckling due to the presence of the mold, so that large deformation is possible.
[0006]
In addition to the T-molding, there is an example shown in FIG. 3 as a shape that is easily sheared. However, what is common to these examples is that all of them expand or branch on one surface. For example, in the example of the rectangular tube expansion, the raw tube is expanded only in the Y direction on the YZ plane, but not in the Z direction.
[0007]
On the other hand, in the example of FIG. 4, the expanding direction is not limited to only one surface. For example, in the case of a square tube expansion or a hemisphere tube expansion, the raw tube is expanded not only in the Y direction but also in the Z direction on the YZ plane. In such an example, until a part of the base tube comes into contact with the mold, it becomes the same state as the free bulge, so that it is impossible to realize the shear deformation without buckling, and as a result, the expansion ratio Couldn't be bigger.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydroforming method capable of processing a part having a shape in which the direction of expanding in a plane is not limited to one direction by hydroforming as described above.
[0009]
[Non-patent document 1]
Plasticity and processing, Mori et al .: vol. 29 no. 325 (1988) p. 131
[0010]
[Means for Solving the Problems]
The gist of the present invention to solve such a problem is as follows.
(1) In a hydroforming method in which a metal pipe is mounted on a divided mold and clamped, and then an internal pressure and a pipe axial pushing force are applied to the metal pipe, the metal pipe may be moved in one direction in a cross section of the metal pipe. After expanding the pipe in a direction perpendicular to the one direction to a thickness twice as large as the metal pipe to 1.4 times the diameter of the raw pipe (excluding one time of the raw pipe diameter), the metal pipe is deformed. A hydroform characterized in that the metal tube is expanded in a direction perpendicular to the one direction in a cross section while being twice as thick as the metal tube to 1.4 times as large as the deformed width in the one direction. Processing method.
(2) While expanding the metal tube in one direction of the cross section of the metal tube, in a direction perpendicular to the one direction, the plate thickness of the metal tube is twice to 1.4 times the base tube diameter (excluding one time of the base tube diameter). ), Mounted on a mold having the shape of the final product, and while expanding the metal tube in a direction perpendicular to the one direction in the cross section of the metal tube, the thickness of the metal tube in the one direction is twice or more the thickness of the metal tube. The hydroforming method according to (1), wherein the shape is formed to be 1.4 times the width after the deformation.
(3) In a hydroforming method in which a metal tube is mounted on a divided mold and clamped, then an internal pressure and a pushing force in a tube axial direction are applied to the metal tube. After expanding the pipe in a direction perpendicular to the one direction to a thickness twice as large as the metal pipe to 1.4 times the diameter of the raw pipe (excluding one time of the raw pipe diameter), the metal pipe is deformed. While expanding the metal pipe in a direction perpendicular to the one direction in the cross section, the metal pipe is formed in the one direction to be twice the thickness of the metal pipe to 1.4 times the width after the deformation to be an intermediate product. A hydroforming method characterized by being mounted on a mold having the shape of the final product and subjected to hydroforming.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the example of FIG. 5, first, the metal tube 1 is mounted on the lower mold 2 and the upper mold 3 is closed. At this time, the shape of the cavity of the molds 2 and 3 is expanded in the horizontal direction with respect to the diameter of the metal tube 1 and also in the vertical direction, which is larger than one time of the diameter of the tube and is at most the original tube diameter. The shape is such that the tube can be expanded to 1.4 times the diameter (width). Up to 1.4 times the original tube diameter (width), it is possible to apply shear deformation to the material to some extent. Next, an inner pressure is applied to the inside of the set pipe 1 and, at the same time, the right and left ends are pushed in the pipe axis direction by the axial pushing punches 4 and 5 to finish the shape of the intermediate product 6. This is the first hydroforming step.
[0012]
Next, the intermediate product 6 is taken out of the first hydroform molds 2 and 3 and mounted on another lower mold 7 corresponding to the final product shape, and another upper mold 8 is closed. At this time, the shape of the cavity of the molds 7 and 8 is expanded in the vertical direction with respect to the shape of the intermediate product 6, and the diameter (width) of the pipe after the first hydroform molding is also maximum in the horizontal direction. ) Is expanded to 1 to 1.4 times that of (1). If the vertical cavity shape (height) exceeds 1.4 times the diameter (width) of the tube after the first hydroform molding, it becomes difficult to apply shear deformation to the material. Next, an inner pressure is applied to the inside of the set intermediate product 6, and at the same time, the left and right ends are pushed in the tube axis direction by the axial pushing punches 9, 10 to finish to the shape of the final product 11. As a result, finally, a final product 11 expanded in the horizontal and vertical directions with respect to the pipe 1 is completed.
[0013]
In the above example, the pipe was expanded mainly in the horizontal direction in the first hydroforming step, and the pipe was expanded mainly in the vertical direction in the second hydroforming step. The effect of the present invention can be similarly obtained by expanding the pipe in the vertical direction and mainly in the horizontal direction in the second hydroforming step.
When the intermediate product formed in the first hydroforming step is set in the second hydroforming step, it is not necessary to insert the intermediate product in the same direction. For example, the intermediate product may be set in a direction inclined by 90 °. In this case, the direction of the mold cavity in the second hydroforming step is the same as the direction of the mold cavity in the first hydroforming step.
[0014]
Further, the same effect can be obtained by expanding the tube after the cross section is flattened in the mold clamping direction at the time of mold clamping. In the example of FIG. 6, first, the metal tube 1 is mounted on the lower mold 2 and the upper mold 3 is closed. At this time, the shape of the hollow portions of the dies 2 and 3 is expanded in the horizontal direction with respect to the diameter of the metal tube 1 and also in the vertical direction from twice or more the plate thickness to the original tube diameter (width). ) Make the shape smaller. If the thickness is more than twice the plate thickness and is smaller than the original tube diameter (width), shear deformation can be imparted. However, since the adhesion to the mold is increased, a highly lubricating lubricant is applied. It is preferable to improve the lubrication between the tube 1 and the upper and lower molds 2, 3. Next, an inner pressure is applied to the inside of the set pipe 1 and, at the same time, the right and left ends are pushed in the pipe axis direction by the axial pushing punches 4 and 5 to finish the shape of the intermediate product 6. This is the first hydroforming step.
[0015]
Next, the intermediate product 6 is taken out of the first hydroform molds 2 and 3 and mounted on another lower mold 7 corresponding to the final product shape, and another upper mold 8 is closed. In the example of FIG. 6, when setting the intermediate product formed in the first hydroforming step in the second hydroforming step, the intermediate product was set in a direction inclined by 90 °.
That is, in this case, the shape of the cavity of the molds 7 and 8 is expanded in the horizontal direction with respect to the shape of the intermediate product 6, and is perpendicular to the expanding direction (the vertical direction in FIG. 6). ) Was formed so that the deformation from twice the plate thickness to 1.4 times the width (height in FIG. 6) after the deformation in the first hydroforming step (see FIG. 6). If the mold clamping is smaller than twice the plate thickness, it becomes difficult to impart shear deformation. Further, if the width exceeds 1.4 times the width after the deformation, it becomes difficult to apply shear deformation to the material.
[0016]
Next, an inner pressure is applied to the inside of the set intermediate product 6, and at the same time, the left and right ends are pushed in the tube axis direction by the axial pushing punches 9, 10 to finish to the shape of the final product 11. As a result, finally, a final product 11 expanded in the horizontal and vertical directions with respect to the pipe 1 is completed.
[0017]
In the above example, the intermediate product formed in the first hydroforming step was tilted by 90 ° when it was set in the second hydroforming step, but the intermediate product may be set without tilting. In this case, the direction of the mold cavity in the second hydroforming step is perpendicular to the direction of the mold cavity in the first hydroforming step. At this time, the pipe may be expanded in the horizontal direction in the first hydroforming step and may be expanded in the vertical direction in the second hydroforming step, or vice versa. That is, the effects of the present invention can be similarly obtained by expanding the pipe mainly in the vertical direction in the first hydroforming step and in the horizontal direction in the second hydroforming step.
[0018]
When the inventions described in FIGS. 5 and 6 are combined, the deformation in the direction perpendicular to the pipe expanding direction is reduced from twice the sheet thickness to 1.4 times the original diameter (width) of the process (the first step). The effect of the present invention can be obtained in the same manner as long as the diameter is increased (except for one time the diameter of the base tube in one hydroforming step).
[0019]
As a method of preventing bursting and buckling during molding and increasing the expansion ratio, there is a counter punch or a movable mold movable in the axial direction of the tube as shown in FIG. 7 (excerpted from Schuler's Metal Forming Handbook). When the method is used in each hydroforming step, the pipe expansion rate in each step can be further increased, and the final pipe expansion rate can be further improved.
[0020]
Further, the example of FIG. 8 is an example in which the counter punches 12 and 13 are used in the first hydroforming step, and the movable dies 14, 15, 16 and 17 are used in the second hydroforming step.
[0021]
FIG. 9 shows an example in which the first hydroforming step and the second hydroforming step are processed in the same molds 20 and 21. The pair of dies 20 and 21 have a cavity in which the metal tube 1 can be expanded in the horizontal direction, and a vertical shape (up and down direction) perpendicular to the expansion direction corresponding to the cavity from the outer surface of the metal tube at the beginning of molding to the final shape. It has movable dies 24 and 25 whose position can be controlled to the outer surface of the metal tube. By doing so, the mold mechanism becomes complicated, but the number of molds can be reduced, which is advantageous in cost.
In addition, when a counter punch or a movable mold as in the example of FIG. 7 is used in combination with the integrated mold, molding can be performed up to a larger pipe expansion ratio, which is advantageous.
[0022]
8 and 9 are examples in which, in both the first hydroforming step and the second hydroforming step, there is no deformation at all in the direction perpendicular to the expanding direction. However, it goes without saying that almost the same effect can be obtained if the deformation is 1.4 times or less the original diameter (width) of the process (see FIG. 5).
[0023]
In any of the above examples, when expanding in the horizontal direction, expansion in the vertical direction is restricted, and when expanding in the vertical direction, expansion in the horizontal direction is restricted. In many cases, the final product shape becomes a simple shape. Therefore, it is effective to add one more step to finish a complicated shape like an automobile part. That is, the pipe is expanded to the expansion ratio corresponding to the final product by the above-described first and second hydroforming steps (or a processing step using an integrated die), and the intermediate product 26 is formed. A hydroforming process is carried out so that only the shape is prepared by mounting (see FIG. 10). By this method, it is possible to hydroform a part having a complicated shape and a large pipe expansion ratio. For the molding of the intermediate product 26, the first and second hydroforming steps may be performed using the same mold.
As the metal pipe, a steel pipe, a stainless steel pipe, an aluminum pipe, a titanium pipe, or the like can be used.
[0024]
【Example】
Examples of the present invention will be described below.
As the raw tube, an outer diameter of 63.5 mm, a plate thickness of 2.3 mm, a length of 500 mm, and a material of JIS standard STKM11A (carbon steel pipe for machine structure) were used. As shown in FIG. 5, the shape of the product to be processed was such that the tube was expanded into a square, the length of one side of the square was 150 mm, the corner R was 8 mm, and the length of the expanded portion in the tube axis direction was 100 mm.
[0025]
First, in the first hydroforming step, the pipe was expanded in the horizontal direction and also in the vertical direction to obtain an intermediate product. At this time, molding was performed with an axial pushing amount of 50 mm on both sides and an internal pressure of 30 MPa at the maximum. By the first hydroforming step, the pipe was expanded about 1.9 times in the horizontal direction and about 1.1 times in the vertical direction with respect to the diameter of the raw pipe.
Next, the intermediate product formed as described above was mounted on a second hydroform mold having a final product shape, and expanded in a vertical direction. At that time, the shaping amount was 40 mm on both the left and right sides, and the internal pressure was formed at a maximum of 30 MPa. By this second hydroforming step, the pipe was expanded about 1.2 times in the horizontal direction and about 2.1 times in the vertical direction with respect to the diameter (width) of the pipe after the first hydroform molding.
[0026]
For comparison, molding was performed by a conventional method other than the method of the present invention. That is, the first hydroforming step was omitted, and the raw tube was directly inserted into the mold of the second hydroforming step and molded. As a result, no matter how much the axial pressing and the internal pressure were adjusted, there was no contact with the mold at the expanded portion, and bursting or buckling occurred and molding could not be performed.
[0027]
【The invention's effect】
According to the present invention, it is possible to perform hydroforming with a large pipe expansion ratio that could not be processed due to a conventional burst or buckling as a neck. As a result, the range of parts to which hydroforming is applied is expanded. As a result, it is possible to contribute to the effects of cost reduction and weight reduction of automobile parts as described at the beginning.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a strain state in press working and hydroforming.
FIG. 2 is an explanatory diagram of a forming limit in free bulge processing.
FIG. 3 is an explanatory diagram of an example of a hydroform shape suitable for shear deformation.
FIG. 4 is an explanatory diagram of an example of a hydroform shape when shear deformation is difficult.
FIG. 5 is an explanatory view of the present invention in the case where the deformation in the direction perpendicular to the expanding direction is from 1 to 1.4 times the original diameter (width).
FIG. 6 is an explanatory view of the present invention in the case where the deformation in the direction perpendicular to the direction in which the tube is expanded is twice the plate thickness to one time the original diameter (width).
FIG. 7 is an explanatory view of a counter punch and a movable mold.
FIG. 8 is an explanatory diagram of a case where a counter punch or a movable mold is used in combination with the hydroforming method.
FIG. 9 is an explanatory view of an example of a hydroforming method using an integrated mold.
FIG. 10 is an explanatory view of an example of a hydroforming method in which a third hydroforming step of the present invention is added.
[Explanation of symbols]
Reference numeral 1: Metal tube 2: Lower mold 3 in the first hydroforming step 3 ... Upper mold 4 in the first hydroforming step 5: Left punch for the first hydroforming step 5: Right press for the first hydroforming step Punch 6: Intermediate product after the first hydroforming step 7: Die 8 below the second hydroforming step 8: Die 9 above the second hydroforming step 9: Left punch 10 for the second hydroforming step Second hydroforming step right-axis pressing punch 11: final product 12: counter punch 13 before first hydroforming step 13: counter punch 14 after first hydroforming step: lower left movable mold for second hydroforming step 15: second hydroforming step lower right movable mold 16: second hydroforming step upper left movable mold 17: second hydroforming step Upper movable mold 18: second hydroforming step left mold pressing tool 19: second hydroforming step right mold pressing tool 20: first second step integrated lower mold 21: first Second step integrated type upper mold 22... First second step integrated type left axis pressing punch 23... First second step integrated type right axis pressing punch 24... First second step integrated type front counter punch ( Movable mold)
25: First and second step integrated type front counter punch (movable mold)
26: Intermediate product 27 after the second hydroforming step 27: Lower mold 28 in the third hydroforming step Upper mold 29 in the third hydroforming step Left punch 30 in the third hydroforming step 3 hydroforming process right axis pushing punch

Claims (3)

金属管を分割した金型に装着し、型締めした後で、前記金属管に内圧と管軸方向押し込み力を負荷するハイドロフォーム加工方法において、前記金属管断面の一方向に前記金属管を拡管させながら前記一方向と直角方向に前記金属管の板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、前記金属管断面において前記一方向と直角方向に前記金属管を拡管させながら前記一方向に前記金属管の板厚の2倍〜前記変形後の幅の1.4倍に成形することを特徴とするハイドロフォーム加工方法。In a hydroforming method in which a metal pipe is mounted on a divided mold, and after clamping, the internal pressure and the pipe axial pushing force are applied to the metal pipe, the metal pipe is expanded in one direction of the cross section of the metal pipe. After being deformed in a direction perpendicular to the one direction to twice the plate thickness of the metal tube to 1.4 times the tube diameter (excluding one time of the tube diameter), the metal tube cross section is A hydroforming method, wherein the metal pipe is formed in the one direction so as to have a thickness of twice the thickness of the metal pipe to 1.4 times the width after the deformation while expanding the metal pipe in a direction perpendicular to one direction. 金属管を金属管断面の一方向に拡管させながら前記一方向と直角方向に前記金属管の板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、最終製品形状の金型に装着し、前記金属管断面において前記一方向と直角方向に金属管を拡管させながら前記一方向に前記金属管の板厚の2倍〜前記変形後の幅の1.4倍に成形することを特徴とする請求項1記載のハイドロフォーム加工方法。While expanding the metal tube in one direction of the cross section of the metal tube, the metal tube is deformed in a direction perpendicular to the one direction to twice the plate thickness of the metal tube to 1.4 times the base tube diameter (excluding one time of the base tube diameter). After that, the metal pipe is mounted on a mold having the shape of the final product, and while the metal pipe is expanded in a direction perpendicular to the one direction in the cross section of the metal pipe, the thickness of the metal pipe is twice as large in the one direction to after the deformation. The hydroforming method according to claim 1, wherein the width is 1.4 times the width of the hydroform. 金属管を分割した金型に装着し、型締めした後で、前記金属管に内圧と管軸方向押し込み力を負荷するハイドロフォーム加工方法において、前記金属管断面の一方向に前記金属管を拡管させながら前記一方向と直角方向に前記金属管の板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、前記金属管断面において前記一方向と直角方向に金属管を拡管させながら前記一方向に前記金属管の板厚の2倍〜前記変形後の幅の1.4倍に成形させ中間製品とし、その中間製品を最終製品形状の金型に装着し、ハイドロフォーム加工することを特徴とするハイドロフォーム加工方法。In a hydroforming method in which a metal pipe is mounted on a divided mold, and after clamping, the internal pressure and the pipe axial pushing force are applied to the metal pipe, the metal pipe is expanded in one direction of the cross section of the metal pipe. After being deformed in a direction perpendicular to the one direction to twice the plate thickness of the metal tube to 1.4 times the tube diameter (excluding one time of the tube diameter), the metal tube cross section is While expanding the metal tube in a direction perpendicular to one direction, the metal tube is formed in the one direction to a thickness twice as large as the thickness of the metal tube to 1.4 times the width after the deformation to form an intermediate product, and the intermediate product is formed into a final product shape. A hydroforming method characterized by being mounted on a mold and hydroforming.
JP2003063197A 2003-03-10 2003-03-10 Hydroform processing method Expired - Fee Related JP4133465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063197A JP4133465B2 (en) 2003-03-10 2003-03-10 Hydroform processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063197A JP4133465B2 (en) 2003-03-10 2003-03-10 Hydroform processing method

Publications (2)

Publication Number Publication Date
JP2004268096A true JP2004268096A (en) 2004-09-30
JP4133465B2 JP4133465B2 (en) 2008-08-13

Family

ID=33124837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063197A Expired - Fee Related JP4133465B2 (en) 2003-03-10 2003-03-10 Hydroform processing method

Country Status (1)

Country Link
JP (1) JP4133465B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502511A (en) * 2005-07-26 2009-01-29 アクアフォーム・インコーポレーテッド Molded part forming apparatus and method
CN110560544A (en) * 2019-10-17 2019-12-13 哈尔滨工业大学(威海) Large-section-difference hollow structural member axial compression expansion forging process method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537907A (en) * 2016-06-28 2018-01-05 无锡卡豹动力科技有限公司 A kind of forming method of automotive transmission pilot sleeve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502511A (en) * 2005-07-26 2009-01-29 アクアフォーム・インコーポレーテッド Molded part forming apparatus and method
CN110560544A (en) * 2019-10-17 2019-12-13 哈尔滨工业大学(威海) Large-section-difference hollow structural member axial compression expansion forging process method

Also Published As

Publication number Publication date
JP4133465B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
KR100760410B1 (en) Press forming method and press forming device
RU2654403C2 (en) Stamping-formed product, automobile construction element, including the product, method of manufacturing and device for manufacturing of the stamping-formed product
JP5009363B2 (en) Hydroform processing method
KR20060028816A (en) Forging method, forged product and forging apparatus
TWI711498B (en) Formed material manufacturing method and formed material
JP2776796B2 (en) Metal tube thickening processing method
JP2001162330A (en) Manufacturing method of metal sheet member having large area
US10022776B2 (en) Panel forming method and apparatus
JPH08168814A (en) Production of hollow member for automobile stracture made of aluminum alloy
JP4009129B2 (en) Hydroform processing method
JP3972006B2 (en) Hydroform processing method and hydroform processing mold
JP4133465B2 (en) Hydroform processing method
JP2009045672A (en) Method of hydroforming hollow aluminum extruded material
JP2011131219A (en) Method for forming pipe member
JP3794680B2 (en) Hydroforming method
JP3642232B2 (en) Fluid pressure molding method, fluid pressure molding apparatus, and body member
JP2010227988A (en) Method and apparatus for expansion forming of steel pipe
JP2007130664A (en) Forming die for hydroforming work and working method
JP2003154407A (en) Aluminum extruded material for hydroforming and method of manufacturing the same
JP3968047B2 (en) Mold for hydroforming and hydroforming method
JP2004337861A (en) Piercing-working method in hydraulic-pressure bulge-working of pipe
JPH07214147A (en) Production of special shaped tube
JP2005288532A (en) Hydroforming method
JP4035073B2 (en) Mold for hydroforming and hydroforming method
WO2018025667A1 (en) Member machining method and member joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4133465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees